八年级数学竞赛培优训练勾股定理及其逆定理含解析
勾股定理及其逆定理,经典过关题及练习题(含答案)
CBAFEDCB A勾股定理及其逆定理(讲义)一、 知识点睛1. 11-19的平方:_______________________________________________________________________________________________________.2. 勾股定理:_______________________________________________________________________________________________________. 3. 勾股定理的验证:4. 勾股定理逆定理:_______________________________________________________________________________________________________.5. 勾股数:满足a 2+b 2=c 2的三个正整数,称为勾股数.常见勾股数有______________;______________;_______________;________________;________________;_________________.二、精讲精练1. 一个直角三角形两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形的周长为25C .斜边长为5D .三角形的面积为202. 如图,在Rt △ABC 中,∠C =90°,若BC =8,AB =17,则AC 的长是________.S 3S 2S 1AB C86C3. 已知:如图,在Rt △ABC 和Rt △ACF 中,BC 长为3cm ,AB 长为4cm ,AF长为12cm ,则正方形CDEF 的面积为_________.4. 如图,在△ABC 中,∠ABC =90°,分别以BC ,AB ,AC 为边向外作正方形,面积分别记为S 1,S 2,S 3.若S 2=4,S 3=6,则S 1=___________.5. 如图,已知Rt △ABC 的两直角边长分别为6和8,分别以其三边为直径作半圆,则图中阴影部分的面积为___________.6. (1)等面积法是几何中一种常见的证明方法,可以直观地推导或验证公式,俗称“无字证明”.例如,著名的赵爽弦图(如图1,其中四个直角三角形较长的直角边长都为a ,较短的直角边长都为b ,斜边长都为c ),大正方形的面积可以表示为c 2,也可以表示为4×12ab +(a -b )2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a ,b ,斜边长为c ,则a 2+b 2=c 2.图2为美国第二十任总统伽菲尔德的“总统证法”,请你利用图2推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形的两直角边长为3和4,则斜边上的高为________. 7. 如图,点C 在线段BD 上,AC ⊥BD ,CA =CD ,点E 在线段CA 上,且满足DE =AB ,连接DE 并延长交AB 于点F . (1)求证:DE ⊥AB ;(2)若已知BC =a ,AC =b ,AB =c ,你能借助本题提供的图形证明勾股定理吗?试一试吧.图2图1b ba ED A ABDEFc c图2b aba ED CBAlcba8. 如图,小方格都是边长为1的正方形,则四边形ABCD 的面积是_________.第8题图 第9题图9. 如图,在△ABC 中,∠ACB =90°,AC >BC ,分别以AB ,BC ,CA 为一边向△ABC 外作正方形ABDE ,正方形BCMN ,正方形CAFG ,连接EF ,GM ,ND .设△AEF ,△CGM ,△BND 的面积分别为S 1,S 2,S 3,则下列结论正确的是( )A .S 1=S 2=S 3B .S 1=S 2<S 3C .S 1=S 3<S 2D .S 2=S 3<S 110. 如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为______.11. 如图,从电线杆离地面8m 处向地面拉一条钢索,若这条钢索在地面的固定点距离电线杆底部6m ,那么需要多长的 钢索?12. 小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,子拉到离旗杆底端5米处,发现此时绳子底端距离打结处1米.法算出旗杆的高度.13. 下列各组数中不能作为直角三角形三边长的是( )DCBAAB C DE F GH图3图2图1h 26246b 106c 125A .B .C .D .7152024257202425715202425252420157图2图1DCBAA .0.3,0.4,0.5B .7,12,15C .11,60,61D .9,40,4114. 如图,在单位正方形组成的网格图中有AB ,CD ,EF ,GH 四条线段,其中能构成一个直角三角形三边的线段是( )A .CD ,EF ,GHB .AB ,EF ,GHC .AB ,CD ,GHD .AB ,CD ,EF 15. 若三角形的三边长分别是222122221n n n n n ++++,,(n 为正整数),则三角形的最大内角等于_______度.16. 将直角三角形的三边长同时扩大同一倍数,得到的三角形是( )A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形17. 三边长分别是15,36,39的三角形是_______三角形.18. 如图,求出下列直角三角形中未知边的长度:c =____,b =____,h =_____.19. 五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列图形中正确的是( )20. 一个零件的形状如图1中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边长如图2请说明理由.勾股定理及其逆定理(随堂测试)1.有一块土地形状如图所示,∠B =∠D =90°,AB =20米,BC =15米,CD =7BAD CB .A .c b c a b a a b c a b c c b a c b a A BCD EF D .c b a a b c C .米,则这块地的面积为__________.2.若三角形的三边长是:①5k ,12k ,13k (k >0);②111345,,;③32,42,52;④0.3,0.4,0.5;⑤2n +1,2n ,2n 2+2n +1(n 为正整数).则其中能构成直角三角形的是_____________.3.如图,在四边形ABCD 中,AD =3,AB =4,BC =12,CD =13,∠BAD =90°. (1)求BD 的长; (2)证明:BD ⊥BC ; (3)求四边形ABCD 的面积.勾股定理及其逆定理(作业)1. 以下列长度的三条线段为边,不能组成直角三角形的是( )A .1.5,2,2.5B .9,12,15C .7,24,25D .1,1,22. 若三角形的三边长是:①5k ,12k ,13k (k >0);②111345,,;③32,42,52;④11,60,61;⑤22(+)12(+)(+)+1m n m n m n ,,(m ,n 为正整数).其中能构成直角三角形的有( )A .2个B .3个C .4个D .5个3. 下列选项中,不能用来证明勾股定理的是( )4. 已知甲、乙两人从同一点出发,甲往东走了12km ,乙往南走了5km ,这时甲、乙两人相距______.5. 在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离为____________.DC BAF E D CB A 6. 记为S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( A .S l +S 2>S 3 B .S l +S 2< S 3C .S 1+S 2=S 3D .S 12+S 22=S 327. 中最大的正方形的边长为7cm ,则正方形A ,B ,___________cm 2.8. 如图,每个小方格都是边长为1的正方形,则四边形ABCD 的面积为_________.9. 如图,在正方形ABCD 中,AB =4,AE =2,DF =1,则图中共有直角三角形________个.10. 11. 如图,一架长25(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4方向上滑动了几米?12. 已知一个三角形的三边长分别是5cm ,12cm ,13cm ,你能算出这个三角形的面积吗?b915勾股定理及其逆定理【参考答案】➢ 课前预习1. 大于,互余;2. 121,144,169,196,225,256,289,324,3613. 16A S =9B S = 25C S =A B C S S S +=➢ 知识点睛1. 直角三角形两直角边的平方和等于斜边的平方.2. 略3. 三角形两边的平方和等于第三边的平方,直角三角形.4. 3,4,5;5,12,13;7,24,25;8,15,17;9,40,41;11,60,61.➢ 精讲精练1. C2. 169 cm 23. 24.245. 证明略6. 167. 148. AD =12 cm ,AC =15 cm 9. B 10. B 11. 90 12. 直角 13. C14. 符合要求,理由略15. (1)同位角相等,两直线平行.逆命题成立.(2)如果两个实数的积是正数,那么这两个实数是正数.逆命题不成立. (3)锐角三角形是等边三角形.逆命题不成立.(4)到一条线段两个端点距离相等的点在这条线段的垂直平分线上.逆命题成立.。
八年级下册数学同步和培优-第6讲 勾股定理的逆定理及应用
第6讲 勾股定理的逆定理及应用知识要点:1.勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 2. 满足a 2+b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用的勾股数有3、4、5;6、8、10;5、12、13;8、15、17;7、24、25等.3. 应用勾股定理的逆定理时,先计算较小两边的平方和再把它和最大边的平方比较.4. 判定一个直角三角形,除了可根据定义去证明它有一个直角外,还可以采用勾股定理的逆定理,即去证明三角形两条较短边的平方和等于较长边的平方,这是代数方法在几何中的应用.经典例题例1.在△ABC 中,2:1:1:: c b a ,那么△ABC 是( ).A .等腰三角形B .钝角三角形C .直角三角形D .等腰直角三角形例 2.若一个三角形的周长12c m,一边长为3c m,其他两边之差为c m,则这个三角形是______________________.例3.如图,已知四边形ABCD 中,∠B =90°,AB =3,BC =4,CD =12,AD =13,求四边形ABCD 的面积.例4. 如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =41BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.EA经典练习1. 分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有( )A .4组B .3组C .2组D .1组2. 三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是( )。
A .直角三角形 B .钝角三角形 C .锐角三角形 D .不能确定 3.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A .1倍B . 2倍C . 3倍D . 4倍4. 下列各命题的逆命题不成立的是( )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a 2=b 2,那么a =b5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )7152425207152024257252024257202415(A)(B)(C)(D)A B C D6.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠, 使C 点与A 点重合,则EB 的长是( ). A .3B .4C 5D .57.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.“路”4m3mFEDCBA121017158BBAD8.图示是一种“羊头”形图案,其作法是,从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,和2′,…,依次类推,若正方形7的边长为1cm ,则正方形1的边长为__________cm.9. 如图所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.10. 一个零件的形状如左图所示,按规定这个零件中∠DAB 和∠C 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?11.如图,某学校(A 点)与公路(直线L )的距离为300米,又与公路车站(D 点)的距离为500米,现要在公路上建一个小商店(C 点),使之与该校A 及车站D 的距离相等,求商店与车站之间的距离. ADCB能力提高1.如图,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上的C 处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面B ,再由B 跑到C ,已知两猴子所经路程都是15m ,求树高AB .2. 已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,如果AB =8c m ,BC =10c m ,求EC 的长.3.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少4.社区有两所学校所在的位置在点C 和D 处.CA ⊥AB 于A ,DB ⊥AB 于B ,已知AB =25km ,CA =15km ,DB =10km ,试问:阅览室E 应建在距A 多少㎞处,才能使它到C 、D 两所学校的距离相等?A D.AB 5315.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______.l 321S 4S 3S 2S 1巩固练习1.若△ABC 的三个外角的度数之比为3:4:5,最大边AB 与最小边BC 的关系是_________. 2.将直角三角形的三边扩大相同的倍数后,得到的三角形是 ( ). A.直角三角形 B.锐角三角形 C.钝角三角形 D.不是直角三角形 3.下列命题中是假命题的是( ).A .△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形. B .△ABC 中,若a 2=(b +c )(b -c ),则△ABC 是直角三角形.C .△ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5则△ABC 是直角三角形.D .△ABC 中,若a ∶b ∶c =5∶4∶3则△ABC 是直角三角形.4.已知直角三角形的两边长为3、2,则另一条边长是________________.5.在一个直角三角形中,若斜边长为5cm ,直角边的长为3cm ,则另一条直角边的长为( ). A .4cm B .4cm 或cm 34 C .cm 34 D .不存在 6.在数轴上作出表示10的点.7.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出4.6㎝,问吸管要做多长?8.12.如图∠B=90º,AB =16cm ,BC =12cm ,AD =21cm,CD=29cm 求四边形ABCD 的面积.9.如图,铁路上A ,B 两点相距50km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=30km ,CB=20km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?10.在直角ΔABC 中,一直角边长为2,周长为2+6,求ΔABC 的面积.DEBC。
(苏科版)八年级数学上册勾股定理专项训练14: 勾股逆定理的运用(含答案与解析)
勾股定理专项训练(十四)——勾股逆定理的运用1.为了响应政府提出的“绿色长垣,文明长垣”的号召,某小区决定开始绿化,要在一块四边形ABCD 空地上种植草皮.如图,经测量∠B=90º,AB=6米,BC=8米,CD=24米,AD=26米.(1)求AC 的长.(2)判断△ACD 的形状,并证明.(3)若每平方米草皮需要300元,问需要投入多少元?2.如图,在ABC 中,D 是BC 上的一点,若10AB =,6BD =,8AD =,17AC =,求ABC 的面积.3.如图,已知CD=3cm ,AD=4cm ,∠ADC=90°,BC=12cm ,AB=13cm ,求阴影部分的面积.4.如图,在△ABC 中,CD ⊥AB ,垂足为D ,如果CD =6,AD =9,BD =4,那么△ABC 是直角三角形吗?请说明理由.5.如图,在△ABC 中,AB =4,AC =3,BC =5,DE 是BC 的垂直平分线,DE 分别交BC 、AB 于点D 、E.(1)求证:△ABC 为直角三角形.(2)求AE 的长.6.如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?7.已知:如图,AB=3,AC=4,AB ⊥AC ,BD=12,CD=13,(1)求BC 的长度;(2)证明:BC ⊥BD .8.已知某校有一块四边形空地ABCD 如图,现计划在该空地上种草皮,经测量90A ∠=︒,6AB m =,24BC m =,26CD m =,8DA m =.若种每平方米草皮需150元,问需投入多少元?9.学校要对如图所示的一块地ABCD 进行绿化,已知AD=4米,CD=3米,AD ⊥DC ,AB=13米,BC=12米.(1)若连接AC ,试证明:OABC是直角三角形;(2)求这块地的面积.10.定义:如图,点M 、N 把线段AB 分割成AM 、MN 、NB ,若以AM 、MN 、NB 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.(1)已知M 、N 把线段分割成AM 、MN 、NB ,若AM 2=,MN 4=,BN 23=,则点M 、N 是线段AB 的勾股分割点吗?请说明理由.(2)已知M 、N 是线段AB 的勾股分割点,且AM 为直角边,若AB=12,AM=5,求BN 的长.11.如图,在ABC 中,90ADC ∠=︒,若12CD =,16AD =,15BC =.(1)求AC ,BD 的长.(2)判断ABC 的形状并说明理由.12.如图,在△ABC 中,CD 是AB 边上高,若AD =16,CD =12,BD =9.(1)求△ABC 的周长.(2)判断△ABC 的形状并加以证明.13.如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB 8m =,AD 6m =,CD 24m =,BC 26m =,又已知A 90∠=︒,求这块土地的面积.14.已知等腰三角形ABC 的底边长BC=20cm ,D 是AC 上的一点,且BD=16cm ,CD=12cm .(1)求证:BD⊥AC;(2)求△ABC的面积.15.阅读:等边三角形具有丰富的性质,我们常常可以借助等边三角形和全等解决问题.如图1,B、C、D三点在同一条直线上,等边三角形ABC和等边三角形ECD具有共同的顶点C,我们容易证明△BCE≌△ACD,从而得到BE=;理解:如图2,已知点D在等边三角形ABC内,AD=5,BD=4,CD=3,以CD为边在它的下方作等边三角形CDE,求∠BDC的度数;应用:如图3,在△ABC中,AC=10,BC=12,点D在△ABC外,位于BC下方,△ABD为等边三角形,当∠ACD=30°时,2CD .答案与解析1.为了响应政府提出的“绿色长垣,文明长垣”的号召,某小区决定开始绿化,要在一块四边形ABCD空地上种植草皮.如图,经测量∠B=90º,AB=6米,BC=8米,CD=24米,AD=26米.(1)求AC的长.(2)判断△ACD的形状,并证明.(3)若每平方米草皮需要300元,问需要投入多少元?【答案】(1)AC=10米;(2)△ACD 是直角三角形,证明见详解;(3)需要投入43200元.【分析】(1)根据题意及勾股定理可直接进行求解;(2)由(1)及题意可根据勾股定理逆定理进行求证即可;(3)先求出四边形ABCD 的面积,然后进行列式求解即可.【详解】解:(1)∵∠B=90º,AB=6米,BC=8米,∴在Rt △ABC 中,22226810AC AB BC =+=+=米,即AC 的长为10米;(2)△ACD 是直角三角形,理由如下:由(1)得AC=10米,∵CD=24米,AD=26米,∴2222221024676,26676AC CD AD +=+===,∴222AC CD AD +=,∴△ACD 是直角三角形;(3)由(1)(2)及题意得: 112412014422ABC ACD ABCD S S S AB BC AC CD =+=⋅+⋅=+=四边形(平方米), ∴30014443200⨯=(元);答:需投入43200元.【点睛】本题主要考查勾股定理及逆定理的应用,熟练掌握勾股定理及逆定理的应用是解题的关键. 2.如图,在ABC 中,D 是BC 上的一点,若10AB =,6BD =,8AD =,17AC =,求ABC 的面积.【答案】84【分析】先根据10AB =,6BD =,8AD =,利用勾股定理的逆定理求证ABD ∆是直角三角形,再利用勾股定理求出CD 的长,然后利用三角形面积公式即可得出答案.【详解】解:2222226810BD AD AB +=+==,ABD ∴∆是直角三角形,AD BC ∴⊥,在Rt ACD ∆中,2215CD AC AD =-=,61521BC BD CD ∴=+=+=,112188422ABC S BC AD ∆∴==⨯⨯=. 因此ABC ∆的面积为84.故答案为84.【点睛】此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证ABD ∆是直角三角形.3.如图,已知CD=3cm ,AD=4cm ,∠ADC=90°,BC=12cm ,AB=13cm ,求阴影部分的面积.【答案】224cm【分析】利用勾股定理可求出AC 的长,根据△ABC 的三边关系可得△ABC 是直角三角形,根据三角形的面积公式可求出△ABC 与△ACD 的面积,进而求出阴影部分的面积.【详解】解:由勾股定理得AC=22AD CD +22435, ∵BC=12cm ,AB=13cm ,∴AC 2+BC 2=52+122=132=AB 2,∴△ABC 是直角三角形,∠ACB=90°∴阴影部分的面积=S △ABC -S △ACD =12BC•AC -12AD•CD =12×12×5-12×4×3 =30-6=24(cm 2)【点睛】本题考查了勾股定理及勾股定理的逆定理.得出△ABC 是直角三角形是解题关键.4.如图,在△ABC 中,CD ⊥AB ,垂足为D ,如果CD =6,AD =9,BD =4,那么△ABC 是直角三角形吗?请说明理由.【答案】是,理由详见解析【分析】利用勾股定理计算出AC2、CB2,然后利用勾股定理逆定理证明结论即可.【详解】∵CD⊥AB,∴∠ADC=∠CDB=90°∵CD=6,AD=9,BD=4∴AC2=CD2+AD2=36+81=117CB2=CD2+BD2=36+16=52∵AD=9,BD=4∴AB=AD+BD=13∴AC2+BC2=169=AB2∴∠ACB=90°∴△ABC是直角三角形.【点睛】本题考查了直角三角形勾股定理和勾股定理逆定理的知识;解题的关键是熟练掌握直角三角形勾股定理和勾股定理逆定理的性质并计算,从而完成求解.5.如图,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分线,DE分别交BC、AB于点D、E.(1)求证:△ABC为直角三角形.(2)求AE的长.【答案】(1)见解析;(2) AE的长是78.【分析】(1)利用勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形可得△ABC是直角三角形;(2)根据线段垂直平分线的性质可得BE=CE,设AE=x,则EC=4-x,根据勾股定理可得x2+32=(4-x)2,再解即可.