最新数学必修四三角函数题型分类
高中数学必修4三角函数知识点与题型总结
三角函数典型考题归类高一数学知识总结必修一一、集合一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。
◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x∈R|x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
注意:B⊆/B或B⊇/A 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。
A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
◆有n个元素的集合,含有2n个子集,2n-1个真子集二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略3、恒成立问题的求解策略4、反函数的几种题型及方法5、二次函数根的问题——一题多解&指数函数y=a^xa^a*a^b=a^a+b(a>0,a 、b 属于Q) (a^a)^b=a^ab(a>0,a 、b 属于Q) (ab)^a=a^a*b^a(a>0,a 、b 属于Q) 指数函数对称规律:1、函数y=a^x 与y=a^-x 关于y 轴对称2、函数y=a^x 与y=-a^x 关于x 轴对称3、函数y=a^x 与y=-a^-x 关于坐标原点对称 &对数函数y=loga^x如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a (log ·=)N M a log +N a log ; ○2 =NMa log M a log -N a log ; ○3 n a M log n =M a log )(R n ∈. 注意:换底公式abb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).幂函数y=x^a(a 属于R)1、幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数. 2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
三角函数知识点及题型归纳
三角函数知识点及题型归纳三角函数是数学中的一个重要分支,在几何、物理、工程等领域都有广泛的应用。
下面我们来详细归纳一下三角函数的知识点和常见题型。
一、三角函数的基本概念1、角的概念角可以分为正角、负角和零角。
按旋转方向,逆时针旋转形成的角为正角,顺时针旋转形成的角为负角,没有旋转的角为零角。
2、弧度制把长度等于半径长的弧所对的圆心角叫做 1 弧度的角。
用弧度作为单位来度量角的制度叫做弧度制。
弧度与角度的换算公式为:180°=π 弧度。
3、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x, y),它与原点的距离为 r(r =√(x²+ y²) > 0),则角α的正弦、余弦、正切分别为:sinα = y/r,cosα = x/r,tanα = y/x(x ≠ 0)。
4、三角函数线有正弦线、余弦线、正切线,它们分别是角α的终边与单位圆交点的纵坐标、横坐标、纵坐标与横坐标的比值。
二、同角三角函数的基本关系1、平方关系:sin²α +cos²α = 12、商数关系:tanα =sinα/cosα三、诱导公式诱导公式可以将任意角的三角函数转化为锐角的三角函数。
例如:sin(π +α) =sinα,cos(π α) =cosα 等。
四、三角函数的图象和性质1、正弦函数 y = sin x图象:是一条波浪形曲线,周期为2π,对称轴为 x =kπ +π/2(k∈Z),对称中心为(kπ, 0)(k∈Z)。
性质:在π/2 +2kπ, π/2 +2kπ(k∈Z)上单调递增,在π/2 +2kπ, 3π/2 +2kπ(k∈Z)上单调递减。
2、余弦函数 y = cos x图象:也是一条波浪形曲线,周期为2π,对称轴为 x =kπ(k∈Z),对称中心为(π/2 +kπ, 0)(k∈Z)。
性质:在π +2kπ, 2kπ(k∈Z)上单调递增,在2kπ, π +2kπ(k∈Z)上单调递减。
高中数学必修四----常见题型归类
高中数学必修四 题型归类山石第一章 三角函数1.1任意角和弧度制题型一:终边相同角1.与2003-终边相同的最小正角是______________,最大负角是_________。
2.终边在y 轴上的角的集合为________。
3.若角α与5α的终边关于y 轴对称,则角α的集合________ __ 。
题型二:区域角1.第二象限的角的集合为______ __2.如图,终边落在阴影部分(含边界)的角的集合是______ __3.若α是第二象限的角,确定2α的终边所在位置 .确定2α的终边所在位置 .题型三:弧度制1.若扇形的面积是1cm 2,它的周长是4cm 2,则扇形圆心角的弧度数为 .2.若扇形周长为一定值c (c >0),当α= ,该扇形面积最大.1.2任意角的三角函数题型一:三角函数定义y45030x1.α是第二象限角,P (x ,5)为其终边上一点,且cos α=42x,则sin α的值为 .2.已知角α的终边在直线3x+y=0上,则sin α= ,tan α=题型二:三角函数值的符号与角所在象限的关系1.4tan 3cos 2sin 的值。
A 小于0 B 大于0 C 等于0 D 无法确定 ( )2.已知|cos θ|=cos θ,|tan θ|=-tan θ,则θ2的终边在 ( )A .第二、四象限B .第一、三象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上题型三:三角函数线1.设MP 和OM 分别是角1819π的正弦线和余弦线,则MP 、OM 和0的大小关系为______2.1sin 、1cos 、1tan 的大小关系为_______________题型四:同角公式1.化简1-2sin200°cos160°=________.2.222tan1tan 2tan 88tan 89sin 1sin 2sin 89οοοοοοο⨯⨯⋅⋅⋅⨯⨯++⋅⋅⋅+的值为________. 3.已知ααcos sin 21=,求下列各式的值: (1)ααααcos 9sin 4cos 3sin 2--; (2) 4sin 2α-3sin αcos α-5cos 2α.4.tan110°=k ,则sin70°的值为 ( )A .-k 1+k 2 B.k 1+k2C.1+k 2k D .-1+k2k5.已知51cos sin =-θθ ()πθ,0∈ 求值:(1)θθcos sin ; (2)θθcos sin -;(3)θtan ; (4) θθ33cos sin -1.3三角函数的诱导公式题型:诱导公式1.437tan323cos 641sin πππ-= ________.2.已知cos(3π2+α)=-35,且α是第四象限角,则cos(-3π+α)=3.已知锐角α终边上一点P 的坐标是(2sin2,-2cos2),则α等于 ( )A .2B .223-πC .2-π2D.π2-24.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin(-α-3π2)sin(3π2-α)tan 3αcos(π2-α)cos(π2+α)=1.4.三角函数的图像与性质题型一:三角函数的定义域1.(1)函数)12sin 2lg(+-=x y 的定义域是(2)函数y =1)43tan(-+πx 的定义域是________________.题型二:三角函数的值域1.(1)函数y =cos 2x +sin x -1的值域为___________.(2)函数xx y cos 31cos 2+-=的值域为___________.(3)函数f(x)=sin xsin(x -π3)在⎣⎡⎦⎤-π6,π3上的最大值与最小值的和为________.(4) 函数y =sin x +cos x +sin xcos x 在⎣⎡⎦⎤-π6,π3的值域为____ 2.设函数f (x )=A +B sin 2x ,若B <0时,f (x )的最大值是32,最小值是-12,则A =________,B =________.3.(1)(2012·高考湖南卷)函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( )A .[-2,2]B .[-3,3]C .[-1,1]D .[-32,32]题型三:三角函数的周期1.画出函数x y tan =的图象并指出函数的周期______2.(1)函数y =2sin (4π-2x)+1的周期为_____.(2)函数y =-2tan ⎝⎛⎭⎫3x +π4的周期____(3)函数21)42sin(-+=πx y 的周期_______3.设函数f(x)=3sin ⎝⎛⎭⎫π2x +π4,若存在这样的实数x 1,x 2,对任意的x ∈R ,都有f(x 1)≤f(x)≤f(x 2)成立,则|x 1-x 2|的最小值为________.4.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,则ω=________.题型四:三角函数的奇偶性1.判断下列函数的奇偶性 (1))234cos(2π-=x x y (2)3tan 2-=x y(3)xxx y sin 1cos sin 12+-+=2.函数()f x =(x +1)2+sin xx 2+1的奇偶性_________________3.函数f (x )=sin(x+φ-π12) 是R 上的奇函数,则ϕ的值是__________________4.已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6 D .-π3题型五:三角函数的单调性1.将52sinπ,56cos π,57tan π按从小到大的顺序排列,依次是_________________2.指出下列函数的的单调递减区间 (1)y =2)24sin(x-π+1(2)y =-2tan ⎝⎛⎭⎪⎫3x +π4 .(3)x y 2sin log 3.0= .3.下列函数中,周期为π,且在(0, π2)上单调递增的是 ( )A .y =tan|x|B .y =sin|x|C .y =|sinx|D .y =|cosx|4.函数f (x )=M sin(ωx +φ)(ω>0)在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos(ωx +φ)在[a ,b ]上 ( )A .是增函数B .是减函数C .可以取得最大值MD .可以取得最小值-M5.已知ω是正实数,函数f (x )=2sin ωx 在[-π3,π4]上是增函数,那么ω的取值范围是________.6.★已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M ⎝⎛⎭⎫3π4,0对称,且在区间⎣⎡⎦⎤0,π2上是单调函数,求ω和φ的值.7.已知函数y =x x x cos sin 23cos 212+ +1,x ∈R.(1)当函数y 取最大值时,求自变量x 的集合;(2)指出此函数的振幅、周期、初相、频率和单调区间;题型六:三角函数的对称性1.函数y =cos ⎝⎛⎭⎫2x +π3图象的对称轴为 ,对称中心为 .2. 函数y =2sin(3x +φ)⎝⎛⎭⎫|φ|<π2的一条对称轴为x =π12,则φ=________;3.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________.4.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f(x)=sin (ωx+φ)图象的两条相邻的对称轴,则φ=( )A.π4 B.π3 C.π2 D.3π45.如果函数x a x y 2cos 2sin +=的图象关于直线8π-=x 对称,那么=a( )A ,2B ,2-C ,1D ,1-6.