2017年六年级希望杯试题+答案

合集下载

小学奥数2017年希望杯培训一百题六年级第74题

小学奥数2017年希望杯培训一百题六年级第74题
74:张强晚上六点多钟离家锻炼身体,此时时针与分针的夹角是 110°,回家时发现还未到7点,且时针与分针的夹角仍是110°, 问张强外出锻炼了多长时间?
74:张强晚上六点多钟离家锻炼身体,此时时针与分针的夹角是 110°,回家时发现还未到7点,且时针与分针的夹角仍是110°, 问张强外出锻炼了多长时间?
Hale Waihona Puke 74:张强晚上六点多钟离家锻炼身体,此时时针与分针的夹角是 110°,回家时发现还未到7点,且时针与分针的夹角仍是110°, 问张强外出锻炼了多长时间?
74:张强晚上六点多钟离家锻炼身体,此时时针与分针的夹角是 110°,回家时发现还未到7点,且时针与分针的夹角仍是110°, 问张强外出锻炼了多长时间?
分针走过的路程是时针的12倍
74:张强晚上六点多钟离家锻炼身体,此时时针与分针的夹角是 110°,回家时发现还未到7点,且时针与分针的夹角仍是110°, 问张强外出锻炼了多长时间?
分针走过的路程是时针的12倍
74:张强晚上六点多钟离家锻炼身体,此时时针与分针的夹角是 110°,回家时发现还未到7点,且时针与分针的夹角仍是110°, 问张强外出锻炼了多长时间?

小学奥数2017年希望杯培训一百题六年级第50题

小学奥数2017年希望杯培训一百题六年级第50题

50:某超市9时开门营业,开门前就有人等候入场,如果从第一个顾客来时起,每分钟来 的顾客人数一样多,那么开4个门,等候的人要全部进入超市要8分钟;开6个门,等候的 人要全部进入商场要4分钟,第一个顾客的到达50:某超市9时开门营业,开门前就有人等候入场,如果从第一个顾客来时起,每分钟来 的顾客人数一样多,那么开4个门,等候的人要全部进入超市要8分钟;开6个门,等候的 人要全部进入商场要4分钟,第一个顾客的到达的时间是几时几分?
设每个门每分钟进人1份
说明顾客排队每分钟多2份人
50:某超市9时开门营业,开门前就有人等候入场,如果从第一个顾客来时起,每分钟来 的顾客人数一样多,那么开4个门,等候的人要全部进入超市要8分钟;开6个门,等候的 人要全部进入商场要4分钟,第一个顾客的到达的时间是几时几分?
50:某超市9时开门营业,开门前就有人等候入场,如果从第一个顾客来时起,每分钟来 的顾客人数一样多,那么开4个门,等候的人要全部进入超市要8分钟;开6个门,等候的 人要全部进入商场要4分钟,第一个顾客的到达的时间是几时几分?
50:某超市9时开门营业,开门前就有人等候入场,如果从第一个顾客来时起,每分钟来 的顾客人数一样多,那么开4个门,等候的人要全部进入超市要8分钟;开6个门,等候的 人要全部进入商场要4分钟,第一个顾客的到达的时间是几时几分?
设每个门每分钟进人1份
说明顾客排队每分钟多2份人
50:某超市9时开门营业,开门前就有人等候入场,如果从第一个顾客来时起,每分钟来 的顾客人数一样多,那么开4个门,等候的人要全部进入超市要8分钟;开6个门,等候的 人要全部进入商场要4分钟,第一个顾客的到达的时间是几时几分?
设每个门每分钟进人1份
说明顾客排队每分钟多2份人 说明开门前排队已经有16份人 说明开门前8分钟已经有人排队

2017新希望杯六年级初赛试题(含答案解析)

2017新希望杯六年级初赛试题(含答案解析)

2017年新希望杯全国数学大赛六年级试题·初试试卷(A 卷)一、填空题(每小题7分,共70分)1.计算11(1)(1775%)_____.132+⨯-+=【答案】18【解析】1431=(171342⨯-+原式14651134236218=⨯+==2.按照轨道交通第四期建设规划,在未来9年内,武汉将新建14条地铁线路,其中12号线为武汉首条地铁环线,全线长度约为59.4km ,其中高架线长度约为11.1km ,则在12号线中,高架线占全长的______%。

(结果保留一位小数。

)【答案】18.7【解析】11.159.418.7%÷≈3.如图,将一张正方形纸片连续折叠3次,在折叠所得的长方形纸片边缘剪下一个半圆形的部分,将纸片完全打开后,圆形小孔共有______个。

【答案】4【解析】如下图所示,4个4.把1332的分子加上a ,分母减去a ,分数的值就变为23,则a =________。

【答案】80人【解析】13+2323a a =-,解得:5a =5.某地区参加“枫叶新希望杯”全国数学夏令营的代表队由领队老师和学员组成,每名领队老师带5名低年级学员或者10名高年级学员。

若地区派出的代表队一共118人,其中领队老师13人,那么高年级学员由_______人。

【答案】80【解析】设有x 个老师带低年级,则有(13)x -个老师带高年级510(13)11813510(135)80()x x x +-=-=⨯-=人6.如图,14个相同的小方块堆积在一起,对于每个小方块,若其底面悬空的部分不超过一半,这个小方块就不会动,在保证阴影小方块不动的前提下,最多可以拿掉______个小方块。

【答案】9【解析】第二层可取两个,第三层可取7个(如图阴影部分),最多可取9个7.港口有一些集装箱,数量在200到250个之间。

如果用一艘大船运输,每趟能装25个,且最后一趟只装20个;如果用一艘小船运输,每趟能装15个,且最后一趟只装10个,这些集装箱一共有_______个。

2017新希望杯六年级初赛试题(含答案解析)

2017新希望杯六年级初赛试题(含答案解析)

2017年新希望杯全国数学大赛六年级试题·初试试卷(A 卷)一、填空题(每小题7分,共70分)1.计算11(1)(1775%)_____.132+⨯-+=【答案】18【解析】1431=(171342⨯-+原式14651134236218=⨯+==2.按照轨道交通第四期建设规划,在未来9年内,武汉将新建14条地铁线路,其中12号线为武汉首条地铁环线,全线长度约为59.4km ,其中高架线长度约为11.1km ,则在12号线中,高架线占全长的______%。

(结果保留一位小数。

)【答案】18.7【解析】11.159.418.7%÷≈3.如图,将一张正方形纸片连续折叠3次,在折叠所得的长方形纸片边缘剪下一个半圆形的部分,将纸片完全打开后,圆形小孔共有______个。

【答案】4【解析】如下图所示,4个4.把1332的分子加上a ,分母减去a ,分数的值就变为23,则a =________。

【答案】80人【解析】13+2323a a =-,解得:5a =5.某地区参加“枫叶新希望杯”全国数学夏令营的代表队由领队老师和学员组成,每名领队老师带5名低年级学员或者10名高年级学员。

若地区派出的代表队一共118人,其中领队老师13人,那么高年级学员由_______人。

【答案】80【解析】设有x 个老师带低年级,则有(13)x -个老师带高年级510(13)11813510(135)80()x x x +-=-=⨯-=人6.如图,14个相同的小方块堆积在一起,对于每个小方块,若其底面悬空的部分不超过一半,这个小方块就不会动,在保证阴影小方块不动的前提下,最多可以拿掉______个小方块。