【详解】(1)证明:∵△ABC中,AB=4,AC=3,BC=5,又∵42+32=52,即AB2+AC2=BC2,∴△ABC是直角三角形;(2)证明:连接CE.∵DE是BC的垂直平分线,∴EC=EB,设AE=x,则EC=4-x.∴x2+32=(4-x)2.解之得x=78,即AE的长是78.【点睛】此题主要考查了勾股定理逆定理和勾股定理,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.6.如图,某住宅小区在施工过程中留下了一块空地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问用该草坪铺满这块空地共需花费多少元?【答案】2400元【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出∠ACB=90°,求出区域的面积,即可求出答案.【解析】连结AC,在Rt △ACD 中,∠ADC=90°,AD=4米,CD=3米,由勾股定理得:AC=22345+=(米),∵AC 2+BC 2=52+122=169,AB 2=132=169,∴AC 2+BC 2=AB 2,∴∠ACB=90°,该区域面积S=S △ACB ﹣S △ADC =12×5×12﹣12×3×4=24(平方米), 即铺满这块空地共需花费=24×100=2400元. 考点:1.勾股定理;2.勾股定理的逆定理.7.已知:如图,AB=3,AC=4,AB ⊥AC ,BD=12,CD=13,(1)求BC 的长度;(2)证明:BC ⊥BD .【答案】(1)5;(2)证明见解析.【分析】(1)在Rt △ABC 中,直接利用勾股定理即可求出BC 的长;(2)利用勾股定理的逆定理判断出△BCD 为直接三角形,其中∠CBD=90°,即可得证.【详解】解:(1)∵AB=3,AC=4,AB ⊥AC ,∴22345BC =+=(2)∵BD=12,CD=13,BC 2+BD 2=52+122=132=CD 2,∴∠CBD=90°.∴BC ⊥BD .8.已知某校有一块四边形空地ABCD 如图,现计划在该空地上种草皮,经测量90A ∠=︒,6AB m =,24BC m =,26CD m =,8DA m =.若种每平方米草皮需150元,问需投入多少元?【答案】21600元【分析】直接利用勾股定理得出DB 的长,再利用勾股定理逆定理得出△DBC 是直角三角形,进而得出答案.【详解】解:∵90A ∠=︒,6AB m =,8DA m =, ∴()226810DB m =+=,∵24BC m =,26CD m =,∴222BD BC DC +=,∴DBC ∆是直角三角形,∴()21168102422144ABD DBC S S m ∆∆=⨯⨯=+⨯⨯+, ∴需投入总资金为:150********⨯=(元).【点睛】此题主要考查了勾股定理及逆定理的应用,正确得出△DBC 是直角三角形是解题关键. 9.学校要对如图所示的一块地ABCD 进行绿化,已知AD=4米,CD=3米,AD ⊥DC ,AB=13米,BC=12米.(1)若连接AC ,试证明:OABC 是直角三角形;(2)求这块地的面积.【答案】(1)见解析;(2)这块地的面积是24平方米.【分析】(1)先根据勾股定理求出AC 的长,再根据勾股定理的逆定理解答即可;(2)根据三角形的面积公式求解即可.【详解】(1)∵AD=4,CD=3,AD ⊥DC ,由勾股定理可得:2222435AD CD ++= ,又∵AC 2+BC 2=52+122=132=AB 2 ,∴△ABC 是直角三角形;(2)△ABC 的面积-△ACD 的面积=115123422⨯⨯-⨯⨯=24(m 2), 所以这块地的面积是24平方米. 【点睛】本题考查了勾股定理及勾股定理逆定理的应用,在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么a 2+b 2=c 2.反之也成立.10.定义:如图,点M 、N 把线段AB 分割成AM 、MN 、NB ,若以AM 、MN 、NB 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.(1)已知M 、N 把线段分割成AM 、MN 、NB ,若AM 2=,MN 4=,BN 23=,则点M 、N 是线段AB 的勾股分割点吗?请说明理由.(2)已知M 、N 是线段AB 的勾股分割点,且AM 为直角边,若AB=12,AM=5,求BN 的长.【答案】(1)点M 、N 是线段AB 的勾股分割点;(2)127或377.【分析】(1)由已知可得222AM NB MN +=,依据勾股定理逆定理即可得结论,(2)设BN x =,则127MN AM BN x =--=-,分两种情形①当MN 为斜边时,依题意222MN AM NB =+,②当BN 为最斜边时,依题意222BN AM MN =+,分别列出方程即可解决问题.【详解】解:(1)是.理由:AM 2=,MN 4=,BN 23= (22222316AM BN ∴+=+=,22416MN ==,222AM NB MN ∴+=, AM ∴、MN 、NB 为边的三角形是一个直角三角形.即:点M 、N 是线段AB 的勾股分割点.(2)设BN x =,则127MN AM BN x =--=-,①当MN 为最长线段时,依题意222MN AM NB =+,即()22725x x -=+,解得127x =, ②当BN 为最长线段时,依题意222BN AM MN =+.即()22257x x =+-,解得377x =, 综上所述BN 的长为127或377. 【点睛】本题考查了勾股定理的逆定理,解题的关键是理解题意,学会分类讨论,注意不能漏解,属于中考常考题型.11.如图,在ABC 中,90ADC ∠=︒,若12CD =,16AD =,15BC =.(1)求AC ,BD 的长.(2)判断ABC 的形状并说明理由.【答案】(1)AC=20,BD=9;见解析;(2)ABC 是直角三角形,理由见解析.【分析】(1)根据勾股定理可直接求出;(2)由(1)及勾股定理的逆定理可直接判断.【详解】解:(1)在Rt ADC 中,22A AD C CD =+ ∵12CD =,16AD =∴22161220AC =+=在Rt CDB 中,22BD BC CD -∵15BC =,12CD =∴2215129BD -=.(2)ABC 是直角三角形,理由如下:∵16AD =,9BD =,∴222()25625AB AD BD =+==,∵20AC =,15BC =,∴22400225625AC BC +=+=,∴222AB AC BC =+,∴ABC ∆是直角三角形.【点睛】本题主要考查勾股定理及其逆定理,熟练掌握勾股定理及逆定理是解题的关键.12.如图,在△ABC 中,CD 是AB 边上高,若AD =16,CD =12,BD =9.(1)求△ABC 的周长.(2)判断△ABC 的形状并加以证明.【答案】(1)60;(2)直角三角形,证明见解析.【分析】(1)利用勾股定理可求出AC ,BC 的长,即可求出△ABC 的周长;(2)利用勾股定理的逆定理即可证明.【详解】解:(1)∵CD 是AB 边上高,∴∠CDA=∠CDB=90°,∴22221612AD CD +=+, 2222912BD CD ++=15,∵AB=AD+BD=25,∴△ABC 的周长=AB+BC+AC=25+20+15=60;(2)△ABC 是直角三角形,理由如下:202+152=252,即AC 2+BC 2=AB 2,∴△ABC 是直角三角形.【点睛】本题主要考查了勾股定理以及其逆定理的运用;熟练掌握勾股定理与勾股定理的逆定理是解决问题的关键.13.如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB 8m =,AD 6m =,CD 24m =,BC 26m =,又已知A 90∠=︒,求这块土地的面积.【答案】2144m【分析】本题要先把解四边形的问题转化成解三角形的问题,再用勾股定理解答.【详解】解:连接BD ,A 90∠=︒,222BD AD AB 100∴=+=则2222BD CD 10057667626BC +=+===,因此CDB 90∠=︒,ADB CBD ABCD 1111S S S AD AB BD CD 682410144(2222=+=⋅+⋅=⨯⨯+⨯⨯=四边形平方米). 【点睛】此题考查勾股定理,解答此题的关键是解四边形的问题转化成运用勾股定理解直角三角形的问题再解答.14.已知等腰三角形ABC 的底边长BC=20cm ,D 是AC 上的一点,且BD=16cm ,CD=12cm .(1)求证:BD ⊥AC ;(2)求△ABC的面积.【答案】(1)见解析;(2)△ABC的面积为4003cm2.【分析】(1)根据勾股定理的逆定理证明即可(2)根据勾股定理先求出BD,然后再求三角形的面积即可【详解】(1)∵BC=20,BD=16,CD=12122+162=202∴CD2+BD2=BC2,∴△BDC是直角三角形,∴BD⊥AC;(2)解:设AD=xcm,则AC=(x+12 )cm,∵AB=AC,∴AB═(x+12 )cm,在Rt△ABD中:AB2=AD2+BD2,∴(x+12)2=162+x2,解得x=143,∴AC=143+12=503cm,∴△ABC的面积S=12BD•AC=12×16×503=4003cm2.【点睛】勾股定理及其逆定理是本题的考点,熟练掌握其定理和逆定理是解题的关键.15.阅读:等边三角形具有丰富的性质,我们常常可以借助等边三角形和全等解决问题.如图1,B、C、D三点在同一条直线上,等边三角形ABC和等边三角形ECD具有共同的顶点C,我们容易证明△BCE≌△ACD,从而得到BE=;理解:如图2,已知点D在等边三角形ABC内,AD=5,BD=4,CD=3,以CD为边在它的下方作等边三角形CDE,求∠BDC的度数;应用:如图3,在△ABC中,AC=10,BC=12,点D在△ABC外,位于BC下方,△ABD为等边三角形,当∠ACD=30°时,2CD .【答案】阅读:AD;理解:150°;应用:44【分析】阅读:根据等边三角形的性质和SAS证明△BCE≌△ACD,即可得出结论;理解:根据等边三角形的性质和SAS证明△BCE≌△ACD,得出BE=AD=5,进而可得出BD2+DE2=BE2,由勾股定理的逆定理可得∠BDE=90°,进一步即可求出答案;应用:以CD为边在△ABC的下方作等边△CDE,如图3,根据等边三角形的性质和SAS可证△ADE≌△BDC,从而可得AE=BC=12,易求得∠ACE=90°,再根据勾股定理即可得出答案.【详解】解:阅读:如图1,∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,∵BC=AC,∠BCE=∠ACD,CE=CD,∴△BCE≌△ACD(SAS),∴BE=AD,故答案为:AD;理解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD=3,∠BCA=∠ECD=60°,∴∠ACD=∠BCE,在△BCE和△ACD中,∵BC=AC,∠BCE=∠ACD,CE=CD,∴△BCE≌△ACD(SAS),∴BE=AD=5,∵BD2+DE2=42+32=25,BE2=25,∴BD2+DE2=BE2,∴△BDE是直角三角形,∠BDE=90°,∴∠BDC=∠BDE+∠CDE=90°+60°=150°;应用:以CD为边在△ABC的下方作等边△CDE,连接AE,如图3所示:则∠CDE=∠DCE=60°,CD=ED,∵△ABD是等边三角形,∴∠ADB=60°,AD=BD,∴∠ADE=∠BDC,∴△ADE≌△BDC(SAS),∴AE=BC=12,∵∠ACE=∠ACD+∠DCE=30°+60°=90°,∴CE2=AE2﹣AC2=122﹣102=44,即CD2=44.故答案为:44.【点睛】本题是三角形综合题,主要考查了等边三角形的性质、全等三角形的判定与性质、勾股定理及其逆定理等知识;正确添加辅助线、熟练掌握以上知识是解题的关键.。
专题一 勾股定理(解析版)
八年级北师大版上册第一章勾股定理培优专题一、勾股定理的应用(最短路径)1.如图是放在地面上的一个长方体盒子,其中AB=18,BC=12,BF=10,点M在棱AB上,且AM=6,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程的平方为()A.400B.424C.136D.324【答案】A【解析】【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN的长即可.【详解】解:如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∵BM=18-6=12,BN=10+6=16,∵MN2=122+162=400如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∵PM=18-6+6=18,NP=10,∵MN2=182+102=424.∵因为400<424,所以蚂蚁沿长方体表面从点M爬行到点N的最短距离的平方为400.故选:A.【点睛】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.2.如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_______cm.【答案】15.【分析】过C作CQ∵EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.【详解】沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ∵EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∵AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm-4cm+4cm=12cm,在Rt∵A′QC中,由勾股定理得:,故答案为15.3.有一个如图所示的长方体的透明鱼缸,假设其长AD=80 cm,高AB=60 cm,水深AE=40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60 cm.一小虫想从鱼缸外的点A处沿缸壁爬到鱼缸内G处吃鱼饵.(1)小虫应该走怎样的路线才可使爬行的路程最短?请画出它的爬行路线,并用箭头标注;(2)试求小虫爬行的最短路程.【答案】(1)如图所示见解析,AQ→QG为最短路线;(2)小虫爬行的最短路程为100 cm.【分析】(1)根据轴对称性质,通过作对称点将折线转化成两点之间线段距离最短.(2)根据AE=40cm,AA′=120cm,可得:A′E=120-40=80(cm),再根据EG=60cm,可得:A′G2=A′E2+EG2=802+602=10000,A′G=100cm,进而可得:AQ+QG=A′Q+QG=A′G=100cm.【详解】(1)如图所示,AQ→QG为最短路线,(2)因为AE=40cm,AA′=120cm,所以A′E=120-40=80(cm),因为EG=60cm,所以A′G2=A′E2+EG2=802+602=10000,所以A′G=100cm,所以AQ+QG=A′Q+QG=A′G=100cm,所以小虫爬行的最短路程为100cm.【点睛】本题主要对称性质和勾股定理的应用,解决本题的关键是要熟练掌握利用轴对称性质和勾股定理解决实际问题的方法.勾股定理的实际应用4.有一辆装满货物的卡车,高2.5米,宽1.6米,要开进如图所示的上边是半圆,下边是长方形的桥洞,已知半圆的直径为2米,长方形的另一条边长是2.3米.(1)这辆卡车能否通过此桥洞?试说明你的理由.(2)为了适应车流量的增加,想把桥洞改为双行道,并且要使宽1.2米,高为2.8米的卡车能安全通过,那么此桥洞的宽至少应增加到多少米?【答案】(1)能通过,理由见解析;(2) 桥洞的宽至少应增加到2.6米.【分析】(1)如图①,当桥洞中心线两边各为0.8米时,由勾股定理得方程2220.81x +=,解出x 的值,再用x +2.3与卡车的高2.5作比较即可;(2)如图②,在直角三角形AOB 中,已知OB =1.2,AB =2.8-2.3=0.5,由此可求OA 的长,即桥洞的半径,再乘以2即得结果.【详解】解:(1)能通过.理由如下:如图①所示,当桥洞中心线两边各为0.8米时,由勾股定理得2220.81x +=,解得0.6x =,∵2.5 2.30.6<+,∵卡车能通过.(2)如图②所示,在直角三角形AOB 中,已知OB =1.2,AB =2.8-2.3=0.5,由勾股定理得:22221.20.5 1.3OA =+=,∵ 1.3OA =,∵桥洞的宽至少应增加到1.32 2.6⨯=(米).① ②【点睛】本题考查了勾股定理的应用,解题的关键是正确理解题意,画出图形,弄清相关线段所表示的实际数据. 5.如图,公路MN 和公路PQ 在点P 处交会,公路PQ 上点A 处有学校,点A 到公路MN 的距离为80m ,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音的影响,试问该校受影响的时间为多长?【答案】24s.【解析】试题分析:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束,在Rt∵ACB中求出CB,继而得出CD,再由拖拉机的速度可得出所需时间.试题解析:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt∵ABC中,CB60(m),∵CD=2CB=120m,∵18km/h=18000m/3600s=5m/s,∵该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产生的噪声的影响时间为24秒.6.如图是某体育广场上的秋千,秋千静止时,其下端离地面0.7m,秋千荡到最高位置时,其下端离地面1.2 m,此时秋千与静止位置时的水平距离为1.5 m,请你根据以上数据计算秋千摆绳的长度.【答案】2.5m .【分析】根据题意画出图形,表示出图形中相关线段的长,再利用勾股定理得出答案.【详解】解:如图,作BE∵OA ,垂足为E ,由题意得,0.7m AC =, 1.2m BD =, 1.5m BE =,∵ 1.2m CE BD ==, 1.20.70.5(m)AE =-=.设m OA OB x ==,则(0.5)m OE x =-.在Rt OBE 中,由勾股定理得,222OE O E B B -=,即222(0.5) 1.5x x --=,解得 2.5x =.答:秋千摆绳的长度为2.5m .二、勾股定理与几何问题的应用7.如图,把长方形纸条ABCD 沿EF ,GH 同时折叠,B ,C 两点恰好落在AD 边的P 点处,若∵FPH =90°,PF =8,PH =6,则长方形ABCD 的边BC 的长为( )A .20B .22C .24D .30【答案】C【详解】 由折叠得: ,,FP BF CH PH ==在Rt PHF ∆ 中,∵FPH =90°,PF =8,PH =6,则10.FH == 故BC=BF+FH+HC=6+8+10=24. 故选C.8.如图,在四边形ABCD 中,AD∵BC ,∵ABC+∵DCB=90°,且BC=2AD ,分别以AB 、BC 、DC 为边向外作正方形,它们的面积分别为S 1、S 2、S 3.若S 2=48,S 3=9,则S 1的值为( )A.18B.12C.9D.3【答案】D【分析】过A作AH∵CD交BC于H,根据题意得到∵BAE=90°,根据勾股定理计算即可.【详解】∵S2=48,∵BC A作AH∵CD交BC于H,则∵AHB=∵DCB.∵AD∵BC,∵四边形AHCD是平行四边形,∵CH=BH=AD AH=CD=3.∵∵ABC+∵DCB=90°,∵∵AHB+∵ABC=90°,∵∵BAH=90°,∵AB2=BH2﹣AH2=3,∵S1=3.故选D.【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.9.如图,在∵ABC中,AB=AC=m,P为BC上任意一点,则PA2+PB•PC的值为()A.m2B.m2+1C.2m2D.(m+1)2【答案】A【分析】如图,作AD∵BC交BC于D,根据勾股定理得AB2=BD2+AD2,AP2=PD2+AD2,再根据D是BC的中点,整理得到AB2﹣AP2=PB•PC,再把AB=m代入求解即可.【详解】解:如图,作AD∵BC交BC于D,AB2=BD2+AD2 ①,AP2=PD2+AD2 ②,①﹣②得:AB2﹣AP2=BD2﹣PD2,∵AB2﹣AP2=(BD+PD)(BD﹣PD),∵AB=AC,∵D是BC中点,∵BD+PD=PC,BD﹣PD=PB,∵AB2﹣AP2=PB•PC,∵PA2+PB•PC=AB2=m2.故选A.10.如图,点E 是正方形ABCD 内一点,将ABE ∆绕点B 顺时针旋转90到CBE '∆的位置,若1,2,3AE BE CE ===,求BE C '∠的度数.【答案】135︒【分析】连接EE`,如图,根据旋转的性质得BE=B E'=2,AE=C E'=1,∵EBE`=90°,则可判断∵BEE`为等腰直角三角形,根据等腰直角三角形的性质得在∵CE E'中,由于CE`2 +E E'2=CE 2,根据勾股定理的逆定理得到∵CEE`为直角三角形,即∵EE`C=90°,然后利用∵B E'C=∵B E'E+∵C E'E 求解【详解】连接EE`,如图,∵∵ABE 绕点B 顺时针旋转90°得到∵CBE`∵BE=BE'=2,AE=CE'=1,∵EB E'=90°∵∵BE E'为等腰直角三角形在∵CEE`中∵122=32∵CE 2+E E'2= CE 2∵∵CE E'为直角三角形∵∵E E'C=90°∵∵B E'C=∵B E'E+∵C E'E=135°【点睛】此题考查了等腰直角三角形,勾股定理的逆定理,正方形的性质和旋转的性质,利用勾股定理证明三角形是直角三角形是解题关键11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.【答案】5【分析】根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.【详解】解:将四边形M TKN 的面积设为x ,将其余八个全等的三角形面积一个设为y ,正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=, ∴得出18S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y, 154=53x y , 所以245S x y , 故答案为:5.【点睛】此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.12.如图,P 是等边三角形ABC 内的一点,连接PA ,PB ,PC ,以BP 为边作60PBQ ∠=︒,且BQ=BP ,连接CQ.若::3:4:5PA PB PC =,连接PQ ,试判断PQC △的形状,并说明理由.【答案】PQC △是直角三角形,理由详见解析【解析】【分析】先利用SAS 证明∵ABP ∵∵CBQ ,得到AP=CQ ;设PA =3a ,PB =4a ,PC =5a ,由已知可判定∵PBQ 为正三角形,从而可得PQ =4a ,再根据勾股定理的逆定理即可判定∵PQC 是直角三角形.【详解】解:PQC △是直角三角形. 理由如下:在ABP △与CBQ △中,∵AB CB =,BP BQ =,60ABC PBQ ∠=∠=︒,∵ABP ABC PBC PBQ PBC CBQ ∠=∠-∠=∠-∠=∠.∵ABP CBQ ≌△△.∵AP CQ =.∵::3:4:5PA PB PC =,∵设3PA a =,4PB a =,5.PC a =在PBQ △中,由于4PB BQ a ==,且60PBQ ∠=︒,∵PBQ △为等边三角形.∵4PQ a =.在PQC △中,∵22222216925PQ QC a a a PC +=+==,∵PQC △为直角三角形.【点睛】此题考查了等边三角形的性质、勾股定理逆定理和全等三角形的判定与性质,解题的关键是通过证明ABP CBQ≌△△得出AP=CQ.13.已知:如图,∵ABC中,AB=AC=10,BC=16,点D在BC上,DA∵CA于A.求:BD的长.【答案】7 2【分析】先根据等腰三角形的性质和勾股定理求出AE=6,设BD=x,则DE=8﹣x,DC=16﹣x.在Rt∵ADE和Rt∵ADC中利用勾股定理得:AD2=AE2+DE2=DC2﹣AC2,继而代入求出x的值即可.【详解】如图,过点A作AE∵BC于点E,∵AB=AC=10,BC=16,∵BE=CE=8,在Rt∵ACE中,利用勾股定理可知:AE=6,设BD=x,则DE=8﹣x,DC=16﹣x,又DA∵CA,在Rt∵ADE和Rt∵ADC中分别利用勾股定理得:AD2=AE2+DE2=DC2﹣AC2,代入为:62+(8﹣x)2=(16﹣x)2﹣102,解得:x=72.