{高中试卷}高一数学基础知识试题选

合集下载

高一数学试题及答案

高一数学试题及答案

高一数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项是函数y=|x|在x=0处的极限值?A. 1B. 0C. 2D. 不存在2. 已知函数f(x) = 3x^2 - 2x + 1,求f(2)的值。

A. 10B. 11C. 12D. 133. 若a、b为等差数列的连续项,且a+b=10,而a与b的倒数之和为\(\frac{2}{5}\),则a的值为:A. 1B. 2C. 3D. 44. 一个圆的半径为5cm,求该圆的面积(圆周率取3.14)。

A. 78.5平方厘米B. 85平方厘米C. 90平方厘米D. 95平方厘米5. 已知一个等比数列的前三项分别为2, 6, 18,求该数列的公比。

A. 2B. 3C. 4D. 66. 若x满足方程x^2 - 5x + 6 = 0,求x的值。

A. 2, 3B. 1, 4C. 1, 6D. 3, 47. 直线y = 2x + 3与x轴的交点坐标为:A. (-1.5, 0)B. (1.5, 0)C. (-3, 0)D. (3, 0)8. 已知一个三角形的三边长分别为3cm, 4cm, 5cm,该三角形的面积是多少?A. 6平方厘米B. 7.5平方厘米C. 9平方厘米D. 12平方厘米9. 函数y = |2x - 3|与x轴所围成的图形面积为:A. 2B. 3C. 4D. 610. 若a, b, c是等差数列,且a + c = 2b,若b = 5,则a + c的值为:A. 5B. 10C. 15D. 20二、填空题(每题4分,共20分)11. 若f(x) = x^3 - 6x^2 + 11x - 6,求f(2) = ______。

12. 一个圆的直径为10cm,求该圆的周长(圆周率取3.14)为______。

13. 已知等比数列的前两项为3和9,求该数列的第四项为______。

14. 若x和y满足方程组\(\begin{cases} 2x + y = 8 \\ x - y = 2 \end{cases}\),求x的值为______。

人教版高一数学(必修1)基础知识试题选及答案

人教版高一数学(必修1)基础知识试题选及答案

人教版高一数学(必修1)基础知识试题选及答案高一数学(必修1)基础知识试题选及答案一、选择题1. 下列数列中,等差数列是:A. 1, 3, 6, 10, 15B. 1, 2, 4, 7, 11C. 1, 4, 9, 16, 25D. 1, 3, 9, 27, 81答案:A2. 设等差数列的首项为a, 公差为d, 则该等差数列的第n项为:A. anB. a + (n-1)dC. a + ndD. a + (n+1)d答案:B3. 设等差数列的前n项和为Sn,则Sn的通项公式为:A. Sn = n(a + l)/2B. Sn = n(a + 2l)/2C. Sn = (a + l)n/2D. Sn = (a + 2l)n/2答案:A4. 已知等差数列的前n项和为Sn,公差为d,则该等差数列的第n 项可以表示为:A. Sn - Sn-1B. Sn - Sn+1C. Sn - Sn-dD. Sn - Sn+d答案:B5. 下列数列中,等比数列是:A. 2, 5, 8, 11, 14B. 4, 8, 16, 32, 64C. 1, 3, 6, 10, 15D. 1, 1, 2, 3, 5答案:B6. 设等比数列的首项为a, 公比为q, 则该等比数列的第n项为:A. a^nB. a + (n-1)qC. aq^nD. aq^(n-1)答案:C7. 设等比数列的前n项和为Sn,则该等比数列的第n项可以表示为:A. Sn - Sn-1B. Sn - Sn+1C. Sn/q - Sn/qdD. Snq - Snqd答案:A8. 如果在等比数列的前n项和中,n趋于无穷大,且公比小于1,则该等比数列的前n项和趋于:A. 1B. 0C. ∞D. 不存在答案:B二、解答题1. 将下列数列排列成由小到大的顺序:8, 5, 2, 9, 6答案:2, 5, 6, 8, 92. 求下列数列的前n项和:1, 3, 5, 7, ...答案:Sn = n^23. 求解下列方程:2x - 5 = 7答案:x = 64. 用配方法求解下列二次方程:x^2 - 5x + 6 = 0答案:x = 2, 35. 确定下列函数的定义域:f(x) = √(x + 4)答案:x ≥ -46. 求解下列不等式:2x - 5 > 7答案:x > 67. 已知点A(2, 1)和B(-3, 4),求线段AB的斜率。

高一数学基础试题及答案

高一数学基础试题及答案

高一数学基础试题及答案一、选择题(每题3分,共30分)1. 已知函数f(x) = 2x + 3,求f(-1)的值。

A. -1B. 1C. 5D. -52. 计算下列表达式的值:(3x^2 - 2x + 1) - (x^2 + 4x - 3)。

A. 2x^2 - 6x + 4B. 2x^2 - 6x - 2C. 2x^2 + 2x + 4D. 2x^2 + 2x - 23. 若a > 0,b < 0,且|a| < |b|,则a + b的符号是:A. 正C. 零D. 不确定4. 已知集合A = {x | x^2 - 5x + 6 = 0},求集合A的元素个数。

