高二理科数学(选修2-2、2-3)综合测试题题
高二数学理科选修2-2、2-3综合练习题(含答案)
高二理科选修2-2、2-3综合练习题一、选择题1.已知|z |=3,且z +3i 是纯虚数,则z =( )A .-3iB .3iC .±3i D.4i 2.函数y=x 2cosx 的导数为( ) (A) y ′=2xcosx -x 2sinx(B) y ′=2xcosx+x 2sinx (C) y ′=x 2cosx -2xsinx(D) y ′=xcosx -x 2sinx3.若x 为自然数,且x<55,则(55-x)(56–x)…(68–x )( 69–x )= ( )A 、x x A --5569B 、1569x A -C 、1555x A -D 、1455x A -4.一边长为6的正方形铁片,铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,为使方盒的容积最大,x 应取( ) .A 、1B 、2C 、3D 、45、工人制造机器零件尺寸在正常情况下,服从正态分布2(,)N μσ.在一次正常实验中,取1000个零件时,不属于(3,3)μσμσ-+这个尺寸范围的零件个数可能为( ) A .3个 B .6个 C .7个 D .10个 6、用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( )A.假设至少有一个钝角 B .假设至少有两个钝角C.假设没有一个钝角D.假设没有一个钝角或至少有两个钝角7.4名学生被中大、华工、华师录取,若每所大学至少要录取1名,则共有不同的录取方法( ).A 、72种B 、36种C 、24种D 、12种8、随机变量ξ服从二项分布ξ~()p n B ,,且,200,300==ξξD E 则p 等于( )A. 32B. 31C. 1D. 09.若4)31(22+-=⎰dx x a ,且naxx )1(+的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为( ) A .164-B .132C .164 D .112810.给出以下命题:⑴若 ,则f(x)>0; ⑵ ; ⑶f(x)的原函数为F(x),且F(x)是以T 为周期的函数,则 ; 其中正确命题的个数为( )(A)1 (B)2 (C)3 (D)0 二、填空题11、已知函数f(x) =32(6)1x ax a x ++++在R 上有极值,则实数a 的取值范围是 .12.观察下式1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,……,则可得出一般性结论:________13.已知X 的分布列如图,且,则a 的值为____14.对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项; ④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________. (把你认为正确的命题序号都填上)15.设)(x f 是定义在R 上的可导函数,且满足0)()('>+x xf x f .则不等式)1(1)1(2-->+x f x x f 的解集为____________.20sin 4xdx =⎰π()0ba f x dx >⎰0()()aa TTf x dx f x dx +=⎰⎰三、解答题16.(12分)已知1z i a b =+,,为实数.(1)若234z z ω=+-,求ω;(2)若2211z az b i z z ++=--+,求a ,b 的值.17、(12分) 20()(28)(0)xF x t t dt x =+->⎰.(1)求()F x 的单调区间; (2)求函数()F x 在[13],上的最值.18、(12分)已知数列{}n a 的前n 项和*1()n n S na n =-∈N .(1)计算1a ,2a ,3a ,4a ;(2)猜想n a 的表达式,并用数学归纳法证明你的结论.19、(12分)某次有奖竞猜活动中,主持人准备了A 、B 两个相互独立的问题, 并且宣布:观众答对问题A 可获奖金a 元,答对问题B 可获奖金2a 元;先答哪个题由观众自由选择;只有第一个问题答对,才能再答第二个问题,否则终止答题.设某幸运观众答对问题A 、B 的概率分别为31、14.你觉得他应先回答哪个问题才能使获得奖金的期望较大?说明理由.20、(13分)某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价增加10元,就会有一个房间空闲,如果游客居住房间,宾馆每间每天需花费20元的各种维护费用。
高中数学选修2-2综合测试题(全册含答案)
高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。
2.复数就像向量,有大小和方向。
3.复数就像计算机中的复数类型,有实部和虚部。
4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。
改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。
一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。
①复数的加减法运算可以类比多项式的加减法运算法则。
②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。
③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。
其中类比得到的结论正确的是:A。
①③B。
②④C。
②③D。
①④2.删除明显有问题的段落。
3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。
14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。
4.解答题:15.1) F(x)的单调区间为(-∞。
0)和(2.+∞)。
2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。
又因为AB⊥AC,所以AC²=AD²+DC²。
郑 2-2、2-3测试题(含答案)
高二数学选修2-2、2-3测试题参考数据: P (χ2≥x 0)0.500.400.250.150.100.050.025 0.010 0.0050.001x 00.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828一、选择题:(本大题共8小题,每小题5分,共40分) 1.已知f(x)=22x x +,则'(0)f =( )A . 0B . -4C . -2D . 2 2.如果复数(2m +i)(1+mi)是实数,则实数m=( ) A . 1 B . -1 C .2 D . -23. 某科研机构为了研究中年人秃发与心脏病的是否有关,随机调查了一些中年人情况,具体数据如下表:根据表中数据得到45532075025)300545020(7752⨯⨯⨯⨯-⨯⨯=k ≈15.968 因为K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为 .A 、0.1B 、0.05C 、0.01D 、0.001 4.曲线y=2x 与直线y-x-2=0围成图形的面积是( ) A .133 B . 136 C . 73 D . 925.在一个盒子中有大小一样的20个球,其中10个红球,10个白球,则在第一个人摸出1个红球的条件下,第二个人摸出1个白球的概率为( )A. 1019B. 519 C . 12 D. 19206.某次市教学质量检测,甲、乙、丙三科考试成绩的直方图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由图中曲线可得下列说法中正确的一个是( ) A . 甲科总体的标准差最小 B . 乙科总体的标准差及平均数都居中 C . 丙科总体的平均数最小 D . 甲、乙、丙的总体的平均数不相同7. 从图中的9个顶点中任取3个点作为一组,其中可构成三角形的组数是( ) A .88 B .84 C .80 D .76第7题图 第6题图 8. 若从集合P 到集合Q={a,b,c}所有不同的映射共有81个,则从集合Q 到集合P 可作的不同的映射共有( )A .32个B .27个C .81个D .64个9.在一次试验中,测得()x y ,的四组值分别是(12)(23)(34)(45)A B C D ,,,,,,,,则y 与x 之间的回归直线方程为( A ) A. 1y x =+B. 2y x =+ C.21y x =+D. 1y x =-10、某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( ) A.2258 B.21 C.83D.4311、若函数3()3f x x x =-在区间2(12,)a a -上有最小值,则实数a 的取值范围是( ) A .(1,11)-B .(1,4)-C .(1,2]-D .(1,2)-12.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是701.根据这位负责人的话可以推断出参加面试的人数为( ) A .21B .35C .42D .70二、填空题:(本大题共6小题,每小题5分,共30分)13.定义运算a c b d =ad-bc ,若复数x 满足 22xi 32i-=2x ,则x= . 14.已知函数f(x)=32(6)1x ax a x ++++在R 上有极值,则实数a 的取值范围是15.若(2x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 5+a 3+a 1=_____1094 ________.16. 为了保证信息安全传输,有一种称为秘密密钥密码系统(Private Key Cryptosystem ),其加密、解密原理如下图: 现在加密密钥为)2(log +=x y a ,如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.问:若接受方接到密文为“4”,则解密后得明文为 .心脏病 无心脏病 秃发 20 300 不秃发5450甲乙丙 解密密钥密码 加密密钥密码 明文 密文 密文 发送明文试题答题卡一、选择题:二、填空题:13.,14. ,15. , 16. ,三、解答题。
高二数学联考数学试题(理)(选修2-2)