把函数y x -sin x 的图象向左平移m (m >0)个单位,所得的图象关于y 轴对称,则m 的最小正值是 .7.已知函数f(x)=3sin (ωx -π6)(ω>0)和g(x)=3cos(2x +φ)的图象的对称中心完全相同,若x ∈[0,π2],则f(x)的取值范围是( )A .[-32,3]B .[-3,3]C .[-12,32]D .[0,32]8.函数f(x)=sin xsin(x -π3)的最小正周期、最值、对称中心、单调区间.1.5 函数y=Asin(ωx+φ)图象题型一:三角函数的图象变换1.要得到y =)2sin(x -的图象,只需将y =)62sin(π--x 的图象( ) A .向左平移π3个单位 B .向右平移π3个单位C .向左平移π6个单位 D .向右平移π6个单位2.已知函数y =23sin (2x +6π)(1)当[)+∞∈,0x ,指出此函数的振幅、周期、初相、相位、频率;(2)用五点作图法画出函数y =23sin (2x +6π)[]0,4x π∈的图象;(3)说明此函数的图象可以由y =sin x 的图象经怎样的变换得到?3. (2013·济宁模拟)给出下列六种图象变换方法:①图象上所有点的纵坐标不变,横坐标缩短到原来的12;②图象上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图象向右平移π3个单位长度;④图象向左平移π3个单位长度;⑤图象向右平移2π3个单位长度;⑥图象向左平移2π3个单位长度.请用上述变换中的两种变换,将函数y =sin x 的图象变换到函数y =sin(x 2+π3)的图象,那么这两种变换正确的标号是________________(要求按变换先后顺序填上一种你认为正确的标号即可).4.已知函数21cos sin 3cos )(2++=x x x x f (1)先将)(x f y =化成B x A y ++=)sin(ϕω)0,0(>>ωA 的形式,再求函数()f x的周期;(2)列表、描点画出)(x f y =在⎥⎦⎤⎢⎣⎡-ππ1211,12上的图象。
高中数学必修4三角函数常考题型:同角三角函数的基本关系
同角三角函数的基本关系【知识梳理】同角三角函数的基本关系(1)平方关系:同一个角α的正弦、余弦的平方和等于1.即sin 2α+cos 2α=1.(2)商数关系:同一个角α的正弦、余弦的商等于这个角的正切,即sin αcos α=tan_α⎝⎛⎭⎫其中α≠k π+π2?k ∈Z ?. 【常考题型】题型一、已知一个三角函数值求另两个三角函数值【例1】 (1)已知sin α=1213,并且α是第二象限角,求cos α和tan α. (2)已知cos α=-45,求sin α和tan α. [解] (1)cos 2α=1-sin 2α=1-⎝⎛⎭⎫12132=⎝⎛⎭⎫5132,又α是第二象限角,所以cos α<0,cos α=-513,tan α=sin αcos α=-125. (2)sin 2α=1-cos 2α=1-⎝⎛⎭⎫-452=⎝⎛⎭⎫352, 因为cos α=-45<0,所以α是第二或第三象限角, 当α是第二象限角时,sin α=35,tan α=sin αcos α=-34;当α是第三象限角时,sin α=-35,tan α=sin αcos α=34. 【类题通法】已知三角函数值求其他三角函数值的方法(1)若已知sin α=m ,可以先应用公式cos α=±1-sin 2α,求得cos α的值,再由公式tan α=sin αcos α求得tan α的值. (2)若已知cos α=m ,可以先应用公式sin α=±1-cos 2α,求得sin α的值,再由公式tan α=sin αcos α求得tan α的值.(3)若已知tan α=m ,可以应用公式tan α=sin αcos α=m ?sin α=m cos α及sin 2α+cos 2α=1,求得cos α=±11+m 2,sin α=±m 1+m 2的值. 【对点训练】已知tan α=43,且α是第三象限角,求sin α,cos α的值. 解:由tan α=sin αcos α=43,得sin α=43cos α,① 又sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1,即cos 2α=925. 又α是第三象限角,故cos α=-35,sin α=43cos α=-45. 题型二、化切求值【例2】 已知tan α=3,求下列各式的值.(1)4sin α-cos α3sin α+5cos α; (2)sin 2α-2sin α·cos α-cos 2α4cos 2α-3sin 2α; (3)34sin 2α+12cos 2α. [解] (1)原式=4tan α-13tan α+5=4×3-13×3+5=1114; (2)原式=tan 2α-2tan α-14-3tan 2α=9-2×3-14-3×32=-223; (3)原式=34sin 2α+12cos 2αsin 2α+cos 2α=34tan 2α+12tan 2α+1=34×9+129+1=2940. 【类题通法】化切求值的方法技巧(1)已知tan α=m ,可以求a sin α+b cos αc sin α+d cos α或a sin 2α+b sin αcos α+c cos 2αd sin 2α+e sin αcos α+f cos 2α的值,将分子分母同除以cos α或cos 2α,化成关于tan α的式子,从而达到求值的目的.(2)对于a sin 2α+b sin αcos α+c cos 2α的求值,可看成分母是1,利用1=sin 2α+cos 2α进行代替后分子分母同时除以cos 2α,得到关于tan α的式子,从而可以求值.【对点训练】已知tan α=2,求下列各式的值:(1)2sin α-3cos α4sin α-9cos α; (2)4sin 2α-3sin αcos α-5cos 2 α.解:(1)2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1. (2)4sin 2α-3sin αcos α-5cos 2α=4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α, 这时分子和分母均为关于sin α,cos α的二次齐次式.因为cos 2α≠0,所以分子和分母同除以cos 2α,则4sin 2α-3sin αcos α-5cos 2α=4tan 2α-3tan α-5tan 2α+1=4×4-3×2-54+1=1. 题型三、化简三角函数式【例3】 化简tan α1sin 2α-1,其中α是第二象限角. [解] 因为α是第二象限角,所以sin α>0,cos α<0.故tan α1sin 2α-1=tan α1-sin 2αsin 2α =tan αcos 2αsin 2α=sin αcos α·⎪⎪⎪⎪cos αsin α =sin αcos α·-cos αsin α=-1.【类题通法】三角函数式化简技巧(1)化切为弦,即把正切函数都化为正、余弦函数,从而减少函数名称,达到化繁为简的目的.(2)对于含有根号的,常把根号里面的部分化成完全平方式,然后去根号达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解,或构造sin 2α+cos 2α=1,以降低函数次数,达到化简的目的.【对点训练】化简:(1)sin θ-cos θtan θ-1; (2) sin 2θ-sin 4θ,θ是第二象限角.解:(1)sin θ-cos θtan θ-1=sin θ-cos θsin θcos θ-1=sin θ-cos θsin θ-cos θcos θ=cos θ. (2)由于θ为第二象限角,所以sin θ>0,cos θ<0, 故sin 2θ-sin 4θ=sin 2θ?1-sin 2θ?=sin 2θcos 2θ=|sin θcos θ|=-sin θcos θ.题型四、证明简单的三角恒等式【例4】 求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α. [证明] 法一:∵右边=tan 2α-sin 2α?tan α-sin α?tan αsin α=tan 2α-tan 2αcos 2α?tan α-sin α?tan αsin α=tan 2α?1-cos 2α??tan α-sin α?tan αsin α=tan 2αsin 2α?tan α-sin α?tan αsin α=tan αsin αtan α-sin α=左边, ∴原等式成立.法二:∵左边=tan αsin αtan α-tan αcos α=sin α1-cos α,右边=tan α+tan αcos αtan αsin α=1+cos αsin α=1-cos 2αsin α?1-cos α?=sin 2αsin α?1-cos α?=sin α1-cos α, ∴左边=右边,原等式成立.【类题通法】简单的三角恒等式的证明思路(1)从一边开始,证明它等于另一边;(2)证明左、右两边等于同一个式子;(3)逐步寻找等式成立的条件,达到由繁到简.【对点训练】证明:1+2sin θcos θcos 2θ-sin 2θ=1+tan θ1-tan θ证明:∵左边=sin 2θ+cos 2θ+2sin θcos θ?cos θ+sin θ??cos θ-sin θ?=?sin θ+cos θ?2?cos θ+sin θ??cos θ-sin θ?=cos θ+sin θcos θ-sin θ=cos θ+sin θcos θcos θ-sin θcos θ=1+tan θ1-tan θ=右边,∴原等式成立.【练习反馈】1.已知α∈⎝⎛⎭⎫π2,π,sin α=35,则cos α等于() A.45 B .-45C .-17 D.35解析:选B ∵α∈⎝⎛⎭⎫π2,π且sin α=35,∴cos α=-1-sin 2α=-1-⎝⎛⎭⎫352=-45.2.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为( ) A .3B .-3C .1D .-1解析:选B ∵α为第三象限角,∴原式=cos α-cos α+2sin α-sin α=-3. 3.已知cos α-sin α=-12,则sin αcos α的值为________. 解析:由已知得(cos α-sin α)2=sin 2α+cos 2α-2sin αcos α=1-2sin αcos α=14,解得sin αcos α=38. 答案:384.若tan α=2,则2sin α-cos αsin α+2cos α的值为________. 解析:原式=2sin α-cos αcos αsin α+2cos αcos α=2tan α-1tan α+2=2×2-12+2=34. 答案:345.化简:1-2sin 130°cos 130°sin 130°+1-sin 2130°. 解:原式=sin 2130°-2sin 130°cos 130°+cos 2130°sin 130°+cos 2130°=|sin 130°-cos 130°|sin 130°+|cos 130°|=sin 130°-cos 130°sin 130°-cos 130°=1.。
三角函数的图象与性质6大题型(解析版)--2024高考数学常考题型精华版