A. 0B. 1C. 2D. 35. 函数y = x^3 - 3x^2 + 2在x = 1处的导数是:A. 0B. 1C. -1D. 26. 计算下列极限:lim(x→0) (sin(x)/x)。

A. 0C. -1D. 27. 已知等比数列{an}的首项a1 = 2,公比q = 3,求a5的值。

A. 2B. 6C. 18D. 548. 计算下列定积分:∫(0 to 1) (2x + 1) dx。

A. 3/2B. 5/2C. 7/2D. 9/29. 已知向量a = (3, -2),b = (1, 2),求向量a与向量b的点积。

A. -1C. 1D. -710. 计算下列二项式展开式中x^2的系数:(x + 1)^4。

A. 6B. 4C. 10D. 15二、填空题(每题4分,共20分)11. 计算(2x - 3)^2的展开式,并求出x^2的系数。

12. 已知函数f(x) = x^2 - 4x + 3,求f(x)的最小值。

13. 计算下列二项式展开式的通项公式:(1 + x)^n。

14. 已知向量a = (4, 1),b = (2, -3),求向量a与向量b的叉积。

15. 计算下列极限:lim(x→∞) (x^2 - 3x + 2) / (2x^2 + 5x - 3)。

高中数学试卷必修一基础100题

高中数学试卷必修一基础100题

高中数学试卷必修一基础50题一、单选题(共15题;共30分)1.已知函数y=sinx的定义域为值域为,则的值不可能是( )A. B. C. D.2.已知集合, ,则()A. B. C. D.3.设集合是锐角,,从集合到的映射是“求正弦值”,则与中元素相对应的中元素是()A. B. C. D.4.设f(x)为周期是2的奇函数,当时,f(x)=x(x+1),则当时,f(x)的表达式为( )A. (x-5)(x-4)B. (x-6)(x-5)C. (x-6)(5-x)D. (x-6)(7-x)5.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A. a≤1B. a<1C. a≥2D. a>26.已知集合,,则()A. B. C. D.7.已知函数的定义域为,的定义域为()A. B. C. D.8.已知偶函数在区间上是增函数,如果,则x的取值范围是()A. B. C. D.9.二次函数图象的对称轴方程为()A. B. C. D.10.下列函数中,既是偶函数,又在区间(0,+∞)单调递减的函数是()A. y=﹣x3B. y=ln|x|C. y=cosxD. y=2﹣|x|11.函数f(x)=a x﹣1+2的图象恒过定点()A. (3,1)B. (0,2)C. (1,3)D. (0,1)12.集合,,若,则实数a的取值范围是()A. B. C. D.13.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“合一函数”,那么函数解析式为y=2x2﹣1,值域为{1,7}的“合一函数”共有()A. 10个B. 9个C. 8个D. 4个14.已知,b=0.53,,则a,b,c三者的大小关系是()A. b<a<cB. c<a<bC. a<c<bD. a<b<c15.若全集U=R,集合A={x|0<x<2},B={x|x﹣1>0},则A∩∁U B=()A. {x|0<x≤1}B. {x|1<x<2}C. {x|0<x<1}D. {x|1≤x<2}二、填空题(共20题;共21分)16.已知A={x|x<2},B={x|x<m},若B是A的子集,则实数m的取值范围为________.17.若二次函数的图象经过点,则代数式的值等于________.18.已知集合A={x|y=lg(2﹣x)},集合B=[y|y= },则A∩B=________.19.已知函数f(x)=2x﹣3,x∈N且1≤x≤5,则函数的值域为________.20.设集合M={x|﹣1<x<1},N={x|0≤x<2},则M∪N=________.21.设函数在区间上的最大值为,则________.22.函数的定义域为________.23.若函数f(x)= 在(﹣1,+∞)上的值域为________.24.已知幂函数的图象过点,则的单调减区间为________.25.设函数f(x)=(x﹣4)0+ ,则函数f(x)的定义域为________.26.若f(x)=2x+2﹣x lga是奇函数,则实数a=________.27.已知函数是奇函数,则=________.28.已知全集U={﹣1,0,2,4},集合A={0,2},则________.29.函数的单调递增区间为________.30.已知函数f(x)=,则f[f(-2)]=________ ,f(x)的最小值是________.31.设函数,若,则________.32.计算:的结果是________ .33.函数的单调增区间为________.34.化简:+=________35.已知集合,,若存在非零整数k,满足,则________.三、解答题(共15题;共135分)36.设,求证:(1);(2).37.设A={x|﹣1≤x≤a},(a>﹣1),B={y|y=x+1,x∈A}.C={y|y=x2,x∈A},若B=C,求a的值.38.(1)计算:;(2)已知( ) ,求的值.39.已知集合A={x|x<﹣1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.40.已知集合A={x|﹣3<x≤4},集合B={x|k+1≤x≤2k﹣1},且A∪B=A,试求k的取值范围.41.比较下列各题中两个值的大小.(1)1.82.2,1.83;(2)0.7-0.3,0.7-0.4;(3)1.90.4,0.92.4.42.已知函数f(x)= 的定义域为(﹣1,1),满足f(﹣x)=﹣f(x),且f()= .(1)求函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(x2﹣1)+f(x)<0.43.已知函数.(1)求函数的定义域;(2)是否存在实数a,使得为奇函数.44.已知全集U={x|﹣5≤x≤3},集合A={x|﹣5≤x<﹣1},B={x|﹣1≤x≤1}.(1)求A∩B,A∪B;(2)求(∁U A)∩(∁U B),(∁U A)∪(∁U B).45.设集合,.若,求的值46.设函数f(x)=ax2+(b﹣8)x﹣a﹣ab的两个零点分别是﹣3和2.(Ⅰ)求f(x);(Ⅱ)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.47.已知全集,若集合,B={x|x-m<0} .(1)若,求;(2)若, 求实数的取值范围.48.已知集合,.(1)当m=4时,求,;(2)若,求实数m的取值范围.49.已知A={x|x2﹣2x﹣3<0},B={x||x﹣1|<a}.(1)若A⊊B,求实数a的取值范围;(2)若B⊊A,求实数a的取值范围.50.已知,,全集.(1)求和;(2)已知非空集合,若,求实数的取值范围.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】A4.【答案】B5.【答案】D6.【答案】B7.【答案】C8.【答案】A9.【答案】D10.【答案】B11.【答案】D12.【答案】C13.【答案】A14.【答案】B15.【答案】C二、填空题16.【答案】17.【答案】[ ,1]18.【答案】{2,4}19.【答案】;20.【答案】821.【答案】b<a<c22.【答案】23.【答案】24.【答案】25.【答案】26.【答案】27.【答案】028.【答案】{0,2,6,10}29.【答案】30.【答案】231.【答案】②③32.【答案】33.【答案】[2,5)34.【答案】35.【答案】三、解答题36.【答案】(1)解:(2)。

高一数学考试试题及答案

高一数学考试试题及答案

高一数学考试试题及答案一、选择题(每题3分,共30分)1. 若函数f(x)=2x+1,则f(-1)的值为:A. -1B. 1C. 3D. -3答案:A2. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B3. 函数y=x^2-4x+3的顶点坐标为:A. (2,-1)B. (2,1)C. (-2,1)D. (-2,-1)答案:A4. 圆的方程为(x-2)^2+(y-3)^2=25,则圆心坐标为:A. (2,3)B. (-2,-3)C. (-2,3)D. (2,-3)答案:A5. 直线y=2x+3与x轴的交点坐标为:A. (-3/2, 0)B. (3/2, 0)C. (0, -3/2)D. (0, 3/2)答案:B6. 函数y=|x|的图像是:A. 一条直线B. 两条直线C. 一条曲线D. 两条曲线答案:B7. 已知等差数列{an}的前三项分别为2, 5, 8,则该数列的公差为:A. 1B. 2C. 3D. 4答案:B8. 函数y=sin(x)的周期为:B. 2πC. π/2D. 4π答案:B9. 已知向量a=(3, -4),b=(2, 5),则a·b的值为:A. -1B. 11C. -11D. 1答案:C10. 圆的方程为x^2+y^2-6x+8y-24=0,则该圆的半径为:A. 2B. 4C. 6D. 8答案:C二、填空题(每题4分,共20分)11. 函数y=3x-2的反函数为______。