高二数学选修2-2综合测试(理科)试题第Ⅰ卷 (选择题 共55分)一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项符合题目要求)1.下列各数72+,227i ,0,85+i ,)31(-i ,618.0中,纯虚数的个数有 A .0个 B .1个 C .2个 D .3个2.复数i z +=31,i z -=12,则复数21z z ×在复平面内的对应点位于A .第一象限B .第二象限C .第三象限D .第四象限3.用反证法证明:“a ,b 至少有一个为0”,应假设A .a ,b 没有一个为0;B .a ,b 只有一个为0;C .a ,b 至多有一个为0 ;D .a ,b 两个都为04.某个命题与正整数n 有关.如果当)(*N k k n Î=时该命题成立,那么可推得当1+=k n 时该命题也成立.现已知当5=n 时该命题不成立,那么可推得A .当6=n 时该命题不成立B .当4=n 时该命题不成立C .当6=n 时该命题成立D .当4=n 时该命题成立5.一个物体的运动方程为21t t s +-=,其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是A .7米/秒B .6米/秒C .5米/秒D .8米/秒6.抛物线2x y =在点)41,21(M 处的切线的倾斜角是A .030B .045C .060D .0907.已知函数)(x f 在1=x 处的导数为3,则)(x f 的解析式可能为A .)1(3)1(3-+-x xB .2)1(2-xC .)1(2-xD .1-x 8.函数x x x f cos 21)(+=的一个单调递增区间为 A .6,67(p p - B .)65,6(p p C .3,34(p p - D .32,3(p p 9.已知函数x ax x x f 3)(23+-=,若)(x f 在R 上是增函数,则实数a 的取值范围是A .3£aB .33££-aC .3<aD .33<<-a10.求值:=-ò-dx x 2224A .p 2B .p 4C .p 8D .p 1611.已知函数23bx ax y +=,当1=x 时,有极大值3,则=-b aA .15B .6-C .3D .15-第Ⅱ卷(非选择题 共95分)二、填空题(本大题共4小题每小题5分,共20分.把答案填在题中横线上)12.复数iz -=11的共轭复数是 . 13.设O 是原点,向量,对应的复数分别为i 32-,i 23+-,那么向量对应的复数是 .14.过原点作曲线x y ln =的切线,则切线斜率为 .15.)(131211)(*N n n n f Î++++=L ,经计算得:23)2(=f ,2)4(>f ,25)8(>f ,3)16(>f ,27)32(>f ,推测当2³n 时,有 .三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)已知ABC D 的三个内角C B A ,,成等差数列,求证:c b a c b b a ++=+++311.17.(本小题满分12分) 已知函数x x x f 12)(3+-=.(1)求函数)(x f 的单调区间; (2)当]1,3[-Îx 时,求函数)(x f 的最大值与最小值.18.(本小题满分12分)用数学归纳法证明 )12)(1(63212222++=++++n n n n L (*N n Î).19.(本小题满分15分)已知函数xx ax x f +-++=11)1ln()(,其中0>a ,且),0[+¥Îx . (1)若)(x f 在1=x 处取得极值,求a 的值; (2)求)(x f 的单调区间;(3)若)(x f 的最小值为1,求a 的取值范围.20.(本小题满分10分)(2010全国)设函数2()1x f x e x ax =---(1)若0,()a f x =求的单调区间; (2)若当0()0,x f x a ³³时求的取值范围.21.(本小题满分14分)设()y f x =是二次函数,方程()0f x = 有两个相等的实根,且()22f x x ¢=+ .(1)求()y f x =的表达式;(2)若直线01()x t t =-<< 把()y f x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.。
数学选修2-2 2-3复习题(一)
2-2 2-3综合试题(一)一.选择题(10小题,每小题5分,共50分)1.一个物体的位移s (米)和与时间t (秒)的关系为242s t t =-+,则该物体在4秒末的瞬时速度是 ( )A .12米/秒B .8米/秒C .6米/秒D .8米/秒2.用反证法证明命题 “自然数a 、b 、c 中恰有一个偶数”时,需假设原命题不成立,下列正确的是( )A 、a 、b 、c 都是奇数B 、a 、b 、c 都是偶数C 、a 、b 、c 中或都是奇数或至少有两个偶数D 、a 、b 、c 中至少有两个偶数 3. 测得四组),(y x 的值)2,1()3,2()4,3()5,4(则y 与x 之间的回归直线方程为( ) (A )1+=x y (B )2+=x y (C ) 12+=x y (D ) 1-=x y4.将一个各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,从这些小正方体中任取一个,其中恰好有2面涂有颜色的概率是 ( ) A .916B .2764 C .38 D .11325.下列两个变量之间的关系哪个不是函数关系( )A .角度和它的正弦值B .正方形边长和面积C .正n 边形边数和顶点角度之和D .人的年龄和身高 6.下面几种推理中是演绎推理....的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电;B .猜想数列111,,,122334⋅⋅⋅⨯⨯⨯的通项公式为1(1)n a n n =+()n N +∈;C .半径为r 圆的面积2S r π=,则单位圆的面积S π=;D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=7.从6名学生中,选出4人分别从事A 、B 、C 、D 四项不同的工作,若其中,甲、乙两人不能从事工作A ,则不同的选派方案共有 ( )A .96种B .180种C .240种D .280种8.若X 是离散型随机变量,()()1221,33P X x P X x ====,且12x x <,又已知49EX =,2DX =,则12x x +=( )(A )53 或1 (B )59 (C )179 (D )1399.如图所示,在一个边长为1的正方形AOBC 内,曲线2y x =和曲线y =围成一个叶形图(阴影部分), 向正方形AOBC 内随机投一点(该点落在正方 形AOBC 内任何一点是等可能的),则所投的点 落在叶形图内部的概率是( ) (A )12 (B )13 (C )14 (D )1610.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v v 乙甲和(如图2所示).那么对于图中给定的01t t 和,下列判断中一定正确的是( ) A.在1t 时刻,甲车在乙车前面 B.1t 时刻后,甲车在乙车后面 C.在0t 时刻,两车的位置相同 D.0t 时刻后,乙车在甲车前面二.填空题(5小题,每小题5分,共25分) 11. 复数ii i )1)(1(+-在复平面中所对应的点到原点的距离是_______;____________________12.设随机变量X~N (2,4),则D (21X )的值等于 。
高二数学选修2-2与2-3综合试卷含答案
一选择题1:若()()22132i x x x -+++是纯虚数,则实数x 的值是 。
A. 1- B.1 C. 1± D. 以上都不对2:复数z =i1+i在复平面上对应的点位于 。
A .第一象限B .第二象限C .第三象限D .第四象限 3:若220(3)10,x k dx k +==⎰则 。
A.1B.2C.3D.4 4:函数f(x)=(x -3)e x 的单调递增区间是 。
A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)5:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 。
A.280种 B.240种 C.180种 D.96种6:有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有 。
A.88A 种 B.48A 种C.44A ·44A 种D.44A 种7:从甲袋中摸出1个红球的概率为13,从乙袋中摸出1个红球的概率为12,从两袋中各摸出一个球,则23等于 。
A. 2个球都不是红球的概率B.2个球都是红球的概率 C. 至少有1个红球的概率 D.2个球中恰有1个红球的概率 8:已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为 。
A. 1.234y x =+ B. 1.235y x =+ C. 1.230.08y x =+ D.0.08 1.23y x =+ 9:正态总体的概率密度函数为2()8()x x f x -∈=R ,则总体的平均数和标准差分别为 。
A.0,8 B .0,4 C.0,2 D.0,210:已知f(x)=x 3+bx 2+cx +d 在区间[-1,2]上是减函数,那么b +c 。
A .有最大值152B .有最大值-152C .有最小值152D .有最小值-152二:填空题11:由直线21=x ,x=2,曲线xy 1=及x 轴所围图形的面积是 。
高二数学选修2-2,2-3综合检测习题解析
选修2-2,2-3综合检测一、选择题(共12小题,每小题5分,共60分) 1.设复数z =1+2i ,则z 2-2z 等于( )A .-3B .3C .-3iD .3i 答案.A z2-2z =z(z -2) =(1+2i)(2i -1) =-2-1=-3.2.已知曲线y =x 2+2x -2在点M 处的切线与x 轴平行,则点M 的坐标是( ) A .(-1,3) B .(-1,-3) C .(-2,-3) D .(-2,3)答案解析 B∵f ′(x)=2x +2=0,∴x =-1. f(-1)=(-1)2+2×(-1)-2=-3. ∴M(-1,-3).3.从1,2,3,4,5中任取2个不同的数,事件A=“取到的两个数之和为偶数”,事件B=“取到的两个数均为偶数”,则 P(B|A)等于( ) (A)18 (B)14(C)25 (D)12解析:P(B|A)=n(AB)n(A)=14,故选B.4.满足条件|z -1|=|5+12i|的复数z 在复平面上对应Z 点的轨迹是( ) A .一条直线 B .两条直线 C .圆 D .椭圆答案.C 本题中|z -1|表示点Z 到点(1,0)的距离,|5+12i|表示复数5+12i 的模长,所以|z -1|=13,表示以(1,0)为圆心,13为半径的圆.注意复数的模的定义及常见曲线的定义.5.函数f(x)=x 3+ax 2+3x -9,在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4 D .5 答案 D解析 f ′(x)=3x 2+2ax +3.∵f(x)在x =-3时取得极值, 即f ′(-3)=0,∴27-6a +3=0,∴a =5.6.函数y=ln1|x+1|的大致图象为( )答案 D解析函数的图象关于x=-1对称,排除A、C,当x>-1时,y=-ln(x+1)为减函数,故选D.7.甲、乙、丙3位志愿者安排在周一至周五5天中参加某项志愿活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,则不同的安排方法共有()A.20种B.30种C.40种D.60种解析分类解决.甲排周一,乙、丙只能在周二至周五这4天中选两天进行安排,有A24=12(种)方法;甲排周二,乙、丙只能在周三至周五这3天中选两天安排,有A23=6(种)方法;甲排周三,乙、丙只能安排在周四和周五,有A22=2(种)方法.由分类加法计数原理,得共有12+6+2=20(种)方法.答案 A8.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名学生至少一人参加,且若甲、乙同时参加,则他们发言时不能相邻,那么不同的发言顺序种数为()A.360B.520C.600D.720解析根据题意,分两种情况讨论:若只有甲、乙其中一人参加,有C12·C35·A44=480(种)情况;若甲、乙两人都参加,有C22·C25·A44=240(种)情况,其中甲、乙相邻的有C22·C25·A33·A22=120(种)情况.