【答案】9【解析】第二层可取两个,第三层可取7个(如图阴影部分),最多可取9个7.港口有一些集装箱,数量在200到250个之间。

如果用一艘大船运输,每趟能装25个,且最后一趟只装20个;如果用一艘小船运输,每趟能装15个,且最后一趟只装10个,这些集装箱一共有_______个。

小学奥数2017年希望杯培训一百题六年级第31题

小学奥数2017年希望杯培训一百题六年级第31题
31:求17个自然数的平均数,结果保留两位小数,甲得 到11.28,这个数百分位上的数字错了,求正确答案。
31:求17个自然数的平均数,结果保留两位小数,甲得 到11.28,这个数百分位上的数字错了,求正确答案。
31:求17个自然数的平均数,结果保留两位小数,甲得 到11.28,这个数百分位上的数字错了,求正确答案。
31:求17个自然数的平均数,结果保留两位小数,甲得 到11.28,这个数百分位上的数字错了,求正确答案。
31:求17个自然数的平均数,结果保留两位小数,甲得 到11.28,这个数百分位上的数字错了,求正确答案。
31:求17个自然数的平均数,结果保留两位小数,甲得 到11.28,这个数百分位上的数字错了,求正确答案。
Hale Waihona Puke 31:求17个自然数的平均数,结果保留两位小数,甲得 到11.28,这个数百分位上的数字错了,求正确答案。

2017六年级希望杯100题答案--全无水印

2017六年级希望杯100题答案--全无水印

第十五届(2017 年)希望杯 100 题 · 六年级
Байду номын сангаас
2 2 2 2 1 2 1 2 1 2 5 1 7 1 9 1 99 1 2 2 2 2 = 48 4 6 6 8 8 10 98 100 1 1 1 1 1 1 1 1 = 48 4 6 6 8 8 10 98 100 1 1 = 48 4 100 6 = 48 . 25 27 3 9.(1) 0.2 7 = = . 99 11 1206 12 199 = (2) 0.12 0 6 = . 9900 1650 428571 571428 999999 = =1. 10.原式 = 999999 999999 999999 3 4 7 1 , 0.571428 = ,所以 0.4 28571 0.5 71428 = 1 . 另解 0 . 4 2 8 5 = 7 7 142857 1 35 = 35 = 5 . 11.原式 = 999999 7 4 7 12.原式 = = 1 . 7 4 16 1 2 999 16 1 = 13.原式 = 2 16 1 19 34 999 20 999 2 22 90 90 90 2000 16 2 90 10 = = . 999 2014 111 234 2 84 232 168 400 495 = 990 990 = 990 = 10 . 14.原式 = 990 568 56 56 512 112 400 11 900 450 900 900 900 15.原式 = 1 2 3 9 0.12 0.23 0.34 0.90 0.01 90 1 12 23 34 = 45 99 99 99 99 99 495 = 45 = 45 5 = 50 . 99 3 n 11 3 n 11 27 33 3 1 16. ,即 72 72 72 , 27 4n 66 , n , 6 n 16 ,所以满 8 18 12 8 18 12 4 2 4 2 3 n 11 足 的自然数 n 有 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 ,共 10 个. 8 18 12 = 1

2020年第十五届小学数学“梦想杯”全国数学邀请赛试卷(六年级第1试)

2020年第十五届小学数学“梦想杯”全国数学邀请赛试卷(六年级第1试)

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)二、以下每题6分,共120分)1.(6分)计算:2017×+=.2.(6分)计算:0.4285×6.3﹣0.2857×1=.3.(6分)定义:a☆b=,则2☆(3☆4)=.4.(6分)如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.5.(6分)已知A是B的,B是C的,若A+C=55,则A=.6.(6分)如图所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如:1.9579,3.5791.在所有这样只有一位整数的循环小数中,最大的是.7.(6分)甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.8.(6分)从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.9.(6分)等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.10.(6分)能被5和6整除,并且数字中至少有一个6的三位数有个.11.(6分)小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是元.12.(6分)已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.13.(6分)a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.14.(6分)小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.15.(6分)如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.16.(6分)如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米.17.(6分)如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.18.(6分)将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.19.(6分)张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.20.(6分)甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)参考答案与试题解析二、以下每题6分,共120分)1.(6分)计算:2017×+=2016.【解答】解:2017×+=(2016+1)×+=2016×++=2015+(+)=2015+1=2016;故答案为:2016.2.(6分)计算:0.4285×6.3﹣0.2857×1=.【解答】解:因为0.4285=,0.2857=,所以0.4285×6.3﹣0.2857×1=×6.3﹣×1=﹣=﹣=.故答案为:3.(6分)定义:a☆b=,则2☆(3☆4)=2.【解答】解:3☆4==2☆(3☆4)=2☆()==2;故答案为:2.4.(6分)如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有111个点.【解答】解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.5.(6分)已知A是B的,B是C的,若A+C=55,则A=15.【解答】解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.6.(6分)如图所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如:1.9579,3.5791.在所有这样只有一位整数的循环小数中,最大的是.科技新闻网:##科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料,我们是国内外最新的科技新闻网。

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试)

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试)