三角函数的图象与性质6大题型【题型目录】题型一:三角函数的周期性题型二:三角函数对称性题型三:三角函数的奇偶性题型四:三角函数的单调性题型五:三角函数的值域题型六:三角函数的图像【典例例题】题型一:三角函数的周期性【例1】(2022·全国·兴国中学高三阶段练习(文))下列函数中,最小正周期为π的奇函数是().A .tan y x =B .sin 2y x =C .sin cos y x x =D .sin y x=【例2】(2022江西景德镇一中高一期中(文))下列函数中①sin y x =;②sin y x =;③tan y x =;④12cos y x =+,其中是偶函数,且最小正周期为π的函数的个数为()A .1B .2C .3D .4【答案】B【解析】①的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,但不是周期函数,∴排除①;②的图象如下,根据图象可知,图象关于y 轴对称,sin y x =是偶函数,最小正周期是π,∴②正确;③的图象如下,根据图象可知,图象关于y 轴对称,tan y x =是偶函数,最小正周期为π,∴③正确;④的图象如下,根据图象可知,图象关于y 轴对称,12cos y x =+是偶函数,最小正周期为2π,∴排除④.故选:B.【例3】(2022·全国·高三专题练习)函数ππ()sin 2cos 233f x x x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭的最小正周期是()A .π4B .π2C .πD .2π【例4】设函数()c x b x x f ++=sin 2cos ,则()x f 的最小正周期()A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【答案】B【解析】因x y 2cos =的最小正周期为ππ==22T ,x y sin =的最小正周期为ππ212==T 所以当0≠b 时,()x f 的最小正周期为π2;当0=b 时,()x f 的最小正周期为π;【例5】(2022·全国·高一课时练习)函数22cos 14y x π⎛⎫=+- ⎪⎝⎭的最小正周期为()A .4πB .2πC .πD .2π【例6】(2022·广西桂林·模拟预测(文))函数()2sin6cos6f x x x =+的最小正周期是()A .2πB .3πC .32πD .6π【例7】(2022·全国·高一专题练习)()|sin ||cos |f x x x =+的最小正周期是()A .2πB .πC .2πD .3π【题型专练】1.(2023全国高三题型专练)在函数①cos |2|y x =,②|cos |y x =,③πcos 26y x ⎛⎫=+ ⎪⎝⎭,④πtan 24y x ⎛⎫=- ⎪⎝⎭中,最小正周期为π的所有函数为()A .②④B .①③④C .①②③D .②③④【答案】C【解析】∵cos |2|y x ==cos2x ,∴T =22π=π;|cos |y x =图象是将y =cos x 在x 轴下方的图象对称翻折到x 轴上方得到,所以周期为π,由周期公式知,cos(2)6y x π=+为π,tan(2)4y x π=-为2π,故选:C .2.(2022·河北深州市中学高三阶段练习)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .()()sin cos y x x ππ=+-C .22cos cos 2y x x π⎛⎫=-+ ⎪D .sin 2y x=3.(2022·北京昌平·高一期末)下列函数中,最小正周期为π的奇函数是()A .sin 4y x π⎛⎫=+ ⎪⎝⎭B .sin 2y x =C .sin cos y x x =D .22cos sin y x x=-4.(2022·陕西渭南·高二期末(理))函数()2sin cos f x x x x =+的最小正周期是________.5.(2022·全国·高一专题练习)已知函数()cos f x x x ωω=-(0)ω>的最小正周期为π,则ω=___.6.(2022·浙江·杭十四中高一期末)函数2cos cos cos 2y x x x π⎛⎫=+- ⎪的最小正周期为__________.题型二:三角函数对称性【例1】(江西省“红色十校”2023届高三上学期第一联考数学(文)试题)已知函数π()sin()0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的两个相邻的零点为12,33-,则()f x 的一条对称轴是()A .16x =-B .56x =-C .13x =D .23x =,【例2】(2022全国高一课时练习)函数cos 23y x ⎛⎫=+ ⎪⎝⎭的图象()A .关于点,03π⎛⎫⎪⎝⎭对称B .关于点,06π⎛⎫⎪⎝⎭对称C .关于直线6x π=对称D .关于直线3x π=对称【答案】D【解析】由题设,由余弦函数的对称中心为,2)0(k ππ+,令232x k πππ+=+,得212k x ππ=+,k Z ∈,易知A 、B 错误;由余弦函数的对称轴为x k π=,令23x k ππ+=,得26k x ππ=-,k Z ∈,当1k =时,3x π=,易知C 错误,D 正确;故选:D 【例3】(2022·江西省万载中学高一阶段练习)把函数4πsin 23y x ⎛⎫=+ ⎪⎝⎭的图像向右平移()0ϕϕ>个单位长度,所得图像关于y 轴对称,则ϕ的最小值是()A .5π6B .2π3C .5π12D .π6【例4】(2023福建省福州屏东中学高三开学考试多选题)已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图像关于直线3x π=对称,则()A .函数12f x π⎛⎫+ ⎪⎝⎭为奇函数B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增C .函数()f x 的图像向右平移()0a a >个单位长度得到的函数图像关于6x π=对称,则a 的最小值是3πD .若方程()f x a =在2,63ππ⎡⎤⎢⎥上有2个不同实根12,x x ,则12x x -的最大值为2π故结合正弦函数的性质可知,若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根12,x x ,不妨设12x x <,则12x x -取得最大值时满足1266x ππ-=且25266x ππ-=,所以,12x x -的最大值为3π,故错误.故选:AC【例5】(2023江西省高三月考)若函数y cos 6x πω⎛⎫=+ ⎪⎝⎭(ω∈N +)图象的一个对称中心是,06π⎛⎫⎪⎝⎭,则ω的最小值为()A .1B .2C .4D .8【答案】B 【解析】当6x π=时,0y =,即cos 066πωπ⎛⎫+=⎪⎝⎭,()662k k Z πωπππ∴+=+∈,解得62k ω=+,N ω*∈ ,故当0k =时,ω取最小值2.【例6】【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为()(A )()26k x k Z ππ=-∈(B )()26k x k Z ππ=+∈(C )()212k x k Z ππ=-∈(D )()212k x k Z ππ=+∈【答案】B【解析】由题意,将函数2sin 2y x =的图像向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B.【题型专练】1.(2020·四川省泸县第四中学高三开学考试)已知函数()sin 22f x x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的图象的对称轴方程为()A .,4x k k Z ππ=-∈B .+,4x k k Z ππ=∈C .1,2x k k Z π=∈D .1+,24x k k Zππ=∈【答案】C【解析】由已知,()cos 2f x x =,令2,π=∈x k k Z ,得1,2x k k Z π=∈.故选:C.2.【2017·天津卷】设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5(28f π=,(08f 11π=,且()f x 的最小正周期大于2π,则A .23ω=,12ϕπ=B .23ω=,12ϕ11π=-C .13ω=,24ϕ11π=-D .13ω=,24ϕ7π=【答案】A【解析】由题意得125282118k k ωϕωϕππ⎧+=π+⎪⎪⎨π⎪+=π⎪⎩,其中12,k k ∈Z ,所以2142(2)33k k ω=--,又22T ωπ=>π,所以01ω<<,所以23ω=,11212k ϕ=π+π,由ϕ<π得12ϕπ=,故选A .3.(2023·全国·高三专题练习)将函数sin 22y x x =的图象沿x 轴向右平移a 个单位(a >0)所得图象关于y 轴对称,则a 的最小值是()A .712πB .4πC .12πD .6π4.【2018·江苏卷】已知函数()ππsin 2()22y x =+-<<ϕϕ的图象关于直线π3x =对称,则ϕ的值是________.【答案】π6-【解析】由题意可得2sin π13⎛⎫+=± ⎪⎝⎭ϕ,所以2πππππ()326k k k +=+=-+∈Z ,ϕϕ,因为ππ22-<<ϕ,所以π0,.6k ==-ϕ5.(2022·广西南宁·高二开学考试多选题)把函数()sin f x x =的图像向左平移π3个单位长度,再把横坐标变为原来的12倍(纵坐标不变)得到函数()g x 的图像,下列关于函数()g x 的说法正确的是()A .最小正周期为πB .单调递增区间5πππ,π()1212k k k ⎡⎤-+∈⎢⎥⎣⎦Z C .图像的一个对移中心为π,03⎛⎫- ⎪⎝⎭D .图像的一条对称轴为直线π12x =题型三:三角函数的奇偶性【例1】(2022·全国·清华附中朝阳学校模拟预测)已知函数()sin 2sin 23f x x x π⎛⎫=++ ⎪⎝⎭向左平移θ个单位后为偶函数,其中0,2π⎡⎤θ∈⎢⎥⎣⎦.则θ的值为()A .2πB .3πC .4πD .6π【例2】(2022·广东·执信中学高一期中)对于四个函数sin y x =,cos y x =,sin y x =,tan y x =,下列说法错误的是()A .sin y x =不是奇函数,最小正周期是π,没有对称中心B .cos y x =是偶函数,最小正周期是π,有无数多条对称轴C .sin y x =不是奇函数,没有周期,只有一条对称轴D .tan y x =是偶函数,最小正周期是π,没有对称中心由图可知,函数sin y x =不是奇函数,最小正周期是π,没有对称中心,A 对;对于B 选项,如下图所示:由图可知,cos y x =是偶函数,最小正周期是π,有无数多条对称轴,B 对;对于C 选项,如下图所示:由图可知,sin y x =不是奇函数,没有周期,只有一条对称轴,C 对;对于D 选项,如下图所示:由图可知,函数tan y x =是偶函数,不是周期函数,没有对称中心,D 错.故选:D.【例3】(2022·陕西师大附中高一期中)已知函数2π()sin ()24f x x =++,若(lg5)a f =,1(lg 5b f =,则()A .0a b +=B .0a b -=C .5a b +=D .5a b -=【例4】(2022·江西省铜鼓中学高二开学考试)将函数()sin 22f x x x =+的图象向左平移()0ϕϕ>个单位长度得到一个偶函数,则ϕ的最小值为()A .12πB .6πC .3πD .56π【例5】(2022·四川成都·模拟预测(理))函数2()ln(2)sin(1)211f x x x x x x -=+--+++在[0,2]上的最大值与最小值的和为()A .-2B .2C .4D .6【例6】(2022·贵州贵阳·高三开学考试(理))已知函数()2cos(2)02f x x πϕϕ⎛⎫=+<< ⎪⎝⎭的图象向右平移3π个单位长度后,得到函数()g x 的图象,若()g x 的图象关于原点对称,则ϕ=()A .3πB .4πC .6πD .12π【例7】(2022·陕西·定边县第四中学高三阶段练习(理))已知函数()sin cos f x a x b x =-在4x π=处取到最大值,则4f x π⎛⎫+ ⎪⎝⎭()A .奇函数B .偶函数C .关于点(),0π中心对称D .关于2x π=轴对称【例8】(2023·全国·高三专题练习)写出一个最小正周期为3的偶函数()f x =___________.【题型专练】1.(2022·全国·高一课时练习)下列函数中,既为偶函数又在,02π⎛⎫- ⎪⎝⎭上单调递增的是()A .cos y x =B .cos y x=C .sin 2y x π⎛⎫=- ⎪D .tan cos y x x=-2.