即BD=72.【点睛】本题考查了勾股定理及等腰三角形的性质,解题的关键是在Rt∵ADE和Rt∵ADC中分别利用勾股定理,列出等式AD2=AE2+DE2=DC2﹣AC2.14.已知:AB=AC,且AB∵AC,D在BC上,求证:2222BD CD AD+=.【答案】证明见解析【分析】作AE∵BC于E,由于∵BAC=90°,AB=AC,得到∵BAC是等腰直角三角形,再由等腰直角三角形的性质得到BE=AE=EC,进而得到BD= AE-DE,DC= AE+DE,代入BD2+CD2计算,结合勾股定理,即可得到结论.【详解】作AE∵BC于E,如图所示.∵AB=AC,且AB∵AC,∵∵BAC是等腰直角三角形.∵AE∵BC,∵BE=AE=EC,∵BD=BE -DE=AE-DE,DC=EC+DE= AE+DE,∵BD2+CD2= (AE-DE)2+(AE+DE)2= AE2+DE2-2AE•DE+ AE2+DE2+2AE•DE= 2AE2+2DE2= 2(AE2+DE2)=2AD2.【点睛】本题主要考查勾股定理及等腰直角三角形的性质,关键在于得出BD= AE-DE,DC= AE+DE.三、动点问题15.已知,如图,在Rt∵ABC中,∵C=90°,∵A=30°,BC=18cm.动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P以2cm/s,Q以1cm/s的速度同时出发,设运动时间为t(s),解答下列问题:(1)t为______时,∵PBQ是等边三角形?(2)P,Q在运动过程中,∵PBQ的形状不断发生变化,当t为何值时,∵PBQ是直角三角形?说明理由.【答案】(1)12;(2)当t为9或725时,∵PBQ是直角三角形,理由见解析.【分析】(1)根据等边三角形的性质解答即可;(2)分两种情况利用直角三角形的性质解答即可.【详解】(1)要使,∵PBQ是等边三角形,即可得:PB=BQ,∵在Rt∵ABC中,∵C=90°,∵A=30°,BC=18cm.∵AB=36cm,可得:PB=36-2t,BQ=t,解得:t=12故答案为;12(2)当t为9或725时,∵PBQ是直角三角形,理由如下:∵∵C=90°,∵A=30°,BC=18cm∵AB=2BC=18×2=36(cm)∵动点P以2cm/s,Q以1cm/s的速度出发∵BP=AB-AP=36-2t,BQ=t∵∵PBQ是直角三角形∵BP=2BQ或BQ=2BP当BP=2BQ时,36-2t=2t解得t=9当BQ=2BP时,t=2(36-2t)解得t=72 5所以,当t为9或725时,∵PBQ是直角三角形.【点睛】此题考查了等边三角形的判定和含30°角的直角三角形的性质,关键是含30°角的直角三角形的性质的逆定16.如图1,Rt∵ABC 中,∵ACB =90.,直角边AC 在射线OP 上,直角顶点C 与射线端点0重合,AC =b ,BC =a ,30a -=.(1)求a ,b 的值;(2)如图2,向右匀速移动Rt∵ABC ,在移动的过程中Rt∵ABC 的直角边AC 在射线OP 上匀速向右运动,移动的速度为1个单位/秒,移动的时间为t 秒,连接OB .①若∵OAB 为等腰三角形,求t 的值;②Rt∵ABC 在移动的过程中,能否使∵OAB 为直角三角形?若能,求出t 的值:若不能,说明理由.【答案】(1)a =3,b =4(2)①t =4或t =1;②能.t =94. 【分析】(1)根据两个非负数的和为零则每一个数都为零,得出b -4=0 ,a -3=0 ,求解即可得出a ,b 的值;(2) ①首先根据勾股定理算出AB 的长及用含t 的式子表示出OA ,OB 2 ,然后分三类讨论:当OB =AB 时;当AB =OA 时 ;当OB =OA 时 ;一一列出方程求解即可得出t 的值; ②能.由于t >0,点C 在OP 上,∵ACB = 90,故只能是∵OBA =90°,根据勾股定理得出关于t 的方程求出t 的值即可. 【详解】(1)解0≥,30a -≥, 30a -=,0=, 30a -=∵a=3,b=4(2)解:①∵AC=4,BC=3,∵AB,∵OC=t∵OB2=t2+32=t2+9,OA=t+4,当OB=AB时,t2+9=25,解得t=4或t=﹣4(舍去);当AB=OA时,5=t+4,解得t=1;当OB=OA时,t2+9=(t+4)2,解得t=-78(舍去).综上所述,t=4或t=1;②能.∵t>0,点C在OP上,∵ACB ∵只能是∵OBA=90°,∵OB2+AB2=OA2,即t2+9+25=(t+4)2,解得t=94.∵Rt∵ABC在移动的过程中,能使∵OAB为直角三角形,此时t=94.【点睛】本题考查了非负数的性质,勾股定理的应用,等腰三角形的定义及分类讨论的数学思想.掌握非负数的性质是解(1)的关键,掌握勾股定理及分类讨论的数学思想是解(2)的关键.四、分类讨论的思想17.阅读:能够成为直角三角形三条边长的三个正整数a,b,c,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:22221()21()2a m n b mnc m n ⎧=-⎪⎪=⎨⎪⎪=+⎩其中m >n >0,m ,n 是互质的奇数.应用:当n=1时,求有一边长为5的直角三角形的另外两条边长.【答案】12,13或3,4.【详解】试题分析:由n=1,得到a= (m 2﹣1)①,b=m②,c=(m 2+1)③,根据直角三角形有一边长为5,分情况,列方程即可得到结论.试题解析:当n=1,a=12(m 2﹣1)①,b=m②,c=12(m 2+1)③, ∵直角三角形有一边长为5,∵∵、当a=5时,12(m 2﹣1)=5,解得:(舍去), ∵、当b=5时,即m=5,代入①③得,a=12,c=13,∵、当c=5时,12(m 2+1)=5,解得:m=±3, ∵m >0,∵m=3,代入①②得,a=4,b=3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.18.∵ABC 中,AB=15,AC=13,高AD=12,则∵ABC 的周长为( )A .42B .32C .42或32D .37或33 【答案】C【分析】存在2种情况,∵ABC是锐角三角形和钝角三角形时,高AD分别在∵ABC的内部和外部【详解】情况一:如下图,∵ABC是锐角三角形∵AD是高,∵AD∵BC∵AB=15,AD=12∵在Rt∵ABD中,BD=9∵AC=13,AD=12∵在Rt∵ACD中,DC=5∵∵ABC的周长为:15+12+9+5=42情况二:如下图,∵ABC是钝角三角形在Rt∵ADC中,AD=12,AC=13,∵DC=5在Rt∵ABD中,AD=12,AB=15,∵DB=9∵BC=4∵∵ABC的周长为:15+13+4=32故选:C【点睛】本题考查勾股定理,解题关键是多解,注意当几何题型题干未提供图形时,往往存在多解情况.18.如图是某商品的商标,由七个形状、大小完全相同的正六边形组成.我们称正六边形的顶点为格点,已知∵ABC的顶点都在格点上,且AB边位置如图所示,则∵ABC是直角三角形的个数有()A.6个B.8个C.10个D.12个【答案】C【分析】根据正六边形的性质,分AB是直角边和斜边两种情况确定出点C的位置即可得解.【详解】如图所示:AB是直角边时,点C共有6个位置,即有6个直角三角形,AB是斜边时,点C共有4个位置,即有4个直角三角形,综上所述,∵ABC是直角三角形的个数有6+4=10个.故答案选:C.【点睛】本题考查的知识点是正多边形和圆, 勾股定理的逆定理,解题的关键是熟练掌握正多边形和圆, 勾股定理的逆定理.。
第二节 勾股定理的逆定理(含答案)...八年级数学 学而思
第二节 勾股定理的逆定理1.勾股定理的逆定理如果三角形的三边长c b a ,,满足,222c b a =+那么这个三角形是直角三角形.勾股定理的逆定理通常用来判断直角三角形或证明线段的垂直关系.对于勾股定理逆定理的证明,我们采用构造全等三角形的证明方法,请大家完成下面的证明过程. 如图7-2-1所示,已知△ABC 的三边c b a ,,满足,222c b a =+ 求证:△ABC 是直角三角形,证明:如图7-2-2所示,分别以b a ,为直角边,C ∠为直角构造,ABC Rt ∆则由勾股定理得.222b a AB +=由已知可知,c AB =.90, =∠=∠∴∆≅∆∴C C ABC ABC∴ △ABC 是直角三角形.(1)勾股数:满足222c b a =+的三个正整数,称为勾股数,勾股数扩大相同倍数后,仍为勾股数.常用勾股数:;5,4,3 ;13,12,5 ;25,24,7 .17.15.8(2)勾股数组的求法:若c b a ,,为一组勾股数,那么kc kb ka ,,也是一组勾股数(其中k 为正整数).1.勾股定理逆定理判定三角形形状的方法 (1)先确定最长边,算出最长边的平方. (2)计算另两边的平方和.(3)比较最长边的平方与另两边的平方和是否相等,若相等,则此三角形为直角三角形. 2.利用勾股定理的逆定理求不规则图形的面积的方法(1)作出适当的辅助线将不规则图形分割成面积可求部分及一个三边已知的三角形. (2)利用勾股定理的逆定理证明该三角形为直角三角形. (3)求出该直角三角形的面积进而求出原图形面积. 3.证明线段平方和关系(1)利用平移、旋转、对称等全等变换将需证明的三条线段转移到同一个三角形中. (2)利用角度关系证明该三角形为直角三角形. (3)利用勾股定理得出线段的平方和关系. 4.数形结合解决无理不等式或无理式最值问题(1)将所需表示的无理式表示成勾股数的平方和形式. (2)将表示无理数的线段在平面上适当组合.(3)利用三角形三边关系证明无理数不等式或者两点之间线段最短求出无理式最值.例1.(北京朝阳区校级模拟)如图7-2-3所示,正方形网格中的△ABC,若小方格边长为1.则△ABC 的形状为( ) A.直角三角形 B .锐角三角形 C .钝角三角形 D .以上答案都不对327-- 427--检测1.如图7-2-4所示,在由单位正方形组成的网格图中标有GH EF CD AB ,,,四条线段,其中能构成一个直角三角形三边的线段是( )GH EF CD A ,,. GH EF AB B ,,. GH CD AB C ,,. EF CD AB D ,,.例2.(湖南邵阳县模拟)某片绿地形状如图7-2-5所示,其中=∠⊥⊥A AD CD BC AB ,,,200,60m AB =,100m CD =则AD 的长为 .cm527-- 627--检测2. 如图7-2-6所示,在四边形ABCD 中,,1,3,2====AD CD BC AB 且ABC ∠,90=则A ∠的度数为 例3.(江苏南京一模)如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A.1倍 B .2倍 C .3倍 D.4倍检测3.下列各组式子所表示的线段中,一定能构成直角三角形的有);1(1,4,1>+-k k k k ①3,2,1+++m m m ②(m是正整数);;)2(,3,222k k k ③).1(1,2,122>+-m m m m ④例4.(陕西咸阳一模)若,02510)13(1222=+-+-+-x z y x 以z y x ,,为三边长的三角形是( )A.等腰三角形 B .直角三角形 C .等腰三角形或直角三角形 D .等腰直角三角形检测4.已知△ABC 的三边为,,,c b a 且,1,4==+ab b a ,14=c 则△ABC 是( )A.等腰三角形 B .直角三角形 C .等腰三角形或直角三角形 D.等腰直角三角形例5.在△ABC 中,,,,c AB b AC a BC ===设c 为最长边,当222c b a =+时,△ABC 是直角三角形;当222c b a =/+时,利用代数式22b a +和2c 的大小关系,探究△ABC 的形状(按角分类).猜想, 当22b a +2c 时,△ABC 为锐角三角形;当22b a +2c 时,△ABC 为钝角三角形(选填”“<>,).检测5.判断当c b a ,4,2==为最长边时,△ABC 的形状,并求出对应的c 的取值范围,第二节 勾股定理的逆定理(建议用时30分钟)实战演练1.下面四组线段中,能组成直角三角形的是( )51,41,31.A 5,1,3.B 9,8,7.C 25,24,7.D c b a ,,.2是△ABC 的三边,在;81,80,9===c b a ①;17,15,8===c b a ②3::=c b a ③⋅54:: .61,60,13===c b a ④上述四个说法中,能判断△ABC 是直角三角形的有( )A .1个B .2个C .3个D .4个3.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形如选项所示,其中正确的是( )4.(江苏南京中考)下列长度的三条线段能组成钝角三角形的是( )4,4,3.A 5,4,3.B 6,4,3.C 7,4,3.D5.在锐角三角形中,已知某两边,3,1==b a 那么第三边的变化范围是( ).42.<<c A 32.≤<c B 102.<<c C 108.<<c D6.(福建集美模拟)△ABC 中,C B A ∠∠∠,,的对边分别记为,,,c b a 由下列条件不能判定△ABC 为直角三角形的是( )C B A A ∠=∠+∠. 3:2:1::.=∠∠∠C B A B 222.b c a C -= 6:4:3::.=c b a D7.如图7-2-1所示,若Rt△ABC 两直角边上的中线分别为AE'和BD .则22BD AE +与2AB 的比值为( )43.A 1.B 45.C 23.D127--8.若三角形的三条边的长分别为,,,c b a 且,03222=-+-b c b c a b a 则这个三角形一定是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形 9.△ABC 的内角A 和B 都是锐角,CD 是高,若,)(2BCAC DB AD =则△ABC 是( ) A.直角三角形 B .等腰三角形 C .等腰直角三角形 D .等腰三角形或直角三角形10.在△ABC 中,C B A ∠∠∠,,的对边分别是,,,c b a 若,7,252222=-=+b a b a 已知,5=c 则最大边上的高为 11.四根小木棒的长度分别为,13,12,8,5cm cm cm cm 任选三根可组成 个三角形,其中有 个直角三角形.12.(山东乐陵市期末)如图7-2-2所示,四边形ABCD 中,===BC cm AD cm AB ,4,3,12,13cm CD cm =,90=∠A求四边形ABCD 的面积.227--13.如图7-2-3所示,△ABC 中,CD 是AB 边上的高,且.2BD AD CD ⋅=求证:△ABC 是直角三角形.327--14.如图7-2-4所示,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且41=FC .BC 求证:.EF AF ⊥15.如图7-2-5所示,在△ABC 中,AD 是BC 边上的中线,===AC AD AB ,6,2.26求证:.30o ADB =∠527--16.如图7-2-6所示,在△ABC 中,P BC AC ACB ,,90==∠是△ABC 内的一点,且,3,2,1===PA PC PB 求BPC ∠的度数.627--拓展创新17.图7-2-7、图7-2-8是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.每个小格的顶点叫作格点,以格点为顶点分别按下列要求画三角形.(1)在图7-2-7中画出钝角△ABC.使它的面积为6(画一个即可); (2)在图7-2-8中画出△DEF,使它的三边长分别为5,52,5(画一个即可).并且直接写出此时三角形DEF 的面积,727-- 827-- 927-- 1027--拓展1.(天津南开一模)问题背景:在△ABC 中,AB ,BC ,AC 三边的长分别为,13,10,5求这个三角形的面积,小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),如图7-2-9,这样不需求△ABC 的高,而借用网格就能计算出它的面积.(1)请你将△ABC 的面积直接填写在横线上____;(2)若△ABC 三边的长分别为,49,162222n m n m ++且),n m =/运用构图法在图7 -2 -10中画图可求出这个三角形的面积为拓展2.若0,0>>y x 且,12=+y x 求94+++y x 的最小值.极限挑战18.如图7-2 - 11所示,已知P 为正三角形内一点,,8,6==BP AP .10=CP 证明:.150=∠APB1127--答案。
勾股定理的培优专题
勾股定理的培优专题勾股定理培优专题一、基础知识1.勾股定理的逆定理是:如果三角形的三边长 a、b、c 满足 a+b=c,那么这个三角形是直角三角形。
2.勾股定理的逆定理和勾股定理的题设和结论相反,被称为互逆命题。
3.如果一个定理的逆命题经过证明是正确的,它也是一个定理,称这两个定理互为逆定理。
4.能够成为直角三角形三条边长的三个正整数3、4、5 等,称为勾股数。
巩固练:1.如果三角形的三边长 a、b、c 满足 a+b=c,那么这个三角形是直角三角形,这个定理叫做勾股定理的逆定理。
2.如果两个命题中,第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题。
如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。
3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有 1、2、3 号。
4.若△ABC 中,(b-a)(b+a)=c,则∠B=90°。
5.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是直角三角形。
6.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以 a-2、a、a+2 为边的三角形的面积为 6(a-1)。
7.写出下列命题的逆命题,并判断逆命题的真假。
1) 两直线平行,同位角相等。
逆命题为:同位角相等,则两直线平行。
真。
2) 若 a>b,则 a>b。
逆命题为:若a≤b,则a≤b。
假。
二、例题和训练考点一:证明三角形是直角三角形例1:已知:如图,在△ABC 中,CD 是 AB 边上的高,且 CD=AD·BD。
求证:△ABC 是直角三角形。
训练:已知:在△ABC 中,∠A、∠B、∠C 的对边分别是 a、b、c,满足a+b+c+3√3=10a+24b+26c。
试判断△ABC 的形状。
例2:如图,在直角△ABC 中,∠B=90°,BD 垂直于AC,且 AD=CD。
勾股定理的逆定理习题训练含答案
勾股定理的逆定理一、根底·稳固1.满足以下条件的三角形中,不是直角三角形的是〔 〕A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶52.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,那么该零件另一腰AB 的长是________ cm 〔结果不取近似值〕.图18-2-4 图18-2-5 图18-2-63.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,那么AB 的长为_________.4.如图18-2-6,正方形ABCD 的边长为4,E 为AB 中点,F 为AD 上的一点,且AF=41AD ,试判断△EFC 的形状.5.一个零件的形状如图18-2-7,按规定这个零件中∠A 与∠BDC 都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?图18-2-76.△ABC 的三边分别为k 2-1,2k ,k 2+1〔k >1〕,求证:△ABC 是直角三角形.二、综合·应用7.a、b、c是Rt△ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么?8.:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.图18-2-89.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A〔3,1〕,B〔2,4〕,△OAB是直角三角形吗?借助于网格,证明你的结论.图18-2-910.阅读以下解题过程:a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,〔C)∴△ABC是直角三角形.问:①上述解题过程是从哪一步开场出现错误的?请写出该步的代号_______;②错误的原因是______________;③此题的正确结论是__________.11.:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.12.:如图18-2-10,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3.求:四边形ABCD的面积.图18-2-10参考答案一、根底·稳固1.思路分析:判断一个三角形是否是直角三角形有以下方法:①有一个角是直角或两锐角互余;②两边的平方和等于第三边的平方;③一边的中线等于这条边的一半.由A 得有一个角是直角;B 、C 满足勾股定理的逆定理,所以应选D.答案:D2.解:过D 点作DE ∥AB 交BC 于E, 那么△DEC 是直角三角形.四边形ABED 是矩形,∴AB=DE.∵∠D=120°,∴∠CDE=30°.又∵在直角三角形中,30°所对的直角边等于斜边的一半,∴CE=5 cm.根据勾股定理的逆定理得,DE=3551022=- cm.∴AB=3551022=- cm.3.思路分析:因为△ABC 是Rt △,所以BC 2+AC 2=AB 2,即S 1+S 2=S 3,所以S 3=12,因为S 3=AB 2,所以AB=32123==S .答案:324.思路分析:分别计算EF 、CE 、CF 的长度,再利用勾股定理的逆定理判断即可.解:∵E 为AB 中点,∴BE=2.∴CE 2=BE 2+BC 2=22+42=20.同理可求得,EF 2=AE 2+AF 2=22+12=5,CF 2=DF 2+CD 2=32+42=25.∵CE 2+EF 2=CF 2,∴△EFC 是以∠CEF 为直角的直角三角形.5.分析:要检验这个零件是否符合要求,只要判断△ADB 和△DBC 是否为直角三角形即可,这样勾股定理的逆定理就可派上用场了.解:在△ABD 中,AB 2+AD 2=32+42=9+16=25=BD 2,所以△ABD 为直角三角形,∠A =90°. 在△BDC 中,BD 2+DC 2=52+122=25+144=169=132=BC 2.所以△BDC 是直角三角形,∠CDB =90°.因此这个零件符合要求.6.思路分析:根据题意,只要判断三边之间的关系符合勾股定理的逆定理即可.证明:∵k2+1>k2-1,k2+1-2k=(k-1)2>0,即k2+1>2k,∴k2+1是最长边.∵(k2-1)2+(2k)2=k4-2k2+1+4k2=k4+2k2+1=(k2+1)2,∴△ABC是直角三角形.二、综合·应用7.思路分析:如果将直角三角形的三条边长同时扩大一个一样的倍数,得到的三角形还是直角三角形〔例2已证〕.8.思路分析:根据题意,只要判断三边符合勾股定理的逆定理即可.证明:∵AC2=AD2+CD2,BC2=CD2+BD2,∴AC2+BC2=AD2+2CD2+BD2=AD2+2AD·BD+BD2=〔AD+BD〕2=AB2.∴△ABC是直角三角形.9.思路分析:借助于网格,利用勾股定理分别计算OA、AB、OB的长度,再利用勾股定理的逆定理判断△OAB是否是直角三角形即可.解:∵ OA2=OA12+A1A2=32+12=10,OB2=OB12+B1B2=22+42=20,AB2=AC2+BC2=12+32=10,∴OA2+AB2=O B2.∴△OAB是以OB为斜边的等腰直角三角形.10.思路分析:做这种类型的题目,首先要认真审题,特别是题目中隐含的条件,此题错在无视了a有可能等于b这一条件,从而得出的结论不全面.答案:①(B) ②没有考虑a=b这种可能,当a=b时△ABC是等腰三角形;③△ABC是等腰三角形或直角三角形.11.思路分析:〔1〕移项,配成三个完全平方;(2)三个非负数的和为0,那么都为0;(3)a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形.解:由可得a2-10a+25+b2-24b+144+c2-26c+169=0,配方并化简得,(a-5)2+(b-12)2+(c-13)2=0.∵(a-5)2≥0,(b-12)2≥0,(c-13)2≥0.∴a -5=0,b -12=0,c -13=0.解得a=5,b=12,c=13.又∵a 2+b 2=169=c 2,∴△ABC 是直角三角形.12.思路分析:〔1〕作DE ∥AB ,连结BD ,那么可以证明△ABD ≌△EDB 〔ASA 〕;(2)DE=AB=4,BE=AD=3,EC=EB =3;(3)在△DEC 中,3、4、5为勾股数,△DEC 为直角三角形,DE ⊥BC ;(4)利用梯形面积公式,或利用三角形的面积可解.解:作DE ∥AB ,连结BD ,那么可以证明△ABD ≌△EDB 〔ASA 〕,∴DE=AB=4,BE=AD=3.∵BC=6,∴EC=EB=3.∵DE 2+CE 2=32+42=25=CD 2,∴△DEC 为直角三角形.又∵EC=EB=3,∴△DBC 为等腰三角形,DB=DC=5.在△BDA 中AD 2+AB 2=32+42=25=BD 2,∴△BDA 是直角三角形.它们的面积分别为S △BDA =21×3×4=6;S △DBC =21×6×4=12. ∴S 四边形ABCD =S △BDA +S △DBC =6+12=18.。