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试)一、填空题1.计算:×9+9.75×+0.4285×975%= .2.若质数a,b满足5a+b=2027,则a+b= .3.如图,一只玩具蚂蚁从O点出发爬行,设定第n次时,它先向右爬行n个单位,再向上爬行n个单位,达到点An ,然后从点An出发继续爬行,若点O记为(0,0),点A1记为(1,1),点A2记为(3,3),点A3记为(6,6),…,则点A100记为.4.按顺时针方向不断取如图中的12个数字,可组成不超过1000的循环小数x,如23.067823,678.30678等,若将x的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到2017,则x= .5.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.6.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.7.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.8.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.9.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC=CD=3厘米,则EF= 厘米.10.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是立方分米.11.若一个十位数是99的倍数,则a+b= .12.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.二、解答题13.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.14.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?15.对大于0的自然数n规定一种运算“G”:①当n是奇数时,G(n)=3n+1;②当n是偶数时,G(n)等于n连续被2除,直到商是奇数;将k次“G”运算记作G k,如G1(5)=3×5+1=16,G2(5)=G1(16)=16÷2÷2÷2÷2=1,G3(5)=3×1+1=4,G4(5)=4÷2÷2=1.计算:(1)G1(2016)的值;(2)G5(19)的值;(3)G2017(19)的值.16.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试)参考答案与试题解析一、填空题1.计算:×9+9.75×+0.4285×975%= 9.【分析】先把0.4285化成,再提取公因数9,然后根据乘法的分配律简算.【解答】解:×9+9.75×+0.4285×975%=×9+9×+×9=9×()=9×1=9;故答案为:9.【点评】完成本题要注意分析式中数据,运用合适的简便方法计算.2.若质数a,b满足5a+b=2027,则a+b= 2019 .【分析】质数的和为奇数,那么一定有一个是偶数,讨论即可解决.【解答】解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.【点评】本题考查对奇偶性的理解和运用,两数字和为奇数,必然有一个是偶数,问题解决.3.如图,一只玩具蚂蚁从O点出发爬行,设定第n次时,它先向右爬行n个单位,再向上爬行n个单位,达到点An ,然后从点An出发继续爬行,若点O记为(0,0),点A1记为(1,1),点A2记为(3,3),点A3记为(6,6),…,则点A100记为(5050,5050).【分析】一只玩具蚂蚁从O点出发爬行,设定第n次时,它先向右爬行n个单位,再向上爬行n个单位,达到点An ,然后从点An出发继续爬行,若点O记为(0,0),点A1记为(1,1),点A2记为(1+2,1+2),点A3记为(1+2+3,1+2+3),…,则点An记为(1+2+3+…+n,1+2+3+…+n).【解答】解:根据分析可知A100记为(1+2+3+…+100,1+2+3+…+100);因为1+2+3+…+100=(1+100)×100÷2=5050,所以A100记为(5050,5050);故答案为:A100记为(5050,5050).【点评】根据等差数列原理,分别对向右和向上爬行的距离求和.4.按顺时针方向不断取如图中的12个数字,可组成不超过1000的循环小数x,如23.067823,678.30678等,若将x的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到2017,则x= 78.3067.【分析】首先分析数字的周期发现数字周期为6,7,8,2,3,0.找到对应组数和余数即可.【解答】解:依题意可知:按照顺时针方向观察可发现,不管起始数字是几,循环小数的循环节均由6,7,8,2,3,0这六个数字组成.因2017÷(6+7+8+2+3+0)=77(组)…15.15=7+8,因此x=78.3067故答案为:78.3067【点评】本题考查对周期问题的理解和运用,关键问题是找到数字和的周期数字.问题解决.5.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是10:29:6 .【分析】先根据比的基本性质,把A:B=1:4,C:A=2:3化简,从而得出三个数的比.【解答】解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.【点评】本题主要是考查了比的基本性质的运用:比的前项和后项同时乘或除以相同的数(0除外),比值不变.6.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是70 .【分析】要使最后的结果还是自然数,可把9、8、6分解质因数,再根据分解质因数的情况来确定把多少个乘号换成除号,最后再求出结果.【解答】解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.【点评】本题考查了最大与最小的知识,本题突破点是:分解质因数,再确定把多少个乘号换成除号.7.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是20 %.【分析】首先看三杯溶液的浓度是已知的,重量相同也是相当于已知的,可以求出混合后溶质的重量和溶液的重量即可.【解答】解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%【点评】本题考查对浓度的理解和运用.浓度问题关键从浓度的定义出发,表示出溶质和溶液的量即可,问题解决.8.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是18 .【分析】连接AD因△CDF和△BCD的高相等,所以它们面积的比等于它们底边的比,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,又因S△BCD =7,S△BDE=7,所以CD=DE,因这两个三角形的高相等,面积的比等于底边的比,从而可得出S△ACD =S△ADE,S△ACD +S△BDE=S△ABD,即S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,从面可求出每份是2.5,从而根据四边形AEDF的面积=10份﹣7求出它的面积,据此解答.【解答】解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD =7,S△BDE=7所以CD=DE,S△ACD =S△ADE,S△ACD+S△BDE=S△ABD,S△ACD +S△BDE=7份,S△AFD +S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.【点评】本题的重点是根据三角形的高一定面积的比等于底边的比,求出△AFD中每份是多少,从而解决问题.9.如图,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC=CD=3厘米,则EF= 5 厘米.【分析】如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°,所以可得出∠G=∠H=∠N=60°,所以△GHN,△GAB,△HCD,△EFN都是等边三角形,AB=BC=CD=3厘米,所以△GHN边长是3+3+3=9厘米,可得出AN=9﹣3=6厘米,AN=AF+EF,所以DE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF),据此可求出DE的长,进而可求出EN的长,即EF的长,据此解答.【解答】解:如图延长并反向延长AF,BC,DE,分别相交与点G、H、N,因六边形ABCDEF的每个角是120°所以∠G=∠H=∠N=60°所以△GHN,△GAB,△HCD,△EFN都是等边三角形AB=BC=CD=3厘米,△GHN边长是3+3+3=9(厘米)AN=9﹣3=6(厘米)AN=AF+EFDE=六边形ABCDEF的周长﹣AB﹣BC﹣CD﹣(AF+EF)=16﹣3﹣3﹣3﹣6=1(厘米)EF=EN=9﹣3﹣1=5(厘米)答:EF=5厘米.故答案为:5.【点评】本题的重点是延长并反向延长AF,BC,DE,得到一个等边三角形,再根据等边三角形的性质和已知条件进行解答.10.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是15.42 立方分米.【分析】根据等底等高的圆柱的体积是圆锥体积的3倍,可知放入一个圆柱和两个圆锥后溢出水的体积是25.7立方分米,即是一个圆柱和两个圆锥的体积是25.7立方分米,据此可求出圆锥的体积,进而可求出圆柱的体积.据此解答.【解答】解:25.7÷(1+1+3)=25.7÷5=5.14(立方分米)5.14×3=15.42(立方分米)答:圆柱形铁块的体积是15.42立方分米.故答案为:15.42.【点评】本题重点考查了学生对等底等高的圆柱是圆锥体积的3倍这一知识的灵活运用.11.若一个十位数是99的倍数,则a+b= 8 .【分析】根据99的整除特性为从右向左两位截断求和是99的倍数即可.【解答】解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.【点评】本题考查是99的整除特性,同时注意的顺序是从右向左的顺序.此题和为99.相加即可解决问题.12.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用9 天.【分析】首先找到甲乙丙的工作效率,然后求出甲工作2天的量和乙丙4天工作量,剩余的就是丙的工作天数,相加即可.【解答】解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:9【点评】本题是考察对工程问题的理解和运用,多人合作关键求出剩余的工作量除以工作效率问题解决.二、解答题13.用1,2,3,4,5,6,7,8,9九个数字组成三个三位数(每个数字只能用1次),使最大的数能被3整除;次大的数被3除余2,且尽可能的大;最小的数被3除余1,且尽可能的小,求这三个三位数.【分析】最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,因此可以根据已知缩小范围,最后确定这三个数.【解答】解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是1,次大的数倍3除余2,且要尽可能的大,则次大的三位数为:875;最小的数被3除余1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.【点评】本题考查了数字问题,突破点是:通过已知确定三位数的最高位上的数字,再求出三个数.14.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?【分析】因为装雨水的单位面积的数量是一定,所以要根据图1所示的长方体容器求出每平方厘米每小时接水的体积,然后再根据图2所示的三个不同的容器的接水口的面积求各需要多长时间即可.【解答】解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.【点评】本题考查了长方体圆柱体体积公式的灵活应用,关键是求出不变的单一量,即每平方厘米每小时接水的体积.15.对大于0的自然数n规定一种运算“G”:①当n是奇数时,G(n)=3n+1;②当n是偶数时,G(n)等于n连续被2除,直到商是奇数;将k次“G”运算记作G k,如G1(5)=3×5+1=16,G2(5)=G1(16)=16÷2÷2÷2÷2=1,G3(5)=3×1+1=4,G4(5)=4÷2÷2=1.计算:(1)G1(2016)的值;(2)G5(19)的值;(3)G2017(19)的值.【分析】首先对定义的理解当n=5为奇数G1(5)=3×5+1=16,当计算G2(5)时,转化成G1(16)=16÷2÷2÷2÷2=1两步相关的计算.再继续推理即可.【解答】解:依题意可知(1)、G1(2016)=2016÷2÷2÷2÷2÷2=63(2)、G1(19)=3×19+1=58.G2(19)=58÷2=29.G3(19)=3×29+1=88.G4(19)=88÷2÷2÷2=11.G5(19)=3×11+1=34.(3)、G6(19)=17G8(19)=13.G9(19)=40.G10(19)=5.G11(19)=16.G12(19)=1.G13(19)=4.G14(19)=1.G15(19)=4.G16(19)=1.…周期规律总结:大于11的数字中奇数项结果为4,偶数项结果为1.故G2017(19)=4.答:G1(2016)=63,G5(19)=34,G2017(19)=4.【点评】本题考查对新定义的理解和运用,突破口就是对G3(5)形式的计算,把数字根据题意代入即可,最后求G2017(19)时一定是有规律的,找到循环的周期对应2017即可,问题解决.16.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?【分析】首先把花数量简化成连比,然后与价格相乘,再根据扩倍关系即可求解.【解答】解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.【点评】本题是考察对比例应用题的理解和运用,关键的问题是化连比求出数量的比例,问题解决.。

六年级下册数学试题-2017年希望杯邀请赛第2试 通用版(含答案)

六年级下册数学试题-2017年希望杯邀请赛第2试 通用版(含答案)

2017年小学第十五届“希望杯”全国数学邀请赛六年级 第2试试题一、填空题(每题5分,共60分)1、计算:43974⨯+9.75×27+0.142857∙∙×975%= 。

2、若质数a ,b 满足5a +b =2027,则a +b = 。

3、如图1,一只玩具蚂蚁从点O 出发爬行,设定第n 次时,它先向右爬行n 个单位,再向上爬行n 个单位,到达点A n ,然后从点A n 出发继续爬行,若点O 记为(0,0),点A 1记为(1,1),点A 2记为(3,3),点A 3记为(6,6)……,则点A 100记为 。

4、按顺时针方向不断取图中的12个数,可组成不超过1000的循环小数x ,如23.067823∙∙,678.230678∙∙等,若将x 的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到2017,则x = 。