(2022·陕西·武功县普集高级中学高三阶段练习(文))已知函数()e e sin x xf x x a -=-++,若()1ln 1,ln 3f m f m ⎛⎫== ⎪⎝⎭,则=a ()A .1B .2C .1-D .2-3.(2022·湖南·周南中学高二期末)函数为()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭偶函数的一个充分条件是()A .6π=ϕB .3πϕ=C .2ϕπ=D .()3k k πϕπ=+∈Z故选:A4.(2022·贵州黔东南·高二期末(理))已知函数()πcos 2(0)3f x x ωω⎛⎫=-> ⎪⎝⎭的最小正周期为π,将其图象向右平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ的最小值为()A .6πB .π4C .π3D .π25.(2023·全国·高三专题练习)已知函数2()(2)sin(1)1f x x x x x =--+-在[1,1)-(1,3]⋃上的最大值为M ,最小值为N ,则M N +=()A .1B .2C .3D .4可得()h t 的最大值与最小值之和为0,那么()g t 的最大值与最小值之和为2.故选:B .6.(2022辽宁丹东·高一期末)写出一个最小正周期为1的偶函数()f x =______.【答案】cos2πx【解析】因为函数cos y x ω=的周期为2π||ω,所以函数cos 2πy x =的周期为1.故答案为:cos2πx .(答案不唯一)7.(2022·全国·高三专题练习)已知()2sin()cos f x x x α=++是奇函数,则sin α的值为______.8.(2022·河南·高二开学考试)将函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像向左平移4π个单位长度后得到偶函数()g x 的图像,则ω的最小值是______.【答案】1039.(2022·全国·高一单元测试)写出一个同时具有性质①()02f =;②()()πf x f x +=的函数()f x =______(注:()f x 不是常数函数).题型四:三角函数的单调性【例1】(湖南省永州市2023届高三上学期第一次高考适应性考试数学试题)将函数2()cos cos 1f x x x x =+-的图象向右平移6π个单位长度,然后将所得函数图象上所有点的横坐标变为原来的12(纵坐标不变),得到函数()y g x =的图象,则()g x 的单调递增区间是()A .ππππ,(Z)12262k k k ⎡⎤-++∈⎢⎥⎣⎦B .ππ5ππ,(Z)242242k k k ⎡⎤-++∈⎢⎥⎣⎦C .π2π2π,2π(Z)33k k k ⎡⎤-++∈⎢⎥D .π5π2π,2π(Z)66k k k ⎡⎤-++∈⎢⎥故选:A【例2】(2022·陕西师大附中高一期中)sin1,sin 2,sin 3按从小到大排列的顺序为()A .sin3sin2sin1<<B .sin3sin1sin2<<C .sin1sin2sin3<<D .sin2sin1sin3<<【例3】(2022·全国·高一单元测试)下列四个函数中,以π为周期且在π0,2⎛⎫ ⎪⎝⎭上单调递增的偶函数有()A .cos 2y x =B .sin 2y x =C .tan y x =D .lg sin y x=也是以【例4】(2023·全国·高三专题练习)已知函数()()cos 02f x x πωϕωϕ⎛⎫=+≤ ⎪⎝⎭>,,4x π=-为f (x )的零点,4x π=为y =f (x )图象的对称轴,且f (x )在186ππ⎛⎫⎪⎝⎭,上单调,则ω的最大值为()A .3B .4C .5D .6当ππ,π2u k k ⎡⎤=+⎢⎥⎣⎦,k Z ∈时,函数sin y u =递增.即πππ,π42x k k ⎡⎤+∈+⎢⎥⎣⎦,解得:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈,所以函数sin()4πy x =+的单调递增区间是πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.故答案为:πππ,π44x k k ⎡⎤∈-+⎢⎥⎣⎦,k Z ∈.【例6】(2023·全国·高三专题练习)函数πsin(2)3y x =-+的单调递减区间是()A .π5π[π,π],Z 1212k k k -+∈B .π5π[2π,2π],Z 1212k k k -+∈C .π5π[π,πZ66k k k -+∈D .π5π[2π,2πZ66k k k -+∈【题型专练】1.(2022·辽宁·新民市第一高级中学高一阶段练习)已知函数2sin()y x ωθ=+为偶函数(0)θπ<<,其图像与直线2y =的两个交点的横坐标分别为12x x 、,若21||x x -的最小值为π,则该函数的一个单调递增区间为()A .ππ,24⎛⎫-- ⎪B .ππ,44⎛⎫- ⎪C .π0,2⎛⎫ ⎪⎝⎭D .π3π,44⎛⎫⎪⎝⎭2.(2022·四川省成都市新都一中高二开学考试(理))已知函数()sin(),022f x x ππωϕϕω⎛⎫=+-<<> ⎪⎝⎭,若()00166f x f x ππ⎛⎫⎛⎫==≠ ⎪ ⎪⎝⎭⎝⎭,0min6x ππ-=,则函数()f x 的单调递减区间为()A .2,()63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z B .22,2()63Z k k k ππππ⎛⎫++∈ ⎪⎝⎭C .,()36Z k k k ππππ⎛⎫-++∈ ⎪D .2,2()36Z k k k ππππ⎛⎫-++∈ ⎪3.(2022六盘山高级中学)函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为()A .5,()212212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭C .5,()1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .5,()1212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【答案】B【解析】因为函数tan y x =的单调递增区间为,()22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,所以2()223,k k k x Z πππππ-<-<+∈,解得5,()212212k k x k Z ππππ-<<+∈,所以函数tan 23y x π⎛⎫=- ⎪⎝⎭的单调增区间为5,()212212k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭.故选:B 4.(2023·全国·高三专题练习)已知函数()()sin 2f x x ϕ=+,其中()0,2πϕ∈,若()6f x f π⎛⎫≤ ⎪⎝⎭对于一切R x ∈恒成立,则()f x 的单调递增区间是()A .,2k k πππ⎡⎤+⎢⎥⎣⎦()k ∈Z B .,36k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z C .2,63k k ππππ⎡⎤++⎢⎥()k ∈Z D .,2k k πππ⎡⎤-⎢⎥()k ∈Z 5.(2022·全国·高二单元测试)已知函数()cos f x x x =,()()g x f x '=,则().A .()g x 的图像关于点π,06⎛⎫⎪⎝⎭对称B .()g x 图像的一条对称轴是π6x =C .()g x 在5π5π,66⎛⎫- ⎪上递减D .()g x 在ππ,33⎛⎫- ⎪的值域为(0,1)6.(2022天津市静海区大邱庄中学高三月考)设函数()cos 26f x x π⎛⎫=- ⎪⎝⎭,给出下列结论:①()f x 的一个周期为π②()y f x =的图象关于直线12x π=对称③()y f x =的图象关于点,06π⎛⎫-⎪⎝⎭对称④()f x 在2,63ππ⎡⎤⎢⎥⎣⎦单调递减其中所有正确结论的编号是()A .①④B .②③C .①②③D .②③④【答案】C【解析】对于①,2T ππω==,故①正确;对于②,12x π=时,(112f π=,函数取得最大值,故②正确;对于③,6x π=-时,()06f π-=,故③正确;对于④,2,63x ππ⎡⎤∈⎢⎥⎣⎦ ,当712x π=时,7112f π⎛⎫=- ⎪⎝⎭,函数取得最小值,()f x ∴在2,63ππ⎡⎤⎢⎥⎣⎦有增有减,故④不正确.故选:C .7.(2022·全国·高一课时练习)关于函数1()sin sin f x x x=+,下列说法正确的是()A .()f x 的一个周期是πB .()f x 的最小值为2C .()f x 在π(0,2上单调递增D .()f x 的图象关于直线π2x =对称上单调递减,而8.(2022·内蒙古包头·高三开学考试(文))若()sin cos f x x x =+在[]0,a 是增函数,则a 的最大值是()A .4πB .2πC .34πD .π9.(2022·全国·高一专题练习)若函数()sin 23f x x ⎛⎫=- ⎪⎝⎭与()cos 4g x x ⎛⎫=+ ⎪⎝⎭都在区间()(),0πa b a b <<<上单调递减,则b a -的最大值为()A .π3B .π2C .6πD .π10.(2022·全国·高三专题练习)将函数()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位得到函数()y g x =的图象,若()y g x =在[,64ππ-上为增函数,则ω最大值为()A .32B .2C .3D .11.(2022·全国·高一课时练习多选题)已知直线8x =是函数()sin(2)(0π)f x x ϕϕ=+<<图象的一条对称轴,则()A .π8f x ⎛⎫+ ⎪⎝⎭是偶函数B .3π8x =是()f x 图象的一条对称轴C .()f x 在ππ,82⎡⎤⎢⎥⎣⎦上单调递减D .当π2x =时,函数()f x 取得最小值题型五:三角函数的值域【例1】(2022·陕西·安康市教学研究室高三阶段练习(文))下列函数中,最大值是1的函数是()A .|sin ||cos |=+y x xB .2cos 4sin 4y x x =+-C .cos tan y x x =⋅D .y =【例2】(2022·全国·高三专题练习)函数1ππ()sin()cos()363f x x x =++-的最大值是()A .43B .23C .1D .13【答案】8【解析】【分析】由题意可得()22sin sin 1f x x x =-++,令[]sin 0,1x t ∈=,可得[]221,0,1y t t t =-++∈,利用二次函数的性质可求f (x )的最大值.【详解】解:()22cos 2sin 2sin sin 12sin sin 1f x x x x x x x =+=-++=-++,令[]sin 0,1x t ∈=,可得[]2219212,0,148y t t t t ⎛⎫=-++=--+∈ ⎪⎝⎭,当14t =时,y 取得最大值为98,故答案为:98.【例4】(2022·江西·高三开学考试(文))已知函数()()2πsin sin 022f x x x x ωωωω⎛⎫+--> ⎪⎝⎭的最小正周期为π,则()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的值域为()A .11,22⎡⎤-⎢⎥⎣⎦B .22⎡-⎢⎥⎣⎦C .⎡⎤⎢⎥⎣⎦D .⎡-⎢⎣⎦【例5】(2022·湖北·襄阳五中模拟预测)已知函数()sin()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭在区间,33ππ⎛⎫⎪⎝⎭上单调,且对任意实数x 均有4()33f f x f ππ⎛⎫⎛⎫≤≤⎪ ⎪⎝⎭⎝⎭成立,则ϕ=()A .12πB .6πC .4πD .3π【例6】(2023·全国·高三专题练习)已知函数()22sin s ()3in f x x x π+=+,则()f x 的最小值为()A .12B .14C .D .2【例7】(2022·全国·高三专题练习)函数2()cos 2f x x x =+-0,2x π⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是__________.