答案:y=(1/3)x+2/312. 已知等比数列{bn}的前三项分别为3, 6, 12,则该数列的公比为______。

13. 若a, b, c是三角形的三边长,且满足a^2+b^2=c^2,则该三角形为______三角形。

答案:直角14. 函数y=1/x的图像在第二象限内是______的。

答案:递减15. 已知向量a=(4, 1),b=(2, -3),则|a+b|的值为______。

高一数学试题及答案(8页)

高一数学试题及答案(8页)

高一数学试题及答案第一部分:选择题1. 设函数f(x) = x^2 4x + 3,求f(2)的值。

A. 1B. 0C. 1D. 22. 已知等差数列{an}的公差为2,且a1 = 3,求a5的值。

A. 7B. 9C. 11D. 133. 设集合A = {x | x > 0},B = {x | x < 5},求A∩B的值。

A. {x | x > 0, x < 5}B. {x | x > 5}C. {x | x < 0}D. {x | x < 5, x > 0}4. 若直线y = kx + 2与圆x^2 + (y 1)^2 = 4相切,求k的值。

A. 1B. 1C. 2D. 25. 设函数g(x) = |x 1| + |x + 1|,求g(x)的最小值。

A. 0B. 1C. 2D. 36. 若等比数列{bn}的首项为2,公比为3,求bn的第5项。

A. 162B. 243C. 4D. 7297. 已知函数h(x) = x^3 3x^2 + 2x,求h(x)的导数。

A. 3x^2 6x + 2B. 3x^2 6x 2C. 3x^2 + 6x + 2D. 3x^2 + 6x 28. 若直线y = mx + 1与直线y = 2x + 4平行,求m的值。

A. 2B. 2C. 1D. 19. 设集合C = {x | x^2 5x + 6 = 0},求C的值。

A. {2, 3}B. {1, 4}C. {2, 4}D. {1, 3}10. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的顶点坐标为(2,3),求b的值。

A. 12B. 12C. 6D. 6答案:1. A2. C3. A4. B5. B6. D7. A8. D9. C10. B第一部分:选择题答案解析1. 解析:将x = 2代入f(x) = x^2 4x + 3中,得到f(2) =2^2 42 + 3 = 1。

高一数学试题精选及答案

高一数学试题精选及答案

高一数学试题精选及答案一、选择题(每题4分,共40分)1. 下列函数中,为增函数的是:A. y = -x^2B. y = 2x - 1C. y = 1/xD. y = x^32. 已知集合A={1, 2, 3},B={2, 3, 4},求A∪B:A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {1, 4}3. 若a,b,c为实数,且a^2 + b^2 = c^2,下列哪个选项是正确的:A. a = b = cB. a + b = cC. a * b = cD. a = b 或 b = c4. 函数f(x) = |x - 2|的零点是:A. x = 0B. x = 2C. x = 1D. x = 35. 已知等差数列的首项a1=3,公差d=2,求第10项a10:A. 23B. 25C. 27D. 296. 根据题目所给的几何图形,求其面积:A. 12B. 20C. 24D. 287. 若sinθ = 1/3,且θ在第一象限,求cosθ的值:A. 2√2/3B. √3/3C. √6/3D. 2√6/38. 根据题目所给的统计数据,求平均数:A. 20B. 25C. 30D. 359. 已知方程x^2 - 5x + 6 = 0,求x的值:A. x = 2, 3B. x = 1, 6C. x = 3, 4D. x = 4, 510. 下列哪个是二项式定理的展开式:A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3D. (a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3二、填空题(每题3分,共15分)11. 若函数f(x) = x^2 + 2x - 3在区间[-4, 1]上是减函数,则f(-4) = ______。

高一数学试题19题及答案

高一数学试题19题及答案

高一数学试题19题及答案一、选择题(每题3分,共15分)1. 已知集合A={1,2,3},B={2,3,4},求A∪B。

A. {1,2,3,4}B. {1,2,3}C. {2,3}D. {1,4}答案:A2. 函数f(x)=x^2-2x+1的最小值是:A. 0B. -1C. -2D. 1答案:B3. 已知等差数列{an}的首项a1=2,公差d=3,求第5项a5。

A. 17B. 14C. 11D. 8答案:A4. 已知直线l1:x-y+2=0与直线l2:2x+y-6=0平行,求l1与l2之间的距离。

A. √5B. √2C. 2√5D. √10答案:C5. 已知圆的方程为(x-3)^2+(y-4)^2=25,求圆心到直线x+y-7=0的距离。

A. 3B. 5C. √2D. √5答案:B二、填空题(每题2分,共10分)6. 已知向量a=(2,3),b=(-1,2),向量a与b的点积为______。

答案:-17. 已知三角形ABC的三个内角分别为A、B、C,若sinA:sinB:sinC=3:5:7,求cosC的值。

答案:-√3/28. 已知函数f(x)=x^3-3x^2+5,求f'(x)。

答案:3x^2-6x9. 已知等比数列{bn}的首项b1=8,公比q=1/2,求第4项b4。

答案:110. 已知椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1(a>b>0),若椭圆经过点(2,3),且焦点在x轴上,求a和b的值。

答案:a=4,b=2√3三、解答题(每题5分,共5分)11. 解不等式:|x-2|+|x-3|>4。

答案:x<1或x>4四、证明题(每题10分,共20分)12. 证明:对于任意实数x,都有(x-1)^3-(x-2)^3<0。

证明:略13. 证明:若a>b>0,c>d>0,证明:ac>bd。

证明:略五、综合题(每题15分,共20分)14. 已知函数f(x)=x^2-2ax+1,求f(x)的单调区间。

高一数学测试卷及答案详解(附答案)

高一数学测试卷及答案详解(附答案)
16.已知函数 .
(1)求函数 的定义域;
(2)讨论函数 的单调性.
17.正方体 中,求证:(1) ;
(2) .
18.一个圆锥的底面半径为2cm,高为6cm,在其中有一个高为 cm的内接圆柱.
(1)试用 表示圆柱的侧面积;
(2)当 为何值时,圆柱的侧面积最大?
19.求二次函数 在 上的最小值 的解析式.
B DB
A C C A C E
A. D、E、F B. E、D、F C. E、F、D D. F、D、E
第二部分非选择题(共100分)
二、填空题:本大题共4小题,每小题5分,满分20分.
11.幂函数 的图象过点 ,则 的解析式为_______________
12.直线过点 ,它在 轴上的截距是在 轴上的截距的2倍,则此直线方程为__________________________.
……14分
18.本小题主要考查空间想象能力,运算能力与函数知识的综合运用.满分12分.
解:(1)如图: 中, ,即 ……2分
, ……4分
圆柱的侧面积
( )……8分
(2)
时,圆柱的侧面积最大,最大侧面积为 ……12分
19.本小题以二次函数在闭区间上的最值为载体,主要考查分类讨论的思想和数形结合的思想.满分14分.
B
D
A
D
A
B
二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.
11. 12. 或 13. 14.2;3
三、解答题:
15.本小题主要考查分段函数的图象,考查函数奇偶性的判断.满分12分.
解: ……2分
函数 的图象如右图……6分
函数 的定义域为 ……8分