故不同的发言顺序种数为480+240-120=600.答案 C9.已知(1+x )10=a 0+a 1(x -1)+a 2(x -1)2+…+a 10(x -1)10,则a 8等于( ) A.-180B.180C.45D.-45解析 本题是关于二项展开式的系数问题,注意到展开式右边的特点,可将1+x 写成x -1+2,再展开(1+x )10=(2+x -1)10=C 010210+C 11029(x -1)+C 21028(x -1)2+…+C 81022(x -1)8+C 9102(x -1)9+C 1010(x -1)10,可得a 8=22C 810=180. 答案 B10.若(1-2x )2 020=a 0+a 1x +…+a 2 020x 2 020(x ∈R ),则a 12+a 222+…+a 2 02022 020的值为( ) A.2B.0C.-1D.-2解析 令x =0,则a 0=1,令x =12,则a 0+a 12+a 222+…+a 2 02022 020=0,∴a 12+a 222+…+a 2 02022 020=-1. 故选C.11.某次数学考试中,第一大题由12个选择题组成,每题选对得5分,不选或选错得0分.小王选对每题的概率为0.8,则其第一大题得分的方差为( ). (A )48 (B )9.6 (C )1.92 (D )24 解析:设小王选对个数为X,得分为η=5X, 则X ~B(12,0.8),D(X)=np(1-p)=12×0.8×0.2=1.92, D(η)=D(5X)=25D(X)=25×1.92=48. 答案:4812.若函数f(x)=x 2+ax +1x 在(12,+∞)是增函数,则a 的取值范围是 ( )A .(-1,0]B .[-1,+∞)C .(0,3]D .答案 D解析 把函数在某一区间上的单调递增转化为其导函数在该区间上大于或等于零恒成立,分离参数后求新函数的最值. 由题意知f ′(x)≥0对任意的x ∈[21,+∞)恒成立,又f ′(x)=2x +a -21x , 所以2x +a -21x ≥0对任意的x ∈[21,+∞)恒成立, 分离参数得a ≥21x -2x , 若满足题意,需a ≥(21x-2x)max. 令h(x)=21x -2x ,x ∈[21,+∞) 因为h ′(x)=-31x-2, 所以当x ∈[21,+∞)时,h ′(x)<0, 即h(x)在[21,+∞)上单调递减, 所以h(x)<h(21)=3,故a ≥3. 二、填空题(每小题5分,共20分)13.现有语文、数学、英语书各1本,把它们随机发给甲、乙、丙三个人,且每人都得到1本书,则甲得不到语文书的概率为________ .解析:语文、数学、英语书各1本,随机发给甲、乙、丙三个人,每人都得到1本书,共有A 33=6种分法,甲得不到语文书的分法有C 21A 22=4种,根据古典概型概率公式可得,甲得不到语文书的概率为46=23. 答案:2314.在平面直角坐标系xoy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为________ 答案 (-2,15)解析 y ′=3x 2-10=2⇒x =±2,又点P 在第二象限内,∴x =-2,得点P 的坐标为(-2,15)15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________. 【答案】0.18 ;【解析】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是0.63⨯0.5⨯0.5⨯2=0.108,前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是0.4⨯0.62⨯0.52⨯2=0.072综上所述,甲队以4:1获胜的概率是q=0.108+0.072=0.1816.函数f(x)=x 3+ax 2+bx +a 2,在x =1时有极值10,那么a ,b 的值分别为________. 答案 4,-11解析 f ′(x)=3x 2+2ax +b ,f ′(1)=2a +b +3=0,f(1)=a 2+a +b +1=10, 联立方程组,解得⎩⎨⎧a =-3b =3,或⎩⎨⎧a =4b =-11,当a =-3时,x =1不是极值点,a ,b 的值分别为4,-11.三、解答题(本大题共70分)17(10分).某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X,求X 的分布列和期望. 解:(1)设“当天小王的该银行卡被锁定”的事件为A, 则P(A)=56×45×34=12. (2)X 的可能取值是1,2,3,则P(X=1)=16, P(X=2)=56×15=16, P(X=3)=56×45=23, 所以X 的分布列为E (X )=16 +26 +2=5218(12分).已知函数d cx bx x x f +++=23)(的图象过点P (0,2),且在点M))1(,1(--f 处的切线方程为076=+-y x .(Ⅰ)求函数)(x f y =的解析式;(Ⅱ)求函数)(x f y =的单调区间.解:(Ⅰ)由)(x f 的图象经过P (0,2),知d=2,所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++='由在))1(,1(--f M 处的切线方程是076=+-y x 知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即.3,0,32.121,623-==⎩⎨⎧=-=-⎩⎨⎧=+-+-=+-∴c b c b c b c b c b 解得即 故所求的解析式是 .233)(23+--=x x x x f (Ⅱ).012,0363.363)(222=--=----='x x x x x x x f 即令解得 .21,2121+=-=x x 当;0)(,21,21>'+>-<x f x x 时或当.0)(,2121<'+<<-x f x 时故)21,(233)(23--∞+--=在x x x x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数.19.(本小题满分12分)为了解甲、乙两种产品的质量,从中分别随机抽取了10件样品,测量产品中某种元素的含量(单位:毫克),如图所示是测量数据的茎叶图.规定:当产品中的此种元素的含量不小于18毫克时,该产品为优等品.(1)试用样品数据估计甲、乙两种产品的优等品率;(2)从乙产品抽取的10件样品中随机抽取3件,求抽到的3件样品中优等品数ξ的分布列及其数学期望E(ξ);(3)从甲产品抽取的10件样品中有放回地随机抽取3件,也从乙产品抽取的10件样品中有放回地随机抽取3件;抽到的优等品中,记“甲产品恰比乙产品多2件”为事件C,求事件C 的概率.解:(1)从甲产品抽取的10件样品中优等品有4件,优等品率为410 = 25, 从乙产品抽取的10件样品中优等品有5件,优等品率为510 = 12,故甲、乙两种产品的优等品率分别为25,12. (2)ξ的所有可能取值为0,1,2,3. P(ξ=0)=C 53C 103 = 112, P(ξ=1)=C 51C 52C 103 = 512,P(ξ=2)=C 52C 51C 103 = 512, P(ξ=3)=C 53C 103 = 112.E(ξ)=0×112+1×512+2×512+3×112= 32.(3)抽到的优等品中,甲产品恰比乙产品多2件包括两种情况:“抽到的优等品数甲产品2件且乙产品0件”“抽到的优等品数甲产品3件且乙产品1件”,分别记为事件A,B,P(A)=C 32(25)2(1-25)×C 30(12)0(1-12)3=9250, P(B)=C 33(25)3×C 31×12×(1-12)2=3125,故抽到的优等品中,甲产品恰比乙产品多2件的概率为P(C)=P(A)+ P(B)=9250+3125 =350.20、(12分)已知函数32()23 3.f x x x =-+ (1)求曲线()y f x =在点2x =处的切线方程;(2)若关于x 的方程()0f x m +=有三个不同的实根,求实数m 的取值范围.解:(1)2()66,(2)12,(2)7,f x x x f f ''=-== ∴曲线()y f x =在2x =处的切线方程为712(2)y x -=-,即12170x y --=;(2)记322()233,()666(1)g x x x m g x x x x x '=-++=-=-令()0,0g x x '==或1. 则,(),()x g x g x '的变化情况如下表当0,()x g x =有极大值3;1,()m x g x +=有极小值2m +. ………………………10分由()g x 的简图知,当且仅当(0)0,(1)0g g >⎧⎨<⎩即30,3220m m m +>⎧-<<-⎨+<⎩时,函数()g x 有三个不同零点,m 的范围是(3,2)--.21(12分).近两年双11网购受到广大市民的热捧.某网站为了答谢老顾客,在双11当天零点整,每个金冠买家都可以免费抽取200元或者500元代金券一张,中奖率分别是23和13.每人限抽一次,100%中奖.小张、小王、小李、小赵四个金冠买家约定零点整抽奖.(1)试求这4人中恰有1人抽到500元代金券的概率;(2)这4人中抽到200元,500元代金券的人数分别用X,Y 表示,记ξ=XY,求随机变量ξ的分布列与数学期望.解:(1)设“这4人中恰有i 人抽到500元代金券”为事件Ai,P(A1)=C 41(13)1(23)3=3281.(2)易知ξ可取0,3,4.P(ξ=0)=P(A0)+P(A4)=C 40(13)0(23)4+C 44(13)4(23)0=1681+181=1781, P(ξ=3)=P(A1)+P(A3)=C 41(13)1(23)3+C 43(13)3(23)1=3281+881=4081, P(ξ=4)=P(A2)=C 42(13)2(23)2=2481=827.E(ξ)=0×1781+3×4081+4×827=83. 22(12分).设,.(1)令,求在内的极值;(2)求证:当时,恒有.(1)解:根据求导法则有,故,于是,列表如下:极小值所以,在处取得极小值.(2)证明:由知,的极小值.于是由上表知,对一切,恒有.从而当时,恒有,故在内单调增加.所以当时,,即.故当时,恒有.。
高二理科数学选修2-2综合试题(三)(含答案)