5、若A :B =213:546,C :A =125:233,则A :B :C 用最简整数比表示是 。

6、若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N ,则N 最小是 。

7、有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的12,14,15倒入第四个空杯子中,则第四个空杯子中溶液的浓度是 %。

8、如图3,设定E ,F 分别是△ABC 的边AB ,AC 上的点,线段CE ,BF 交于点D ,若△CDF,△BCD,△BDE 的面积分别是3,7,7,则四边形AEDF 的面积是 。

9、如图4,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC=CD=3厘米,则EF=厘米。

10、如图5所示的容器中放入底面相等且高都是3分米的圆柱和圆锥形铁块,根据图5和图6的变化知,圆柱形铁块的体积是立方分米。

2017年希望杯六年级考前培训100题-几何答案

2017年希望杯六年级考前培训100题-几何答案

62. (1)当 D 点是 BC 上靠近 B 点的三等分点时,如图,连接 AD ,因为 AE = 所 以 A E=
5 1 1 1 1 = AB A B, BF = AB , 所 以 E F = 1 A B , 于 是 S△DEF 12 3 4 3 4 1 5 1 5 S△DEF = S△ ABC = 36 = 5 ; S△ A B D= S△ A B,所以 C 3 12 3 36
1 1 AB , BF = AB , 3 4 5 = S△ ABD , 又 因 为 12
(2) 当 D 点是 BC 上靠近 C 点三等分点时, 如图. 同 (1) , 得 S△DEF = 所以 S△DEF =
5 2 10 S△ ABC = 36 = 10 .故 S△DEF = 5 或 10 . 12 3 36
第十五届(2017 年)希望杯 100 题 · 六年级
73 . 设 四 个 鱼 形 的 半 径 分 别 为 ra , rb , rc , rd . 则
1 2 5 2 1 3 πra = πrc , πrb2 = πrc2 , 2 2 2 2
1 2 1 2 1 2 1 2 5 2 3 2 1 2 9 2 πrd = πra πrb πrc = πrc πrb πrc = πrc ,即 rd2 = 9rc2 = 3rc 3rc ,故 rd = 3rc . 2 2 2 2 2 2 2 2
S阴影 = S 1= 6 大正方形 S 小正方形 = 2 0 2 0 1 6
. 144
58.如图,过三角形的公共顶点分别作长方形四条边的高,分别记为 a1 厘米, b1 厘米, a2 厘米,
1 1 1 1 1 2 b2 厘米.则阴影三角形的面积分别是 9 a1 平方厘米; 9 a2 平方厘米; 15 b1 平方 2 3 2 3 2 3

小学奥数2017年希望杯培训一百题六年级第47题

小学奥数2017年希望杯培训一百题六年级第47题
47:学校到图书馆的路一半上坡、一半下坡,学生A从学校到图书 馆的过程中,下坡的速度是他走全程平均速度的2倍,那么上坡的 速度是他走全程平均速度的多少倍?
47:学校到图书馆的路一半上坡、一半下坡,学生A从学校到图书 馆的过程中,下坡的速度是他走全程平均速度的2Байду номын сангаас,那么上坡的 速度是他走全程平均速度的多少倍?
设全程为4,时间为4,平均速度为1。 下坡的速度是他走全程平均速度的2倍 下坡2份路程用1份时间 上坡2份路程用3份时间
47:学校到图书馆的路一半上坡、一半下坡,学生A从学校到图书 馆的过程中,下坡的速度是他走全程平均速度的2倍,那么上坡的 速度是他走全程平均速度的多少倍?