高一数学试题精选及答案

高一数学试题精选及答案

高一数学试题精选及答案一、选择题(每题3分,共15分)1. 若函数f(x)=x^2-4x+m的图像与x轴有两个交点,则m的取值范围是()。

A. m > 4B. m < 4C. m ≥ 4D. m ≤ 42. 已知向量a=(3,-1),b=(2,2),则向量a+2b的坐标为()。

A. (7, 3)B. (7, 0)C. (1, 0)D. (1, 3)3. 函数y=x^3-3x^2+2在区间(0,1)上是()。

A. 增函数B. 减函数C. 先增后减D. 先减后增4. 已知等差数列{an}的前三项分别为1,2,3,则该数列的通项公式为()。

A. an = nB. an = n + 1C. an = n - 1D. an = 2n - 15. 已知圆C的方程为(x-1)^2+(y-2)^2=9,圆心C到直线3x+4y-5=0的距离为()。

A. 1B. 2C. 3D. 4二、填空题(每题3分,共15分)6. 若复数z满足|z|=2,则z的平方的模长为_________。

7. 函数y=cos(2x)的最小正周期为_________。

8. 已知双曲线x^2/a^2 - y^2/b^2 = 1的离心率为2,则a和b的关系为_________。

9. 已知三角形ABC的三边长分别为a,b,c,且满足a^2+b^2=c^2,三角形ABC的类型为_________。

10. 已知函数f(x)=x^3-3x+1,求导数f'(x)=_________。

三、解答题(每题10分,共20分)11. 解方程:x^2-5x+6=0。

12. 证明:对于任意实数x,不等式x^2+x+1≥3/4恒成立。

答案:一、选择题1. D2. A3. D4. A5. B二、填空题6. 47. π8. b^2=3a^29. 直角三角形10. 3x^2-3三、解答题11. 解:将方程x^2-5x+6=0进行因式分解,得到(x-2)(x-3)=0,所以解为x=2或x=3。

高一数学必修一测试题基础卷

高一数学必修一测试题基础卷

高一数学必修一测试题(基础卷 )一、选择题(每小题3分,共36分)1.设集合{1,3},A =集合{1,2,4,5}B =,则集合A B ⋃=( )A .{1,3,1,2,4,5}B .{1}C .{1,2,3,4,5}D .{2,3,4,5}2.设集合{|12},{|}.A x x B x x a =<<=<若,A B ⊆则a 的范围是( )A .2a ≥B .1a ≤C .1a ≥D .2a ≤3.与||y x =为同一函数的是( )。

A.2y = B.y C .{,(0),(0)x x y x x >=-< D .log a x y a = 4.设()338x f x x =+-, 用二分法求方程3380(1,2)x x x +-=∈在内近似解的过程中, 计算得到(1)0,(1.5)0,(1.25)0,f f f <>< 则方程的根落在区间( ). A .(1,1.25) B .(1.25,1.5) C .(1.5,2) D .不能确定5.下列各式错误的是( ).A . 0.80.733> B.0.50.5log 0.4log 0.6>C . 0.10.10.750.75-<D .lg1.6lg1.4>6.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M N φ≠,则k 的取值范围是( )A .]2,(-∞B .),1[+∞-C .),1(+∞-D .[-1,2]7.已知753()2f x ax bx cx =-++,且(5),f m -= 则(5)(5)f f +-的值为( ).A .4B .0C .2mD .4m -+8.函数21()322⎛⎫=+- ⎪⎝⎭xf x x 的零点有( )个。

A .0 B .1 C .2 D .3 9.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩,则[(2)]f f -的值为( ). A .1 B .2 C .4 D .510.如图的曲线是幂函数n x y =在第一象限内的图象. 已知n 分别取 2±,12±四个值,与曲线1c 、2c 、3c 、4c 相应的n 依次为( ). A .112,,,222-- B .112,,2,22-- C .11,2,2,22-- D .112,,,222-- 11.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( ).A .9B .14C .18D .12.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月) 425c 4c 3c 2c 1的关系:t y a =,有以下叙述:① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ;③ 浮萍从24m 蔓延到212m 需要经过1.5个月;④ 浮萍每个月增加的面积都相等。

基础知识的试题人教版高一数学必修1测试题(含答案)(最新整理)

基础知识的试题人教版高一数学必修1测试题(含答案)(最新整理)

--------9 分
易知:
xy 3 x 2y
--------------------------
----------10 分
所以: y 1
x2
----------------------------
-----------12 分

log8
y x
log8
1 2
3
-----------------------
基础知识测试人教版数学必修 I 测试题(含答案)
一、选择题
1、设集合U 1, 2,3, 4,5, A 1, 2,3, B 2,5 ,则 A CU B (
A 、2
B 、2,3
C 、3
) D、
1, 3
2、已知集合 M 0,1, 2, N x x 2a, a M ,则集合 M N (
A 、0
(A)(0,2),(1,1) (B){(0,2 ),(1,1)} (C){1,2} (D) y | y 2
4.不等式 ax 2 ax 4 0 的解集为 R,则 a 的取值范围是
(A) 16 a 0
(B) a 16
(C) 16 a 0
x 5(x 6)
5.
已知
f (x) = f
1 x
---------12 分
-----------------------
a
20、(本小题满分
12
分)已知: a
0, b
0
,且 ab
ba
,求证:
a b
b
ab
ab