高二理科数学选修2—2综合检测题(三)一、选择题1.若c bx ax x f ++=24)(满足2)1(='f ,则=-')1(f ( ) A .4- B .2- C .2 D .42.已知曲线2212-=x y 上一点)23,1(-P ,则过点P 的切线的倾斜角为( )A .300B .450C .1350D .1650 3.函数23)(23+-=x x x f 在区间][1,1-上的最大值是( )A .2-B . 0C . 2D .44.复数z 满足i z i 34)43(+=-,则z 的虚部位( )A .i 4B .4C .i 54D .545.函数x x x y sin cos -=的导数为( )A .x x sinB .x x sin -C .x x cosD .x x cos -6.三角形的面积为S =12(a +b +c )r ,a 、b 、c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为( )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r ,(S 1、S 2、S 3、S 4为四个面的面积,r 为内切球的半径)D .V =13(ab +bc +ac )h ,(h 为四面体的高)7.函数()x x x f ln 22-=的递增区间是( )A.)21,0( B. ),21(),21,0(+∞ C. ),21(+∞ D.)21,0(),21,(-∞8.下列推理中属于归纳推理且结论正确的是( )A .由()()()222123112,212,312,+>+>+>…,推断:对一切n ∈N *,()212n n +> B .由()cos f x x x =满足()()f x f x -=-对∀x ∈R 都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D .设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S ===,…,推断:2n S n =9.已知函数f (x )=1ln (x +1)-x,则y =f (x )的图象大致为( )10.已知复数ii a z 2)1(++=(,a R i ∈为虚数单位)为实数,则0)a x dx ⎰的值为( )A .π+2B .22π+C .π24+D .π44+11.若函数1)(23+-=ax x x f 在)2,0(上单调递减,则实数a 的取值范围为( )A .3≥aB .3=aC .3≤aD .30<<a 12.若函数c bx ax x x f +++=23)(有极值点21,x x ,且11)(x x f =,若关于x 的方程[]0)(2)(32=++b x af x f 的不同实数根的个数是( )A .3B .4C .5D .6 二、填空题(共5个小题,25分) 13.已知函数1)2(33)(23++++=x a ax x x f 既有极大值又有极小值,则实数a 的取值范围是14.已知函数()f x 的导函数为()f x ',且满足关系式()()332ln f x xf x '=-,则()2f '的值等 于 15.函数2x y =)0(x >的图像在点2,(kk a a )处的切线与x 轴的交点的横坐标为1+k a (*∈N k )若161=a ,则321a a a ++=16.设函数f (x ) = xx +2 (x >0)观察:f 1(x )= f (x ) =xx +2, f 2(x ) =f ( f 1(x )) = x3x +4 , f 3(x ) =f ( f 2(x )) = x7x +8, f 4(x ) =f ( f 3(x )) =x15x +16,……根据以上事实,由归纳推理可得:当n ∈N *且n ≥2时,f n (x ) = f ( f n -1(x )) =___________________________ 三、解答题:(共6个小题,75分)17.已知复数)()32()1(2R m i m m m m z ∈-++-= (1)若z 是实数,求m 的值;(2)若z 是纯虚数,求m 的值;(3)若在复平面C 内,z 所对应的点在第四象限,求m 的取值范围。
(完整版)高中数学选修(2-3)综合测试题(3)附答案
高中数学选修(2-3)综合测试题(3)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角的蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻的右方蜂房中去,若从最初位置爬到4号蜂房中,则不同的爬法有( ) A.4种 B.6种 C.8种 D.10种2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( )A.225()A B.225()C C.22254()C A · D.22252()C A · 3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素的集合T ,则这样的集合T 共有( )A.126个 B.120个 C.90个 D.26个 4.342(1)(1)(1)n x x x +++++++L 的展开式中2x 的系数是( )A.33n C +B.32n C +C.321n C +- D.331n C +-5.200620052008+被2006除,所得余数是( )A.2009 B.3 C.2 D.16.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是( ) A.0.665 B .0.56 C.0.24 D.0.285 7.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于4”;事件B :“甲、乙两骰子的点数之和等于7”,则(|)P B A 的值等于( )A.13 B.118 C.16 D.198.在一次智力竞赛的“风险选答”环节中,一共为选手准备了A ,B ,C 三类不同的题目,选手每答对一个A 类、B 类、C 类的题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A 类、B 类、C 类题目的概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分的期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样 9.已知ξ的分布列如下:ξ 1 2 3 4P1413 16 14并且23ηξ=+,则方差D η=( )A.17936 B.14336 C.29972 D.2277210.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3 D.0.4 11.已知x ,y 之间的一组数据:x 0 1 2 3 y1 3 5 7则y 与x 的回归方程必经过( ) A.(2,2) B.(1,3) C.(1.5,4) D.(2,5) 12.对于2()P K k ≥,当 2.706k >时,就约有的把握认为“x 与y 有关系”( ) A.99% B.99.5% C.95% D.90% 二、填空题13.912x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为 (用数字作答). 14.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家的概率为 (结果用分数表示).15.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分的概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分的概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大的是 .16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中的四点为顶点共可作出个四面体,经过其中每两点的直线中,有 对异面直线. 三、解答题17.某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A ,他有5次出牌机会,每次只能出一种点数的牌,但张数不限,则有多少种不同的出牌方法?18.已知数列{}n a 的通项n a 是二项式(1)n x +与2(1)n x +的展开式中所有x 的次数相同的各项的系数之和,求数列的通项及前n 项和n S .19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a 元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖. (1)求各会员获奖的概率;(2)设场馆收益为ξ元,求ξ的分布列;假如场馆打算不赔钱,a 最多可设为多少元? 20.在研究某种新药对猪白痢的防治效果时到如下数据:存活数 死亡数 合计 未用新药 101 38 139 用新药 129 20 149 合计23058288试分析新药对防治猪白痢是否有效?21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大? (2)在(1)的条件下,求取出的3个球中红球个数的期望.高中数学选修(2-3)综合测试题(3)CDCDB ACBAA CD 13.672 14.11919015.乙 16. 15,45 17.解:由于张数不限,2张2,3张A 可以一起出,亦可分几次出,故考虑按此分类.出牌的方法可分为以下几类:(1)5张牌全部分开出,有55A 种方法;(2)2张2一起出,3张A 一起出,有25A 种方法; (3)2张2一起出,3张A 分开出,有45A 种方法;(4)2张2一起出,3张A 分两次出,有2335C A 种方法; (5)2张2分开出,3张A 一起出,有35A 种方法;(6)2张2分开出,3张A 分两次出,有2435C A 种方法; 因此共有不同的出牌方法5242332455535535860A A A C A A C A +++++=种. 18.解:按(1)nx +及2(1)n x +两个展开式的升幂表示形式,写出的各整数次幂,可知只有当2(1)nx +中出现x 的偶数次幂时,才能与(1)n x +的x 的次数相比较.由0122(1)n n nnn n n x C C x C x C x +=++++L , 132120242213212222222222(1)()()n nn nn n n nnnnnx C C x C x C x C x C x Cx--+=++++++++L L可得0122422222()()()()nnn n n n n n n n n a C C C C C C C C =++++++++L01202422222()()n n n n n n n n n n C C C C C C C C =+++++++++L L 2122n n -=+, 2122nn n a -=+∵,∴222462112(222)(22222(21)(41)223nn nn n S =++++++++=-+⨯-L L122112122(21)(2328)33n n n n +++=-+-=+-·, 2111(2328)3n n n S ++=-∴·.19.解:(1)抽两次得标号之和为12的概率为11116636P =+=;抽两次得标号之和为11或10的概率为2536P =,故各会员获奖的概率为1215136366P P P =+=+=. (2)ξ 30a -30100-30P1365363036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥, 得580a ≤元.所以a 最多可设为580元. 20.解:由公式计算得2288(1012038129)8.65813914923058k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%的把握认为新药对防治猪白痢是有效的.21.解:(1)要想使取出的3个球颜色全不相同,则乙必须取出黄球,甲取出的两个球为一个红球一个白球,乙取出黄球的概率是14,甲取出的两个球为一个红球一个白球的概率是11246x y C C xy C =·,所以取出的3个球颜色全不相同的概率是14624xy xy P ==·,即甲获胜的概率为24xyP =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫= ⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜的概率最大. (2)设取出的3个球中红球的个数为ξ,则ξ的取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··,2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出的3个球中红球个数的期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=。