八年级初二数学数学勾股定理的专项培优练习题(含答案
一、选择题1.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =6,DC =2,点P 是AB 上的动点,则PC +PD 的最小值为( )A .8B .10C .12D .142.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )A .254cmB .152cmC .7cmD .132cm 3.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a 、b 、c 三个正方形的面积之和为( )A .11B .15C .10D .224.如图,在ABC 中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若3CM =,则22CE CF +的值为( )A .36B .9C .6D .18 5.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( )A .8B .9.6C .10D .126.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对 7.在下列以线段a 、b 、c 的长为边,能构成直角三角形的是( ) A .a =3,b =4,c =6B .a =5,b =6,c =7C .a =6,b =8,c =9D .a =7,b =24,c =25 8.下列各组数据,是三角形的三边长能构成直角三角形的是( )A .2,3,4B .4,5,6C .2223,4,5D .6,8,10 9.如图,点A 和点B 在数轴上对应的数分别是4和2,分别以点A 和点B 为圆心,线段AB 的长度为半径画弧,在数轴的上方交于点C .再以原点O 为圆心,OC 为半径画弧,与数轴的正半轴交于点M ,则点M 对应的数为( )A .3.5B .23C .13D .36210.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为( )A .5B .7C .5或7D .3或4二、填空题11.如图,∠MON =90°,△ABC 的顶点A 、B 分别在OM 、ON 上,当A 点从O 点出发沿着OM 向右运动时,同时点B 在ON 上运动,连接OC .若AC =4,BC =3,AB =5,则OC 的长度的最大值是________.12.如图所示的网格是正方形网格,则ABC ACB ∠+∠=__________°(点A ,B ,C 是网格线交点).13.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.14.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,BD CD ⊥,则AD BC +等于_________.15.如图,△ABC 是一个边长为1的等边三角形,BB 1是△ABC 的高,B 1B 2是△ABB 1的高,B 2B 3是△AB 1B 2的高,……B n-1B n 是△AB n-2B n-1的高,则B 4B 5的长是________,猜想B n-1B n 的长是________.16.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.17.《算法统宗》中有一道“荡秋干”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A 离地1尺,将它往前推送10尺(水平距离)时,点A 对应的点B 就和某人一样高,若此人的身高为5尺,秋干的绳索始终拉得很直,试问绳素有多长?”根据上述条件,秋干绳索长为________尺.18.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.19.如图,由两个直角三角形和三个正方形组成的图形,已知25AB = ,24AC = 其中阴影部分面积是_____________平方单位.20.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.三、解答题21.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.(1)经过多少秒,△BMN 为等边三角形;(2)经过多少秒,△BMN 为直角三角形.22.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.23.在等腰△ABC 与等腰△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE ,且点D 、E 、C 三点在同一条直线上,连接BD .(1)如图1,求证:△ADB ≌△AEC(2)如图2,当∠BAC =∠DAE =90°时,试猜想线段AD ,BD ,CD 之间的数量关系,并写出证明过程;(3)如图3,当∠BAC =∠DAE =120°时,请直接写出线段AD ,BD ,CD 之间的数量关系式为: (不写证明过程)24.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.25.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可. 请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.26.如图1,△ABC 中,CD ⊥AB 于D ,且BD : AD : CD =2 : 3 : 4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40cm 2,如图2,动点M 从点B 出发以每秒2cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以每秒1cm 速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止. 设点M 运动的时间为t (秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.图1 图2 备用图27.2ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.28.已知n 组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.29.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A 出发,以每秒1个单位的速度沿射线AC 运动;同时,动点F 从点C 出发,以相同的速度沿射线CB 运动.设E 的运动时间为t (s )(t >0).(1)AE = (用含t 的代数式表示),∠BCD 的大小是 度;(2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ;(3)点E在边AC上运动时,求∠EDF的度数;(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=2,BD=6,得到BC=8,连接BC′,由对称性可知∠C′BA=∠CBA=45°,于是得到∠CBC′=90°,然后根据勾股定理即可得到结论.【详解】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=2,BD=6,∴BC=8,连接BC′,由对称性可知∠C′BA=∠CBA=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=8,根据勾股定理可得DC′=2222'+=+=.8610BC BD故选:B.【点睛】此题考查了轴对称﹣线路最短的问题,确定动点P为何位置时 PC+PD的值最小是解题的关键.2.A解析:A【分析】由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm ,设AF=xcm ,则DF=(8-x)cm ,在Rt△AFD 中,利用勾股定理即可求得x 的值.【详解】∵四边形ABCD 是长方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m ,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=D F设AF=xcm ,则DF=(8-x )cm在Rt△AFD 中,AF 2=DF 2+AD 2,AD=6cm , 222(8)6x x =-+254x cm = 故选择A.【点睛】此题是翻折问题,利用勾股定理求线段的长度.3.B解析:B【分析】由直角三角形的勾股定理以及正方形的面积公式不难发现:a 的面积等于1号的面积加上2号的面积,b 的面积等于2号的面积加上3号的面积,c 的面积等于3号的面积加上4号的面积,据此可以求出三个的面积之和.【详解】利用勾股定理可得:12a S S S =+ ,23b S S S =+,34c S S S =+∴122334a b c S S S S S S S S S ++=+++++74415=++=故选B【点睛】本题主要考查勾股定理的应用,熟练掌握相关性质定理是解题关键.4.A解析:A【分析】先根据角平分线的定义、角的和差可得90ECF ∠=︒,再根据平行线的性质、等量代换可得,ACE CEF ACF F ∠=∠∠=∠,然后根据等腰三角形的定义可得,EM CM FM CM ==,从而可得6EF =,最后在Rt CEF 中,利用勾股定理即可得.【详解】 CE 平分ACB ∠,CF 平分ACD ∠,,1122ACB ACD BCE ACE DCF ACF ∴∠∠=∠=∠=∠∠=, 111(90222)ACB AC E D ACB ACD CF ACE ACF ∠=∠+∴∠+∠=∠∠∠=+=︒, //EF BC ,,BCE CEF DCF F ∠=∴∠∠=∠,,ACE CEF ACF F ∴∠=∠∠=∠,3,3EM CM FM CM ∴====,6EF EM FM ∴=+=,在Rt CEF 中,由勾股定理得:2222636CE CF EF +===,故选:A .【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.5.B解析:B【分析】如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥11,22ABC S BC AD AB CE ∆==1289.6.10CE ⨯∴== 故选B. 【点睛】本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.6.C解析:C【分析】利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.【详解】解:由已知可得CD=BD=5,22251213+=即222BD AD AB +=,ABD ∴是直角三角形,90ADB ∠=︒,90ADC ∴∠=︒222AD CD AC ∴+=13AC ∴=13AB AC ∴==故ABC 是等腰三角形.故选C【点睛】本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.7.D解析:D【解析】A 选项:32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;B 选项:52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;C 选项:62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;D 选项:72+242=252,故符合勾股定理的逆定理,能组成直角三角形,故正确. 故选D .8.D解析:D【分析】根据勾股定理的逆定理对各选项进行判断即可.【详解】解:A 、∵22+32=13≠42,∴不能构成直角三角形,故本选项不符合题意;B 、∵42+52=41≠62,∴不能构成直角三角形,故本选项不符合题意;C 、∵222222(3)(4)337(5)+=≠,∴不能构成直角三角形,故本选项不符合题意;D 、∵62+82=100=102,∴能构成直角三角形,故本选项符合题意.故选:D .【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解答此题的关键.9.B解析:B【分析】如图,作CD ⊥AB 于点D ,由题意可得△ABC 是等边三角形,从而可得BD 、OD 的长,然后根据勾股定理即可求出CD 与OC 的长,进而可得OM 的长,于是可得答案.【详解】解:∵点A 和点B 在数轴上对应的数分别是4和2,∴OB=2,OA=4,如图,作CD ⊥AB 于点D ,则由题意得:CA=CB=AB=2,∴△ABC 是等边三角形,∴BD=AD=112AB =, ∴OD=OB+BD=3,223CD BC BD =-=,∴()22223323OC OD CD =+=+=,∴OM=OC=23,∴点M 对应的数为23.故选:B .【点睛】本题考查了实数与数轴、等边三角形的判定与性质以及勾股定理等知识,属于常见题型,正确理解题意、熟练掌握上述知识是解题的关键.10.C解析:C【分析】根据勾股定理和分类讨论的方法可以求得第三边的长,从而可以解答本题.【详解】由题意可得,当3和4为两直线边时,第三边为:22+=5,43当斜边为4时,则第三边为:22-=7,43故选:C【点睛】本题考查勾股定理,解答本题的关键是明确题意,利用勾股定理和分类讨论的数学思想解答.二、填空题11.5【解析】试题分析:取AB中点E,连接OE、CE,在直角三角形AOB中,OE=AB,利用勾股定理的逆定理可得△ACB是直角三角形,所以CE=AB,利用OE+CE≥OC,所以OC的最大值为OE+CE,即OC的最大值=AB=5.考点:勾股定理的逆定理,12.45【分析】∠+∠=∠,只需证△ADC是如下图,延长BA至网络中的点D处,连接CD. ABC ACB DAC等腰直角三角形即可【详解】如下图,延长BA至网络中的点D处,连接CD设正方形网络每一小格的长度为1则根据网络,555BC=5,∴5其中BD 、DC 、BC 边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC 是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA ,构造处△ABC 的外角∠CAD13.(0,21009)【解析】【分析】本题点A 坐标变化规律要分别从旋转次数与点A 所在象限或坐标轴、点A 到原点的距离与旋转次数的对应关系.【详解】∵∠OAA 1=90°,OA=AA 1=1,以OA 1为直角边作等腰Rt △OA 1A 2,再以OA 2为直角边作等腰Rt △OA 2A 3,…,∴OA 1,OA 2=)2,…,OA 2018=)2018,∵A 1、A 2、…,每8个一循环,∵2018=252×8+2∴点A 2018的在y 轴正半轴上,OA 2018=2018=21009,故答案为(0,21009).【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.14.3【分析】由//AD BC ,BD 平分ABC ∠,易证得ABD ∆是等腰三角形,即可求得1AD AB ==,又由四边形ABCD 是等腰梯形,易证得2C DBC ∠=∠,然后由BD CD ⊥,根据直角三角形的两锐角互余,即可求得30DBC ∠=︒,则可求得BC 的值,继而求得AD BC +的值.【详解】解:∵//AD BC ,AB DC =,∴C ABC ∠=∠,ADB DBC ∠=∠,∵BD 平分ABC ∠,∴2ABC DBC ∠=∠,ABD DBC ∠=∠,∴ABD ADB ∠=∠,∴1AD AB ==,∴2C DBC ∠=∠,∵BD CD ⊥,∴90BDC ∠=︒,∵三角形内角和为180°,∴90DBC C ∠+∠=︒,∴260C DBC ∠=∠=︒,∴2212BC CD ==⨯=,∴123AD BC +=+=.故答案为:3.【点睛】本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.15 【分析】 根据等边三角形性质得出AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=ABC 113ABB BCB S S ==B 1B 2,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 3=,B 3B 4=B 4B 5=,推出B n ﹣1B n =2n . 【详解】解:∵△ABC 是等边三角形,∴BA =AC ,∵BB 1是△ABC 的高,∴AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理得:BB 1=;∴△ABC 的面积是12×1=;∴1112ABB BCB SS ==⨯,12=×1×B 1B 2,B 1B 2,由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,∴233133112422B B =⨯⨯+⨯⨯, B 2B 3=38, B 3B 4=3, B 4B 5=3, …, B n ﹣1B n =3.故答案为:3,3. 【点睛】 本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.16.82【分析】根据S △PAD =13S 矩形ABCD ,得出动点P 在与AD 平行且与AD 的距离是4的直线l 上,作A 关于直线l 的对称点E ,连接DE ,BE ,则DE 的长就是所求的最短距离.然后在直角三角形ADE 中,由勾股定理求得DE 的值,即可得到PA+PD 的最小值.【详解】设△PAD 中AD 边上的高是h .∵S △PAD =13S 矩形ABCD , ∴12 AD •h =13AD •AB , ∴h =23AB =4, ∴动点P 在与AD 平行且与AD 的距离是4的直线l 上,如图,作A 关于直线l 的对称点E ,连接BE ,DE ,则DE 的长就是所求的最短距离.在Rt △ADE 中,∵AD =8,AE =4+4=8,DE =22228882AE AD +=+= ,即PA +PD 的最小值为82 .故答案82.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P 所在的位置是解题的关键.17.5【分析】设绳索x 尺,过点B 向地面及AO 作垂线BE 、BC ,构成直角三角形OBE ,利用勾股定理求出x 的值【详解】如图, 过点B 作BC ⊥OA 于点C ,作BD 垂直于地面,延长OA 交地面于点D 由题意知AD=1,BE=5,BC=10设绳索x 尺,则OA=OB=x∴OC=x+1-5=x-4在Rt △OBC 中,OB 2=OC 2+BC 2∴222(4)10x x =-+得x=14.5(尺)故填14.5 ,【点睛】此题考察勾股定理的实际运用,理解题意作辅助线构建直角三角形是解题关键. 18.4【分析】根据线段垂直平分线得出AE=EC ,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE 和EF ,即可求出FG ,再求出BF=FG 即可【详解】∵AC 的垂直平分线FG ,∴AE=EC ,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC ,∴∠B=∠C=12(180°-∠BAC )=30°, ∴∠B=∠G ,∴BF=FG ,∵在Rt △AEG 中,∠G=30°,EG=3,∴AG=2AE ,即(2AE )2=AE 2+32,∴即同理在Rt △CEF 中,∠C=30°,CF=2EF ,(2EF )2=EF 2+2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.19.49【分析】先计算出BC 的长,再由勾股定理求出阴影部分的面积即可.【详解】∵∠ACB=90︒,25AB = ,24AC =,∴22222252449BC AB AC =-=-=,∴阴影部分的面积=249BC =,故答案为:49.【点睛】此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC 的平方是解题的关键.20.4913【解析】【分析】如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.【详解】如图,延长AD ,交BC 于点GAD 平分BAC ∠,,10AB AC BC ==,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线 1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=123223B ∠=∠+∠+∠=∠+∠∴CE AB ⊥,即90BFC ∠=︒390B ∴∠+∠=︒230239+∴∠∠=∠+︒,即2345∠+∠=︒CDG ∴∆是等腰直角三角形,且5DG CG ==7512AG AD DG ∴=+=+=在Rt ACG ∆中,222251213AC CG AG =+=+=13CE AB AC ==∴=由三角形的面积公式得1122ABC S BC AG AB CF ∆=⋅=⋅ 即1110121322CF ⨯⨯=⨯⋅,解得12013CF = 12049131313EF CE CF ∴=-=-= 故答案为:4913.【点睛】本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.三、解答题21.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.【分析】(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN 列方程求解可得. 【详解】解 (1)设经过x 秒,△BMN 为等边三角形,则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10,答:经过10秒,△BMN 为等边三角形;(2)经过x 秒,△BMN 是直角三角形,①当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°, ∴BN =12BM ,即2x =12(30-x), 解得x =6;②当∠BMN =90°时,∵∠B =60°,∴∠BNM =30°,∴BM =12BN ,即30-x =12×2x , 解得x =15, 答:经过6秒或15秒,△BMN 是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.22.(1)2)83;(3)5.5秒或6秒或6.6秒【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒, 222246213()PQ BQ BP cm =+=+=; (2)解:根据题意得:BQ BP =,即28t t =-,解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形; (3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒, 90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B点作BE AC⊥于点E,则684.8()10AB BCBE cmAC⨯===22 3.6CE BC BE cm∴=-=,27.2CQ CE cm∴==,13.2BC CQ cm∴+=,13.22 6.6t∴=÷=秒.