b
证明:由 ab ba 知: b aa
--------------------------------

高中数学必修1基础练习题及答案解析

高中数学必修1基础练习题及答案解析

高中数学必修1基础练习题及答案解析一、选择题1.已知全集I={0,1,2},且满足CI ={2}的A、B 共有组数 A. B. C. D.11.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},则A.ABB.BAC.A=BD.A∩B=?23.设A={x∈Z||x|≤2},B={y|y=x+1,x∈A},则B的元素个数是 A.5B.4C.D.2.若集合P={x|3 D.=的值域为集合N,则集合{2,-2,-1,-3}中不属于N的元2-x素是 A. B.-C.-1 D.-3.已知f是一次函数,且2f-3f=5,2f-f=1,则f的解析式为 A.3x-B.3x+C.2x +D.2x-8.下列各组函数中,表示同一函数的是 A.f=1,g =xx2-4B.f=x+2,g=x-2D.f=x,g=2?x x≥0C.f=|x|,g=?-x x<02xx>09. f=?πx=0,则f{f[f]}等于0 x<0A.0B.πC.π2D.9x10.已知2lg=lgx+lgy,则的值为yA.1B.4C.1或41D. 或411.设x∈R,若a1 C.0 12.若定义在区间内的函数f=log2a满足f>0,则a的取值范围是1A.21?B.2D.二、填空题 13.若不等式x+ax+a-2>0的解集为R,则a可取值的集合为__________.214.函数yx+x+1 的定义域是______,值域为__ ____.2115.若不等式3x?2ax>x+1对一切实数x恒成立,则实数a的取值范围为______.3x?1??3?x?=?,则f值域为_____ _. 1?x??3?x??1,117.函数y=的值域是__________.2+118.方程log2+x+99=0的两个解的和是______.第Ⅱ卷一、选择题二、填空题三、解答题 19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求∩.20.已知f是定义在上的增函数,且满足f=f+f,f =1. 求证:f=3求不等式f-f>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.当每辆车的月租金定为3600元时,能租出多少辆车?当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f=log12x-log1x+5,x∈[2,4],求f 的最大值及最小值.44a-23.已知函数f=是R上的增函数,求a的取值范围. a-2高一数学综合训练答案二、填空题13. ? 14. R [313+∞) 15. - 16. 18. -99三、解答题 19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求∩.∩={x|-1<x<1}20.已知f是定义在上的增函数,且满足f=f+f,f =1. 求证:f=3求不等式f-f>3的解集. 考查函数对应法则及单调性的应用. 由题意得f=f=f+f=f+f=f+f+f=3f 又∵f=1 ∴f=3不等式化为f>f+3∵f=∴f>f+f=f ∵f是上的增函数16?8?0∴?解得2 7x821.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.当每辆车的月租金定为3600元时,能租出多少辆车?当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考查函数的应用及分析解决实际问题能力.当每辆车月租金为3600元时,未租出的车辆数为以这时租出了88辆.设每辆车的月租金定为x元,则公司月收益为 x-3000x-3000f=-×505050x212整理得:f=-+162x-2100=-+3070505050∴当x=4050时,f最大,最大值为f=307050 元22.已知函数f=log12x-log1x+5,x∈[2,4],求f 的最大值及最小值.443600-3000=12,所50考查函数最值及对数函数性质.令t=log1x ∵x∈[2,4],t=log1x在定义域递减有441log14 244412191∴f=t2-t+5=+,t∈[-1,-]242123∴当t=-时,f取最小值24当t=-1时,f取最大值7.a-23.已知函数f=是R上的增函数,求a的取值范围. a-2考查指数函数性质.f的定义域为R,设x1、x2∈R,且x1 ax?xx?x a-2a1xxx21a-2a?a由于a>0,且a≠1,∴1+1>0 ax1ax2x2∵f为增函数,则>0x22a?2?0?a?2?0于是有?x,或?xx1x122a?a?0?a?a?0解得a>或0 . . .必修1 高一数学基础知识试题选说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷60分,第Ⅱ卷60分,共120分,答题时间90分钟.第Ⅰ卷一、选择题:1.已知集合M??{4,7,8},且M中至多有一个偶数,则这样的集合共有3个个个个2.已知S={x|x=2n,n∈Z}, T={x|x=4k±1,k∈Z},则S??T T??SS≠T S=T23.已知集合P=y|y??x?2,x?R, Q=?y|y??x?2,x?R?,那么P?Q等 ??,{,} {1,2} ?y|y?2?4.不等式ax?ax?4?0的解集为R,则a的取值范围是16a0a116a0a05. 已知f=?2?x?5,则f的值为f36.函数y?x?4x?3,x?[0,3]的值域为[0,3] [-1,0] [-1,3] [0,2]7.函数y=x+b在上是减函数,则 k>21111 k? .k 28.若函数f=x+2x+2在区间a≤-a≥-3a≤ a≥39.函数y?a是指数函数,则a的取值范围是a?0,a?1 a?1 a? a?1或a?210.已知函数f?4?ax?12x的图象恒过定点p,则点p的坐标是11.函数y?的定义域是 [1,+?] [12.设a,b,c都是正数,且3a?4b?6c,则下列正确的是1122112212 1 C C ?a?b?a?bc?a?bc?a?b第Ⅱ卷二、填空题:13.已知在映射 f下的象是,则在f下的象是,原象是。

高一考试数学试题及答案

高一考试数学试题及答案

高一考试数学试题及答案一、选择题(每题5分,共20分)1. 下列函数中,为奇函数的是()。

A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 已知等差数列{a_n}的首项a_1=1,公差d=2,那么a_5的值为()。

A. 9B. 10C. 11D. 123. 函数f(x)=2x+3的反函数为()。

A. f^(-1)(x)=(x-3)/2B. f^(-1)(x)=(x+3)/2C. f^(-1)(x)=(x-3)/-2D. f^(-1)(x)=(x+3)/-24. 圆的一般方程为x^2+y^2-4x+6y-12=0,其圆心坐标为()。

A. (2, -3)B. (-2, 3)C. (2, 3)D. (-2, -3)二、填空题(每题5分,共20分)5. 若函数f(x)=x^2-4x+3的图像与x轴交于点A和点B,则AB的长度为_______。

6. 已知三角形ABC的三个顶点分别为A(1,2),B(4,6),C(7,10),那么三角形ABC的面积为_______。

7. 将函数y=x^2-2x+1化简为顶点式,得到的结果为y=_______。

8. 已知数列{a_n}满足a_1=2,a_{n+1}=2a_n+1,求a_5的值为_______。

三、解答题(每题15分,共30分)9. 已知函数f(x)=x^2-2x+2,求函数的最小值。

10. 已知圆x^2+y^2-6x-8y+25=0,求该圆的半径和圆心坐标。

四、证明题(每题15分,共15分)11. 证明:若a,b,c为实数,且满足a+b+c=0,则函数f(x)=ax^2+bx+c的图像与x轴至多有一个交点。

五、附加题(15分)12. 已知函数f(x)=x^3-3x+1,求证:对于任意实数x,都有f(x)≥0。

答案:一、选择题1. C2. C3. A4. A二、填空题5. 46. 107. y=(x-1)^28. 31三、解答题9. 函数f(x)=x^2-2x+2的最小值为1,当x=1时取到。