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)一、(以下每题6分,共120分)1.(6分)计算:2017×+= .2.(6分)计算:0.4285×6.3﹣0.2857×1= .3.(6分)定义:a☆b=,则2☆(3☆4)= .4.(6分)如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.5.(6分)已知A是B的,B是C的,若A+C=55,则A= .6.(6分)如图所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如:1.9579,3.5791.在所有这样只有一位整数的循环小数中,最大的是.7.(6分)甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.8.(6分)从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.9.(6分)等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是度.10.(6分)能被5和6整除,并且数字中至少有一个6的三位数有个.11.(6分)小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是元.12.(6分)已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x= .13.(6分)a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.14.(6分)小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.15.(6分)如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO= 度.16.(6分)如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米.17.(6分)如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.18.(6分)将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a= .19.(6分)张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.20.(6分)甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第1试)参考答案与试题解析一、以下每题6分,共120分)1.(6分)计算:2017×+= 2016 .【分析】把2017看作2016+1,然后根据乘法的分配律与加法的结合律简算即可.【解答】解:2017×+=(2016+1)×+=2016×++=2015+(+)=2015+1=2016;故答案为:2016.【点评】此题重点考查了学生对运算定律的掌握与运用情况,要结合数据的特征,灵活选择简算方法.2.(6分)计算:0.4285×6.3﹣0.2857×1= .【分析】根据0.4285=,0.2857=把原式化为×6.3﹣×1,再根据混合运算顺序计算即可.【解答】解:因为0.4285=,0.2857=,所以0.4285×6.3﹣0.2857×1=×6.3﹣×1=﹣=﹣=.故答案为:【点评】本题考查了小数的巧算,关键是把原式化为×6.3﹣×1,还用到混合运算顺序.3.(6分)定义:a☆b=,则2☆(3☆4)= 2 .【分析】根据已知的算式a☆b=可得运算法则:计算结果等于☆号前面的数与1的差,然后再除以☆号后面的数,据此解答.【解答】解:3☆4==2☆(3☆4)=2☆()==2;故答案为:2.【点评】定义新运算:这种新运算其实只是变了形的求式子值的问题,只要弄清新的运算法则,然后再分步求值就可得出答案.4.(6分)如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有111 个点.【分析】根据给出的几幅图的点数,我们可以得到:第②比第①多4;第③比第②多6;第④比第③多8;由此可得每一幅图比前一幅图多的点数成等差数列.【解答】解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.【点评】考查等差数列规律的灵活应用.5.(6分)已知A是B的,B是C的,若A+C=55,则A= 15 .【分析】A是B的,B是C的,则:A是C的×=,即A=C,把A+C=55中的A代换成C,然后解这个方程即可得出C,从而得出A.【解答】解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.【点评】解决本题先根据一个数乘分数的意义,得出A和C的关系,再运用代换法和解方程的方法求解.6.(6分)如图所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如:1.9579,3.5791.在所有这样只有一位整数的循环小数中,最大的是.【分析】按题意,要求只有一位整数的最大的数,显然个位最大为9,再看小数点后面第一位数最大的为5,故小数点后第二位即可确定,再依此确定后面的数,即可确定最大的循环小数.【解答】解:根据分析,先确定整数部分的数,显然9是最大的,再确定小数点后第一位的数,9后面最大的为5,再确定第三位,因为是按顺时针排列,7为最大,故此数可以确定为:故答案是:【点评】本题考查了最大与最小,本题突破点是:先确定整数部分,依此确定其它位上的数.7.(6分)甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票45 张.【分析】把不变的量,即邮票的总张数看成单位“1”,根据“甲、乙两人拥有邮票张数的比是5:4,”可得:甲原来是总张数的;有根据“如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.”可得:甲现在是总张数的,则()对应的数量就是甲减少的5张,由此用除法求出总张数.【解答】解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.【点评】本题关键是找出不变的量,把单位“1”统一到不变的数量邮票的总张数上,再根据数量关系求解.8.(6分)从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是1009 .【分析】按题意,1~2016数中,有奇数1008个,偶数1008个,若取的个数小于1008,则有可能取的数都是偶数,就不能出现至少有两个数互质的情况,故n不能小于1008,而当n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况,故n至少是1009.【解答】解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.【点评】本题考查了最大与最小,本题突破点是:利用奇数和偶数的个数以及互质的特征,求出n的最小值.9.(6分)等腰△ABC中,有两个内角的度数比是1:2,则△ABC的内角中,角度最大可以是90 度.【分析】等腰三角形的两底角相等,本题应分为当顶角较小时和当顶角较大时两种情况,当两底角都为1份时,顶角最大,即顶角度数为内角和180°的【解答】解:180°×=180°×=90°答:角度最大可以是 90度.故答案为:90.【点评】此题主要考查了等腰三角形的性质及三角形内角和定理.注意分清顶角占的份数大则顶角就大的情况.10.(6分)能被5和6整除,并且数字中至少有一个6的三位数有 6 个.【分析】先将6分解质因数:2×3,故这个三位数既要符合被5整除的数的特征,又要符合被2整除的数特征,同时又要满足被3整除的数特征,故结合含有6的数就能求出这样的三位数的个数【解答】解:根据分析,分解质因数6=2×3∴这个三位数能同时被2、3、5整除,而且数字中至少含有一个6∴这个三位数的个位数必须为偶数或0,因被5整除的数个位数必须是0或5,故个位数为0,设此三位数为,按题意a、b中至少有一个数字为6,①a=6时,则6+b+0 是3的倍数,则b=0,3,6,9,符合的三位数为:600、630、660、690②b=6时,则6+a+0 是3的倍数,则a=3,6,9,符合的三位数为:360、660、960综上所述,符合题意的三位数为:360、660、960、600、630、690故答案为:6.【点评】本题考查了数的整除知识,突破点是:分解质因数,分析出被这几个数同时整除的特征.11.(6分)小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是20.25 元.【分析】把每个笔记本的售价看作单位“1”,则小红买1支钢笔和3个笔记本共用的36.45元,就相当于单位“1”的(3+),由此用除法即可求出每个笔记本的售价,然后进一步即可求出1支钢笔的售价.【解答】解:36.45÷(3+)=36.45=5.45.4×=20.25(元)答:1支钢笔的售价是 20.25元.故答案为:20.25.【点评】本题关键是找具体数量对应的分率,即统一单位“1”,然后根据分数除法和乘法的意义解答即可.12.(6分)已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x= .【分析】先原来的分数x是,根据变化,用b和c分别表示出两次变化后的分数,它们分别与和相等,这样就可以把这两个等量关系式看成比例式,再根据比例的性质,得出a、b、c三个数之间的关系,然后运用代换法,把b 和c都用a代换,从而得出原来分数是多少.【解答】解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.【点评】解决本题先设出原来的分数,再根据比例的性质和代换法求解.13.(6分)a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是4080 .【分析】根据和一定,要使a,b,c的乘积最大,那么a,b,c三个互不相等的自然数必须尽可能的接近,据此解答即可.【解答】解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.【点评】此题考查了这样一个规律:当三个数的和一定时,三个数越接近积越大.14.(6分)小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有60 道.【分析】本题从后向前逆推,先把第二小时做完后余下的看作单位“1”,此时有24÷(1﹣)=36道;再把第一小时做完全部的后余下的看作单位“1”,此时有36÷(1﹣)=48道;同理,再把全部的练习题看作单位“1”,有48÷(1﹣)=60道;据此解答即可.【解答】解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.【点评】解答此题的关键是,根据题意,运用逆推的方法,求出每次做完后余下的练习题的道数,由此即可得出答案.解题思路:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.15.(6分)如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=30 度.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,得出△OCD是等边三角形,折叠前后角相等以及三角形的内角和定理,求出∠BFC的度数,再根据平角是180度求得∠EFO的度数.【解答】解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称.16.(6分)如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是80 平方厘米.【分析】在七巧板中平行四边形的面积等于正方形的面积等于中三角形的面积,最小的两个三角形的面积和等于中三角形的面积,中三角形的面积等于大三角形面积的一半,即最小的三角形的面积是七巧板面积的,平行四边形的面积、正方形的面积和中三角形的面积是七巧板面积的,大三角形的面积是七巧板面积的,兔子图形的面积就是七巧板的面积,据此解答.【解答】解:10=80(平方厘米)答:兔子图形的面积是80平方厘米.故答案为:80.【点评】本题的重点是让学生掌握各个板占了七巧板面积的几分之几,然后再根据已知一个数的几分之几是多少,求这个数的方法进行解答.17.(6分)如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是1000 立方分米.【分析】首先分析长方体木块锯成6段需要5次横截面增加10个面,求出一个横截面的面积再乘以长度即可.【解答】解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:1000【点评】本题考查对立方体的体积的理解和运用,关键是找到100平方分米对应的是10个面.问题解决.18.(6分)将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a= 300 .【分析】浓度问题中两种溶液混合可用十字交叉法解题,即可求出a的值.【解答】解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:300【点评】本题考查对浓度问题的理解和综合运用,同时关键问题理解十字交叉法的做差和比例关系.问题解决.19.(6分)张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了40 分钟.【分析】首先分析分针落后时针的格数,找到时针和分针的路程差然后除以速度差即可.【解答】解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.【点评】本题考查时间和钟面的理解和运用,关键是找到时针和分针的两次路程差.再除以速度差问题解决.20.(6分)甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行40 千米.【分析】首先分析两人两次在同一地点相遇那么需要两人的速度比例是不变的,根据当甲提高时,乙也同样需要提高即可求解.【解答】解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:40【点评】本题考查对相遇问题的理解和运用,关键问题是找到两者的速度比例是不变的,问题解决.。

2017年第15届希望杯六年级第1试试题及参考答案(最新整理)

2017年第15届希望杯六年级第1试试题及参考答案(最新整理)

2017年小学第十五届“希望杯”全国数学邀请赛六年级 第1试试题以下每题6分,共120分。

1、计算:2017×+= 。

20152016120162、计算:×6.3—×1= 。

0.142857g g 0.428571g g 233、定义a ☆b =,则2☆(3☆4)= 。

a b —14、如下图所示的点阵图中,图1中有3个点,图2中有7个点,图3中有13个点,图4中有21个点,按此规律,图10中有 个点。

5、已知A 是B 的,B 是C 的,若A +C =55,则A = 。

12346、如图2所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如,。

在所有这样只有一位整数的循环小数中,最大的是 。

1.395791g g 3.957913gg7、甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5,两人共有邮票 张。

8、从1,2,3,……2016中任意取出n 个数,若取出的数中至少有两个数互质,则n 的最小值 。

9、等腰三角形ABC 中,有两个内角的度数的比是1:2,则三角形ABC 的内角中,角度最大可以是 度。

10、能被5和6整除,并且数字中至少有一个6的三位数有 个。

11、小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的154售价相等,则1支钢笔的售价是 元。

12、已知X 是最简真分数,若它的分子加a ,化简得;若它的分母加a ,化简得,则X 1314= 。

13、a ,b ,c 是三个互不相等的自然数,且a +b +c =48,那么a ,b ,c 的最大乘积是 。

14、小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小1514时做完了余下的,这时,余下24道题没有做,则这份练习题共有 题。

1315、如图,将正方形纸片ABCD 折叠,使点A ,B 重合于O ,则∠EFO = 度。

2017年希望杯100题六年级(试题+答案)

2017年希望杯100题六年级(试题+答案)

22.用 a , b , c 能组成 6 个无重复数字的三位数,如 abc , acb 等,且这 6 个数的和是 4662 ,问: 这 6 个数部是 3 的倍教吗?
23.已知 n ! = 1 2 3
n ,计算: 1! 3 2! 4 3! 5 4! 6
2015! 2017 2016! .
11.计算: 0.142857 35 .
12.计算: 0.571428 1.75 .
13.计算: 2.016 20.16 2

19 . 90
84 495 . 14.计算: 56 0.568 450 0.234
15. 0.12 1.23 2.34 3.45 4.56 5.67 6.78 7.89 8.90 9.01 .
29.求 72016 的十位数字.
2 1 A 30.若 A 是 B 的 , B 是 C 的 ,求 . 5 3 C
31.求 17 个自然数的平均数,结果保留两位小数,甲得到 11.28 ,这个数百分位上的数字错了, 求 正确答案.
32.从 100 以内的 25 个质数中任取两个构成其分数,这样的其分数有几个?假分数有几个?
25.在不大于循环小数 12.9 的自然数中有几个质数?
26.设 n ! = 1 2 3
n ,问: 2016! 的末尾连续有多少个 0 ?
27.四位数 abcd ,若 abcd 10 a b c d = 1404 ,求 a b d .
28. A , a , b 都是自然数,且 A 50 = a2 , A 97 = b2 .求 A .
1 2 3 2 1 1 2 3 4 5 6 5 4 3 2 1 1 2 24.一串分数: , , , , , , , , , , , , , , , , , , 4 4 4 4 4 7 7 7 7 7 7 7 7 7 7 7 10 10 3 9 8 1 1 2 ,…, , ,…, , , .求第 2016 个分数. 10 10 10 10 13 13