(完整版)高中数学选修2-2综合测试题(附答案)
高二数学选修2-2综合测试题一、选择题:1、i 是虚数单位。
已知复数413(1)3iZ i i+=++-,则复数Z 对应点落在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限2、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形1 3 6 10 15 则第n 个三角形数为( ) A .n B .2)1(+n n C .12-n D .2)1(-n n 3、求由曲线y x =2y x =-+及y 轴所围成的图形的面积错误..的为( ) A.4(2)x x dx -+⎰B.0xdx ⎰C.222(2)y y dy ---⎰ D.022(4)y dy --⎰4、设复数z 的共轭复数是z ,且1z =,又(1,0)A -与(0,1)B 为定点,则函数()f z =(1)z +()z i -︱取最大值时在复平面上以z ,A,B 三点为顶点的图形是A,等边三角形 B,直角三角形 C,等腰直角三角形 D,等腰三角形5、函数f(x)的定义域为R ,f(-1)=2,对任意x R ∈,'()2f x >,则()24f x x >+的解集为(A)(-1,1) (B)(-1,+∞) (c)(-∞,-l) (D)(-∞,+∞)6、用数学归纳法证明412135()n n n +++∈N 能被8整除时,当1n k =+时,对于4(1)12(1)135k k +++++可变形为A.41412156325(35)k k k +++++·B.441223355k k ++··C.412135k k +++D.412125(35)k k +++7、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且(3)0g -=,则不等式f (x )g (x )<0的解集是( ) A. (-3,0)∪(3,+∞) B. (-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D. (-∞,-3)∪(0,3) 8、已知函数2()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列⎭⎬⎫⎩⎨⎧)(1n f的前n 项和为n S ,则2011S 的值为( )20122011.20112010.20102009.20092008.D C B A9、设函数f(x)=kx 3+3(k -1)x 22k -+1在区间(0,4)上是减函数,则k 的取值范围是 ( )A.13k <B.103k <≤C.103k ≤≤D.13k ≤10、函数()y f x =在定义域3(,3)2-内可导,其图象如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≤的解集为 ( ) A .[)1,12,33⎡⎤-⎢⎥⎣⎦ B .[]481,2,33⎡⎤-⎢⎥⎣⎦C .[]31,1,222⎡⎤-⎢⎥⎣⎦D .3148,1,,32233⎛⎤⎡⎤⎡⎫-- ⎪⎥⎢⎥⎢⎝⎦⎣⎦⎣⎭11、 已知函数)(131)(23R b a bx ax x x f ∈+-+=、在区间[-1,3]上是减函数,则b a +的最小值是A.32B.23C.2D. 312、函数32()393,f x x x x =--+若函数()()[2,5]g x f x m x =-∈-在上有3个零点,则m 的取值范围为( ) A .(-24,8) B .(-24,1]C .[1,8]D .[1,8)高二数学选修2-2综合测试题(答题卡)一、选择题(60分)。
【高二数学】选修2-2综合测试含答案解析
选修2-2综合测试时间120分钟,满分150分.一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:1+2i-2=( ) A .-1-12iB .-1+12iC .1+12iD .1-12i[答案] B [解析]1+2i -2=1+2i 1-2i +i 2=1+2i-2i =+2=-1+12i.2.用反证法证明命题“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除[答案] B[解析] “至少有一个”的否定为“一个也没有”.3.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n n 2+3,从n =k 到n =k +1时,等式左边应添加的式子是( )A .(k -1)2+2k 2B .(k +1)2+k 2C .(k +1)2D .13(k +1)[2(k +1)2+1] [答案] B[解析] 当n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2+…+22+12,当n =k +1时,左边=12+22+…+(k -1)2+k 2+(k +1)2+k 2+(k -1)2+…+22+12,∴从n =k 到n =k +1,左边应添加的式子为(k +1)2+k 2.4.已知函数f (x )=1x +-x,则y =f (x )的图象大致为( )[答案] B[解析] 当x =1时,y =1ln 2-1<0,排除A ;当x =0时,y 不存在,排除D ;当x 从负方向无限趋近于0时,y 趋近于-∞,排除C.故选B.5.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9[答案] D[解析] 由等差数列的性质知,a 1+a 9=a 2+a 8=…=2a 5,故D 成立.6.做直线运动的质点在任意位置x 处,所受的力F (x )=1-e -x,则质点从x 1=0,沿x 轴运动到x 2=1处,力F (x )所做的功是( )A .eB .1e C .2e D .12e[答案] B[解析] 由W =⎠⎛01(1-e -x )d x =⎠⎛011d x -⎠⎛01e -x d x =x |10+e -x |10=1+1e -1=1e .7.已知复数(x -2)+y i(x ,y ∈R )对应向量的模为3,则y x的最大值是( ) A .32B .33C. 3 D .12[答案] C[解析] 由|(x -2)+y i|=3,得(x -2)2+y 2=3, 此方程表示如图所示的圆C ,则y x的最大值为切线OP 的斜率. 由|CP |=3,|OC |=2,得∠COP =π3,∴切线OP 的斜率为3,故选C.8.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图像可能是( )[答案] C[解析] 本题考查导数的应用,函数的图象.由f (x )在x =-2处取极小值知f ′(-2)=0且在-2的左侧f ′(x )<0,而-2的右侧f ′(x )>0,所以C 项合适.函数、导数、不等式结合命题,对学生应用函数能力提出了较高要求.9.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形( )A .28,n +n +2B .14,n +n +2C .28,n 2D .12,n 2+n2[答案] A [解析]根据规律知第6个图形中有1+2+3+4+5+6+7=28.第n 个图形中有1+2+…+(n +1)=n +n +2.10.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在(0,π2)上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1 D .f (x )=-x e -x[答案] D[解析] 若f (x )=sin x +cos x ,则f ″(x )=-sin x -cos x , 在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=ln x -2x ,则f ″(x )=-1x 2,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x 3+2x -1,则f ″(x )=-6x ,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x e -x,则f ″(x )=2e -x-x e -x=(2-x )e -x. 在x ∈(0,π2)上,恒有f ″(x )>0,故选D.二、填空题(本大题共5小题,每小题5分,共25分) 11.(2014·北京理,9)复数(1+i 1-i )2=________.[答案] -1 [解析] 复数1+i1-i =+2-+=2i2=i , 故(1+i 1-i )2=i 2=-1. 12.用数学归纳法证明34n +1+52n +1能被14整除时,当n =k +1时,对于34(k +1)+1+52(k +1)+1应变形为________. [答案] 34·34k +1+52·52k +1[解析] n =k 时,34k +1+52k +1能被14整除,因此,我们需要将n =k +1时的式子构造为能利用n =k 的假设的形式.34(k +1)+1+52(k +1)+1=34·34k +1+52·52k +1+34·52k +1-34·52k +1=34(34k +1+52k +1)+(52-34)52k +1,便可得证.13.在△ABC 中,D 是BC 的中点,则AD →=12(AB →+AC →),将命题类比到四面体中去,得到一个类比命题:____________________________________________________________________________________________________________________________________.[答案] 在四面体A -BCD 中,G 为△BCD 的重心,则AG →=13(AB →+AC →+AD →)14.已知函数f (x )=x 3-ax 2+3ax +1在区间(-∞,+∞)内既有极大值,又有极小值,则实数a 的取值范围是________________.[答案] (-∞,0)∪(9,+∞)[解析] 由题意得y ′=3x 2-2ax +3a =0有两个不同的实根,故Δ=(-2a )2-4×3×3a >0,解得a <0或a >9.15.如图为函数f (x )的图像,f ′(x )为函数f (x )的导函数,则不等式x ·f ′(x )<0的解集为________.[答案] (-3,-1)∪(0,1)[解析] x ·f ′(x )<0⇔⎩⎪⎨⎪⎧x >0,f x ,或⎩⎪⎨⎪⎧x <0,f x∵(-3,-1)是f (x )的递增区间, ∴f ′(x )>0的解集为(-3,-1). ∵(0,1)是f (x )的递减区间, ∴f ′(x )<0的解集为(0,1).