由上可知,当t为5.5秒或6秒或6.6秒时,BCQ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.23.(1)见解析;(2)CD2AD+BD,理由见解析;(3)CD3+BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=32AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH32AD,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD3+BD,故答案为:CD3+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.24.(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明△ACD≌△BCF;②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,FG=32BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF 2=(EB+12BF )2+(32BF )2 ∴DE 2= (EB+12AD )2+(3AD )2 ∴DE 2= EB 2+AD 2+EB ·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.25.(1)证明见解析;(2)21.【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,∴A′D=AD ,C A′=CA ,∠CA′D=∠A=60°,∵CD 平分∠ACB ,∴A′点落在CB 上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D -∠B=30°,即∠A′DB=∠B ,∴A′D=A′B ,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC 关于AC 的对称图形△AD′C .∴D′A=DA=9,D′C=DC=10,∵AC平分∠BAD,∴D′点落在AB上,∵BC=10,∴D′C=BC,过点C作CE⊥AB于点E,则D′E=BE,设D′E=BE=x,在Rt△CEB中,CE2=CB2-BE2=102-x2,在Rt△CEA中,CE2=AC2-AE2=172-(9+x)2.∴102-x2=172-(9+x)2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.26.(1)见详解;(2)①t值为:103s或6s;②t值为:4.5或5或4912.【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2)由△ABC的面积求出BD、AD、CD、AC;①当MN∥BC时,AM=AN;当DN∥BC时,AD=AN;得出方程,解方程即可;②根据题意得出当点M在DA上,即2<t≤5时,△MDE为等腰三角形,有3种可能:如果DE=DM;如果ED=EM;如果MD=ME=2t-4;分别得出方程,解方程即可.【详解】解:(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC=5x,∴AB=AC,∴△ABC是等腰三角形;(2)解:由(1)知,AB=5x,CD=4x,∴S△ABC=12×5x×4x=40cm2,而x>0,∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AB=AC=10cm.由运动知,AM=10-2t,AN=t,①当MN∥BC时,AM=AN,即10-2t=t,∴103t ;当DN∥BC时,AD=AN,∴6=t,得:t=6;∴若△DMN的边与BC平行时,t值为103s或6s.②存在,理由:Ⅰ、当点M在BD上,即0≤t<2时,△MDE为钝角三角形,但DM≠DE;Ⅱ、当t=2时,点M运动到点D,不构成三角形Ⅲ、当点M在DA上,即2<t≤5时,△MDE为等腰三角形,有3种可能.∵点E是边AC的中点,∴DE=12AC=5当DE=DM,则2t-4=5,∴t=4.5s;当ED=EM,则点M运动到点A,∴t=5s;当MD=ME=2t-4,如图,过点E作EF垂直AB于F,∵ED=EA,∴DF=AF=12AD=3,在Rt△AEF中,EF=4;∵BM=2t,BF=BD+DF=4+3=7,∴FM=2t-7在Rt△EFM中,(2t-4)2-(2t-7)2=42,∴t=49 12.综上所述,符合要求的t 值为4.5或5或4912. 【点睛】 本题主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是分情况讨论.27.(1)①见解析;②()22012x y x x-=<<-;(2)见解析 【解析】【分析】(1)①连接DE ,如图1,先用SAS 证明△CBE ≌△CDE ,得EB=ED ,∠CBE =∠1,再用四边形的内角和可证明∠EBC =∠2,从而可得∠1=∠2,进一步即可证得结论;②将△BAE 绕点B 顺时针旋转90°,点E 落在点P 处,如图2,用SAS 可证△PBG ≌△EBG ,所以PG=EG =2-x -y ,在直角三角形PCG 中,根据勾股定理整理即得y 与x 的函数关系式,再根据题意写出x 的取值范围即可.(2)由(1)题已得EB=ED ,根据正方形的对称性只需再确定点E 关于点O 的对称点即可,考虑到只有直尺,可延长BE 交AD 于点M ,再连接MO 并延长交BC 于点N ,再连接DN 交AC 于点Q ,问题即得解决.【详解】(1)①证明:如图1,连接DE ,∵四边形ABCD 是正方形,∴CB=CD ,∠BCE =∠DCE =45°,又∵CE=CE ,∴△CBE ≌△CDE (SAS ),∴EB=ED ,∠CBE =∠1,∵∠BEC =90°,∠BCF =90°,∴∠EBC +∠EFC =180°,∵∠EFC +∠2=180°,∴∠EBC =∠2,∴∠1=∠2.∴ED=EF ,∴BE=EF .②解:∵正方形ABCD 2,∴对角线AC =2.将△BAE 绕点B 顺时针旋转90°,点A 与点C 重合,点E 落在点P 处,如图2, 则△BAE ≌△BCP ,∴BE =BP ,AE=CP=x ,∠BAE =∠BCP =45°,∠EBP =90°,由①可得,∠EBF =45°,∴∠PBG =45°=∠EBG ,在△PBG 与△EBG 中,PB EB PBG EBG BG BG =⎧⎪∠=∠⎨⎪=⎩,∴△PBG ≌△EBG (SAS ).∴PG=EG =2-x -y ,∵∠PCG =∠GCB +∠BCP =45°+45°=90°,∴在Rt △PCG 中,由222PC CG PG +=,得()2222x y x y +=--, 化简,得()22012x y x x-=<<-. (2)如图3,作法如下:①延长BE 交AD 于点M , ②连接MO 并延长交BC 于点N ,③连接DN 交AC 于点Q ,④连接DE 、BQ ,则四边形BEDQ 为菱形.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、四边形的内角和、勾股定理和菱形的作图等知识,其中通过三角形的旋转构造全等三角形是解决②小题的关键,利用正方形的对称性确定点Q 的位置是解决(2)题的关键.28.(1)不存在,见解析;(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数,见解析.【分析】(1)根据题意可知,这n 组正整数符合规律m 2-1,2m ,m 2+1(m≥2,且m 为整数).分三种情况:m 2-1=71;2m=71;m 2+1=71;进行讨论即可求解;(2)由于(m 2-1) 2+(2m ) 2=m 4+2m 2+1=(m 2+1) 2,根据勾股定理的逆定理即可求解.【详解】(1)不存在一组数,既符合上述规律,且其中一个数为71.理由如下:根据题意可知,这n 组正整数符合规律21m -,2m ,21m +(2m ≥,且m 为整数). 若2171m -=,则272m =,此时m 不符合题意;若271m =,则35.5,m =,此时m 不符合题意;若2171m +=,则270m =,此时m 不符合题意,所以不存在一组数,既符合上述规律,且其中一个数为71.(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.理由如下:对于一组数:21m -,2m ,21m +(2m ≥,且m 为整数).因为2224222(1)(2)21(1)m m m m m -+=++=+所以若一个三角形三边长分别为21m -,2m ,21m +(2m ≥,且m 为整数),则该三角形为直角三角形.因为当2m ≥,且m 为整数时,2m 表示任意一个大于2的偶数,21m -,21m +均为正整数,所以以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.【点睛】考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.注意分类思想的应用29.(1)45°;(2)GF=AG+CF ,证明见解析;(3)①6; ②s ab =,理由见解析.【解析】【分析】(1)如图1中,连接BE .利用全等三角形的性质证明EB=ED ,再利用等角对等边证明EB=EF 即可解决问题.(2)猜想:GF=AG+CF .如图2中,将△CDF 绕点D 旋转90°,得△ADH ,证明△GDH ≌△GDF (SAS )即可解决问题.(3)①设CF=x ,则AH=x ,BF=6-x ,GF=3+x ,利用勾股定理构建方程求出x 即可. ②设正方形边长为x ,利用勾股定理构建关系式,利用整体代入的思想解决问题即可.【详解】解:(1)如图1中,连接BE .。
八年级数学上册 第三章 3.2 勾股定理的逆定理知识点与同步训练(含解析)(新版)苏科版
勾股定理的逆定理一.勾股定理逆定理1.如果三角形的三边长a,b,c满足222a b c+=,那么这个三角形是直角三角形.2.勾股定理与其逆定理的区别是:勾股定理以“一个三角形是直角三角形”为前提,得到这个三角形的三边长的数量关系;勾股定理的逆定理以“三角形的三边长满足222a b c+=”为前提,得到这个三角形是直角三角形.两者的题设和结论正好相反,应用时要注意其区别.二.勾股数1.满足222a b c+=的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.2.常用勾股数:3、4、5;5、12、13;6、8、10;7、24、25;8、15、17;9、40、41.一.考点:1.勾股定理逆定理;2.勾股数.二.重难点:掌握常用的勾股数,结合勾股定理逆定理利用线段长度可证明直角三角形.三.易错点:勾股数除了要满足勾股定理外,还需要满足是整数.题模一:勾股定理逆定理例1.1.1下列说法正确的有()①△ABC是直角三角形,∠C=90°,则a2+b2=c2.②△ABC中,a2+b2≠c2,则△ABC不是直角三角形.③若△ABC中,a2﹣b2=c2,则△ABC是直角三角形.④若△ABC是直角三角形,则(a+b)(a﹣b)=c2.A.4个B.3个C.2个D.1个【答案】C【解析】①△ABC是直角三角形,∠C=90°,则a2+b2=c2.符合勾股定理,故本小题正确;②△ABC中,a2+b2≠c2,则△ABC是直角三角形.故本小题错误;③若△ABC中,a2﹣b2=c2,则△ABC是直角三角形.符合勾股定理的逆定理,故本小题正确;④当C是斜边时(a+b)(a﹣b)=c2不成立,故本小题错误.例1.1.2 在下列长度的四组线段中,不能组成直角三角形的是( )A . a=9,b=41,c=40B . a=b=5,c=5C . a :b :c=3:4:5D . a=11,b=12,c=15【答案】D【解析】 A 、92+402=412,故是直角三角形,故正确;B 、52+52=()2,故是直角三角形,故正确;C 、32+42=52,故是直角三角形,故正确;D 、112+122≠152,故不能组成直角三角形.例1.1.3 如图,已知4AB =,12BC =,13CD =,3DA =,AB ⊥AD .判断BC ⊥BD 吗?简述你的理由.【答案】 见解析 【解析】 在直角△ABD 中,已知4AB =,3DA =,22255BD AB AD =+==∵12BC =,13CD =,∴满足222BD BC CD +=,∴△BCD 为直角三角形,即BC ⊥BD .例1.1.4 在△ABC 中,D 为BC 的中点,5AB =,6AD =,13AC =.试判断AD 与AB 的位置关系.【答案】 AD ⊥AB【解析】 延长AD 至E ,使得AD DE =,连接BE ,∵D 为BC 的中点,∴BD CD =, 在△ADC 和△EDB 中,AD DE ADC EDB DB DC =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△EDB (SAS ),∴13EB AC ==,∵6AD =,∴12AE =,∵222+=,51213∴222+=,AB AE EB∴90∠=︒,BAE∴AD⊥AB.题模二:勾股数例1.2.1分别以下列四组数为一个三角形的边长:(1)6、8、10;(2)5、12、13;(3)8、15、17;(4)4、5、6,其中能构成勾股数的有()A.1组B.2组C.3组D.4组【答案】C【解析】①222+==,能构成勾股数;6810010②222+=,能构成勾股数;51213③222+=,能构成勾股数;81517④222+≠,不能构成勾股数.456例1.2.2已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?【答案】7200(元)【解析】该题考查的是勾股定理的应用.如图,连接BD,在Rt△ABD中,222222345=+=+=,BD AB AD在△CBD中,2212BC=,CD=,2213而222+=,12513即222BC BD CD +=,∴90DBC ∠=︒, 1122ABCD BAD DBC SS S AD AB DB BC =+=⋅+⋅ 114312522=⨯⨯+⨯⨯ 36=所以需费用362007200⨯=(元).随练1.1 下列四组线段中,可以构成直角三角形的是( )A . 4,5,6B . 1.5,2,2.5C . 2,3,4D . 1,2,3【答案】B【解析】 本题考查勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.A 、42+52=41≠62,不可以构成直角三角形,故A 选项错误;B 、1.52+22=6.25=2.52,可以构成直角三角形,故B 选项正确;C 、22+32=13≠42,不可以构成直角三角形,故C 选项错误;D 、12+(2)2=3≠32,不可以构成直角三角形,故D 选项错误.故选:B .随练1.2 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )ABA . 90°B . 60°C . 45°D . 30°【答案】C【解析】 AC BC ==,AB =,∵222+=,∴222AC BC AB +=,∴△ABC 是等腰直角三角形,∴45ABC ∠=︒,所以本题的答案是C .随练1.3 △ABC 的三边长a ,b ,c 满足8a b +=,4ab =,256c =,判断△ABC 的形状,并说明理由.【答案】 △ABC 的形状是直角三角形.【解析】 264a b +=(),22264a b ab ++=,∴4ab =,∴22264264856a b ab c +=-=-==.随练1.4 已知a 、b 、c 为△ABC 的三边,且满足222244a c b c a b -=-,试判断△ABC 的形状.【答案】 等腰三角形或直角三角形.【解析】 由题意知,()()()2222222c a b a b a b -=+-,因此当a b =时,△ABC 为等腰三角形;当a b ≠时,由222a b c +=,△ABC 为直角三角形.随练1.5 下面四组数中是勾股数的有( )(1)1.5,2.5,2;(2,2;(3)12,16,20;(4)0.5,1.2,1.3.A . 1组B . 2组C . 3组D . 4组【答案】A【解析】 (1)2221.52 2.5+=,能构成直角三角形,但不是正整数,故不是勾股数,错误;(2)2222+=,能构成直角三角形,但不是正整数,故不是勾股数,错误;(3)222121620+=,三边是正整数,同时能构成直角三角形,故是勾股数,正确;(4),能构成直角三角形,但不是正整数,故不是勾股数,错误.。
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)-
初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)一.选择题(共8小题)1.直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.2.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c23.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm4.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺5.如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+6.一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.48.如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169二.填空题(共5小题)9.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是.10.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于.12.观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是(只填数,不填等式)13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.三.解答题(共27小题)14.a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.15.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.16.如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.17.如图所示,在一次夏令营活动中,小明坐车从营地A点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.18.如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?19.如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC 边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t 秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.20.在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:.(2)若△DEF三边的长分别为、、,请在图2的正方形网格中画出相应的△DEF,并利用构图法求出它的面积为.(3)如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.(4)如图4,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13m2、25m2、36m2,则六边形花坛ABCDEF的面积是m2.21.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n >0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.22.有一只喜鹊在一棵3m高的小树上觅食,它的巢筑在距离该树24m的一棵大树上,大树高14m,且巢离树顶部1m.当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m/s,那它至少需要多少时间才能赶回巢中?23.(拓展创新)在教材中,我们通过数格子的方法发现了直角三角形的三边关系,利用完全相同的四个直角三角形采用拼图的方式验证了勾股定理的正确性.问题1:以直角三角形的三边为边向形外作等边三角形,探究S′+S″与S的关系(如图1).问题2:以直角三角形的三边为斜边向形外作等腰直角三角形,探究S′+S″与S 的关系(如图2).问题3:以直角三角形的三边为直径向形外作半圆,探究S′+S″与S的关系(如图3).24.如图,在平面坐标系中,点A、点B分别在x轴、y轴的正半轴上,且OA=OB,另有两点C(a,b)和D(b,﹣a)(a、b均大于0);(1)连接OD、CD,求证:∠ODC=45°;(2)连接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度数;(3)若a=b,在线段OA上有一点E,且AE=3,CE=5,AC=7,求△OCA的面积.25.11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树根有多远?26.(1)先化简,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代数式(x+1)2﹣4(x+1)+4的值.(3)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,请在给定的网格中按要求画图:①从点A出发在图中画一条线段AB,使得AB=;②画出一个以(1)中的AB为斜边的等腰直角三角形,使三角形的三个顶点都在格点上,并根据所画图形求出等腰直角三角形的腰长.27.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法.我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数学关系”(勾股定理)带到其它星球,作为地球人与其他星球“人”进行第一次“谈话”的语言;[定理表述]请你根据图1中的直角三角形叙述勾股定理;[尝试证明]以图1中的直角三角形为基础,将两个直角边长为a,b,斜边长为c 的三角形按如图所示的方式放置,连接两个之间三角形的另外一对锐角的顶点(如图2),请你利用图2,验证勾股定理;[知识扩展]利用图2中的直角梯形,我们可以证明<,其证明步骤如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小关系),即∴.28.观察、思考与验证(1)如图1是一个重要公式的几何解释,请你写出这个公式;(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.29.超速行驶容易引发交通事故.如图,某观测点设在到公路l的距离为100米的点P处,一辆汽车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,是判断此车是否超过了每小时80千米的限制速度?(参考数据:=1.41,=1.73)30.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.31.在一次“构造勾股数”的探究性学习中,老师给出了下表:其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=,b=,c=.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.32.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时.△PQB是以BP为底的等腰三角形.33.阅读下面的情景对话,然后解答问题:(1)理解:①根据“奇异三角形”的定义,请你判断:“等边三角形一定是奇异三角形”吗?