(完整版)2017年第15届希望杯六年级第1试试题及参考答案

(完整版)2017年第15届希望杯六年级第1试试题及参考答案

2017年小学第十五届“希望杯”全国数学邀请赛六年级 第1试试题以下每题6分,共120分。

1、计算:2017×20152016+12016= 。

2、计算:0.142857g g ×6.3—0.428571g g ×123= 。

3、定义a ☆b =a b —1,则2☆(3☆4)= 。

4、如下图所示的点阵图中,图1中有3个点,图2中有7个点,图3中有13个点,图4中有21个点,按此规律,图10中有 个点。

5、已知A 是B 的12,B 是C 的34,若A +C =55,则A = 。

6、如图2所示的圆周上有12个数字,按顺时针方向可以组成只有一位整数的循环小数,如1.395791g g ,3.957913g g。

在所有这样只有一位整数的循环小数中,最大的是 。

7、甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5,两人共有邮票 张。

8、从1,2,3,……2016中任意取出n 个数,若取出的数中至少有两个数互质,则n 的最小值 。

9、等腰三角形ABC 中,有两个内角的度数的比是1:2,则三角形ABC 的内角中,角度最大可以是 度。

10、能被5和6整除,并且数字中至少有一个6的三位数有 个。

11、小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的154与每支钢笔的售价相等,则1支钢笔的售价是元。

12、已知X是最简真分数,若它的分子加a,化简得13;若它的分母加a,化简得14,则X=。

13、a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的最大乘积是。

14、小丽做一份希望杯练习题,第一小时做完了全部的15,第二小时做完了余下的14,第三小时做完了余下的13,这时,余下24道题没有做,则这份练习题共有题。

15、如图,将正方形纸片ABCD折叠,使点A,B重合于O,则∠EFO=度。

16、如图4,由七巧板拼成的兔子形状,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米。

六年级下册数学试题-2017年希望杯邀请赛第2试试卷 通用版(含答案)

六年级下册数学试题-2017年希望杯邀请赛第2试试卷 通用版(含答案)

2019年小学第十五届“希望杯”全国数学邀请赛六年级(特1) 第2试试题一、填空题(每题5分,共60分)1、2017=AAA +AAA +AA +AA +A +A +A +A +A +A +A +B ,字母“A,B”均代表一个非零数字,则B = 。

2、将一个两位数ab 的个位数字和十位数字交换,得到两位数ba ,若ba —ab =63,则满足条件的两位数ab 有 个。

3、如图1,一只青蛙从五边形ABCDE 的顶点A 出发顺时针跳跃,每步从五边形的一个顶点跳到另一个顶点,A B C D E ,若这只青蛙第一次跳1步,第二次跳2步,……,第n 次跳n 步,则它在跳完10次时,到达顶点 。

4、按顺时针方向不断取图中的12个数,可组成不超过1000的循环小数x ,如23.067823∙∙,678.230678∙∙等,若将x 的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到2017,则x = 。

5、若A :B =213:546,C :A =125:233,则A :B :C 用最简整数比表示是 。

6、电视机厂接到生产一批电视机的订单,订单价每台2000元,预计可以获利30万元,实际上,由于生产成本提高了16,所以利润减少了25%,则此次订单需要电视机 台。

7、已知某些两位数,若把它分解成两个自然数的乘积可以有5种方法(a ×b 与b ×a 算一种方法),则这样的两位数有 个。

8、A 、B 两个健步行走着,沿围绕旗杆的同心圆跑道行走,旗杆刚好位于两圆的圆心,沿外跑道走的人五分钟走完一圈,沿内跑道走的人三分钟走完一圈,如图3,O ,A ,B 在同一条半径上,A,B反向而行,则他们下一次与旗杆又在同一半径上时,所需要的时间是分钟。