故不等式的解集为(-3,-1)∪(0,1).三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.(2015·山东青岛)已知复数z 1=i(1-i)3. (1)求|z 1|.(2)若|z |=1,求|z -z 1|的最大值.[解析] (1)|z 1|=|i(1-i)3|=|i|·|i-1|3=2 2. (2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆.而z 1对应着坐标系中的点Z 1(2,-2),所以|z -z 1|的最大值可以看成是点Z 1(2,-2)到圆上的点的距离的最大值.由图知|z -z 1|max =|z 1|+r (r 为圆的半径)=22+1.17.设函数f (x )=kx 3-3x 2+1(k ≥0). (1)求函数f (x )的单调区间;(2)若函数f (x )的极小值大于0,求k 的取值范围. [解析] (1)当k =0时,f (x )=-3x 2+1,∴f (x )的单调增区间为(-∞,0),单调减区间为(0,+∞). 当k >0时,f ′(x )=3kx 2-6x =3kx (x -2k).∴f (x )的单调增区间为(-∞,0),(2k,+∞),单调减区间为(0,2k).(2)当k =0时,函数f (x )不存在极小值. 当k >0时,由(1)知f (x )的极小值为f (2k )=8k 2-12k2+1>0,即k 2>4, 又k >0,∴k 的取值范围为(2,+∞).18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解析] 解法一: (1)选择(2)式,计算如下:sin 215°+cos 215°-sin15°cos15° =1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 解法二: (1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos2α2+1+cos 60°-2α2-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α =12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α) =1-14cos2α-14+14cos2α=34.19.设a >0且a ≠1,函数f (x )=12x 2-(a +1)x +a ln x .(1)当a =2时,求曲线y =f (x )在(3,f (3))处切线的斜率; (2)求函数f (x )的极值点. [解析] (1)由已知得x >0.当a =2时,f ′(x )=x -3+2x ,f ′(3)=23,所以曲线y =f (x )在(3,f (3))处切线的斜率为23.(2)f ′(x )=x -(a +1)+a x=x 2-a +x +ax=x -x -ax.由f ′(x )=0,得x =1或x =A . ①当0<a <1时,当x ∈(0,a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(a,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =a 时f (x )的极大值点,x =1是f (x )的极小值点. ②当a >1时,当x ∈(0,1)时,f ′(x )>0,函数f (x )单调递增; 当x ∈(1,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点.综上,当0<a <1时,x =a 是f (x )的极大值点,x =1是f (x )的极小值点;当a >1时,x =1是f (x )的极大值点,x =a 是f (x )的极小值点.20.(2014·广东理)设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15.(1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式.[解析] (1)a 1=S 1=2a 2-3×12-4×1=2a 2-7①a 1+a 2=S 2=4a 3-3×22-4×2=4(S 3-a 1-a 2)-20=4(15-a 1-a 2)-20,∴a 1+a 2=8②联立①②解得⎩⎪⎨⎪⎧a 1=3a 2=5,∴a 3=S 3-a 1-a 2=15-8=7,综上a 1=3,a 2=5,a 3=7.(2)由(1)猜想a n =2n +1,以下用数学归纳法证明: ①由(1)知,当n =1时,a 1=3=2×1+1,猜想成立; ②假设当n =k 时,猜想成立,即a k =2k +1, 则当n =k +1时,a k +1=2k -12k a k +6k +12k=2k -12k ·(2k +1)+3+12k=4k 2-12k +3+12k=2k +3=2(k +1)+1这就是说n =k +1时,猜想也成立,从而对一切n ∈N *,a n =2n +1.21.如图,某地有三家工厂,分别位于矩形ABCD 的顶点A ,B 及CD 的中点P 处,已知AB =20 km ,CB =10 km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且与A ,B 等距离的一点O处建造一个污水处理厂,并铺设排污管道AO ,BO ,OP ,设排污管道的总长为y km.(1)设∠BAO =θrad ,将y 表示成θ的函数关系式; (2)确定污水处理厂的位置,使三条排污管道的总长度最小.[解析] (1)延长PO 交AB 于点Q ,则PQ 垂直平分AB .若∠BAO =θrad ,则OA =AQcos ∠BAO =10cos θ,故OB =10cos θ. 又OP =10-10tan θ,所以y =OA +OB +OP =10cos θ+10cos θ+10-10tan θ.故所求函数关系式为y =20-10sin θcos θ+10(0≤θ≤π4).(2)y ′=-10cos θ·cos θ--10sin θ-sinθcos 2θ=θ-cos 2θ.令y ′=0,得sin θ=12.因为0≤θ≤π4,所以θ=π6.当θ∈[0,π6)时,y ′<0,则y 是关于θ的减函数;当θ∈(π6,π4]时,y ′>0,则y 是关于θ的增函数,所以当θ=π6时,y min =20-10×1232+10=(103+10).故当点O 位于线段AB 的中垂线上,且距离AB 边1033km 处时,三条排污管道的总长度最小.。
高中数学 综合测试题3 新人教A版选修2-2
高中新课标数学选修(2-2)综合测试题一、选择题1.函数2y x =在区间[12],上的平均变化率为( ) A.2 B.3 C.4 D.5答案:B2.已知直线y kx =是ln y x =的切线,则k 的值为( )A.1e B.1e- C.2e D.2e -答案:A3.如果1N 的力能拉长弹簧1cm ,为了将弹簧拉长6cm (在弹性限度内)所耗费的功为( ) A.0.18J B.0.26J C.0.12J D.0.28J答案:A4.方程2(4)40()x i x ai a ++++=∈R 有实根b ,且z a bi =+,则z =( )A.22i - B.22i + C.22i -+ D.22i --答案:A5.ABC △内有任意三点不共线的2002个点,加上A B C ,,三个顶点,共2005个点,把这2005个点连线形成不重叠的小三角形,则一共可以形成小三角形的个数为( ) A.4005 B.4002 C.4007 D.4000答案:A6.数列1,2,2,3,3,3,4,4,4,4,的第50项( ) A.8 B.9 C.10 D.11答案:C7.在证明()21f x x =+为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数()21f x x =+满足增函数的定义是大前提;④函数()21f x x =+满足增函数的定义是大前提.其中正确的命题是( ) A.①② B.②④ C.①③ D.②③答案:C8.若a b ∈R ,,则复数22(45)(26)a a b b i -++-+-表示的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限答案:D9.一圆的面积以210πcm /s 速度增加,那么当圆半径20cm r =时,其半径r 的增加速率u 为( )A.12cm/s B.13 cm/s C.14 cm/s D.15 cm/s答案:C10.用数学归纳法证明不等式“11113(2)12224n n n n +++>>++”时的过程中,由n k =到1n k =+时,不等式的左边( )A.增加了一项12(1)k +B.增加了两项11212(1)k k +++ C.增加了两项11212(1)k k +++,又减少了一项11k + D.增加了一项12(1)k +,又减少了一项11k +答案:C11.在下列各函数中,值域不是[22]-,的函数共有( ) (1)(sin )(cos )y x x ''=+ (2)(sin )cos y x x '=+ (3)sin (cos )y x x '=+(4)(sin )(cos )y x x ''=· A.1个B.2个C.3个D.4个答案:C12.如图是函数32()f x x bx cx d =+++的大致图象,则2212x x +等于( ) A.23B.43 C.83D.123答案:C二、填空题13.函数3()31f x x x =-+在闭区间[30]-,上的最大值与最小值分别为 .答案:3,17-14.若113z i =-,268z i =-,且12111z z z +=,则z 的值为 .答案:42255i -+15.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .答案:21n a n =+16.物体A 的运动速度v 与时间t 之间的关系为21v t =-(v 的单位是m/s ,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为18v t =+,两个物体在相距为405m 的同一直线上同时相向运动.则它们相遇时,A 物体的运动路程为 .答案:72m三、解答题17.已知复数1z ,2z 满足2212121052z z z z +=,且122z z +为纯虚数,求证:123z z -为实数.证明:由2212121052z z z z +=,得22112210250z z z z -+=, 即221212(3)(2)0z z z z -++=,那么222121212(3)(2)[(2)]z z z z z z i -=-+=+, 由于,122z z +为纯虚数,可设122(0)z z bi b b ==∈≠R ,且, 所以2212(3)z z b -=,从而123z z b -=±, 故123z z -为实数.18.用总长14.8的钢条做一个长方体容器的框架,如果所做容器的底面的一边长比另一边长多0.5m ,那么高是多少时容器的容积最大?并求出它的最大容积.