高一数学基础练习题

高一数学基础练习题

高一数学基础练习题一、选择题1.不等式|x -2|>0的解集是( ) A.{x|x ≠2}B.{x|x>2}C.RD.∅2.下列函数中是指数函数的是( ) A.12x y +=B.y =-2xC.y =(-2)xD.y =2x3.已知集合M ={x|x2+x +3=0},下列结论正确的是 ( ) A.集合M 中共有2个元素 B.集合M 中共有2个相同的元素 C.集合M 中共有1个元素 D.集合M 为空集4.若函数f (x )=(2a -1)x +b 是R 上的减函数,则a 的取值范围是 ( )A.{a|a>12}B.{a|a<12}C.{a|a≥12}D.{a|a ≤12}5.若二次函数的对称轴是直线x =1,且最大值为3,则此函数的一个解析式是 ( )A.y =(x -1)2-3B.y =(x +1)2+3C.y =(x +1)2-3D.y =-(x -1)2+3 6.下列等式成立的是 ( ) A.(-1)0=-1 B.(-1)-1=1C.3a -2=13a2D.(a 12-)2=1a7.若log264+log2x =5,则x 等于 ( )A.-2B.2C.-12D.128.已知f (2x )=x2-4x ,则f (2)等于 ( ) A.0 B.-1 C.-3 D.3 9.“a >b ”是“a -3>b -3”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件10.已知一次函数f (x )=kx +2的图象过点(2,0),则k 等于( ) A.0 B. 2 C.-2 D.±211.若tanα=-1,且角α为第二象限角,则sinα-cosα的值为( )A.-1B.0C.- 2D.212.已知单元素集合A ={x|x2-(a +2)x +1=0},则a 等于 ( ) A.0 B.-4 C.-4或1 D.-4或0 13.已知二次函数y=-2x2+6x -m 的值恒小于零,则( ) A.m=9B.92m =C.92m >D.92m <14.不等式x+6-x2≥0的解集是( ) A.[-6,1]B.[-2,3]C.[2,3]D.[-6,3]15.不等式x2+5x +25>0的解集是( ) A.RB.∅C.{x|x ≠-5}D.{x|x>-5}16.函数2(3)1y x =-+在区间(2,4)上是()A.递减函数B.递增函数C.先递减后递增D.先递增后递减17.函数223(50)y xx x =--+-≤≤的值域为( )A.(-∞,4]B.[3,12]C.[-12,4]D.[4,12]18.若关于x 的不等式kx2+kx -2>0的解集为空集,则实数k 的取值范围是 ( )A.[-8,0)B.[-8,0]C.(0,8]D.[0,8] 19.已知sinα=-513,且α为第四象限角,则α的正切值为 ( )A.125B.-125C.512D.-51220.已知sin α=22,α∈,22ππ⎛⎫- ⎪⎝⎭,则α=( ) A.4πB.34πC.-4πD.54π二、填空题21.已知cos α=12,α∈(0,π),则α= . 22.已知集合A ={x|x∈N ,126-x ∈N},用列举法表示集合A为 .23.已知函数f (x )=x2+mx -1,且f (-1)=-3,则f (x )在区间[2,3]上的最大值为 . 24.f (x11x ++(x +2)0的定义域为 .25.若函数f (x )=2x2+ax -1在区间(-∞,2]上是减函数,则实数a 的取值范围是 . 26.357log5log 7log 9••的值为.27.不等式211381x x -->的解集为 .28.设函数21,0()34,0ax x f x x x ->⎧=⎨+≤⎩若f (2)=3,则f (-2)= ,实数a 的值为 . 29.求值:22ln 203125e -++=.30.已知指数函数()xf x a =的图象经过点(-2,16),则log2a . 三、解答题(解答题应写出文字说明及演算步骤)31.设全集U ={7,3,a2-2a -3},A ={b ,7},∁UA ={5},求ab 的值. 32.已知一次函数f (x )=(m2-1)x +m2+3m +2在R 上是减函数,且f (1)=3,求m 的值.33.设α,β是方程lg2x -lgx2-2=0的两根,求log log αββα+的值. 34.已知角α的终边上一点P (x,y ),且x =-12,|OP|=13,求sin α,cos α,tan α的值.35.若不等式x2+ax +b >0的解集为(-∞,-2)∈(3,+∞),求不等式ax2-bx +7>0的解集.36.某汽车租赁公司拥有汽车100辆,当每辆车的租金为3000元时,可全部租出,当每辆车的租金增加50元时,未租出的车将会增加一辆,租出的车每月需养护费200元,未租出的车每月需养护费100元。

(完整版)高一数学必修一基础知识测试含答案

(完整版)高一数学必修一基础知识测试含答案

必修1 高一数学基础知识试题选说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分。

第Ⅰ卷60分,第Ⅱ卷60分,共120分,答题时间90分钟.第Ⅰ卷(选择题,共60分)一、选择题:(每小题5分,共60分,请将所选答案填在括号内)1.已知集合M ⊂≠{4,7,8},且M 中至多有一个偶数,则这样的集合共有 ( ) (A )3个 (B ) 4个 (C ) 5个 (D ) 6个2.已知S={x |x=2n ,n ∈Z}, T={x |x=4k ±1,k ∈Z},则 ( ) (A )S ⊂≠T (B ) T ⊂≠S (C )S ≠T (D)S=T3.已知集合P={}2|2,y y x x R =-+∈, Q={}|2,y y x x R =-+∈,那么P Q 等( )(A)(0,2),(1,1) (B ){(0,2 ),(1,1)} (C ){1,2} (D){}|2y y ≤4.不等式042<-+ax ax 的解集为R,则a 的取值范围是 ( ) (A)016<≤-a (B )16->a (C)016≤<-a (D)0<a5. 已知()f x =5(6)(4)(6)x x f x x -≥⎧⎨+<⎩,则(3)f 的值为 ( )(A)2 (B )5 (C)4 ( D )3 6。

函数243,[0,3]y x x x =-+∈的值域为 ( ) (A)[0,3] (B)[-1,0] (C )[-1,3] (D )[0,2] 7.函数y=(2k+1)x+b 在(—∞,+∞)上是减函数,则 ( )(A)k>12 (B )k 〈12 (C)k>12- (D).k 〈12-8.若函数f (x )=2x +2(a-1)x+2在区间(,4]-∞内递减,那么实数a 的取值范围为( )(A)a ≤—3 (B)a ≥-3 (C)a ≤5 (D )a ≥3 9.函数2(232)x y a a a =-+是指数函数,则a 的取值范围是 ( )(A ) 0,1a a >≠ (B) 1a = (C) 12a = ( D ) 121a a ==或10.已知函数f (x)14x a -=+的图象恒过定点p ,则点p 的坐标是 ( )(A )( 1,5 ) (B )( 1, 4) (C )( 0,4) (D )( 4,0)11。

高一数学必考试题及答案

高一数学必考试题及答案

高一数学必考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)答案:C2. 若函数f(x) = 2x + 1在区间[-1, 2]上是增函数,则下列说法正确的是:A. f(x)在[-1, 2]上单调递减B. f(x)在[-1, 2]上单调递增C. f(x)在[-1, 2]上先增后减D. f(x)在[-1, 2]上先减后增答案:B3. 已知集合A={1, 2, 3},集合B={2, 3, 4},则A∩B的元素个数为:A. 0B. 1C. 2D. 3答案:C4. 函数y = 3x - 2的图像不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B5. 已知等差数列{an}的前三项分别为1, 4, 7,则其第10项为:A. 26B. 27C. 28D. 29答案:A6. 圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,其圆心坐标为:A. (3, -4)B. (-3, 4)C. (3, 4)D. (-3, -4)答案:A7. 函数f(x) = x^2 - 6x + 8的最小值是:A. -1B. 0C. 1D. 2答案:B8. 直线y = 2x + 3与x轴的交点坐标为:A. (-3/2, 0)B. (3/2, 0)C. (0, 3)D. (0, -3)答案:B9. 已知三角形ABC中,∠A = 60°,∠B = 45°,则∠C的大小为:A. 45°B. 60°C. 75°D. 30°答案:D10. 函数f(x) = |x - 2| + |x + 3|的最小值是:A. 5B. 1C. 0D. 2答案:A二、填空题(每题4分,共20分)1. 已知函数f(x) = x^2 - 4x + 3,其顶点坐标为______。