9、如图4,六边形ABCDEF的周长是16厘米,六个角都是120°,若AB=BC=CD=3厘米,则EF=厘米。

10、如图5所示的容器中放入底面相等且高都是3分米的圆柱和圆锥形铁块,根据图5和图6的变化知,圆柱形铁块的体积是立方分米。

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试).doc

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试).doc

2017年第十五届小学“希望杯”全国数学邀请赛试卷(六年级第2试)7 2017 年第十五届小学希望杯全国数学邀请赛试卷(六年级第 2 2 试)一、填空题 1.计算: 9 +9.75 +0. 4285 975%= . 2.若质数 a,b 满足 5a+b=2027,则 a+b= . 3.如图,一只玩具蚂蚁从 O 点出发爬行,设定第 n 次时,它先向右爬行 n 个单位,再向上爬行 n 个单位,达到点 A n ,然后从点 A n 出发继续爬行,若点 O 记为(0,0),点 A 1 记为(1,1),点 A 2 记为(3,3),点 A 3 记为(6,6),,则点 A 100 记为. 4.按顺时针方向不断取如图中的 12 个数字,可组成不超过 1000 的循环小数 x,如23.067823,678.30678 等,若将 x 的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到 2017,则 x= . 5.若 A:B=1 :4 ,C:A=2 :3 ,则 A:B:C 用最简整数比表示是. 6.若将算式 987654321 中的一些改成使得最后的计算结果还是自然数,记为 N,则 N 最小是. 7.有三杯重量相等的溶液,它们的浓度依次是 10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是 %.8.如图,设定 E、F 分别是△ABC 的边 AB、AC 上的点,线段 CE,BF 交于点 D,若△CDF,△BCD,△BDE 的面积分别为 3,7,7,则四边形AEDF 的面积是. 9.如图,六边形 ABCDEF 的周长是 16 厘米,六个角都是 120,若 AB=BC=CD=3厘米,则 EF= 厘米. 10.如图所示的容器中放入底面相等并且高都是 3 分米的圆柱和圆锥形铁块,根据图 1 和图 2 的变化知,圆柱形铁块的体积是立方分米. 11.若一个十位数是 99 的倍数,则a+b= . 12.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做 2 天,接着乙丙两人合作了 4 天,最后余下的工程由丙 1 人完成,则完成这项工程共用天.二、解答题 13.用 1,2,3,4,5,6,7,8,9 九个数字组成三个三位数(每个数字只能用1 次),使最大的数能被 3 整除;次大的数被 3 除余 2,且尽可能的大;最小的数被 3 除余 1,且尽可能的小,求这三个三位数. 14.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图 1 所示的长方体容器,此容器装满雨水需要 1 小时.请问:雨水要下满如图 2 所示的三个不同的容器,各需要多长时间? 15.对大于 0 的自然数 n 规定一种运算G:①当 n 是奇数时,G(n)=3n+1;②当 n 是偶数时,G(n)等于 n 连续被 2 除,直到商是奇数;将 k 次G运算记作 Gk ,如 G 1 (5)=35+1=16,G 2 (5)=G 1 (16)=162222=1,G3 (5)=31+1=4,G 4 (5)=422=1.计算:(1)G1 (2016)的值;(2)G5 (19)的值;(3)G2017 (19)的值. 16.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?7 2017 年第十五届小学希望杯全国数学邀请赛试卷(六年级第 2 2 试)参考答案与试题解析一、填空题 1.计算: 9 +9.75 +0. 4285 975%= 9 .【分析】先把 0. 4285 化成,再提取公因数 9 ,然后根据乘法的分配律简算.【解答】解: 9 +9.75 +0. 4285 975% = 9 +9 + 9 =9 () =9 1 =9 ;故答案为:9 .【点评】完成本题要注意分析式中数据,运用合适的简便方法计算. 2.若质数 a,b 满足 5a+b=2027,则 a+b= 2019 .【分析】质数的和为奇数,那么一定有一个是偶数,讨论即可解决.【解答】解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是 2.当 b=2 时,5a+2=2027,a=405 不符合题意.当 a=2 时,10+b=2027,b=2017 符合题意,a+b=2+2017=2019.故答案为:2019.【点评】本题考查对奇偶性的理解和运用,两数字和为奇数,必然有一个是偶数,问题解决. 3.如图,一只玩具蚂蚁从 O 点出发爬行,设定第 n 次时,它先向右爬行 n 个单位,再向上爬行 n 个单位,达到点 A n ,然后从点 A n 出发继续爬行,若点 O 记为(0,0),点 A 1 记为(1,1),点 A 2 记为(3,3),点 A 3 记为(6,6),,则点 A 100 记为(5050,5050).【分析】一只玩具蚂蚁从 O 点出发爬行,设定第 n 次时,它先向右爬行 n 个单位,再向上爬行 n 个单位,达到点 A n ,然后从点 A n 出发继续爬行,若点 O 记为(0,0),点 A 1 记为(1,1),点 A 2 记为(1+2,1+2),点 A 3 记为(1+2+3,1+2+3),,则点 A n 记为(1+2+3++n,1+2+3++n).【解答】解:根据分析可知 A 100 记为(1+2+3++100,1+2+3++100);因为 1+2+3++100=(1+100)1002=5050,所以 A 100 记为(5050,5050);故答案为:A 100 记为(5050,5050).【点评】根据等差数列原理,分别对向右和向上爬行的距离求和. 4.按顺时针方向不断取如图中的 12 个数字,可组成不超过 1000 的循环小数 x,如 23.067823,678.30678 等,若将 x 的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到 2017,则 x= 78. 3067 .【分析】首先分析数字的周期发现数字周期为 6,7,8,2,3,0.找到对应组数和余数即可.【解答】解:依题意可知:按照顺时针方向观察可发现,不管起始数字是几,循环小数的循环节均由 6,7,8,2,3,0 这六个数字组成.因 2017(6+7+8+2+3+0)=77(组)15. 15=7+8,因此 x=78. 3067 故答案为:78. 3067 【点评】本题考查对周期问题的理解和运用,关键问题是找到数字和的周期数字.问题解决. 5.若 A:B=1 :4 ,C:A=2 :3 ,则 A:B:C 用最简整数比表示是 10:29:6 .【分析】先根据比的基本性质,把 A:B=1 :4 ,C:A=2 :3 化简,从而得出三个数的比.【解答】解:A:B =1 :4 = :=( 6):( 6) =10:29 C:A =2 :3 = : =( 15):( 15) =33:55 =3:5 =6:10 这样 A 的份数都是 10,所以 A:B:C=10:29:6.故答案为:10:29:6.【点评】本题主要是考查了比的基本性质的运用:比的前项和后项同时乘或除以相同的数(0 除外),比值不变. 6.若将算式 987654321 中的一些改成使得最后的计算结果还是自然数,记为 N,则 N 最小是 70 .【分析】要使最后的结果还是自然数,可把 9、8、6 分解质因数,再根据分解质因数的情况来确定把多少个乘号换成除号,最后再求出结果.【解答】解:根据分析,先分解质因数 9=33,8=222,6=23,故有: 987654321=(33)(222)7(32)5(22)321,所以可变换为:987654321=70,此时 N 最小,为 70,故答案是:70.【点评】本题考查了最大与最小的知识,本题突破点是:分解质因数,再确定把多少个乘号换成除号. 7.有三杯重量相等的溶液,它们的浓度依次是 10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是 20 %.【分析】首先看三杯溶液的浓度是已知的,重量相同也是相当于已知的,可以求出混合后溶质的重量和溶液的重量即可.【解答】解:依题意可知:设三杯溶液的重量为 a.根据浓度= 100%= 100%=20% 故答案为:20% 【点评】本题考查对浓度的理解和运用.浓度问题关键从浓度的定义出发,表示出溶质和溶液的量即可,问题解决. 8.如图,设定 E、F 分别是△ABC 的边 AB、AC 上的点,线段 CE,BF 交于点 D,若△CDF,△BCD,△BDE 的面积分别为 3,7,7,则四边形AEDF 的面积是 18 .【分析】连接 AD 因△CDF 和△BCD 的高相等,所以它们面积的比等于它们底边的比,所以 FD:DB=3:7,所△AFD 和△ABD 的面积比也是 3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,又因S △BCD =7,S △BDE =7,所以CD=DE,因这两个三角形的高相等,面积的比等于底边的比,从而可得出 S △ACD =S △ADE ,S△ACD +S △BDE =S △ABD ,即 S △ACD +S △BDE =7 份,S △AFD +S △CDF +S △BDE =7 份,3 份+3+7=7 份,从面可求出每份是 2.5,从而根据四边形 AEDF 的面积=10 份﹣7 求出它的面积,据此解答.【解答】解:连接 AD,因△CDF 和△BCD 的高相等,所以 FD:DB=3:7,所△AFD 和△ABD 的面积比也是 3:7,即可把△AFD 的面积看作是 3 份,△ABD 的面积看作是 7 份, S △BCD =7,S △BDE =7 所以 CD=DE, S △ACD =S △ADE ,S △ACD +S △BDE =S △ABD , S △ACD +S △BDE =7 份, S △AFD +S △CDF +S △BDE =7 份, 3 份+3+7=7 份,则 1 份=2.5, S 四边形 AEDF =10 份﹣7 =102.5﹣7 =25﹣7 =18 答:四边形 AEDF 的面积是 18.故答案为:18.【点评】本题的重点是根据三角形的高一定面积的比等于底边的比,求出△AFD中每份是多少,从而解决问题. 9.如图,六边形 ABCDEF 的周长是 16 厘米,六个角都是 120,若 AB=BC=CD=3厘米,则 EF= 5 厘米.【分析】如图延长并反向延长 AF,BC,DE,分别相交与点 G、H、N,因六边形ABCDEF的每个角是120,所以可得出G=H=N=60,所以△GHN,△GAB,△HCD,△EFN 都是等边三角形,AB=BC=CD=3 厘米,所以△GHN 边长是 3+3+3=9厘米,可得出 AN=9﹣3=6 厘米,AN=AF+EF,所以 DE=六边形 ABCDEF 的周长﹣AB﹣BC﹣CD﹣(AF+EF),据此可求出 DE 的长,进而可求出 EN 的长,即 EF 的长,据此解答.【解答】解:如图延长并反向延长 AF,BC,DE,分别相交与点 G、H、N,因六边形 ABCDEF 的每个角是 120 所以G=H=N=60 所以△GHN,△GAB,△HCD,△EFN 都是等边三角形 AB=BC=CD=3 厘米,△GHN 边长是 3+3+3=9(厘米) AN=9﹣3=6(厘米) AN=AF+EF DE=六边形 ABCDEF 的周长﹣AB﹣BC﹣CD﹣(AF+EF) =16﹣3﹣3﹣3﹣6=1(厘米) EF=EN=9﹣3﹣1=5(厘米)答:EF=5 厘米.故答案为:5.【点评】本题的重点是延长并反向延长 AF,BC,DE,得到一个等边三角形,再根据等边三角形的性质和已知条件进行解答. 10.如图所示的容器中放入底面相等并且高都是 3 分米的圆柱和圆锥形铁块,根据图 1 和图 2 的变化知,圆柱形铁块的体积是 15.42 立方分米.【分析】根据等底等高的圆柱的体积是圆锥体积的 3 倍,可知放入一个圆柱和两个圆锥后溢出水的体积是 25.7 立方分米,即是一个圆柱和两个圆锥的体积是25.7 立方分米,据此可求出圆锥的体积,进而可求出圆柱的体积.据此解答.【解答】解:25.7(1+1+3) =25.75 =5.14(立方分米) 5.143=15.42(立方分米)答:圆柱形铁块的体积是 15.42 立方分米.故答案为:15.42.【点评】本题重点考查了学生对等底等高的圆柱是圆锥体积的 3 倍这一知识的灵活运用.11.若一个十位数是 99 的倍数,则 a+b= 8 .【分析】根据 99 的整除特性为从右向左两位截断求和是 99 的倍数即可.【解答】解:根据 99 的整除特性可知: 20+16+ +20+17=99.. a+b=8.故答案为:8.【点评】本题考查是 99 的整除特性,同时注意的顺序是从右向左的顺序.此题和为 99.相加即可解决问题. 12.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做 2 天,接着乙丙两人合作了 4 天,最后余下的工程由丙 1 人完成,则完成这项工程共用 9 天.【分析】首先找到甲乙丙的工作效率,然后求出甲工作 2 天的量和乙丙 4 天工作量,剩余的就是丙的工作天数,相加即可.【解答】解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为: 2+ 4= ;丙的工作天数为:(1﹣) =3(天);共工作2+4+3=9 故答案为:9 【点评】本题是考察对工程问题的理解和运用,多人合作关键求出剩余的工作量除以工作效率问题解决.二、解答题13.用 1,2,3,4,5,6,7,8,9 九个数字组成三个三位数(每个数字只能用1 次),使最大的数能被 3 整除;次大的数被 3 除余 2,且尽可能的大;最小的数被 3 除余 1,且尽可能的小,求这三个三位数.【分析】最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是 1,因此可以根据已知缩小范围,最后确定这三个数.【解答】解:根据分析,最大的数最高位是:9,次大的数最高位是:8,最小的数最高位是 1,次大的数倍 3 除余 2,且要尽可能的大,则次大的三位数为:875;最小的数被 3 除余 1,且要尽可能的小,则最小的三位数为:124;剩下的三个数字只有,3,6,9,故最大的三位数为:963.故答案是:963、875、124.【点评】本题考查了数字问题,突破点是:通过已知确定三位数的最高位上的数字,再求出三个数. 14.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图 1 所示的长方体容器,此容器装满雨水需要 1 小时.请问:雨水要下满如图 2 所示的三个不同的容器,各需要多长时间?【分析】因为装雨水的单位面积的数量是一定,所以要根据图 1 所示的长方体容器求出每平方厘米每小时接水的体积,然后再根据图 2 所示的三个不同的容器的接水口的面积求各需要多长时间即可.【解答】解:图 1 所示的长方体容器的容积:101030=3000(立方厘米)接水口的面积为:1030=300(平方厘米)接水口每平方厘米每小时可接水:30003001=10(立方厘米)所以,图①需要:101030(101010)=3(小时)图②需要:(101020+101010)(101020)=1.5(小时)图③需要:22=1(厘米)3.141120(3.14110)=2(小时)答:容器①需要 3 小时,容器②需要 1.5 小时,容器③需要 2 小时.【点评】本题考查了长方体圆柱体体积公式的灵活应用,关键是求出不变的单一量,即每平方厘米每小时接水的体积. 15.对大于 0 的自然数 n 规定一种运算G:①当 n 是奇数时,G(n)=3n+1;②当n 是偶数时,G(n)等于 n 连续被 2 除,直到商是奇数;将 k 次G运算记作 Gk ,如 G 1 (5)=35+1=16,G 2 (5)=G 1 (16)=162222=1,G3 (5)=31+1=4,G 4 (5)=422=1.计算:(1)G1 (2016)的值;(2)G5 (19)的值;(3)G2017 (19)的值.【分析】首先对定义的理解当 n=5 为奇数G1(5)=35+1=16,当计算 G2(5)时,转化成 G1 (16)=162222=1 两步相关的计算.再继续推理即可.【解答】解:依题意可知(1)、G1 (2016)=201622222=63 (2)、 G1 (19)=319+1=58. G2 (19)=582=29. G3 (19)=329+1=88. G4 (19)=88222=11. G5 (19)=311+1=34.(3)、 G6 (19)=17 G8 (19)=13. G9 (19)=40. G10 (19)=5. G11 (19)=16.G12 (19)=1. G13 (19)=4. G14 (19)=1. G15 (19)=4. G16 (19)=1.周期规律总结:大于 11 的数字中奇数项结果为 4,偶数项结果为1.故 G2017 (19)=4.答:G1 (2016)=63,G 5 (19)=34,G 2017 (19)=4.【点评】本题考查对新定义的理解和运用,突破口就是对 G3 (5)形式的计算,把数字根据题意代入即可,最后求 G2017 (19)时一定是有规律的,找到循环的周期对应 2017 即可,问题解决. 16.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?【分析】首先把花数量简化成连比,然后与价格相乘,再根据扩倍关系即可求解.【解答】解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:320+156+1510=300;正好是 1 倍关系.答:购买玫瑰 10 枝,康乃馨 15 枝,百合 3 枝.【点评】本题是考察对比例应用题的理解和运用,关键的问题是化连比求出数量的比例,问题解决.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七届小学希望杯全国数学邀请赛
六年级第1试试题解答
题目1-应用题A
x比300少30%,y比x多30%,则x y
+=483 。