解:设该容器底面矩形的短边长为x cm ,则另一边长为(0.5)x +m ,此容器的高为14.8(0.5) 3.224y x x x =--+=-, 于是,此容器的容积为:32()(0.5)(3.22)2 2.2 1.6V x x x x x x x =+-=-++,其中0 1.6x <<,即2()6 4.4 1.60V x x x '=-++=,得11x =,2415x =-(舍去), 因为,()V x '在(01.6),内只有一个极值点,且(01)x ∈,时,()0V x '>,函数()V x 递增; (11.6)x ∈,时,()0V x '<,函数()V x 递减;所以,当1x =时,函数()V x 有最大值3(1)1(10.5)(3.221) 1.8m V =⨯+⨯-⨯=, 即当高为1.2m 时,长方体容器的空积最大,最大容积为31.8m . 19.如图所示,已知直线a 与b 不共面,直线c a M =,直线b c N =,又a 平面A α=,b 平面B α=,c 平面C α=,求证:A B C ,,三点不共线.证明:用反证法,假设A B C ,,三点共线于直线l , A B C α∈,,∵,l α⊂∴.c l C =∵,c ∴与l 可确定一个平面β. c a M =∵,M β∈∴.又A l ∈,a β⊂∴,同理b β⊂,∴直线a ,b 共面,与a ,b 不共面矛盾. 所以A B C ,,三点不共线.20.已知函数32()31f x ax x x =+-+在R 上是减函数,求a 的取值范围.解:求函数()f x 的导数:2()361f x ax x '=+-. (1)当()0()f x x '<∈R 时,()f x 是减函数.23610()0ax x x a +-<∈⇔<R 且36120a ∆=+<3a ⇔<-.所以,当3a <-时,由()0f x '<,知()()f x x ∈R 是减函数; (2)当3a =-时,33218()331339f x x x x x ⎛⎫=-+-+=--+ ⎪⎝⎭,由函数3y x =在R 上的单调性,可知当3a =-时,()()f x x ∈R 是减函数; (3)当3a >-时,在R 上存在使()0f x '>的区间,所以,当3a >-时,函数()()f x x ∈R 不是减函数. 综上,所求a 的取值范围是(3)--,∞.21.若0(123)i x i n >=,,,,,观察下列不等式:121211()4x x x x ⎛⎫++ ⎪⎝⎭≥,123123111()9x x x x x x ⎛⎫++++ ⎪⎝⎭≥,,请你猜测1212111()n nx x x x x x ⎛⎫++++++⎪⎝⎭满足的不等式,并用数学归纳法加以证明.解:满足的不等式为21212111()(2)n n x x x n n x x x ⎛⎫++++++⎪⎝⎭≥≥,证明如下: 1.当2n =时,结论成立;2.假设当n k =时,结论成立,即21212111()k kx x x k x x x ⎛⎫++++++⎪⎝⎭12121121121111111()()1k k k k k x x x x x x x x x x x x x ++⎛⎫⎛⎫=+++++++++++++++ ⎪ ⎪⎝⎭⎝⎭· 212111)1k kk x x x x ⎛⎫+++++++ ⎪⎝⎭≥ 2221(1)k k k ++=+≥.显然,当1n k =+时,结论成立.22.设曲线2(0)y ax bx c a =++<过点(11)-,,(11),. (1)用a 表示曲线与x 轴所围成的图形面积()S a ; (2)求()Sa 的最小值.解:(1)曲线过点(11)-,及(11),,故有1a b c a b c =-+=++,于是0b =且1c a =-,令0y =,即2(1)0ax a +-=,得x = 记α=,β,由曲线关于y 轴对称, 有2300()2[(1)]2(1)3a S a ax a dx x a x ββ⎡⎤=+-=+-⎢⎥⎣⎦⎰|2(13a a ⎡=-=⎢⎣· (2)()S a 3(1)()(0)a f a a a-=<,则223221(1)()[3(1)(1)](21)a f a a a a a a a -'=---=+.令()0f a '=,得12a =-或1a =(舍去).又12a ⎛⎫∈-- ⎪⎝⎭,∞时,()0f x'<;102a ⎛⎫∈- ⎪⎝⎭,时,()0f x '>.所以,当12a =-时,()f a 有最小值274,此时()S a高中新课标数学选修(2-2)综合测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数cos sin y x x x =-的导数为 ( ) (A )cos x x (B )sin x x - (C )sin x x (D )cos x x -2.下列说法正确的是 ( ) (A )当0()0f x '=时,0()f x 为()f x 的极大值(B )当0()0f x '=时,0()f x 为()f x 的极小值 (C )当0()0f x '=时,0()f x 为()f x 的极值 (D )当0()f x 为()f x 的极值时, 0()0f x '=3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是 ( ) (A )1 (B 7 (C 13(D )54.若函数3()y a x x =-的递减区间为33(,33-,则a 的取值范围是 ( ) (A )(0,)+∞ (B )(1,0)- (C )(1,)+∞ (D )(0,1)5.下列四条曲线(直线)所围成的区域的面积是 ( ) (1)sin y x =;(2) s y co x =; (3)4x π=-;(4) 4x π=2 (B)22226.由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,叫 ( )(A )合情推理 (B )演绎推理 (C )类比推理 (D )归纳推理7.复数a bi -与c di +的积是实数的充要条件是 ( ) (A )0ad bc += (B )0ac bd += (C )0ad bc -= (D )0ac bd -= 8.已知函数1sin 2sin 2y x x =+,那么y '是 ( ) (A )仅有最小值的奇函数 (B )既有最大值又有最小值的偶函数 (C )仅有最大值的偶函数 (D )非奇非偶函数9.用边长为48厘米的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒。
人教版2012高二选修2—2与2—3下学期数学综合练习题
高二下学期数学综合测试题(一)一、选择题1.复数ii --1)2(2的虚部是( )A .—1B .21- C .1 D .212.若1~10,2X B ⎛⎫ ⎪⎝⎭,则12D X ⎛⎫⎪⎝⎭=( ). A .52 B .54 C .58 D .5163.函数2()(0)f x ax c a =+≠,若100()()f x dx f x =⎰,则0x 的值为( )A. ±B.C.13D.4.掷一枚质地均匀的骰子12次,则出现向上一面是3的次数的均值和方差分别是( ) A.4和38 B.2和5 C.2和35 D.621和1 5. 用反证法证明命题:若整系数一元二次方程)0(02≠=++a c bx ax 有有理数根,那么a 、b 、c 中至少有一个是偶数时,下列假设中正确的是( )A .假设a 、b 、c 都是偶数B .假设a 、b 、c 都不是偶数C .假设a 、b 、c 至多有一个偶数D .假设a 、b 、c 至多有两个偶数 6.若随机变量X 的概率分布密度函数是()()228,x x μσϕ+-=,x R ∈,则()21E X -=( ).A .3B .4C .-4D .-57. 某种动物从出生起活到20岁的概率为0.8, 从出生起活到25岁的概率为0.4, 现有一个20岁的这种动物, 它能活到25岁的概率为 ( ) A. 0.4 B. 0.5 C. 0.32 D. 0.28.对任意的实数x ,有3230123(2)(2)(2)x a a x a x a x =+-+-+-,则2a 的值为A.3B.6C.9D.129.设q 为非负实数,随机变量X 的分布列如下,则)(X D 的最大值为( ).A .14B .1C .2D .无最大值10.设0(sin cos )a x x dx π=+⎰,且21()nx ax-的展开式中只有第4项的二项式系数最大,那么展开式中所有项的系数之和为 ( ) A .0 B .256 C .64 D .164. 二、填空题11.若事件A 与B 相互独立,且1()()4P A P B ==,则)(B A P +的值等于 . 12.在某项测量中,测量结果ξ服从正态分布2(1,)(0)N σσ>,若ξ在()0,1内取值的概率0.4,则ξ在()0,2内取值的概率为 .13. 用3个1,2个2,能组成不同的五位数有 个.14.将5个编号为1、2、3、4、5的小球,放入编号为一、二、三的三个盒子内,每盒至少一球,则编号为三的盒子内恰有两个球的概率为 15.若32()26f x x ax x =+-+在区间11(,)32上既不是单调递增函数也不是单调递减函数,则实数a 的取值范围是________________________16.在杨辉三角中,斜线AB 上方箭头所示的数组成一个数列1,2,3,3,6,4,10,…,记这个数列的前n 项和为n S ,则12S =_______________________________.1 1 11 1 1…… 三、解答题17.甲乙丙三人分别独立解决一道数学题,已知甲做对的概率为34,甲丙两人都做错的概率为112,乙丙两人都做对的概率为14,(1)求乙丙两人各自做对这道题的概率; (2)求做对这道题人数X 的分布列及其)(X E .18.设函数()()()02ln ln >+-+=a ax x x x f 。
高二下数学期末综合试题(理)人教A版选修2-2_2-3_4-4
高二数学期末试题∑∑=-=--∧---=ni i ni i ix x y y x xb 121)())((=1221ni ii nii x y nx yxnx==--∑∑, ˆay b x ∧=-. 随机量变))()()(()(22d b c a d c b a bc ad n K ++++-= (其中d c b a n +++=)临界值表一、选择题:本大题共12小题,每小题5分;共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数212ii+-的共轭复数是(A )35i - (B )35i (C )i - (D )i2.10⎰(e 2+2x )dx 等于A.1B.e-1C.eD.e+1 3.已知ξ的分布列如下:并且23ηξ=+,则方差D η=( ) A.17936B.14336C.29972D.227724. 在极坐标系中,点 (,)π23到圆2cos ρθ= 的圆心的距离为(A )2 (B) (5. 若函数32()1f x x x mx =+++是R 上的单调函数,则实数m 的取值范围是 A. 1(,)3+∞ B. 1(,)3-∞ C. 1[,)3+∞ D. 1(,]3-∞6.在6⎫⎝的二项展开式中,2x 的系数为 A.154- B .154C .38-D .387.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B )12 (C )23 (D)348.已知随机变量ξ服从正态分布()22N ,a ,且P(ξ<4)=0.8,则P(0<ξ<2)=A.0.6 B.0.4 C.0.3 D.0.29.如图,用K 、1A 、2A 三类不同的元件连接成一个系统。