高一数学考试题及答案

高一数学考试题及答案

高一数学考试题及答案一、选择题(每题4分,共40分)1. 下列哪个选项是函数y=|x|的定义域?A. (-∞, 0)B. (-∞, 0) ∪ (0, +∞)C. (-1, 1)D. 全实数集2. 若a、b、c是等差数列,且a+b+c=6,b+c-a=2,则a的值为:A. 1B. 2C. 3D. 43. 已知一个等比数列的前三项分别为a, b, c,且abc=16,b-c=2,求a的值。

A. 1B. 2C. 4D. 84. 在直角坐标系中,点A(2,3)和点B(-2,-1)之间的距离是:A. 2√5B. √20C. 3√5D. 55. 若f(x) = 2x^2 + 3x - 4,求f(-2)的值。

A. -11B. -5C. 5D. 116. 已知一个圆的半径为5,圆心在坐标轴上,且圆上有一点P(3,4),则这个圆的方程是:A. (x-3)^2 + (y-4)^2 = 25B. (x-3)^2 + y^2 = 25C. (x-4)^2 + (y-3)^2 = 25D. x^2 + (y-4)^2 = 257. 函数y = 3^x的反函数是:A. y = log3xB. y = 3^(-x)C. y = -log3xD. y = logx/38. 已知一个等差数列的前n项和为Sn = n^2 + 2n,当n=5时,Sn的值是:A. 35B. 40C. 45D. 509. 在复数z1 = 3 + 4i 和 z2 = 2 - i中,|z1 - z2|的模长是:A. 2√2B. √10C. 5D. √2110. 若a:b = 3:4,b:c = 5:6,则a:b:c的比例是:A. 15:20:24B. 15:20:25C. 3:4:5D. 5:6:8二、填空题(每题4分,共20分)11. 若f(x) = x^3 - 6x^2 + 11x - 6,求f(2)的值。

12. 一个等比数列的前三项分别是2, 6, 18,该数列的公比是。

高一数学试题及解析答案

高一数学试题及解析答案

高一数学试题及解析答案一、选择题(每题5分,共20分)1. 函数f(x) = x^2 - 4x + 3的零点是:A. 1B. 2C. 3D. 4答案:B解析:将f(x)设为0,即x^2 - 4x + 3 = 0,解得x = 1 或 x = 3。

由于题目要求零点,所以正确选项是B。

2. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B是:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B解析:集合A与集合B的交集是它们共有的元素,即A∩B = {2, 3}。

3. 若a, b, c是三角形的三边长,且满足a^2 + b^2 = c^2,则该三角形是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定答案:A解析:根据勾股定理,若a^2 + b^2 = c^2,则三角形为直角三角形。

4. 函数y = 2x - 1的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C解析:函数y = 2x - 1的斜率为正,截距为负,因此图象经过第一、三、四象限,不经过第二象限。

二、填空题(每题5分,共20分)1. 等差数列{an}的首项a1 = 2,公差d = 3,则第五项a5 = _______。

答案:17解析:等差数列的通项公式为an = a1 + (n - 1)d,代入n = 5,a1= 2,d = 3,得a5 = 2 + (5 - 1) * 3 = 17。

2. 已知函数f(x) = x^3 - 3x^2 + 2x + 1,求f'(x) = _______。

答案:3x^2 - 6x + 2解析:对f(x)求导得f'(x) = 3x^2 - 6x + 2。

3. 圆的方程为(x - 2)^2 + (y + 3)^2 = 25,圆心坐标为(2, -3),半径为_______。

答案:5解析:圆的半径为方程中的常数项的平方根,即r = √25 = 5。

高一数学测试题及答案

高一数学测试题及答案

高一数学测试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x + 1答案:B2. 计算下列极限:\[\lim_{x \to 0} \frac{1 - \cos x}{x^2}\]A. 0B. 1C. 2D. -1答案:C3. 已知向量\(\vec{a} = (3, -2)\)和\(\vec{b} = (1, 2)\),求这两个向量的点积。

A. 5B. -5C. 1D. -1答案:B4. 以下哪个不等式是正确的?A. \(\sqrt{2} < 1.5\)B. \(\sqrt{2} > 1.5\)C. \(\sqrt{2} = 1.5\)D. \(\sqrt{2} < 1\)答案:B5. 计算以下定积分:\[\int_{0}^{1} x^2 dx\]A. 1/3B. 1/2C. 1D. 2答案:A6. 以下哪个是复数的共轭?A. \(z = 3 + 4i\)的共轭是\(3 - 4i\)B. \(z = 3 - 4i\)的共轭是\(3 + 4i\)C. \(z = -3 + 4i\)的共轭是\(-3 - 4i\)D. \(z = -3 - 4i\)的共轭是\(-3 + 4i\) 答案:A7. 以下哪个是二项式定理的应用?A. \((a + b)^2 = a^2 + 2ab + b^2\)B. \((a - b)^2 = a^2 - 2ab + b^2\)C. \((a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\)D. \((a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3\) 答案:C8. 以下哪个是等差数列的通项公式?A. \(a_n = a_1 + (n - 1)d\)B. \(a_n = a_1 - (n - 1)d\)C. \(a_n = a_1 + nd\)D. \(a_n = a_1 - nd\)答案:A9. 以下哪个是等比数列的通项公式?A. \(a_n = a_1 \cdot r^{n-1}\)B. \(a_n = a_1 \cdot r^n\)C. \(a_n = a_1 \cdot \frac{1}{r^{n-1}}\)D. \(a_n = a_1 \cdot \frac{1}{r^n}\)答案:A10. 以下哪个是三角恒等式?A. \(\sin^2 x + \cos^2 x = 1\)B. \(\sin^2 x + \cos^2 x = 0\)C. \(\sin^2 x + \cos^2 x = 2\)D. \(\sin^2 x + \cos^2 x = x\)答案:A二、填空题(每题4分,共20分)11. 已知\(\sin \theta = \frac{1}{2}\),求\(\cos \theta\)的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20XX年高中测试