题目2-计算A
如果,那么?所表示的图形可以是下图中的(3) 。

(填序号)
题目3-计算B
计算:
1
2
11
3
11
4
11
5
= ++
++
+
+
题目4-应用题A
一根绳子,第一次剪去全长的1
3
,第二次剪去余下部分的30%。

若两次剪去的部分比余下的部分多0.4
米,则这根绳子原来长 6 米。

题目5-应用题A
根据图中的信息可知,这本故事书有25页。

题目6-应用题B
已知三个分数的和是10
11
,并且它们的分母相同,分子的比是234
::。

那么,
题目7-行程B
从12
12点整时所在位置
的夹角相等。

(如图中的12
∠=∠)。

1 / 3
2 / 3
题目8-数论B
若三个不同的质数的和是53,则这样的三个质数有 11 组。

题目9-数论B
被11除余7,被7除余5,并且不大于200的所有自然数的和是 351 。

题目10-方程B 在救灾捐款中,某公司有
110的人各捐200元,有34
的人各捐100元,其余人各捐50元。

该公司人均捐款 102.5 元。

题目11-几何B
如图,圆P 的直径OA 是圆O 的半径,OA BC ⊥,10OA =,则阴影部分的面积是 75 。

(π取3) O B P
题目12-几何B
如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置。

在这个过程中,圆面覆盖过的区域(阴影部分)的面积是 11 平方厘米。

(π取3)
题目13-方程A
如图,一个长方形的长和宽的比是5:3。

如果长方形的长减少5厘米,宽增加3厘米,那么这个长方形
边长一个正方形。

原长方形的面积是 240 平方厘米。

3 / 3 题目14-组合A
一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分。

小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是 50 %。

题目15-几何B
如图,一个底面直径是10厘米的圆柱形容器装满水。

先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米。

圆锥形铁块的高 15
厘米。

题目16-应用题A 甲挖一条水渠,第一天挖了水渠总长度的
14,第二天挖了剩下水渠长度的521,第三天挖了未挖水渠长度的12
,第四天挖完剩下的100米水渠。

那么,这条水渠长 350 米。

题目17-计数C
用1024个棱长是1的小正方体组成体积是1024的一个长方体。

将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有 504 个。

题目18-方程B
如图,已知2AB =,3BG =,4GE =,5DE =,BCG ∆和EFG ∆的面积和是24,AGF ∆和CDG ∆的面积和是51。

那么,ABC ∆和DEF ∆的面积和是 23 。

题目19-行程B
甲、乙两人分别从A 、B 两地同时出发,相向而行。

甲、乙的速度比是5:3。

两人相遇后继续行进,甲到达B 地,乙到达A 地后都立即沿原路返回。

若两人第二次相遇的地点距第一次相遇的地点50千米,则A 、B 两地相距 100 千米。

题目20-组合C
在1、2、3、……、50中,任取10个连续的数,则其中恰有3
D G F E
A B C。

相关文档
最新文档