【答案】14-##-0.25【解析】【详解】22()1sin 2sin 1f x x x x x =--=--=21sin24x ⎛⎫-- ⎪ ⎪⎝⎭,所以当sin x =时,有最大值14-.故答案为14-.【例8】(2022·全国·高三专题练习)已知函数()sin cos 2sin cos 2f x x x x x =+++,则()A .()f x 的最大值为3,最小值为1B .()f x 的最大值为3,最小值为-1C .()f x的最大值为3,最小值为34D .()f x的最大值为33【例9】(2022·全国·高一课时练习)已知关于x 的方程2cos sin 20x x a -+=在02π⎛⎤⎥⎝⎦,内有解,那么实数a 的取值范围()A .58a -≤B .102a -≤≤C .1122a -<≤D .12a -<≤0【题型专练】1.(2022·江西九江·高一期末)函数()193sin cos 2R 24y x x x =+-∈的最小值是()A .14B .12C .234-D .414-2.(2022·河南焦作·高一期末)函数2cos22cos y x x =+的最小值为()A .3-B .2-C .1-D .0【答案】C【分析】利用二倍角的降幂公式化简函数解析式,利用余弦型函数的有界性可求得结果.【详解】2cos 22cos cos 2cos 212cos 21y x x x x x =+=++=+ ,min 211y ∴=-+=-.故选:C.3.【2018·北京卷】设函数f (x )=πcos(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω,因为0>ω,所以当0k =时,ω取最小值为23.4.(2022·广西南宁·高二开学考试)已知函数ππ()sin ,0,36f x x x ⎛⎫⎡⎤=+∈ ⎪⎢,则函数()f x 的最大值为__________.5.(2022·全国·高一课时练习)函数()1sin cos =++f x x x的值域为_____________.6.(2022·全国·高一专题练习)若奇函数()f x 在其定义域R 上是单调减函数,且对任意的R x ∈,不等式2(cos 3sin )(sin )0f x x f x a -+-≤恒成立,则a 取值范围是_________.【答案】(,2]-∞-【分析】根据给定条件,脱去法则“f ”,再利用含sin x 的二次函数求解作答.【详解】因奇函数()f x 在R 上单调递减,则R x ∀∈,2(cos 3sin )(sin )0f x x f x a -+-≤2(cos 3sin )(sin )f x x f a x ⇔-≤-22cos 3sin sin cos 2sin x x a x a x x ⇔-≥-⇔≤-,令222cos 2sin sin 2sin 1(sin 1)2y x x x x x =-=--+=-++,而1sin 1x -≤≤,因此当sin 1x =时,min 2y =-,即有2a ≤-,所以a 取值范围是(,2]-∞-.故答案为:(,2]-∞-【点睛】思路点睛:涉及求含正(余)的二次式的最值问题,可以换元或整体思想转化为二次函数在区间[-1,1]或其子区间上的最值求解.7.【2018·全国Ⅲ】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤ ,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.8.(2022·上海市第十中学高一期末)已知函数()2cos 2cos 1f x x x x =+-(R x ∈).求函数()f x 的最小正周期及在区间0,2π⎡⎤⎢⎥上的最大值和最小值.9.(2022·湖南·雅礼中学高一期末)已知函数()2cos sin 4f x x a x a =-++-,[]0,x π∈.(1)求()f x 的最小值()g a ;(2)若()f x 在[]0,π上有零点,求a 的取值范围,并求所有零点之和.题型六:三角函数的图像【例1】(2022·陕西师大附中高三开学考试(理))函数()sin()(0,0,0)f x A x A ωϕωπϕ=+>>-<<的部分图象如图所示,为了得到()sin g x A x ω=的图象,只需将函数()y f x =的图象()A .向左平移6π个单位长度B .向左平移12π个单位长度C .向右平移6π个单位长度D .向右平移12π个单位长度【例2】(2022·陕西·延安市第一中学高一期中)函数()()sin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则()2f π的值为()A .B .C .D .1-的部分图象知,【例3】(2022·湖南·宁乡市教育研究中心模拟预测)如图表示电流强度I 与时间t 的关系()()()sin 0,0I A x A ωϕω=+>>在一个周期内的图像,则下列说法正确得是()A .50πω=B .π6ϕ=C .0=t 时,I =D .1300100t I ==时,【例4】(2022·江苏·沭阳如东中学高三阶段练习多选题)已知函数()()sin f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的部分图象如图所示,则()A .2ω=B .()f x 的图象关于直线23x π=对称C .()2cos 26f x x π⎛⎫=- ⎪⎝⎭D .()f x 在5[,63ππ--上的值域为[2,1]-【例5】(2022·河北·沧县风化店中学高二开学考试多选题)函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,且满足223f π⎛⎫=- ⎪⎝⎭,现将()f x 图象沿x 轴向左平移4π个单位,得到函数()y g x =的图象.下列说法正确的是()A .()g x 在,126ππ⎡⎤-⎢⎥⎣⎦上是增函数B .()g x 的图象关于56x π=对称C .()g x 是奇函数D .()g x 的最小正周期为23π【例6】(2022·福建·高三阶段练习多选题)函数()sin()(0,0,02π)f x A x A ωϕωϕ=+>><<的部分图像如图所示,则()A .3π2ωϕ+=B .(2)2f -=-C .()f x 在区间()0,2022上存在506个零点D .将()f x 的图像向右平移3个单位长度后,得到函数π()cos 4g x x ⎛⎫=- ⎪的图像【例7】(2022·江苏南通·高三开学考试多选题)已知函数()()sin 20,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图象如图所示,则下列结论正确的是()A .()f x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称B .()f x 的图象向右平移π12个单位后得到sin2y x =的图象C .()f x 在区间π,2π⎡⎤--⎢⎥⎣⎦上单调递増D .π6f x ⎛⎫+ ⎪为偶函数【例8】(2022·全国·高一单元测试多选题)已知函数()()sin f x A x =+ωϕ(0A >,0>ω,2πϕ<)的部分图象如图所示,下列说法错误的是()A .()f x 的图象关于直线23x π=-对称B .()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称C .将函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移2π个单位长度得到函数()f x 的图象D .若方程()f x m =在,02π⎡⎤-⎢⎥上有两个不相等的实数根,则m 的取值范围是(2,-【题型专练】1.(2022·广东·仲元中学高三阶段练习多选题)已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.将函数()f x 的图象向右平移316π个单位长度,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()A .()2sin 24x f x π⎛⎫=+ ⎪⎝⎭B .()g x 的图象关于直线8x π=-对称C .()g x 的图象关于点,08π⎛⎫⎪⎝⎭对称D .函数()()f x g x +的最小值为4-2.(2022·湖北·襄阳市襄州区第一高级中学高二阶段练习多选题)函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图像如图所示,则下列结论正确的是()A .()12sin 33f x x π⎛⎫=- ⎪⎝⎭B .若把()f x 图像上的所有点的横坐标变为原来的23倍,纵坐标不变,得到函数()g x 的图像,则函数()g x 在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位长度,得到函数()h x 的图像,则函数()h x 是奇函数D .,33x ππ⎡⎤∀∈-⎢⎥,若()332f x a f π⎛⎫+≥ ⎪恒成立,则a 的取值范围为)2,+∞3.(2022·安徽·高三开学考试)已知函数π()2sin()0,||2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,其中ππ,2,,0123A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则下列说法错误的是()A .()f x 的最小正周期为πB .将()f x 的图象向右平移6π个单位长度后关于原点对称C .()f x 在2ππ,3⎡⎤--⎢⎣⎦上单调递减D .直线7π12x =为()f x 图象的一条对称轴4.(2022·天津·南开中学高三阶段练习)已知函数π()sin()(R,0,0,)2f x A x x A ωϕωϕ=+∈>><的部分图象如图所示,则下列说法正确的是()A .直线πx =是()f x 图象的一条对称轴B .()f x 图象的对称中心为π(π,0)12k -+,Z k ∈C .()f x 在区间ππ,36⎡⎤-⎢⎥⎣⎦上单调递增D .将()f x 的图象向左平移π12个单位长度后,可得到一个奇函数的图象5.(2022·江苏省如皋中学高三开学考试多选题)函数()()sin 0,0,0πy A x A ωϕωϕ=+>><<在一个周期内的图象如图所示,则().A .该函数的解析式为2π2sin 33y x ⎛⎫=+ ⎪⎝⎭B .该函数图象的对称中心为ππ,03k ⎛⎫- ⎪⎝⎭,Zk ∈C .该函数的单调递增区间是5ππ3π,3π44k k ⎛⎫-+ ⎪⎝⎭,Zk ∈D .把函数π2sin 3y x ⎛⎫=+ ⎪的图象上所有点的横坐标伸长为原来的32倍,纵坐标不变,可得到该函数图象6.(2021·福建·福州十八中高三开学考试多选题)已知函数()sin()(010f x x ωϕω=+<<,0π)ϕ<<的部分图象。
高一数学必修4三角函数知识与题型归类
14)、终边在一、三象限的平分线上角的集合:
;
15)、终边在二、
二、任意角的三角函数:
y
y
(1)任意角的三角函数定义:
以角 的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点
O
x
O
x
;
的点 P(x, y) ,点 P 到原点的距离记为 r ,则 sin
,
(四)倍角公式及变形
公式变形: sin tan •cot 1
(二)三角函数的诱导公式:
cos
1sin2k _________ , cos2k ________ , tan2k _________ k .
2sin _________ , cos ________ , tan _________ .