(填是或不是)②若某三角形的三边长分别为1、、2,则该三角形(是或不是)奇异三角形.(2)探究:若Rt△ABC是奇异三角形,且其两边长分别为2、2,则第三边的长为,且这个直角三角形的三边之比为(从小到大排列,不得含有分母).(3)设问:请提出一个和奇异三角形有关的问题.(不用解答)34.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41,…用你的发现解决下列问题:(1)填空:112=+ ;(2)请用含字母n(n为正整数)的关系式表示出你发现的规律:;(3)结合勾股定理有关知识,说明你的结论的正确性.35.小明爸爸给小明出了一道题:如图,修公路AB遇到一座山,于是要修一条隧道BC.已知A,B,C在同一条直线上,为了在小山的两侧B,C同时施工.过点B作一直线m(在山的旁边经过),过点C作一直线l与m相交于D点,经测量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工队每天挖100米,求施工队几天能挖完?36.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5cm,BE=7cm,求该三角形零件的面积.37.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.38.一艘轮船以20海里/时的速度由西向东航行,在途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20海里的圆形区域(包括边界)都属于台风区域,当轮船到A处时测得台风中心移到位于点A正南方的B 处,且AB=100海里.若这艘轮船自A处按原速度继续航行,在途中是否会遇到台风?若会,则求出轮船最初遇到台风的时间;若不会,请说明理由.39.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地°送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺),将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索(OA或OB)的长度.40.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对2.图中字母所代表的正方形的面积为144的选项为()A.B.C.D.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.﹣C.2 D.﹣24.如图,带阴影的正方形面积是.5.如图,在Rt△ABC中,∠BCA=90°,点D是BC上一点,AD=BD,若AB=8,BD=5,则CD=.6.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.初二数学勾股定理提高练习与常考难题和培优题压轴题(含解析)参考答案与试题解析一.选择题(共8小题)1.(2016秋•吴江区期中)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积除以斜边.2.(2016春•抚顺县期中)下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选C.【点评】本题考查了勾股定理的正确运用,只有斜边的平方才等于其他两边的平方和.3.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.4.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.5.(2016春•南陵县期中)如图所示,在数轴上点A所表示的数为a,则a的值为()A.﹣1﹣B.1﹣C.﹣D.﹣1+【分析】点A在以O为圆心,OB长为半径的圆上,所以在直角△BOC中,根据勾股定理求得圆O的半径OA=OB=,然后由实数与数轴的关系可以求得a的值.【解答】解:如图,点A在以O为圆心,OB长为半径的圆上.∵在直角△BOC中,OC=2,BC=1,则根据勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故选A.【点评】本题考查了勾股定理、实数与数轴.找出OA=OB是解题的关键.6.(2015春•蓟县期中)一架2.5米长的梯子底部距离墙脚0.7米,若梯子的顶端下滑0.4米,那么梯子的底部在水平方向滑动了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根据梯子的顶端下滑了0.4米求出A′C的长,再根据勾股定理求出B′C 的长,进而可得出结论.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的顶端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故选C.【点评】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(2015春•罗田县期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为()A.2 B.2.6 C.3 D.4【分析】根据勾股定理求出AB的长即可解答.【解答】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.故选D.【点评】本题综合考查了勾股定理的应用,找到关系MN=AM+BN﹣AB是关键.8.(2016春•重庆校级期中)如图,是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13 B.19 C.25 D.169【分析】根据勾股定理,知两条直角边的平方等于斜边的平方,此题中斜边的平方即为大正方形的面积13,2ab即四个直角三角形的面积和,从而不难求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2ab=大正方形的面积+四个直角三角形的面积和=13+(13﹣1)=25.故选C.【点评】考查了勾股定理的证明,注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二.填空题(共5小题)9.(2016春•固始县期中)将一根24cm的筷子,置于底面直径为15cm,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是7cm≤h≤16cm.【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解答】解:如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16cm;当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此时h=24﹣17=7cm,所以h的取值范围是7cm≤h≤16cm.故答案为:7cm≤h≤16cm.【点评】本题考查了勾股定理的应用,求出h的值最大值与最小值是解题关键.10.(2015春•汕头校级期中)如图,一场暴雨过后,垂直于地面的一棵树在距地面1米的点C处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(1+)米.【分析】根据题意利用勾股定理得出BC的长,进而得出答案.【解答】解:由题意得:在直角△ABC中,AC2+AB2=BC2,则12+22=BC2,∴BC=,∴则树高为:(1+)m.故答案为:(1+).【点评】此题主要考查了勾股定理的应用,熟练利用勾股定理得出BC的长是解题关键.11.(2016春•高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于24cm2.【分析】利用勾股定理列出关系式,再利用完全平方公式变形,将a+b与c的值代入求出ab的值,即可确定出直角三角形的面积.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,则Rt△ABC的面积为ab=24(cm2).故答案为:24cm2.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.12.(2016春•嘉祥县期中)观察下列勾股数第一组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四组:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1…观察以上各组勾股数组成特点,第7组勾股数是15,112,113(只填数,不填等式)【分析】通过观察,得出规律:这类勾股数分别为2n+1,2n(n+1),2n(n+1)+1,由此可写出第7组勾股数.【解答】解:∵第1组:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2组:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3组:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4组:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7组勾股数是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案为:15,112,113.【点评】此题考查的知识点是勾股数,属于规律性题目,关键是通过观察找出规律求解.13.(2009春•武昌区期中)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=84,c=85.【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三.解答题(共27小题)14.(2016春•黄冈期中)a,b,c为三角形ABC的三边,且满足a2+b2+c2+338=10a+24b+26c,试判别这个三角形的形状.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非负数的性质可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC为直角三角形.【点评】本题考查勾股定理的逆定理的应用、完全平方公式、非负数的性质.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.(2016秋•永登县期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,=,S△DAC=,∴S△ABC∵AB=CB=,DA=1,AC=2,=1,S△DAC=1∴S△ABC而S=S△ABC+S△DAC,四边形ABCD=2.∴S四边形ABCD【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.16.(2016春•邹城市校级期中)如图,小华准备在边长为1的正方形网格中,作一个三边长分别为4,5,的三角形,请你帮助小华作出来.【分析】直接利用网格结合勾股定理求出答案.【解答】解:如图所示:△ABC即为所求.【点评】此题主要考查了勾股定理,正确借助网格求出是解题关键.17.(2015春•平南县期中)如图所示,在一次夏令营活动中,小明坐车从营地A 点出发,沿北偏东60°方向走了100km到达B点,然后再沿北偏西30°方向走了100km到达目的地C点,求出A、C两点之间的距离.【分析】根据所走的方向可判断出△ABC是直角三角形,根据勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC中,∴==200,∴A、C两点之间的距离为200km.【点评】本题考查勾股定理的应用,先确定是直角三角形后,根据各边长,用勾股定理可求出AC的长,且求出∠DAC的度数,进而可求出点C在点A的什么方向上.18.(2015秋•新泰市期中)如图,在气象站台A的正西方向320km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?【分析】(1)过A作AE⊥BD于E,线段AE的长即为台风中心与气象台A的最短距离,由含30°角的直角三角形的性质即可得出结果;(2)根据题意得出线段CD就是气象台A受到台风影响的路程,求出CD的长,即可得出结果.【解答】解:(1)过A作AE⊥BD于E,如图1所示:∵台风中心在BD上移动,∴AE的长即为气象台距离台风中心的最短距离,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即台风中心在移动过程中,与气象台A的最短距离是160km.(2)∵台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心200km内的地方都要受到其影响,∴线段CD就是气象台A受到台风影响的路程,连接AC,如图2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴台风影响气象台的时间会持续240÷20=12(小时).【点评】本题考查了勾股定理在实际生活中的应用、垂径定理、含30°角的直角三角形的性质等知识;熟练掌握垂径定理和勾股定理,求出CD是解决问题(2)的关键.19.(2015春•阳东县期中)如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿A⇒B方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,△PQB能形成等腰三角形?(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.【分析】(1)我们求出BP、BQ的长,用勾股定理解决即可.(2)△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8﹣1×t,解方程即得结果.(3)直线PQ把原三角形周长分成相等的两部分,根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.【解答】解:(1)出发2秒后,AP=2,BQ=4,∴BP=8﹣2=6,PQ==2;(3分)(2)设时间为t,列方程得2t=8﹣1×t,解得t=;(6分)(3)假设直线PQ能把原三角形周长分成相等的两部分,由AB=8cm,BC=6cm,根据勾股定理可知AC=10cm,即三角形的周长为8+6+10=24cm,则有BP+BQ=×24=12,设时间为t,列方程得:2t+(8﹣1×t)=12,解得t=4,当t=4时,点Q运动的路程是4×2=8>6,所以直线PQ不能够把原三角形周长分成相等的两部分.(10分)【点评】本题重点考查了利用勾股定理解决问题的能力,综合性较强.20.(2014秋•江阴市期中)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.。
初二数学勾股定理及逆定理
勾股定理中考要求知识点睛1. 勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么222a b c +=.即直角三角形中两直角边的平方和等于斜边的平方注:勾——最短的边、股——较长的直角边、 弦——斜边。
CAB cbacbac baEDCBA3.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
即222,,ABC AC BC AB ABC∆+=∆在中如果那么是直角三角形。
4.勾股数:满足222a b c+=的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5;5、12、13;7、24、25;8、15、17例题精讲【例1】如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m.【答案】10【例2】如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前高.【答案】8【例3】在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?【解析】x+12米1米【答案】23米【例4】如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC为______米.【答案】103 3【例5】如果梯子的底端距离墙根的水平距离是9m,那么15m长的梯子可以达到的高度为.【解析】在直角三角形中,直接应用勾股定理.可得高度为12【答案】12m【例6】长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.【答案】2322【例7】如图,一个长为10米的梯子,斜靠在墙上,梯子的顶端距离地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离米(填“大于”、“等于”、“小于”)68【解析】由勾股定理可知:大于【答案】大于【例8】如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?【答案】7米,420元【例9】一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动.【解析】在初始和结束两个状态下,选定直角三角形,应用勾股定理.初始时,经计算,可知,梯顶距墙底端24分米. 结束时,经计算,可知,梯足距离墙底端15分米. 【答案】8分米【例10】 如图,ON 是垂直于地面OM 的前面,AB 是一根斜靠在墙面上长为a 的木条,当木条端点A 沿墙面下滑时,B 沿地面向右滑行⑴设木条AB 的中点为P ,试判断木条滑行过程中,墙角处点O 到P 的距离怎样变化?说明理由 ⑵木条在什么位置时,ABO ∆的面积最大?最大面积为多少?HP N MOBA【解析】⑴木条在滑行过程中,墙角处点O 到P 的距离保持不变,连结OP ,因为木条在滑行过程中,ABO∆始终是以AB 为斜边的直角三角形,所以斜边上的中线1122OP AB a == ⑵设Rt ABO ∆中AB 边上的高为h ,则12ABC S ah ∆=,在木条滑动的过程中,三角形的面积随h 的变化而变化,显然除OH 与OP 重合外,总有OH OP <,即12h a <,当Rt ABO ∆是等腰直角三角形时,OH 与OP 重合,h 取得最大值12a ,这时三角形的面积最大,所以当木条与底面夹角为45︒时,ABO ∆的面积最大,最大面积为211112224ABC S ah a a a ∆==⋅=【答案】见解析【例11】 如图,有一个直角三角形纸片,两直角边6cm 8cm AC BC ==,,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,那么CD 的长为多少?EDCBA【解析】可设CD x =,那么8BD x =-,DE x =,4BE =,所以()22248x x +=-,所以3x = 【答案】3cm【例12】 如图,两个村庄A 、B 在河CD 的同侧,A 、B 两村到河的距离分别为AC =1千米,BD =3千米,CD =3千米.现要在河边CD 上建造一水厂,向A 、B 两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD 上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用W .【答案】10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O 【例13】 已知直角三角形的周长为62+,斜边为2,则该三角形的面积是 .【解析】设两直角边分别为a b ,,则22626a b a ab b +=++=,,1ab =,122ab = 【答案】21【例14】 若等腰三角形两边长分别为4和6,则底边上的高等于 . 【答案】24或7【例15】 如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =102求AB的长.【解析】设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =.1324422=+k m 【答案】.132【例16】 如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD的长.【解析】设BD =x ,则CD =30-x .在Rt ACD △中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5. 【答案】BD =5.【例17】 如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长.【解析】设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt ABE △中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5【答案】BE =5.【例18】 如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长.【解析】设EC =x ,则DE =EF =8-x ,AF =AD =10,BF 226AF AB -,CF =4.在Rt CEF △中(8-x )2=x 2+42,解得x =3【答案】EC =3cm .【例19】 正方形ABCD 中,E 、F 两点分别是BC 、CD 上的点.若△AEF 是边长为2的等边三角形,则正方形ABCD 的边长为 .FED CBA【解析】∵AB =AD ,AE =AF ,∴Rt △ABE ≌Rt △ADF .∴BE =DF .∴CE =CF =1.设正方形的边长是x .在直角三角形ADF 中,根据勾股定理,得()2212x x +-=,解得13x ±=(负值舍去)31+【答案31+【例20】 已知:如图,△ABC 中,∠C =90°,D 为AB 的中点,E 、F 分别在AC 、BC 上,且DE ⊥DF .求证:222AE BF EF +=.【答案】连接CD ,ADE CDF ≌△△,故AE CF =,同理BF CE =,即222AE BF EF +=.【例21】 如图,已知ABC △中,90ABC ∠=︒,AB BC =,三角形的顶点在相互平行的三条直线123l l l ,,上,且123l l l ,,之间的距离为2,23l l ,之间的距离为3,求AC 的长是多少?【答案】过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得AMB BNC ≌△△,则34AB 217AC =【例22】 如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,……已知正方形ABCD 的面积S 1为1,按上述方法所作的正方形的面积依次为S 2,S 3,…,S n (n 为正整数),那么第8个正方形的面积S 8=______,第n 个正方形的面积S n =______.IJHGF EDC BA【解析】后一个是前一个的2倍. 【答案】128,12n -【例23】 如图,设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去.(1)记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234.....n a a a a ,,,,请求出234a a a ,,的值;(2)根据以上规律写出n a 的表达式.IJHGF EDC BA【解析】(1)2a =32a =,4a = (2)n a =【答案】(1)2a =32a =,4a = (2)n a =.【例24】 如图,在ABC ∆中,AD 是BC 边上的中线,且AE BC ⊥于E ,若12AB =,=10BC ,=8AC ,求DE 的长.ED CBA【解析】设DE x =.由AE BC ⊥于点E 可知:22222AB BE AE AC CE -==-.又∵12=10=8==5AB BC AC BD CD =,,,,∴222212585x x -+=--()(), 解得=4x ,即4DE =.【答案】4【例25】 已知钝角三角形的三边为2、3、4,求该三角形的面积.432ACBD432ACB【解析】过点A 作AD BC ⊥于D ,设CD x =,利用勾股定理()22222234AD x x =-=--,解得118x =,AD =.点评:这类题目(含锐角三角形)除了构造直角三角形,也可以用海伦公式:已知三角形的三边为a 、b 、c ,令2a b cp ++=,三角形的面积为S =.对于钝角三角形和锐角三角形的问题,通常采取“特殊处理”,即通过作高利用直角三角形的知识来解决问题.。