当K 正常工作且1A 、2A 至少有一个正常工作时,系统正常工作,已知K 、1A 、2A 正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为A .0.960 B.0.864 C.0.720 D.0.576(10)某产品的广告费用x 与销售额y 的统计数据如下表根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 (A )63.6万元 (B )65.5万元 (C )67.7万元 (D )72.0万元 11.由曲线y =2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C )163(D )6 12.若曲线22=ρ上有n个点到曲线2)4cos(=+πθρ的距离等于2,则n =( )A .1B .2C .3D .4 二、填空题:本大题共4小题,每小题5分。
完整word版高二理科数学选修22、23综合测试题
高二理科数学(选修2-2 、2-3 )综合测试题一、选择题(本大题共 12 小题,每题 5 分,共60 分)1.复数12i 的共轭复数为34iA.1 2i ,B.1 2i , C.1 2 iD.1 2 i555 55 55 52. 在 100 件产品中,有 3 件是次品,现从中随意抽取 5 件,此中起码有 2 件次品的取法种数为A .232332514C 5 - C 5C 3C 97B. C C97 + CCC. C 100 - C 3C 97D. 100973 3 973.5 个人排成一排,此中甲与乙不相邻,而丙与丁一定相邻,则不一样的排法种数为A.72B.48C.24D.604.若 f (x 0 )2 , 则 limf ( x 0 k) f ( x 0 )2kkA . 2B.1C.1 D.没法确立25.1xx10睁开式中的常数项为(A )第 5 项 (B )第 6 项(C )第 5 项或第 6 项 ( D )不存在 6. 袋中有 5 个红球, 3 个白球,不放回地抽取 2 次,每次抽 1 个.已知第一次抽出的是红球,则第 2 次抽出的是白球的概率为(A )3(B )3(C )4(D )178 7 27. 曲线 ysin x(0 x3) 与两坐标轴所围成图形的面积为25A .1B . 2C .3D.28. 4 名学生被中大、华工、华师录取,若每所大学起码要录取 1 名,则共有不一样的录取方法A .72 种B .24 种C .36 种D .12 种 9.两个实习生每人加工一个部件.加工为一等品的概率分别为2和3,两个部件是34否加工为一等品互相独立,则这两个部件中恰有一个一等品的概率为(A )1(B)5 (C)1 (D)12124610. 已知随机 量 X 听从正态散布 N ( 3,1 ),且 P (2≤ X ≤ 4)=0.6826 ,则 P(X > 4)= 。
1 2 x) dx 等于(11. 定积分( 2x x )A2B1C1 D112. 在曲线 y x2x 0 上某一点 A 处作全部线使之与曲线以及x 轴所围的面积为1,则这个切线方程是 .12A.y=-2x-1B.y=-2x+1C.y=2x-1D.y=2x+1二、填空题(本大题共 4 小题,每题 5 分,共 20 分)13. 同时投掷 5 枚平均的硬币 80 次,设 5 枚硬币正好出现 2 枚正面向上, 3 枚反面向上的次数为ξ,则ξ的数学希望是 __________14. 某班从 6 名班干部中(此中男生 4 人,女生 2 人)选 3 人参加学校的义务劳动,在男 生甲被选中的状况下,女生乙也被选中的概率是___________ 15. 若f (x)1x 2 bln(x 2)在(-1,+) 上是减函数,则 b 的取值范围是216、如图,用 6 种不一样的颜色给图中的 4 个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不一样,且两头的格子的颜色也不一样,则不一样 的涂色方法共有 种(用数字作答).三、解答题:( 17 题 10 分, 18~ 22 每题 12 分)17. 命题 p : m 2i2 i ( i 是虚数单位);命题 q :“函数 f ( x )2x3mx 2( 2m3) x 在(-∞,+∞)上单一递加” .3m2若 p ∧q 是假命题, p ∨ q 是真命题,求的范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二理科数学(选修
2-2、2-3)综合测试题
班级___________
姓名__________________ 得分___________
一、选择题(本大题共12小题,每小题
5分,共60分.)
1.复数
i i
4321的共轭复数为( )
A.
i 5
25
1 , B.
i 5
25
1, C.
i 5
25
1 D.
i
5
25
12.在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有
2件次品的取法种数为
( )
A .233
97
C C B.
2332
397397C C +C C
C.
514100
3
97
C
-C C D.
55100
97
C
-C
3.5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为
( )
A.72
B.48
C.24
D.60 4.若0()
2f x ,则0
lim
k 00()()
2f x k f x k ( )
A
.2 B.1 C. 12
D.
无法确定
5.
10
1x
x
展开式中的常数项为( )
(A )第5项(B )第6项(C )第5项或第6项(D )不存在6.袋中有5个红球,3个白球,不放回地抽取2次,每次抽1个.已知第一次抽出的是红球,
则第2次抽出的是白球的概率为( )
(A )37(B )
38
(C )
47
(D )12
7.曲线3sin (0
)2
y
x x
与两坐标轴所围成图形的面积为
( )
A . 1
B . 2
C .
52
D. 3
8. 4
名学生被中大、华工、华师录取,若每所大学至少要录取1名,则不同的录取方法共有( )
A .72种
B .24种
C .36种
D .12种
9.两个实习生每人加工一个零件.加工为一等品的概率分别为23
和
34
,两个零件是否加工为
一等品相互独立,则这两个零件中恰有一个一等品的概率为
( )
(A )
12
(B)
512
(C)
14
(D)
16
10.已知随机量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.6826,则P(X >4)= ( )。
A.0.1588
B.0.1587
C.0.1586
D.0.1585
11.定积分
1
2
(2)x x
x dx 等于(
)
A24
B
1
2
C
14
D
12
12.在曲线
02
x
x y 上某一点A 处作一切线使之与曲线以及
x 轴所围的面积为
12
1,则这个
切线方程是( ).
A.y=-2x-1
B.y=-2x+1
C.y=2x-1
D.y=2x+1
二、填空题(本大题共4小题,每小题5分,共20分)13.同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现
2枚正面向上,3枚反面向上的次数
为ξ,则ξ的数学期望是__________
14.某班从6名班干部中(其中男生4人,女生2人)选3人参加学校的义务劳动,在男生甲被
选中的情况下,女生乙也被选中的概率是___________ 15.若
2
1()
ln(2)2
f x x b x 在(-1,+)上是减函数,则b 的取值范围是
16、如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个
格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有种(用数字作答).三、解答题:(每题10分,共20分)17. 已知a 为实数,函数
2
()(1)()f x x
x a .
(1) 若(1)
0f ,求函数y
()f x 在[-
32
,1]上的极大值和极小值;
(2)若函数()f x 的图象上有与
x 轴平行的切线,求a 的取值范围.
18.在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个。
现从盒子中每次任意取出一个球,若取出的是蓝球则结束,若取出的不是蓝球则将其放回
箱中,并继续从箱中任意取出一个球,但取球次数最多不超过3次。
求:
(1)取两次就结束的概率;
(2)正好取到2个白球的概率;
高二理科数学(选修
2-2、2-3)综合测试题答案一.选择题: BBCBB ADCBB AC 二.填空题:
13.25 14.25
15.
1
b
16.630
三.计算题:
17.解:(Ⅰ)∵(1)
0f ,∴3
21
0a ,即2a
.
∴2
1
()341
3()(1)3
f x x x x
x .… 2分
由()0f x ,得1x 或13x
;
由()
0f x ,得
11
3
x
.
… 4分
因此,函数()f x 的单调增区间为3(1)2
,,1(
1)3
,;单调减区间为
1(1)3
,.()f x 在1x 取得极大值为
(1)
2f ;()f x 在13
x
取得极小值为
1
50(
)
3
27
f .
(8)
分
(Ⅱ) ∵3
2
()
f x x
ax
x
a ,∴2
()
321f x x
ax .
∵函数()f x 的图象上有与x 轴平行的切线,∴
()
0f x 有实数解.
… 10分
∴2
44310a D
,∴2
3a
,即
33a a 或.
因此,所求实数
a 的取值范围是(
3]
[3),
,
.
… 12分18. 解:(1)取两次的概率
1
1821110
10
4142
55
25
C C P
C
C
……5分
答: 取两次的概率为425
………………..6分
(2)由题意知可以如下取球:红白白、白红白、白白红、白白蓝四种情况,…
.7分
所以恰有两次取到白球的概率为
533
332153
3
101010
1010101000
P
答: 恰有两次取到白球的概率为
153
1000
………………….12分高二理科数学(选修
2-2、2-3)综合测试题答案
一.选择题: BBCBB ADCBB AC 二.填空题:
13.25 14.25
15.
1
b
16.630
三.计算题:
17.解:(Ⅰ)∵(1)
0f ,∴3
21
0a ,即2a
.
∴2
1
()341
3()(1)3
f x x x x
x .… 2分
由()
0f x ,得1x 或13x
;
由()
0f x ,得
11
3
x
.
… 4分
因此,函数()f x 的单调增区间为3(1)2
,,1(
1)3
,;单调减区间为
1(1)3,.()f x 在1x
取得极大值为
(1)
2f ;()f x 在13
x
取得极小值为
150(
)327f .
(8)
分
(Ⅱ) ∵3
2
()
f x x
ax
x
a ,∴2
()
321f x x
ax .
∵函数()f x 的图象上有与x 轴平行的切线,∴
()
0f x 有实数解.
… 10分
∴2
44310a D
,∴2
3a
,即
33a a 或.
因此,所求实数
a 的取值范围是(
3]
[3),
,
.
… 12分18. 解:(1)取两次的概率
1
1821110
10
4142
55
25
C C P
C
C
……5分
答: 取两次的概率为425
………………..6分
(2)由题意知可以如下取球:红白白、白红白、白白红、白白蓝四种情况,…
.7分
所以恰有两次取到白球的概率为
533
332153
3
101010
1010101000
P
答: 恰有两次取到白球的概率为
153
1000
………………….12分。