1) 39 5
2) 16 3
4)-315
2、已知 2 弧度的圆心角所对的弦长为 2,那么这个圆心角所对的弧长为( )
( A)2
(B)sin 2
(C) 2
( D)2 sin 1
sin1
3、 已知 为第三象限角,则 所在的象限是( ) 2
(A)第一或第二象限
(B)第二或第三象限
10)、终边落在第一象限的角的集合:
; cos
; tan
;
cot
; sec
; csc
;
;
请浏览后下载,资料供参考,期待您的好评与关注!
y
P v O Ax
依据三角函数定义可得,角 终边上任一点 P 的坐标为
必修 4 三角函数基础知识与题型归类(2)
(2)在图中画出角 的正弦线、余弦线、正切线;
y
y
(完整版)必修四考试题型归纳,推荐文档
第一章 三角函数题型一:象限角的判定及角的集合:1.若是第四象限的角,则是( )απα-A .第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角2.若是第三象限的角,是第二象限的角,则是第 象限的角.αβ2βα-3.满足的的集合为______________。
23sin =x x 题型二:弧度制的相关运算4.设扇形的周长为,面积为,则扇形的圆心角的弧度数是 。
8cm 24cm 5.如果弧度的圆心角所对的弦长为,那么这个圆心角所对的弧长为( )12A . B . C . D .5.0sin 1sin 0.52sin 0.5tan 0.5题型三:三角函数周期的相关运算6.在函数、、、中,最小正周期为x y sin =x y sin =)322sin(π+=x y 322cos(π+=x y 的函数的个数为( ) A .个 B .个 C .个 D .个π12347.已知函数的最大值为,最小值为,则函数的最小正周期为x b a y sin 2+=31x b a y 2sin4-=_____,值域为_________________.8.若函数的最小正周期满足,则自然数的值为______.3tan(2)(π+=kx x f T 12T <<k 题型四:三角函数定义域的相关运算9.函数的定义域为,则函数的定义域为)(cos x f y =)(322,62Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ)(x f y =___.题型五:三角函数值域的相关运算10.的值域是( )A . B . C . D . x x y sin sin -=]0,1[-]1,0[]1,1[-]0,2[-题型六:三角函数最值的相关运算11.函数的最大值为________.xx y cos 2cos 2-+= 12.若在区间上的最大值是,则=________。
)10(sin 2)(<<=ϖϖx x f [0,]3π2ϖ题型七:三角函数单调区间的求解13.函数的单调递增区间是___________.32cos(π--=x y 题型八:三角函数的图形变换14.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得sin()3y x π=-的图象向左平移个单位,得到的图象对应的僻析式是( )3πA .B .C .D .1sin 2y x =1sin(22y x π=-1sin(26y x π=-sin(26y x π=-题型九:三角函数对称轴的相关运算15.已知函数的图象关于直线对称,则可能是( )()sin(2)f x x ϕ=+8x π=ϕA . B . C . D .2π4π-4π34π题型十:三角函数读图求解析式16.已知定义在区间上的函数的图象关于直线对称,当2[,]3ππ-()y f x =6π-=x 时,函数2[,]63x ππ∈-()sin()(ϕω+=A x A x f 其图象如图所示.(1)求函数在的表达式;)(x f y =]32,[ππ-(2)求方程的解22)(=x f 第二章 向量题型十一:向量中的正投影问题17.若=,=,则在上的投影为________________。
(word完整版)高中数学必修4三角函数知识点与题型总结,推荐文档
三角函数典型考题归类1.根据解析式研究函数性质例1(天津理)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.【相关高考1】(湖南文)已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 求:(I )函数()f x 的最小正周期;(II )函数()f x 的单调增区间. 【相关高考2】(湖南理)已知函数2π()cos 12f x x ⎛⎫=+⎪⎝⎭,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值.(II )求函数()()()h x f x g x =+的单调递增区间.2.根据函数性质确定函数解析式例2(江西)如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π. (1)求θ和ω的值;(2)已知点π02A ⎛⎫⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA 的中点,当02y =0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 【相关高考1】(辽宁)已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>),(I )求函数()f x 的值域; (II )(文)若函数()y f x =的图象与直线1y =-的两个相邻交点间的距离为π2,求函数()y f x =的单调增区间.(理)若对任意的a ∈R ,函数()y f x =,(π]x a a ∈+,的图象与直线1y =-有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数()y f x x =∈R ,的单调增区间. 【相关高考2】(全国Ⅱ)在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求函数()y f x =的最大值. 3.三角函数求值例3(四川)已知cos α=71,cos(α-β)=1413,且0<β<α<2π,(Ⅰ)求tan2α的值;(Ⅱ)求β. 【相关高考1】(重庆文)已知函数f (x )=)2sin(42cos 2ππ+⎪⎭⎫ ⎝⎛-x x .(Ⅰ)求f (x )的定义域;(Ⅱ)若角a 在第一象限,且)。
高中数学必修4三角函数常考题型:三角函数的诱导公式(一)
三角函数的诱导公式(一)【学问梳理】1.诱导公式二(1)角π+α与角α的终边关于原点对称. 如图所示. (2)公式:sin(π+α)=-sin_α.cos(π+α)=-cos_α.tan(π+α)=tan_α.2.诱导公式三(1)角-α与角α的终边关于x 轴对称.如图所示.(2)公式:sin(-α)=-sin_α.cos(-α)=cos_α.tan(-α)=-tan_α.3.诱导公式四(1)角π-α与角α的终边关于y 轴对称.如图所示.(2)公式:sin(π-α)=sin_α.cos(π-α)=-cos_α.tan(π-α)=-tan_α.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:(1)sin(-1 200°);(2)tan 945°;(3)cos 119π6. [解] (1)sin(-1 200°)=-sin 1 200°=-sin(3×360°+120°)=-sin 120°=-sin(180°-60°)=-sin 60°=-32; (2)tan 945°=tan(2×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1;(3)cos 119π6=cos ⎝⎛⎭⎫20π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32.【类题通法】利用诱导公式解决给角求值问题的步骤【对点训练】求sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°的值.解:sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°=sin(360°+225°)cos(3×360°+210)+cos 30°sin 210°+tan(180°-45°)=sin 225°cos 210°+cos 30°sin 210°-tan 45°=sin(180°+45°)cos(180°+30°)+cos 30°·sin(180°+30°)-tan 45°=sin 45°cos 30°-cos 30°sin 30°-tan 45°=22×32-32×12-1=6-3-44. 题型二、化简求值问题【例2】 (1)化简:cos (-α)tan (7π+α)sin (π-α)=________; (2)化简sin (1 440°+α)·cos (α-1 080°)cos (-180°-α)·sin (-α-180°). (1)[解析]cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α=cos α·tan αsin α=sin αsin α=1. [答案] 1(2)[解] 原式=sin (4×360°+α)·cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin α·cos (-α)(-cos α)·sin α=cos α-cos α=-1. 【类题通法】利用诱导公式一~四化简应留意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有变更,但肯定要留意函数的符号有没有变更;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采纳切化弦,有时也将弦化切.【对点训练】化简:tan (2π-θ)sin (2π-θ)cos (6π-θ)(-cos θ)sin (5π+θ). 解:原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)sin (π+θ)=tan θsin θcos θcos θsin θ=tan θ. 题型三、给角(或式)求值问题【例3】 (1)已知sin β=13,cos(α+β)=-1,则sin(α+2β)的值为( ) A .1 B .-1C.13 D .-13 (2)已知cos(α-55°)=-13,且α为第四象限角,求sin(α+125°)的值. (1)[解析] ∵cos(α+β)=-1,∴α+β=π+2k π,k ∈Z ,∴sin(α+2β)=sin[(α+β)+β]=sin(π+β)=-sin β=-13. [答案] D(2)[解] ∵cos(α-55°)=-13<0,且α是第四象限角. ∴α-55°是第三象限角.sin(α-55°)=-1-cos 2(α-55°)=-223. ∵α+125°=180°+(α-55°),∴sin(α+125°)=sin[180°+(α-55°)]=-sin(α-55°)=223. 【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要细致视察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】已知sin(π+α)=-13,求cos(5π+α)的值. 解:由诱导公式得,sin(π+α)=-sin α,所以sin α=13,所以α是第一象限或其次象限角. 当α是第一象限角时,cos α= 1-sin 2α=223, 此时,cos(5π+α)=cos(π+α)=-cos α=-223. 当α是其次象限角时,cos α=-1-sin 2α=-223, 此时,cos(5π+α)=cos(π+α)=-cos α=223. 【练习反馈】1.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为( )A .-255B .-55C.55D.255解析:选C ∵r =1,∴cos θ=-55, ∴cos(π-θ)=-cos θ=55. 2.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是( ) A .-35B.35 C .±35 D.45解析:选B sin α=-45,又α是第四象限角, ∴cos(α-2π)=cos α=1-sin 2α=35. 3.设tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=________. 解析:∵tan(5π+α)=tan α=m ,∴原式=-sin α-cos α-sin α+cos α=-tan α-1-tan α+1=-m -1-m +1=m +1m -1. 答案:m +1m -14.cos (-585°)sin 495°+sin (-570°)的值是________. 解析:原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2. 答案:2-25.已知cos ⎝⎛⎭⎫π6-α=33,求cos ⎝⎛⎭⎫α+5π6的值. 解:cos ⎝⎛⎭⎫π+5π6=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫α+5π6= -cos ⎝⎛⎭⎫π6-α=-33.。
必修四三角函数和三角恒等变换知识点及题型分类总结