(精编)八年级数学培优专题讲解《勾股定理》
八年级数学培优专题讲解《勾股定理》【培优图解】【技法透析】勾股定理是几何中重要的定理之一,它是把直角三角形的“形”与三边关系这一“数”结合起来,是数形结合思想方法的典范.1.勾股定理反逆定理的应用主要用于计算和证明等.2.勾股数的推算公式①若任取两个正整数m、 n(m>n),那么 m 2 -n,2mn,m+n是一组勾股数.2 2 2k 2 1,k2 1是一组勾股数.②如果 k是大于 1 的奇数,那么 k,2 22 2k k③如果 k是大于 2 的偶数,那么 k,1,1是一组勾股数,2 2④如果 a,b,c是勾股数,那么 na,nb,nc(n是正整数 )也是勾股数.3.创设勾股定理运用条件当勾股定理不能直接运用时,常需要通过等线段代换、作辅助线段等途径,为勾股定理的运用创造必要的条件,有时又需要由线段的数量关系去判断线段的位置关系.在有等边三角形、正方形的条件下,可将图形旋转60°或 90°,旋转过程中角度、线段的长度保持不变,在新的位置上分散条件相对集中,以便挖掘隐含条件,探求解题思路.【名题精讲】考点 1运用勾股定理解有关"折叠"问题例 1 如图,折叠长方形 ABCD一边,点 D落在 BC边的点 F处,若 AB=8cm,BC =10 cm,求 EC 的长.【切题技巧】由图形易知△ ADF≌△ AFE,从而 AD=AF,DE=EF.先在 Rt△ABF中用勾股定理求出 BF,再在 Rt△EFC中由勾骰定理列方程可求EC 的长.【规范解答】【借题发挥】图形折叠问题一般是“全等形”,或“等腰三角形”等对称图形问题,勾股定理是常常用到的计算方法,体现了勾股定理作为主要计算工具在解决与直角三角形相关图形变换的综合题中的具体应用.【同类拓展】 1.把一张长方形纸片 (长方形 ABCD)按如图 17-2所示的方式折叠,使顶点 B和点 D重合,折痕为 EF.若 AB=3cm,BC=5cm,则重叠部分△ DEF 的面积是2_______cm.考点 2运用勾股定理的逆定理求角度例 2 如图,在正方形 ABCD中, PA= 1,PB=2,PC=3,P在正方形内部,试求∠APB 的度数.【切题技巧】【规范解答】【借题发挥】旋转变换后再运用勾股定理及逆定理是求三角形角的度数的常见方法,即用恰当的旋转变换方式来构建直角三角形.能够使用旋转法的条件是旋转后的图形与原图形有边相等能够重合.2.如图,等边△ ABC内有一点 P,若点 P到顶点 A、B、C 的距离分别为 3、4、5,求∠ APB 的度数.考点 3求立体图形中的两点之间的最短距离例 3 如图所示,一只蚂蚁如果沿长方体的表面从A点爬到 B'点,那么沿哪条路线最短?最短路程是多少?已知长方体的长为2cm、宽为 1cm、高为 4cm.【切题技巧】由于蚂蚁沿长方体的表面爬行,故需把长方体展开成平面图形,根据两点之间线段最短和“勾股定理”可求解.【规范解答】【借题发挥】“最短路线”是勾股定理在实际生活中的具体应用,一般地,求“最短路线”要“立体问题”转化为“平面问题”,这类问题涉及到的几何体主要有长方体、同正方体、圆柱、圆锥等.在将几何体的表面展开时,要注意确定展开图中两点的相应位置.时,由于将几何体的表面展开时可能有几种不同的情况,因此,有些问题可能会求得几个不同的结果,这就需要通过分析比较后才能确定适合题意的答案.【同类拓展】3.如图是一个三级台阶,它的每一级的长、宽和高分别等于5cm、3cm和 lcm,A和 B是这个台阶的两个相对的端点, A点上有一只蚂蚁,它想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短路线的长是多少?考点 4勾股定理反其逆定理的综合运用1 例 4如图所示,正方形 ABCD中, E是 AD中点,点 F在 DC上,且 DF= DC,4试判断 BE和 EF 的位置关系?并说明你的理由.【切题技巧】观察图,会给我们BE与 EF垂直的直观印象.若直接证明BE与 EF 垂直,则十分困难.若连接BF,设 DF= a,利用勾股定理及其逆定理证明△BEF为直角三角形,得到 BE⊥EF.【规范解答】BF和 EF 的位置关系是: BE⊥EF.【借题发挥】勾股定理及其逆定理在解决一些实际问题或具体的几何问题时是密不可分的,通常既要通过勾股定理求出三角形边长,又要通过逆定理判断一个三角形是直角三角形,两者相辅相成.4.如图,在四边形 ABCD中,∠ ABC=30°,∠ ADC=60°, AD=CD,求证: BD 2 =AB+BC.2 2考点 5勾股定理在实际问题中应用例 5如图 (1),护城河在 CC'处直角转弯,宽度保持4米,从 A处往 B处,经过两座桥: DD'、EE'.设护城河是东西——南北方向的,A、B在东西向相距 64米,南北方向_______米.相距 84米,恰当地架河可使 AD、D'E'、EB 的路程最短,这个最短距离是【切题技巧】要判断最短路程,需先确定两座桥的位置,确定桥的位置后,再根据护城河的直角转弯形成的直角三角形利用勾股定理求解.【规范解答】如图 (2),作 AA'⊥CD,AA'=DD',BB'⊥CE,BB'=EE',则折线 ADD'E'EB 的长度等于折线AA,D'E'B'B 的长度,即等于折线A'D'E'B' 的长度+ AA'+BB'.而折线A'D'E'B'以线段 A'B'最短,故题目所求最短路程S=A'B'+ 8,而 A'、B'在东西方向上相距为 64-4=60(米),在南北方向上相距 84-8=80(米)2 米,=由勾股定理可知, A'B'=60 802=100( ) S 108(米)【借题发挥】实际问题中,最短路程问题等常常在构造直角三角形后,利用勾股定理计算求解.5.如图所示的长方体是某种饮料的纸质包装盒,规格为 5×6× 10(单位: cm),在上盖中开有一孔便于插吸管,吸管长为13cm,小孔到图中边 AB距离为 1cm,到上盖中与 AB相邻的的两边距离相等,设插入吸管后露在盒外面的长为hcm,则 h 的最小值大约为 _______cm.(精确到个位,参考数据:2= 1.4,3=1.7,5=2.2).考点 6勾股定理与函数的综合问题4 x例 6如图①,在平面直角坐标系中,双曲线y=与直线 y=交于点 A、B.(1)x 4求 AB 的长. (2)若点 P是第一象限双曲线上一动点,如图②所示,BC⊥AP于点 C,交 xAE2 BF 2轴于点 F,AP交 y轴于点 E,试判断的值是否为定值?并加以证明.EF 2【切题技巧】 (1)因为 A 、B 为双曲线与直线 的交点,所以只需将两个已知函数 的解AE 2 BF 2 EF 2析式成方程组,它们 的解即交点 A 、B 的坐标. (2)从结论 入手,联想勾股定理, 通过作辅助线将 AE 、BF 、EF 这三条线段转移到同一直角三角形中.【规范解答】【借题发挥】 (1)当题目中涉及线段平方时应联想到勾股定理,若这些线段不在直角 三角形中则应添加辅助线,将分散 的线段集中在同一直角三角形中, 本题还可以过点 B 作 BN ∥AE 交 y 轴于点 N ,将三条线段收集在 Rt △ BNF 中,如图 17-11③所示. (2)利用“中 点”能构成多种辅助线,要根据题目 的需要进行构造.【同类拓展】 6.已知△ OMN 中, OM =ON ,∠ MON =90°,点 B 为 MN 的延长线上一点, OC ⊥OB .且 OC =OB ,OG ⊥ BC 于 G ,交 MN 于点 A . (1)如图①所示,①求证:∠ CMB =90°;②求证: AM 2+BN =AB 2 2 ; (2)如图②,在条件 (1)上,过 A 作 AE ⊥OM 于 E ,过 B 作 BF ⊥ ON 于 F ,EA 、BF 的延长线交于点 P ,则 PA 、AE 、BF 之间 的数量关系为 _______;△ AME 、△ PAB 、△ BFN 的面积之间 的关系为 _______.k (3)如图③,在条件 (2)下,分别以 OM 、ON 为 x 轴和 y 轴建立坐标系,双曲线 y =经 x过点 P ,若 MN =2 2,求 k 的值.参考答案1.5.12.150°3.13cm4.略5.26.(1)略 (2)(2)AE +BF =PA2.2 2 S△AME+S△BFN=S△PAB .。
苏科版数学八年级上册 勾股定理的逆定理-专题培优训练(含答案)
3.2 勾股定理的逆定理知识点 1 勾股定理的逆定理1.在△ABC 中,如果三边满足关系BC 2=AB 2+AC 2,那么△ABC 的直角是( )A .∠CB .∠AC .∠BD .不能确定2.下列长度的三条线段不能组成直角三角形的是( )A .3,4,5B .5,12,13C .0.3,0.4,0.5D .13,14,153.[2020·盐城阜宁县月考] 已知△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,下列条件不能判定△ABC 是直角三角形的是( )A .∠A=∠C-∠B B .a ∶b ∶c=4∶5∶6C .a 2=b 2-c 2D .a=,b=,c=134544.如,点P 在直线l 上,已知PA=5,AC=BC=3,PC=4,则线段PB 的长度是( )A .6B .5C .4D .35.[2019·南京秦淮区期末] 如,△ABC 中,AB=6 cm,BC=8 cm,AC=10 cm,D 是AC 的中点,则BD= cm .6.以下列各组数据为长度的线段中,哪些可以组成直角三角形?①5,13,12;②4,5,7;③3a,4a,5a(a>0);④a∶b∶c=5∶12∶13.7.如,在6×6的网格中,每个小正方形的边长都为1,△ABC的顶点均为网格的格点.(1)求证:△ABC是直角三角形;(2)在格点上是否存在点P,使∠APC=90°,请在图中标出所有满足条件的格点P(用P1,P2,…表示).8.[2019·兴化月考] 如,AD⊥BC,垂足为D.如果CD=1,AD=2,BD=4.(1)直接写出AC2= ,AB2= ;(2)△ABC是直角三角形吗?证明你的结论.知识点2 勾股数9.[2020·高邮期中] 下列各组数中,是勾股数的是( )A.2,3,4B.9,12,13C.0.3,0.4,0.5D.7,24,2510.[2020·连云港灌云县月考] 若8,17,m是一组勾股数,则m= .11.有五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中摆放正确的是( )12.在△ABC中,AB=10,BC=12,BC边上的中线AD=8,则△ABC中AB边上的高为( )A.8B.9.6C.10D.1213.观察下列各组勾股数,并寻找规律:①4,3,5;②6,8,10;③8,15,17;④10,24,26……请根据你发现的规律写出第⑦组勾股数: .14.如,在Rt△ABC中,∠ACB=90°,AB=5 cm,AC=3 cm,动点P从点B出发,沿射线BC以2 cm/s的速度移动,设运动的时间为t s,当t= 时,△ABP为直角三角形.15.如,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2-AE2=AC2.求证:∠A=90°.16.如,AD=4,CD=3,∠ADC=90°,AB=13,BC=12,求该图形的面积.17.[2019·南京高淳区期末]如,在四边形ABCD 中,∠ABC=90°,AB=BC=2,CD=1,AD=3,求∠BCD 的度数.18.[2019·兴化期中] 【知识背景】我国古代把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.据《周髀算经》记载,公元前1000多年就发现了“勾三股四弦五”的结论.像以3,4,5这样为三边长能构成直角三角形的3个正整数,称为勾股数.【应用举例】观察3,4,5;5,12,13;7,24,25;…,可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,当勾为3时,股4=(9-1),弦5=(9+1);1212当勾为5时,股12=(25-1),弦13=(25+1);1212当勾为7时,股24=(49-1),弦25=(49+1).1212(1)请仿照上面三组样例,用发现的规律填空:如果勾用n (n ≥3,且n 为奇数)表示,请用含有n 的式子表示股和弦,则股= ,弦= .【问题解决】(2)古希腊的哲学家柏拉图也提出了构造勾股数组的公式.具体表述如下:若a=2m ,b=m 2-1,c=m 2+1(m 为大于1的整数),则a ,b ,c 为勾股数.请你证明柏拉图公式的正确性.(3)毕达哥拉斯在他找到的勾股数的表达式中发现弦与股的差为1,若用2a 2+2a+1(a 为任意正整数)表示勾股数中最大的一个数,请你找出另外两个数的表达式分别是多少.教师详解详析1.B [解析] ∵BC 2=AB 2+AC 2,∴△ABC 是直角三角形,BC 是斜边.∴∠A=90°.故选B .2.D [解析] ∵132+142≠152,∴13,14,15这三条线段不能组成直角三角形.3.B [解析] A 项,∵∠A=∠C-∠B ,且∠A+∠B+∠C=180°,∴∠C=90°,故△ABC 是直角三角形;B 项,设a=4x ,b=5x ,c=6x ,则a 2+b 2≠c 2,∴△ABC 不是直角三角形;C 项,∵a 2=b 2-c 2,∴b 2=c 2+a 2,故△ABC是直角三角形;D 项,∵a=,b=,c=1,∴b 2=c 2+a 2,故△ABC 是直角三角3454形.故选B .4.B [解析] ∵PA=5,AC=3,PC=4,∴PA 2=AC 2+PC 2.∴∠PCA=90°.∵AC=BC ,∴点P 在线段AB 的垂直平分线l 上.∴PB=PA=5.故选B .5.5 [解析] ∵AB=6 cm,BC=8 cm,AC=10 cm,∴AB 2+BC 2=AC 2,∴△ABC 是直角三角形,且∠ABC=90°.∵D 是AC 的中点,∴BD=AC=5 cm .126.解:①∵52+122=132,∴以5,12,13为长度的线段可以组成直角三角形.②∵42+52≠72,∴以4,5,7为长度的线段不能组成直角三角形.③∵(3a)2+(4a)2=(5a)2,∴以3a,4a,5a(a>0)为长度的线段可以组成直角三角形.④设a=5x,b=12x,c=13x.∵(5x)2+(12x)2=(13x)2,∴a2+b2=c2.∴以a,b,c为长度的线段可以组成直角三角形.7.解:(1)证明:∵AC2=32+42=25,AB2=12+22=5,BC2=22+42=20,∴AC2=AB2+BC2,∴△ABC是直角三角形.(2)存在.如图所示.8.解:(1)∵AD⊥BC,∴∠ADC=∠ADB=90°.在Rt△ACD中,AD=2,CD=1,∴AC2=AD2+CD2=5.在Rt△ABD中,AD=2,BD=4,∴AB2=AD2+BD2=20.故答案为5,20.(2)△ABC 是直角三角形.证明:BC=BD+CD=5.∵5+20=52,即AC 2+AB 2=BC 2,∴△ABC 是直角三角形,且∠BAC=90°.9.D [解析] 22+32≠42,不能构成直角三角形;92+122≠132,不能构成直角三角形;0.3,0.4,0.5不是正整数;72+242=252,能构成直角三角形,且都是正整数.故选D .10.15 [解析] 当17是最长边时,82+m 2=172,即m 2=225,∴m=15;当m 是最长边时,m 2=82+172,即m 2=353,则m 不是正整数.综上,m=15.11.D [解析] ∵72+242=252,152+202=252,∴选项D 正确.12.B [解析] 如图,过点C 作CE ⊥AB 于点E.∵AD 是△ABC 的中线,BC=12,∴BD=6.∵AB=10,AD=8,BD=6.∴AB 2=AD 2+BD 2.∴∠ADB=90°.∴AD ⊥BC.∵S △ABC =BC ·AD=AB ·CE ,1212∴CE==9.6.故选B .12×81013.16,63,65 [解析] 观察前4组数据的规律可知第组勾股数的第一个数是2(n+1);第二个数是n (n+2);第三个数是(n+1)2+1.所以第⑦组勾股数是16,63,65.14.2或 [解析] ∵∠ACB=90°,AB=5 cm,AC=3 cm,∴BC=4 cm .258①当∠APB 为直角时,点P 与点C 重合,BP=BC=4 cm,∴t=4÷2=2.②当∠BAP 为直角时,BP=2t cm,CP=(2t-4)cm,AC=3 cm,在Rt △ACP 中,AP 2=32+(2t-4)2,在Rt △BAP 中,AB 2+AP 2=BP 2,∴52+[32+(2t-4)2]=(2t )2,解得t=.258综上,当t=2或时,△ABP 为直角三角形.25815.证明:连接CE.∵D 为BC 的中点,DE ⊥BC 交AB 于点E ,∴CE=BE.∵BE 2-AE 2=AC 2,∴CE 2-AE 2=AC 2.∴AC 2+AE 2=CE 2.∴∠A=90°.16.[解析] 连接AC ,应用勾股定理及其逆定理,可判定△ABC 为直角三角形,再运用面积的和差关系求出图形的面积.解:连接AC.在Rt △ADC 中,AC 2=AD 2+CD 2=42+32=25,∴AC=5.在△ABC 中,AC 2+BC 2=169,AB 2=169,∴AB 2=AC 2+BC 2,则△ABC 为直角三角形,且∠ACB=90°.∴S=AC ·BC-AD ·CD=×5×12-×3×4=24.1212121217.解:如图,连接AC.∵∠ABC=90°,AB=BC=2,∴∠ACB=45°,AC 2=AB 2+BC 2=8.在△ACD 中,∵AC 2+CD 2=8+1=9,AD 2=32=9,∴AD 2=AC 2+CD 2,∴∠ACD=90°,∴∠BCD=∠ACB+∠ACD=135°.18.解:(1)(n 2-1) (n 2+1)1212(2)∵a=2m ,b=m 2-1,c=m 2+1(m 表示大于1的整数),∴a 2+b 2=(2m )2+(m 2-1)2=4m 2+m 4-2m 2+1=m 4+2m 2+1=(m 2+1)2,c 2=(m 2+1)2,∴a 2+b 2=c 2.∴a ,b ,c 为勾股数.(3)2a 2+2a ,2a+1.。
八年级数学勾股定理培优
225400 A225400B256112C144400D勾股定理【知识要点】1、勾股定理是:直角三角形两直角边的平方和等于斜边的平方,即:222c b a =+2、勾股定理逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=那么这个三角形是直角三角形。
【典型习题】例1、如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A. 2cmB. 3cmC. 4cmD. 5cm例2、求下列各图字母中所代表的正方形的面积。
=A S =B S =C S =D S例3、如图,一次“台风”过后,一根旗杆被台风从离地面8.2米处吹断,倒下的旗杆的顶端落在离旗杆底部6.9米处,那么这根旗杆被吹断裂前至少有多高?米米例4、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
例5、在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。
例6、为丰富少年儿童的业余文化生活,某社区要在如图所示的AB 所在的直线上建一图书阅览室,该社区有两所学校,所在的位置分别在点C 和点D 处。
CA ⊥AB 于A ,DB ⊥AB 于B ,已知AB=25km ,CA=15km,DB=10km,试问:阅览室E 建在距A 点多远时,才能使它到C 、D 两所学校的距离相等?例 7、如图所示,MN 表示一条铁路,A 、B 是两个城市,它们到铁路的所在直线MN 的垂直距离分别AA1=20km,BB1=40km ,A1B1=80km.现要在铁路A1,B1=80km 。
现要在铁路A1,B1之间设一个中转站P ,使两个城市到中转站的距离之和最短。
八年级数学竞赛培优训练 勾股定理及其逆定理 含解析
勾股定理及其逆定理【思维入门】1.在△ABC 中,若AC =17,BC =10,AB =13,则△ABC 的面积为 ( ) A.10B .2 3C.112D .62.如图1-6-1,点E 在正方形ABCD 内,满足∠AEB =90°.AE =6,BE =8,则阴影部分的面积是( ) A .48B .60C .76D .80图1-6-13.如图1-6-2,在△ABC 中,AB =AC ,AD ⊥BC 于点D .若AB =6,CD =4,则△ABC 的周长是____.图1-6-24.等腰△ABC 中,AB =AC =10 cm ,BC =12 cm ,则BC 边上的高是____cm.5.如图1-6-3,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺成的大正方形.若小正方形与大正方形的面积之比为1∶13,则直角三角形较短的直角边a 与较长的直角边b 的比值为____.6.如图1-6-4,Rt △ABC 中,∠C =90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.图1-6-4【思维拓展】7.如图1-6-5,在矩形ABCD中,AB=2,BC=3,AE是∠BAD的平分线,EF⊥AE,则AF的长为()图1-6-5A.3 2 B.4 C.2 5 D.108.如图1-6-6,已知直角三角形的一直角边长是4,以这个直角三角形的三边为直径作三个半圆,已知两个月牙形(带斜线的阴影图形)的面积之和是10,那么以下四个整数中,最接近图中两个弓形(带点的阴影图形)面积之和的是()图1-6-6A.6 B.7 C.8 D.99.如图1-6-7,矩形纸片ABCD中,AB=3,AD=9,将其折叠,使点D与点B重合,得折痕EF ,则EF 的长为 ()图1-6-7A. 3 B .2 3 C.10D.310210.如图1-6-8,在平行四边形ABCD 中,M ,N 分别是BC ,DC 的中点,AM =4,AN =3,且∠MAN =60°,则AB 的长是____.11.如图1-6-9,矩形ABCD 中,E 是AB 的中点,将△ADE 沿DE 折叠后得到GDE ,且点G 在矩形ABCD 的内部,延长DG 交BC 于点F ,若F 恰是BC 的中点,则ABAD 的值是____.12.在长方形纸片ABCD 中,AB =1,BC =2,设E 为AB 的中点,现将纸片折叠,使A ,E 重合,则折痕将长方形纸片分成两部分,那么较大部分面积与较小部分面积之比的值为____.13.如图1-6-10,在△ABC 中,∠ACB =90°.AC =BC ,延长AB 至点D ,使DB=。
专题02 勾股定理逆定理(解析版)