科目:
年级:
考点:
监考老师:
日期:
高一数学基础知识试题选
一、选择题:(本大题共32小题,每小题3分,共96分)
1.已知集合M{4,7,8},且M中至多有一个偶数,则这样的集合共有 ( )
(A)3个 (B) 4个 (C) 5个 (D) 6个
2.在①1{0,1,2};②{1}∈{0,1,2};③{0,1,2}{0,1,2};④{0}上述四个关系中,错误的个数是()
(A)1个 (B)2个 (C)3个 (D)4个
3.已知S={x|x=2n,n∈Z}, T={x|x=4k±1,k∈Z},则()(A)S T (B) T S (C)S≠T (D)S=T
4.已知集合,,若,则实数应该满足的条件是()
(A)( B)( C)(D)
5.在图中,U表示全集,用A,B表示出阴影部分,
其中表示正确的是()
(A)A∩B (B) A∪B
(C)(C U A)∩(C U B) (D)(C U A)∪(C U B)
6.已知集合P=,
Q=,那么等于()
(A)(0,2),(1,1) (B){(0,2 ),(1,1)} (C){1,2} (D)
7.以下四个命题中互为等价命题是()
(1)当c>0时,若a>b,则ac>bc;(2)当c>0时, 若ac>bc,则a>b;
(3)当c>0时,若a≤b,则ac≤bc;(4)当c>0时,若ac≤bc,
则a≤b;
(A)(1)与(4) (B)(1)与(4);(2)与(3) (C)(1)与(3);(2)与(4)
(D)(2)与(3)
8.与同解的不等式是()
(A)x2-4≤0 (B)4-x2≤0 (C)4-x2≤0且x≠-2 (D)x2-4≤0且x
≠-2
9.已知p:x2≠y2,q:x≠y,则p是q的()
(A)充分不必要条件 (B)必要不充分条件
©充要条件 (D)既不充分也不必要条件
10.不等式的解集为R,则的取值范围是()(A)(B)(C)(D)
11.下列各图象中,哪一个不可能是函数 y=f(x)的图象()
12.函数的定义域是()
(A).[-2,2] (B)(C).(-∞,-2)∪(2,+∞)
(D){-2,2}
13.已知A={a,b},B={-1,1},f是从A到B的映射,则这样的映射
个数最多有()个。

(A).1 (B)2 (C).3
(D).4
14.设f(x)=2x+3,g(x+2)=f(x),则g(x)等于( )
(A).2x+1 (B)2x-1 (C).2x-3
( D).2x+7
15. 已知=,则的值为()
(A)2 (B)5 (C)4 ( D)3
16.函数的值域为()
(A)[0,3] (B)[-1,0] (C)[-1,3] (D)[0,2]
17.函数y=(2k+1)x+b在(-∞,+∞)上是减函数,则()
(A)k>(B)k<(C)k>(D).k<
18.若函数f(x)=+2(a-1)x+2在区间内递减,那么实数a
的取值范围为()
(A)a≤-3 (B)a≥-3 (C)a≤5
(D)a≥3
19.函数y=-(x≤0)的反函数是()
(A)y=(x≥0) (B)y=(x≤0) (C)y=-(x≤0)
(D)y=(x≤0)
20.函数与的图象是()
(A)关于y轴对称 (B)关于x轴对称 (C)关于原点对称(D)关于y=x对称
21.函数是指数函数,则a的取值范围是()
(A)(B) (C) ( D )
22.已知函数f(x)的图象恒过定点p,则点p的坐标是()(A)( 1,5 )(B)( 1, 4)(C)( 0,4)(D)( 4,0)
23.当a>1时,在同一坐标系中,函数与y=loga x的图象是
()
24.设log32 =a,则log38–2log36 用a表示的形式是()
(A) (B) (C) (D)
25.,log20.3与20.3的大小关系是()
(A)0.32<20.3<log20.3 (B) 0.32<log20.3<20.3
(C)log20.3<0.32<20.3(D) log20.3<20.3<0.32
26.一种新型电子产品投产,计划两年后使成本降低36%,那么平
均每年应降低成本()
(A) 18% (B) 20% (C ) 24% (D)
36%
27.函数的定义域是()
(A)[1,+] (B) ( (C) [ (D) (
28.函数的反函数是()
(A) (B)
(C)(D)
29.在等差数列中,,则()
(A) 36 (B) 38 (C) 39 (D) 42
30.设a,b,c都是正数,且,则下列正确的是()
(A) (B) (C) (D)
31.a,b,c成等比数列,那么关于x的方程ax2+bx+c=0 ( ) (A)一定有两个不相等的实数根。

(B) 一定有两个相等的实数根。

(C) 一定没有实数根。

(D) 以上三种情况均可出现。

32.已知-1.a1,a2,-4成等差数列,-1,b1,b2,b3,-4成等比数列,则等于( )
(A) (B) (C) (D) 或
二、填空题:(本大题共18小题,每小题3分,共54分)
33.已知(x,y)在映射 f下的象是(x-y,x+y),则(3,5)在f下的象是,原象是。

34.如果一个函数的图象关于直线y=x 对称,那么这个函数的反函数就是。

35.将化成分数指数幂为。

36.已知函数f(x)的定义域为[0,1],则f()的定义域为。

37.已知集合A={,,2},B={2,,2}且,=,则=
38.已知全集U = R,不等式的解集A,则
39.用反证法证明“若a>b>0,则”时,第一步反设应为40.学校举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人。

两次运动会中,这个班参赛同学的人数为
41.若log a<1, 则a的取值范围是
42、方程的解是
43.函数f(x)=log(x-x2)的单调递增区间是
44.若一个三角形的三内角成等差数列,且已知一个角为28°,则其它两角的度数为
45.在等差数列{a n}中,若a15=0,则有等式a1+a2+…+a n=a1+a2+…
+a29-n成立。

类比上述性质相应地在等比数列{b n}中,若b19=1,则有等式成立。

46数列{a n}中,a1,a2-a1,a3-a2,…a n-a n-1,…是首项为1,公比为的等比数列,则a n=,s n=.
47.s n=1-2+3-4+5-6+…+(-1)n+1n 则 s100+s200+s301=.
48.数列1,,,,,,,,,,…前110项之和
为。

49.在直角三角形中,三条边成等比数列,则最小角的正弦值为。

50.每次用相同体积的请水洗一件衣物,且每次能洗去污垢的,若清洗n次后,存留的污垢在1%以下,则n的最小值为。

参考答案:
一、选择题:
题号1 2 3 4 5 6 7 8 9 1
1
1
1
2
1
3
1
4
1
5
1
6


D B C C C D B C A C D D D B A C
题号1
7
1
8
1
9
2
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3
3
1
3
2


D A C B C A A A C B D C A B C C
二、填空题
33.(-2,8),(4,1)
34.自身
35.
36.[-1,1]
37.0,1/4
38.{x|x≤-7或x≥3}
39.
40.17。

相关文档
最新文档