必修四三角函数和三角恒等变换知识点及题型分类总结三角函数知识点总结1、任意角: 正角:;负角:;零角:; 2、角得顶点与重合,角得始边与重合,终边落在第几象限,则称为第几象限角、第一象限角得集合为第二象限角得集合为第三象限角得集合为第四象限角得集合为终边在轴上得角得集合为终边在轴上得角得集合为终边在坐标轴上得角得集合为3、与角终边相同得角得集合为4 4 、已知就就是第几象限角,确定所在象限得方法: : 先把各象限均分等份, , 再从轴得正半轴得上方起, , 依次将各区域标上一、二、三、四, , 则原来就就是第几象限对应得标号即为终边所落在得区域、5、叫做弧度、6、半径为得圆得圆心角所对弧得长为,则角得弧度数得绝对值就就是、7、弧度制与角度制得换算公式:8 、若扇形得圆心角为, 半径为,弧长为, 周长为,面积为, 则l=、S=9、设就就是一个任意大小得角,得终边上任意一点得坐标就就是,它与原点得距离就就是,则,,、10、三角函数在各象限得符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正、11、三角函数线:、12 、同角三角函数得基本关系:(1);(2); ; (3) )13、三角函数得诱导公式: ,,、,,、,,、,,、,、,、口诀: : 奇变偶不变, , 符号瞧象限、重要公式⑴;⑵;⑶;⑷; ⑸(); ⑹()、二倍角得正弦、余弦与正切公式: ⑴、(2)(,)、⑶、公式得变形: :, 辅助角公式,其中、14、函数得图象平移变换变成函数得图象、15、函数得性质:① 振幅:; ② 周期:; ③ 频率:; ④ 相位:; ⑤ 初相:、16、图像正弦函数、余弦函数与正切函数得图象与性质:三角函数题型分类总结一.求值1、===2、(1)7 (07 全国Ⅰ) ) 就就是第四象限角,,则(2)(09 北京文)若,则、(3)(09 全国卷Ⅱ文)已知△ABC 中,,则、(4) 就就是第三象限角,,则==3 3 、(1))((7 07 陕西) ) 已知则=、(2)(04全国文)设,若,则=、(3)(06 福建)已知则=4 4 (0 0 7重庆) )下列各式中,值为得就就是()(A) (B)(C)(D) 5、(1 )(0 7福建) ) =(2)(06陕西)=。
必修四-第一章-三角函数(知识点与题型整理)
三角函数模块专题复习 ——任意角的三角函数与诱导公式二.要点精讲1.任意角的概念旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。
规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角。
如果一条射线没有做任何旋转,我们称它形成了一个零角。
2.终边相同的角、区间角与象限角 3.弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写)。
角有正负零角之分,它的弧度数也应该有正负零之分.角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径。
角度制与弧度制的换算主要抓住180rad π︒=。
弧度与角度互换公式:1rad =π180° 1°=180π〔rad 〕。
弧长公式:r l ||α=〔α是圆心角的弧度数〕, 扇形面积公式:2||2121r r l S α==。
4.三角函数定义利用单位圆定义任意角的三角函数,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:(1)y 叫做α的正弦,记做sin α,即sin y α=; 〔2〕x 叫做α的余弦,记做cos α,即cos x α=; 〔3〕yx 叫做α的正切,记做tan α,即tan (0)y x xα=≠。
5.三角函数线6.同角三角函数关系式〔1〕平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= 〔2〕倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, 〔3〕商数关系:sin cos tan ,cot cos sin αααααα== 几个常用关系式:sin α+cos α,sin α-cos α,sin α·cos α;(三式之间可以互相表示)7.诱导公式可用十个字概括为“奇变偶不变,符号看象限〞。
高中数学必修4三角函数知识点与题型总结
三角函数典型考题归类1.根据解析式研究函数性质例1(天津理)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.【相关高考1】(湖南文)已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 求:(I )函数()f x 的最小正周期;(II )函数()f x 的单调增区间. 【相关高考2】(湖南理)已知函数2π()cos 12f x x ⎛⎫=+⎪⎝⎭,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值.(II )求函数()()()h x f x g x =+的单调递增区间.2.根据函数性质确定函数解析式例2(江西)如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π. (1)求θ和ω的值;(2)已知点π02A ⎛⎫ ⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA 的中点,当0y =0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 【相关高考1】(辽宁)已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>),(I )求函数()f x 的值域; (II )(文)若函数()y f x =的图象与直线1y =-的两个相邻交点间的距离为π2,求函数()y f x =的单调增区间.(理)若对任意的a ∈R ,函数()y f x =,(π]x a a ∈+,的图象与直线1y =-有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数()y f x x =∈R ,的单调增区间. 【相关高考2】(全国Ⅱ)在ABC △中,已知内角A π=3,边BC =B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求函数()y f x =的最大值. 3.三角函数求值例3(四川)已知cos α=71,cos(α-β)=1413,且0<β<α<2π,(Ⅰ)求tan2α的值;(Ⅱ)求β. 【相关高考1】(重庆文)已知函数f (x )=)2sin(42cos 2ππ+⎪⎭⎫ ⎝⎛-x x .(Ⅰ)求f (x )的定义域;(Ⅱ)若角a 在第一象限,且)。
高一数学必修4三角函数知识与题型归类
必修4三角函数基础知识与题型归类(1)一、角的概念和弧度制:2、用弧度制表示终边在特殊位置上的角的集合1)、与α终边相同的角的集合:2)、终边落在X轴正半轴上的角的集合:3)、终边落在X轴负半轴上的角的集合:4)、终边落在y轴正半轴上的角的集合:5)、终边落在y轴负半轴上的角的集合:6)、终边落在X轴上的角的集合:7)、终边落在y轴上的角的集合:8)、终边落在坐标轴上的角的集合:9)、终边落在y=√3x上的所有角的集合:10)、终边落在第一象限的角的集合:11)、终边落在第二象限的角的集合:12)、终边落在第三象限的角的集合:13)、终边落在第四象限的角的集合:14)、终边在一、三象限的平分线上角的集合:;15)、终边在二、四象限的平分线上角的集合:;16)、写出图中所表示的区间角:;;4、①1弧度角的定义;③弧度制下,扇形弧长公式:;半径公式:;扇形面积公式:;其中经典题型:1、将下列各角转化成1)2、已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长为( )3、,( )(A)第一或第二象限 (B)第二或第三象限(C)第一或第三象限 (D)第二或第四象限4、已知扇形的周长为10cm,面积为4cm2,_________.5、已知扇形周长为20CM,求当圆心角多大时,扇形面积最大,最大值为多少?二、任意角的三角函数:(1)任意角的三角函数定义:;P的坐标为必修4三角函数基础知识与题型归类(2)(2(3)特殊角的三角函数值:(4)各象限角的各种三角函数值符号:经典题型:12,( )3)(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限4的值域为5、比较大小:12)比较sin3.4 sin3.5 sin4 的大小6、解三角不等式1)求2的取值范围。
4必修4三角函数基础知识与题型归类(3)三、同角三角函数的关系与诱导公式:(一)同角三角函数基本关系式:(二)三角函数的诱导公式:口诀:函数名称不变,符号看象限.口诀:正弦与余弦互换,符号看象限. (三)两角和与差公式(四)倍角公式及变形三角函数恒等变换的基本策略:①常值代换:特别是用“1 ②项的分拆与角的配凑。
数学必修四三角函数题型分类
三角函数题型分类总结题型一:求值(1)直接求值:一般角→0至360度之间的角→第一象限的角 (2)已知sin A ,求cos A 或tan A :1sin22=+ααcon αααcon sin tan =记住两类特殊的勾股数:3、4、5;5、12、13 (3)运用公式化简求值(4)齐次式问题(5)终边问题(6)三角函数在各象限的正负性1、sin330︒= tan690° = o585sin =2、(1)(07全国Ⅰ) α是第四象限角,12cos 13α=,则sin α= (2)(09北京文)若4sin ,tan 05θθ=->,则cos θ= .(3) (07陕西) 已知5sin ,5α=则44sin cos αα-= . (4)(07浙江)已知3cos()22πϕ+=,且||2πϕ<,则tan ϕ= 3、α是第三象限角,21)sin(=-πα,则αcos = )25cos(απ+= 4、 若2tan =α ,则ααααcos sin cos sin -+=5、2sin cos sin 2cos =-+αααα,则α在第_____象限;6、 (08北京)若角α的终边经过点(12)P -,,则αcos = 7、已知 3)tan(=+απ,则)(απα-3sin )cos(⋅-=________ 8、31tan -=α,则αααα22cos 3cos sin 2sin -+=_________. 9、若2cos 3α=,α是第四象限角,则sin(2)sin(3)cos(3)απαπαπ-+---=___ 10、已知3sin 42πα⎛⎫+= ⎪⎝⎭,则3sin 4πα⎛⎫-⎪⎝⎭值为________; 11、αααsin 3cos sin 2=-,则αcos =________;1、设)34sin(π-=a ,)35cos(π-=b ,)411tan(π-=c ,则 ( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<2、已知tan160o=a ,则sin2000o的值是 ( )A.a1+a2B.-a1+a2C.11+a2D.-11+a23、已知tan100k =,则sin80的值等于 ( )A21kk + B 21kk-+ C 21k k + D 21k k +- 4、已知f (cosx )=cos3x ,则f (sin30( )A .1B .23C .0D .-1 5、若)cos()2sin(απαπ-=+,则α的取值集合为( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππαα C .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα6、已知1sin()63πα+=,则cos()3πα-的值为( )A 12B 12- C 13 D 13-7、如果1cos()2A π+=-,那么sin()2A π+=( )A 12- B 12 C 32- D 32 8、已知53)2cos(=-πα,则αα22cos sin -的值为 ( ) A .257 B .2516- C .259D .257-9.若,5sin 2cos -=+a a 则a tan =( ) (A )21(B )2 (C )21- (D )2- 10、若角α的终边经过点⎪⎪⎭⎫ ⎝⎛-21,23P ,则αtan 的值为 ( ) A .12-B .32-C . 3D .33-11、下列各三角函数值中,取负值的是( )A.sin(-6600) B.tan(-1600) C.cos(-7400) D.sin(-4200)cos57012、α角是第二象限的角,│2cosα│=2cosα-,则角2α属于: ( )A . 第一象限;B .第二象限;C .第三象限;D .第四象限.13、已知cos tan 0θθ⋅<,那么角θ是 ( ) A.第一或第二象限角B.第二或第三象限角C.第三或第四象限角D.第一或第四象限角 14、已知()2,A a -是角α终边上的一点,且5sin 5α=-,求cos α的值. 15、已知:关于x 的方程22(31)0x x m -++=的两根为sin θ和cos θ,(0,2)θπ∈。
最新数学必修四三角函数题型分类
A. y sin x
B
. y ቤተ መጻሕፍቲ ባይዱin 2 x
2
x C . y cos
4
3、函数 y | tan x | 的周期和对称轴分别为(
)
()
D . y cos 4x
A.
,x
k (k
Z ) B.
, x k (k Z ) C. , x k ( k Z ) D.