八年级数学上册北师大版版链接教材精准变式练专题02 勾股定理的逆定理【典例1】判断由线段a b c ,,组成的三角形是不是直角三角形.(1)a =7,b =24,c =25;(2)a =43,b =1,c =34; (3)22a m n =-,22b m n =+,2c mn =(0m n >>);【点拨】判断三条线段能否组成直角三角形,关键是运用勾股定理的逆定理:看较短的两条线段的平方和是否等于最长线段的平方.若是,则为直角三角形,反之,则不是直角三角形.【解析】解:(1)∵ 2222724625a b +=+=,2225625c ==,∴ 222a b c +=.∴ 由线段a b c ,,组成的三角形是直角三角形. (2)∵ a b c >>,222239251141616b c ⎛⎫+=+=+= ⎪⎝⎭,2241639a ⎛⎫== ⎪⎝⎭, ∴ 222b c a +≠.∴ 由线段a b c ,,组成的三角形不是直角三角形.(3)∵ 0m n >>,∴ 222m n mn +>,2222m n m n +>-.∵2222224224224224()(2)242a c m n mn m m n n m n m m n n +=-+=-++=++, 22224224()2b m n m m n n =+=++,∴ 222a cb +=.∴ 由线段a b c ,,组成的三角形是直角三角形. 典例解读【总结】解此类题的关键是准确地判断哪一条边最大,然后再利用勾股定理的逆定理进行判断,即首先确定最大边,然后验证2c 与22a b 是否具有相等关系,再根据结果判断是否为直角三角形.【典例2】如图,点D 是△ABC 内一点,把△ABD 绕点B 顺时针方向旋转60°得到△CBE ,若AD=4,BD=3,CD=5.(1)判断△DEC 的形状,并说明理由;(2)求∠ADB 的度数.【点拨】把△ABD 绕点B 顺时针方向旋转60°,注意旋转只是三角形的位置变了,三角形的边长和角度并没有变,并且旋转的角度60°,因此出现等边△BDE ,从而才能更有利的判断三角形的形状和求∠ADB 的度数.【解析】解:(1)根据图形的旋转不变性,AD=EC ,BD=BE ,又∵∠DBE=∠ABC=60°,∴△ABC 和△DBE 均为等边三角形,于是DE=BD=3,EC=AD=4,又∵CD=5,∴DE 2+EC 2=32+42=52=CD 2;故△DEC 为直角三角形.(2)∵△DEC 为直角三角形,∴∠DEC=90°,又∵△BDE 为等边三角形,∴∠BED=60°,∴∠BEC=90°+60°=150°,即∠ADB=150°.【总结】此题考查了旋转后图形的不变性、全等三角形的性质、等边三角形的性质、勾股定理的逆定理等知识,综合性较强,是一道好题.解答(2)时要注意运用(1)的结论.【典例3】已知:,,a b c 为ABC ∆的三边且满足222338102426a b c a b c +++=++,试判断ABC ∆的形状.【解析】解:∵222338102426a b c a b c +++=++∴0338262410222=+-+-+-c c b b a a 0)13()12()5(222=-+-+-c b a∴5,12,13a b c ===,222c b a =+∴△ABC 是直角三角形.【总结】此类问题中要判断的三角形一般都是特殊三角形,一定要善于把题目中已知的条件等式进行变形,从而得到三角形的三边关系.对条件等式进行变形常用的方法有配方法,因式分解法等.【典例4】如图,铁路MN 和铁路PQ 在P 点处交汇,点A 处是第九十四中学,AP=160米,点A 到铁路MN 的距离为80米,假使火车行驶时,周围100米以内会受到噪音影响.(1)火车在铁路MN 上沿PN 方向行驶时,学校是否会受到影响?请说明理由.(2)如果受到影响,已知火车的速度是180千米/时那么学校受到影响的时间是多久?【点拨】(1)过点A 作AE ⊥MN 于点E ,由点A 到铁路MN 的距离为80米可知AE=80m ,再由火车行驶时,周围100米以内会受到噪音影响即可直接得出结论;(2)以点A 为圆心,100米为半径画圆,交直线MN 于BC 两点,连接AB 、AC ,则AB=AC=100m ,在Rt △ABE 中利用勾股定理求出BE 的长,进而可得出BC 的长,根据火车的速度是180千米/时求出火车经过BC 是所用的时间即可.【解析】解:(1)会受到影响.过点A 作AE ⊥MN 于点E ,∵点A到铁路MN的距离为80米,∴AE=80m,∵周围100米以内会受到噪音影响,80<100,∴学校会受到影响;(2)以点A为圆心,100米为半径画圆,交直线MN于BC两点,连接AB、AC,则AB=AC=100m,在Rt△ABE中,∵AB=100m,AE=80m,∴BE===60m,∴BC=2BE=120m,∵火车的速度是180千米/时=50m/s,∴t===2.4s.答:学校受到影响的时间是2.4秒.【总结】题考查的是勾股定理的应用,在解答此类题目时要根据题意作出辅助线,构造出直角三角形,再利用勾股定理求解.【典例5】已知a、b、c是△ABC的三边,且满足438324a b c+++==,且a+b+c=12,请你探索△ABC的形状.【解析】解:令438 324a b c+++===k.∴a+4=3k,b+3=2k,c+8=4k,∴a=3k﹣4,b=2k﹣3,c=4k﹣8.又∵a+b+c=12,∴(3k﹣4)+(2k﹣3)+(4k﹣8)=12,∴k=3.∴a=5,b=3,c=4.∴△ABC 是直角三角形.【总结】此题借用设比例系数k 的方法,进一步求得三角形的三边长,根据勾股定理的逆定理判定三角形的形状.【典例6】如图所示,MN 以左为我国领海,以右为公海,上午9时50分我国缉私艇A 发现在其正东方向有一走私艇C 并以每小时13海里的速度偷偷向我国领海开来,便立即通知距其5海里,并在MN 线上巡逻的缉私艇B 密切注意,并告知A 和C 两艇的距离是13海里,缉私艇B 测得C 与其距离为12海里,若走私艇C 的速度不变,最早在什么时间进入我国海域?【解析】解:∵ 22222251216913AB BC AC +=+===,∴ △ABC 为直角三角形.∴ ∠ABC =90°.又BD ⊥AC ,可设CD =x ,∴ 22222212,(13)5,x BD x BD ⎧+=⎪⎨-+=⎪⎩①②①-②得2216926119x x x -+-=, 解得14413x =.∴ 1441441313169÷=≈0.85(h)=51(分). 所以走私艇最早在10时41分进入我国领海.【总结】(1)本题用勾股定理作相等关系列方程解决问题,(2)用勾股定理的逆定理判定直角三角形,为勾股定理的运用提供了条件.【教材知识必背】一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 教材知识链接要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.三、勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长;(2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长;【变式1】发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,25.其中能作为直角三角形的三边长的有( )A.1组B.2组C.3组D.4组【答案】C.解:①∵82+152=172,∴能组成直角三角形; 精准变式题②∵52+122=132,∴能组成直角三角形;③122+152≠202,∴不能组成直角三角形;④72+242=252,∴能组成直角三角形.故选C .【变式2】如图所示,在△ABC 中,已知∠ACB =90°,AC =BC ,P 是△ABC 内一点,且PA =3,PB =1,PC =CD =2,CD ⊥CP ,求∠BPC 的度数.【答案】解:连接BD .∵ CD ⊥CP ,且CD =CP =2,∴ △CPD 为等腰直角三角形,即∠CPD =45°.∵ ∠ACP+∠BCP =∠BCP+∠BCD =90°,∴ ∠ACP =∠BCD .∵ CA =CB ,∴ △CAP ≌△CBD(SAS),∴ DB =PA =3.在Rt △CPD 中,22222228DP CP CD =+=+=.又∵ PB =1,则21PB =.∵ 29DB =,∴ 22819DB DP PB =+=+=,∴ △DPB 为直角三角形,且∠DPB =90°,∴ ∠CPB =∠CPD+∠DPB =45°+90°=135°.【变式3】请阅读下列解题过程:已知a 、b 、c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判断△ABC 的形状.解:∵a 2c 2﹣b 2c 2=a 4﹣b 4, 第一步∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),第二步∴c2=a2+b2,第三步∴△ABC为直角三角形.第四步问:(1)在上述解题过程中,从哪一步开始出现错误:_________ ;(2)错误的原因是:_________ ;(3)本题正确的结论是:_________ .【答案】解:(1)第三步;(2)方程两边同时除以(a2﹣b2)时,没有考虑(a2﹣b2)的值有可能是0;(3)∵c2(a2﹣b2)=(a2+b2)(a2﹣b2)∴c2=a2+b2或a2﹣b2=0∵a2﹣b2=0∴a+b=0或a﹣b=0∵a+b≠0∴c2=a2+b2或a﹣b=0∴c2=a2+b2或a=b∴该三角形是直角三角形或等腰三角形.【变式4】△ABC的三边a、b、c满足|a+b﹣50|++(c﹣40)2=0.试判断△ABC的形状是.【答案】直角三角形.解:∵|a+b﹣50|++(c﹣40)2=0,∴,解得,∵92+402=412,∴△ABC是直角三角形.1.下列各组数中,可以构成勾股数的是( )A .13,16,19B .31,41,51 C .18,24,36 D .12,35,37 【答案】D【解析】判断一组数是不是勾股数时,应先判断他们是否都是正整数,在验证他们平方间的关系,所以只有D 项满足.2.△ABC 中,∠A ,∠B ,∠C 所对的边分别是a ,b ,c ,满足下列条件的△ABC ,不是直角三角形的是( )A.a :b :c=1:2:1B.∠A :∠B :∠C=3:4:5C.(a+b )(a ﹣b )=c 2D.∠A :∠B :∠C=1:2:3【答案】B3. 已知△ABC 三边长分别为2n +1,2n 2+2n ,2n 2+2n +1,(n 为正整数),则△ABC 为( )A .直角三角形 B . 等腰三角形 C . 锐角三角形 D . 钝角三角形 【答案】A ;【解析】由2n 2+2n+1>2n 2+2n ,且2n 2+2n+1>2n+1,得到2n 2+2n+1为最长的边,∵(2n+1)2+(2n 2+2n )2=1+4n+8n 2+8n 3+4n 4,(2n 2+2n+1)2=1+4n+8n 2+8n 3+4n 4∴(2n+1)2+(2n 2+2n )2=(2n 2+2n+1)2∴△ABC 为直角三角形.4. 有下面的判断:①△ABC 中,a 2+b 2≠c 2,则△ABC 不是直角三角形.②△ABC 是直角三角形,∠C=90°,则a 2+b 2=c 2.③若△ABC 中,a 2﹣b 2=c 2,则△ABC 是直角三角形.④若△ABC 是直角三角形,则(a +b )(a ﹣b )=c 2.以上判断正确的有( )A . 4个B . 3个C . 2个D . 1个 【答案】C ;【解析】①c 不一定是斜边,故错误;④若△ABC 是直角三角形,c 不是斜边,则(a+b )(a ﹣b )≠c 2,故错误.5. c b a ,,为直角三角形的三边,且c 为斜边,h 为斜边上的高,下列说法:①222,,c b a 能组成一个三角形 ②222111,,a b c能组成直角三角形 综合提升变式练③h b a 1,1,1能组成直角三角形 ④三个内角的度数之比为3:4:5能组成一个三角形 其中正确结论的个数是( )A .1B .2C .3D .4【答案】B ;【解析】因为222a b c +=,两边之和等于第三边,故222,,c b a 不能组成一个三角形,①错误;因为ab ch =,所以ab c h =.又因为222a b c +=.得22222a b a b h+=.两边同除以22a b ,得222111a b h +=②正确;因为2222222222222111a b c c a b a b a b c h h +⎛⎫⎛⎫⎛⎫+==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以③正确,360°×512=150°,最大角并不是90°,所以④错误.6. 如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是( ).A. CD 、EF 、GHB.AB 、EF 、GHC.AB 、CF 、EFD.GH 、AB 、CD 【答案】B【解析】AB 2=22+22=8,CD 2=42+22=20,EF 2=12+22=5,GH 2=32+22=13,所以AB 2+EF 2=GH 2.7. 下列说法:(1)在△ABC 中,若a 2+b 2≠c 2,则△ABC 不是直角三角形;(2)若△ABC 是直角三角形,∠C=90°,则a 2+b 2=c 2;(3)在△ABC 中,若a 2+b 2=c 2,则∠C=90°;(4)直角三角形的两条直角边的长分别为5和12,则斜边上的高为1360.其中说法正确的有( ). A.4个 B.3个 C.2个D.1个 【答案】B【解析】(1)根据勾股定理的逆定理,若a 2+c 2=b 2,则△ABC 也为直角三角形,故错误;(2)符合勾股定理,故正确;(3)符合勾股定理的逆定理,故正确;(4)首先根据勾股定理计算其斜边是13,再根据面积计算其斜边上的高,该高等于两条直角边的乘积除以斜边,故正确.8.已知三角形的三边长为1n n m +、、(其中221m n =+),则此三角形( ).A.一定是等边三角形B.一定是等腰三角形C.一定是直角三角形D.形状无法确定【答案】C 【解析】()()222221,211n m n n n n +=+++=+,满足勾股定理的逆定理. 9.三角形的三边长分别为 22a b +、2ab 、22a b -(a b 、都是正整数),则这个三角形是( ).A .直角三角形B . 钝角三角形C .锐角三角形D .不能确定【答案】A【解析】()2222222()2()a b ab a b -+=+,满足勾股定理的逆定理. 10.在某港口有甲乙两艘渔船,若甲沿北偏东60°方向以每小时8海里的速度前进,同时,乙船沿南偏东角度以每小时15海里速度前进,2小时后,甲乙两船相距34海里,那么,乙船航行的方向是南偏东___________度.【答案】30;【解析】解:由题意得:甲船的路程:AO=8×2=16,乙船的路程:BO=15×2=30,∵302+162=342,∴∠AOB=90°,∵AO 是北偏东60°方向,∴BO 是南偏东30°.故答案为:30.11. 如果线段a b c ,,能组成一个直角三角形,那么2,2,2c b a ________组成直角三角形.(填“能”或“不能”).【答案】能;【解析】设c 为斜边,则222c b a =+,两边同乘以41,得222414141c b a =+,即222)2()2()2(c b a =+ . 12. 已知0435=-+-+-Z y x ,则由此x y z ,,为边的三角形是 三角形.【答案】直角13.在△ABC 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是 .【答案】108【解析】△ABC 是直角三角形.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .【解析】解:连结AE ,设正方形的边长为4a ,则DF =CF =2a ,CE =a ,BE =3a ,在Rt △ADF 中,22222216420AF AD DF a a a =+=+=,在Rt △CEF 中,22222245EF CE CF a a a =+=+=,在Rt △ABE 中,22222216925AE AB BE a a a =+=+=,因为222AE AF EF =+,所以三角形AEF 为直角三角形,AF ⊥FE .15.观察下列各式:322345+=,2228610+=,22215817+=,222241026+=,…,你有没有发现其中的规律?请用含n 的代数式表示此规律,再根据规律写出接下来的式子.【解析】解:222351237+=, ()()()22222112111n n n ⎡⎤⎡⎤+-++=++⎡⎤⎣⎦⎣⎦⎣⎦.(n ≥1且n 为整数) 16. 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称正方形、长方形、直角梯形(任选两个均可);(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30度.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.【解析】(1)解:正方形、长方形、直角梯形.(任选两个均可)(2)解:答案如图所示.(3)证明:连接EC,∵△ABC≌△DBE,∴AC=DE,BC=BE,∵∠CBE=60°,∴EC=BC,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,∴DC2+EC2=DE2,∴DC2+BC2=AC2.即四边形ABCD是勾股四边形.。
人教版八下数学勾股定理专题培优
第十七章 勾股定理 7.勾股定理(一)基础题训练01.在Rt △ABC 中,∠C =90°,a =3,b =4,则c =______. 【解答】:c =502. 在Rt △ABC 中,∠C =90°,a =6, c =10,则b =______. 【解答】:b =803. 在△ABC 中, ∠C =90°, ∠A=30°,则其三边a :b :c =__________ 【解答】:a :b :c =1:3:204. 在Rt △ABC 中,∠C =90°,∠A ,∠B , ∠C 的对边分别为a ,b ,c ,则下列结论正确的是( ) A.222a cb =+ B. 222c b a =- C. 222b c a -= D. 222b c a =- 【解答】:C05.一个直角三角形的三边为三个连续偶数,则它的三边分别为( )A.2、4、6B.4、6、8C.6、8、10D.3、4、5 【解答】:C06.等腰直角三角形的直角边为2,则斜边的长为( ) A.2 B. 22 C.1 D.2【解答】:B07.已知等边三角形的边长为2cm,则等边三角形的面积为()A. 32B.3 C.1 D. 2【解答】:B08.如图,在△ABC 中,∠C =90°,AB =15,则两个正方形面积的和为()A.150B.200C.225D.350【解答】:C09. 在△ABC 中, ∠C =90°,c =20, a :b =3:4,则a =_____. 【解答】:12ABC10. 如图,在△ABC 中,AB =AC =10cm ,高AD =8cm ,求BC 的长及S △ABC .【解答】:BC =12,S △ABC =48. 11.(2013·资阳)如图,点E 在正方形内,∠AEB = 90°,AE =6,BE =8,求阴影部分的面积.【解答】:S 阴 = 76.12. 如图,在△ABC 中,AD ⊥BC 于D ,AB =3,BD =2,DC =1,求AC 的长.【解答】:AC=6.中档题训练13.已知直角三角形的两边为2和3,则第三边的长为 【解答】(答案13或5)14.如图,已知直角△ABC 中,∠C =90°,3BC =,4AC =,CD ⊥AB 于D .()1求AB 的长;()2 求CD 的长.DCBAABCDECBDA[解析] (1)5AB =;(2) 由面积法可求 125CD =15.已知直角△ABC 的周长为12cm ,一直角边的长为4cm ,求斜边的长? [解析] 设另一直角边为x ,则斜边为8-x ,在Rt △ABC 中,2224(8x x +=-) ∴ 3x =, ∴ 斜边为835-= 16.如图在△ABC 中,AB BC =,∠ABC =90°,D 为AC 的中点,DE ⊥DF ,DE 交AB 于E ,DF BC 交于F1() 求证:BE CF =;(2) 若3AE =,1CF =,求EF 的长[解析] 1() 证△BED ≌△CFD (2) 10EF =综合题训练17.如图CA CB =,CD CE = ,∠ACB =∠ECD 90=°,D 为AB 边上一点.若1AD =,3BD =,求CD 的长.[解析] 由△ACE ≌△BCD 可得,∠EAC =∠45B =°,∠90EAD =°,2222210DE AD AE AD BD =+=+=,10DE =5CD =8. 勾股定理(二)基础训练01.在直角坐标系中,点P(-2,3)到原点的距离为【解答】:1302.如图,∠ACB=∠ABD=90,AC=2,BC=1,AD=14,则BD=【解答】303.已知△ABC中,AB=AC=10,BD是AC边上的高,CD=2,则BD为()A.4B.6C.8D.210【解答】B04.如图,每个小正方形的边长为1,ABC中边长为无理数的边共有()条A.0B.1C.2D.3【解答】C05.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达到该建筑物的最大高度是()A.12米B.13米C.14米D.15米【解答】A06.把三角形的两条直角边同时扩大到原来的2倍,则其斜边扩大到原来的()A.1倍B.2倍C.3倍D.4倍【解答】B07.如图,在水塔的东北方向32m 处有一抽水站A,在水塔的东南方向24m 处有一建筑工地B,在A,B间建一条水管,则水管AB的长为()A.45mB.40mC.50mD.60m【解答】B08.一直角三角形的斜边长比一直角边的长大2,另一直角边长为6,则斜边长为()A.4B.8C.10D.12【解答】C09.如图,有两棵树,一棵树高10米,另一棵树高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行( )A.8米B.10米C.12米D.14米 【解答】B10.如图,将一个有45°角的三角板ABC 的直角顶点C 放在一张宽为3cm 的纸带边沿上,另一顶点B 在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,求三角板最大边AB 的长。
(精品)暑期培优辅导专题四 勾股定理及逆定理的综合
专题四勾股定理及逆定理的综合【知识概要】1.勾股定理与逆定理勾股定理揭示了直角三角形三边之间的关系,其逆定理是判断直角三角形的一种方法.综合应用勾殴定理及逆定理,可以解决很多几何问题,其一般步骤是:先应用勾股定理的逆定理证明已知图形(或添加辅助线后的图形)中的某个三角形为直角三角形,然后再应用勾股定理解决问题.2.直角三角形的性质(1)角的关系:两锐角互余.(2)边的关系:勾股定理.(3)边角关系:30角所对的直角边等于斜边的一半.这些性质在求线段的长度,证明线段的倍分关系,证明线段的平方关系等问题时有广泛的应用.3.勾股定理及逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体,通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.掌握一些常见的基本图形:4.折叠的常见基本图形本节重点讲解:勾股定理及逆定理的应用【典例探析】一.勾股定理中方程思想的运用例1如左图所示,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,使点B与点A重合,折痕为DE,求CD的长。
变式1 如图,折叠长方形的一边AD,使点D落在BC边的点F处,若AB=3,BC=4,求EC的长。
二、勾股定理中类比思想的运用例2如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S 2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个等边三角形,其面积分别用S 1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明三、勾股定理中整体思想的运用例3 在直线l上依次摆放着七个正方形(如图).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=_____.lACEFBD四、勾股逆定理的运用例4如果△ABC的三边a、b、c满足(a-b)(a2+b2-c2)=0,那么△ABC一定是()A.等腰直角三角形B.等腰三角形C.直角三角形D.等腰三角形或直角三角形变式2△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试判断△ABC是什么三角形。
勾股定理及逆定理答案与解析
勾股定理一、重点、难点1.重点:勾股定理的内容及证明。
2.难点:勾股定理的证明。
二、勾股定理内容及证明勾股定理内容:1.文字描述:直角三角形两直角边的平方和等于斜边的平方勾股勾2+股2=弦22.符号描述:如果直角三角形的两直角边边长分别为a、b,斜边为c,那么a2+b2=c2aba2+b2=c2注意:勾股定理的结论有许多变形,如下所示c2=a2+b2,a2=c2−b2,b2=c2−a222,bc a a=勾股定理的证明:[例] 已知正方形ABCD 边长为c 。
过点A 作任意直线,过B 点作该直线的垂线交于点E ,同理过C 点作BE 的垂线。
设直角三角形ABE 两直角边分别为AE=b ,BE=a 。
求证a 2+b 2=c 2证明:易证,四个直角三角形全等。
故:=4+S S S 大正方形三角形小正方形即:221c =4a b+b-a 2()化简得c 2=a 2+b 2即在直角三角形两直角边的平方和等于斜边的平方。
三、例题精讲:题型一、勾股定理的应用[例一](1)“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为13,直角三角形中短直角边a ,较长直角边为b ,那2A . 13B . 14C . 25D .169考点: 勾股定理。
分析: 根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方13,也就是两条直角边的平方和是13,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12.根据完全平方公式即可求解。
解答: 解:根据题意,结合勾股定理a2+b2=13,四个三角形的面积=4× ab=13﹣1, ∴2ab=12,联立解得:(a+b )2=13+12=25. 故选C .点评: 本题考查了勾股定理和完全平方公式的运用,解题的关键是注意观察图形:发现各个图形的面积和a ,b 的关系。