, x k (k Z)
2
2
2
2
4、已知函数 f x
6、( 08 江苏) f x cos x
的最小正周期为 ,其中
6
5
7、( 04 全国)函数 y |sin x | 的最小正周期是
.
2
8、( 04 北京)函数 f ( x) sin x cos x 的最小正周期是
题型三:周期性
(1)函数 y Asin( x
) 及函数 y Acos( x
) , x R的最小正周期 T
2
;
||
(2)函数
的最小正周期为两者周期的最小公倍数;
(3)函数 y=| sin wx |的最小正周期为正常周期的一半
1、函数 y cos( 3
A
B
5
2 x)的最小正周期是
5 5
C2 2
()
D5
2、( 07 江苏卷)下列函数中, 周期为 的是
2
4
值为 ________;
3 ) = ___
11、 2 sin cos
3 sin ,则 cos =________;
1、设 a
sin( 4 ) , b
5 cos( ) , c
11
tan(
) ,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数题型分类总结题型一:求值( 1)直接求值:一般角 0 至 360 度之间的角 第一象限的角( 2)已知 sin A ,求 cos A 或 tan A : sin 2 记住两类特殊的勾股数: 3、4、5;5、12、132sin con 1 tancon3)运用公式化简求值 (4)齐次式问题 ( 5)终边问题( 6)三角函数在各象限的正负性1、 sin330 = tan690 °= sin 585o = 2、( 1)(07 全国Ⅰ )12 是第四象限角, cos ,则 sin 13( 2)( 09 北京文)若sin4,tan 0 ,则 cos 5 ( 3) (07 陕西 )已知sin54 4,则 sin cos = 5( 4)( 07 浙江)已知 cos ( ) 3,且 | | ,则 tan =22 23、 是第三象限角, sin ( )1,则 cos =2cos(5)2sin cos4、 若 tan2 , 则=sin cos5、 cos 2sin2, 则 在第_______ 象限; cos sin6、 (08 北京)若角 的终边经过点 P (1, 2),则 cos =已知 tan() 3,则 cos( ) sin (3 - ) = __________ tan12, 则 sin 2sin cos3cos 2 = ________3若cos2, 是第四象限角 , 则 sin (32 ) sin(3 已知 sin3,则 sin 3值为 ______ ;7、8、9、2 44)cos(10、 11、 2sincos3sin ,cos1、设 a sin( ), b cos(),c tan( 11 ) ,则4A . a b c 2、已知 tan160B . a c b = a ,则 sin2000 o 的值是C . b c aD . b a c1 A. B.3、已知4、已知1+atan100ok1 k2f ( cosx )A.1 B.5、若sin(2A.| 2kC.|k6、已知sin(6A12k,7、如果cos( 8、已知cos(A .B.259. 若cosa10、若角1 A.2a1+a2C.1+aD.1+a则sin80 o的值等于B1 k2=cos3x ,则 f ( sin30 °).01 k21 k2cos( ) ,则Z}A)的值是D .- 1的取值集合为B.{2k Z} k Z} D.{Z}1,则cos(3116252sin a) 的值为(1,那么2 sin( 2 A)=则sin2cos2的值为25 255, 则tana =(的终边经过点P 32B.A)12B) C) D) 211、下列各三角函数值中,取负值的是A.sin(-660 0)B.tan(-16012、α角是第二象限的角,12,则tan0) C.cos(-740cos2的值为0) D.sin(-420 0)cos57 0cos , 则角属于:2213、已知 cos tan0 ,那么角 是14、已知 A 2,a 是角 终边上的一点,且 sin1 sin cos 2sin cos1)求 的值;1 sin cos定义域A . 第一象限;B .第二象限;C .第三象限; D .第四象限 .A.第一或第二象限角B.第二或第三象限角C. 第三或第四象限角D.第一或第四象限角 15、已知:关于 x 的方程 2x 2 ( 3 1)x m的两根为 sin 和 cos ,(0,2 ) 。
tan sin cos求:⑴ 的值; tan 1 1 tan16、已知关于 x 的方程 2x 231 ⑵ m 的值; ⑶方程的两根及此时的值。
xm 0 的两根为 sin 和 cos :1、函数 y= 4 x 2 log 2 sinx 的定义域是 区间表示)2、函数 y= log 1 sin x 的定义域是 123、函数 y tan(x 3) 的定义域为 题型三: 周期性 1) 函数 y Asin( x )及函数 y Acos( x ), x R 的最小正周期2; | | ; 2) 函数的最小正周期为两者周期的最小公倍数; 3) 函数 y=| sin wx |的最小正周期为正常周期的一半2 1、函数 y cos( x)的最小正周期是 35 B 5 2 A 5 C2 2、(07 江苏卷)下列函数中, 周期为 的是 2 A . x y sin B2 . y sin2x .y x cos4y cos4x3、函数 y |tanx| 的周期和对称轴分别为( A. , xk 2 (k C. 4、已知函数 f xZ) B. ,x k (k Z) 2x cos , 则下列等式中成立的是:2,x k(k Z) D.2,xk(k Z) 25 ,求 cos 的值.5 2)求 m 的值.题型二:A.f 2 x f x B .f 2 x f x C.f x f x D .f x f x5、下列四个函数中,既是(0, )上的增函数,又是以为周期的偶函数的是()2A y sin xB y |sin x|C y cosxD y |cosx|x7、(04 全国)函数y |sin |的最小正周期是.28、(04 北京)函数f (x) sin x cos x的最小正周期是.9、函数f(x) sin 2x cos2x 的最小正周期是题型三:单调性一、求单调区间:(1)y Asin( x )中,A,w为正,且x 的定义域为R;(2)y Asin( x )中,A 或w 为负,且x 的定义域为R;(3)y Asin( x )中,A,w为正,且x 的定义域为限定的区间;x cos x的最小正周期为,其中0 ,656、(08 江苏)1、函数y= sin(x-)的一个增区间是()552 4.[- , ] B. [- , ] C. [-,] D. [-,]666622332、函数y= sin(2x+)的一个增区间是4( )A. [- , ]B.[- 3 , ]C. [-,0]D. [-,3]44882883、函数y sin(2x )的单调递减区间是()A.[ 2k, 2k ](k Z)B.[ 2k,52k ]( k Z)6366 C.[ k k ]( k Z) D .[ k ,5k ]( k Z) 63664、(04 天津)函数y 2sin( 2x) (x6[0, ])为增函数的区间是(A.[0, 3] B75] D.5. [ , ] C. 12 12[3,6[56,]5、函数y sinx 的一个单调增区间是).①f (x) 是偶函数, ②对任意实数 x ,都有 f (x )=4f (x ) ,则 f (x) 的解析式可以是4127、函数 y3 cos( 1 x 2 )(x23二、比较大小:根据图象描点分析三、解三角函数不等式:A. , B . ,3C.D . 3,2A . f (x)=cosxB . f(x)=cos(2x) C . f (x)=sin(4x22 )D.f (x) =cos6x1、09 重庆文)下列关系式中正确的是2、 cos100 sin168 0 B . sin1680 sin110 cos100 sin168 0 0 cos10 D . sin1680 0cos10 sin11 0 正确的是( ) 13 A . tan 13 tan 13B .sin cos( o D 列不等式中, A . sin110C . sin11025) 7) C . sin( π- 1)<sin1 cos 7 cos( 5 3、 已知 tan1, b tan2, tan3 ,则 ( Aa cB cb Cb 4、已知 是第二象限的角,且cos cos ,则 A.; B. sinsin ; C. tan tan ; D.以上都不对1、若0 2 ,sin3cos ,则 的取值范围是: A) 3 B) C) 33D)2、已知 - 6 m1 x< ,cosx= , 则 m 的取值范围是 (3 m 1 A . m<-1 B. 3<m ≤7+4 3 C. m>3 D. 3<m ≤7+4 3 或 m<-1 3、满足 sin(x - ) ≥ 1 的 x 的集合是44、若集合 M sin 12,0,Ncos 1 ,02,求 MI N .6、若函数 f (x) 同时具有以下两个性质: [0,2 ]) 的递增区间题型四:奇偶性1、已知f(x)是以为周期的偶函数,且x [0, ]时,f(x) 1 sin x ,则当x[52 ,3 ] 时,f ( x)等于 ( ) A 1 sinx B 1 sinx C 1 sinx 1 sinx题型五:对称性(对称轴与对称中心)从最原始的y=sin x 、y=cos x 、y= tanx出发;择题的简便方法:对称轴对应着最大最小值,对称中心对应着0;1、(08 安徽)函数y sin(2 x )图像的对称轴方程可能是3A.x6 B.xC.12D.x122、下列函数中,图象关于直线x3对称的是A.y sin(2x )3 B.sin(2x ) .yxsin( 2 x ) D.y sin(626)3、(07 福建)函数y sin 2x ππ的图象(3πA.关于点π,03对称πB.关于直线x 对称4πC.关于点,04π对称D.关于直线x 对称34、函数y sin(3 x )4的图象是中心对称图形, 其中它的一个对称中心是(A .,0B .127,0127C .,012D.11,0125、( 09 全国)如果函数3cos(2 x ) 的图像关于点(43 ,0) 中心对称,那么的最小值为 ( ) (A)(B)4(C) 3(D)6、已知函数y=2sinwx 的图象与直线y+2=0 的相邻两个公共点之间的距离为则w 的值为( )A.3 B.32C.23D.1317、设函数y=cos2πx 的图象位于y 轴右侧所有的对称中心从左依次为A1 ,A2,⋯,A n,⋯则A50 的坐标是8、关于函数 f x 4sin 2x 3x R ,有下列命题:① 由f x1 f x2 0 可得x1x2 必是π 的整数倍;② y f x 的表达式可改写为f x 4cos 2x ;③ y f x 的图象关于点,0 对称;④ y f x 的图象关于直66线x对称. 以上命题成立的序号是__________________ .x69、关于y 3sin(2x )有如下命题:①若f(x1) f(x2) 0,则x1 x2是的整数倍,②函数解析式可改为y cos3(2x ) ,③函数图象关于x 对称,④函数图象关于点( ,0) 对称。
其中正确的命题是______________8题型五:图象平移与变换:左加右减,上加下减。