数学建模-差分方程

合集下载

差分方程模型的基本概念

差分方程模型的基本概念

预测经济趋势
通过建立差分方程模型,可以对 未来的经济趋势进行预测,帮助 决策者制定相应的经济政策。
评估经济政策
差分方程模型可以用来评估不同 经济政策的实施效果,为政策制 定者提供参考依据。
在物理学中的应用
描述振动现象
差分方程模型可以用来描述物体的振动规律,如弹簧振荡、单摆 等。
预Байду номын сангаас波动传播
在声学和波动理论中,差分方程模型可以用来描述波动传播的规 律,如声波、电磁波等。
可以采用动态模型来反映数据的变化趋势,减少时间滞后的影 响。
可以利用大数据技术来处理大规模的数据集,提高模型的预测 精度和稳定性。
可以尝试优化参数估计方法,例如采用全局优化算法或贝叶斯 推断等方法,以提高参数估计的准确性和稳定性。
THANKS FOR WATCHING
感谢您的观看
确定差分关系
根据时间序列数据的特性,确定合适的差分关系,以描述数据的变化规律。差分关系通常表示为变量在不同时间 点的变化量或变化率。
建立差分方程模型
根据变量和参数建立模型
根据确定的变量和参数,建立差分方程模型,以描述变量的变化规律。
验证模型的适用性
建立差分方程模型后,需要验证模型的适用性,确保模型能够准确描述实际问题的变化规律。
Python
使用Python的数值计算库,如NumPy和 SciPy,求解差分方程。
Mathematica
使用Mathematica的符号计算和数值计算功 能求解差分方程。
04 差分方程模型的应用
在经济学中的应用
描述经济周期
差分方程模型可以用来描述经济 活动的周期性变化,如经济增长、 通货膨胀、就业率等的时间序列 数据。

数学建模论文-基于双线性系统、差分方程的人口增长模型模板

数学建模论文-基于双线性系统、差分方程的人口增长模型模板

基于双线性系统、差分方程的人口增长模型摘要社会经济的许多领域的规划都必须考虑人口这一重要因素。

而人口普查只能为我们提供某几个时间点的横截面数值,但在现实生活中,人们常常需要其他时间点的人口总数及其构成。

于是一个迫切的任务就是如何用少数的几个时点的信息比较准确的得到较详尽的其他时点的人口数据。

人口系统发展是一个动力学过程,为强惯性系统,人口死亡率和出生率构成人口增长的双线性系统。

针对中短期预测,基于统计理论,将5年的死亡出生率,死亡率求期望,建立了人口增长的定常差分方程模型,预测至2015的人口发展趋势,通过MATLAB求解得到2015年的总人口为14.17亿,乡村城镇化趋势明显;并且人口在2025左右出现峰值,约为15.1亿。

针对长期预测,根据动力学发展过程理论,当时间尺度接近惯性系统的时间常数(社会人口的平均寿命)时,人口状态将发生明显改变。

由此建立了人口增长的时变差分模型。

并通过MATLAB求解,预测2050年的人口总数为14.33亿,人口系统达稳定状态。

然后,利用Leslie矩阵分析模型的稳定性。

当时间t(年)充分大时人口增长也趋于稳定。

针对长期模型的检验,对不同的总和生育率做出了人口总数的变化曲线。

得出当总和生育率的更替水平临界值略大于2.0。

关键词:差分方程,强惯性系统,Leslie矩阵,总和生育率一.问题重述与分析1.1问题重述中国乃泱泱人口大国,人口规模是城市规划和土地利用总体规划中一项重要的控制性指标,人口规模是否合理,不仅影响到未来地区经济和社会发展,而且会影响到地区生态环境可持续发展。

因此准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和现实意义。

根据国家人口报告,对短期、中期和长期人口预测作如下定义:十年内为短期,十到十五年为中期,五十年及其以上为长期。

人口发展过程是一个很缓慢的过程。

它的“时间常数”接近平均期望寿命约七、八十年的时间。

人口状态随时间变化的过程称为人口发展过程。

差分方程模型

差分方程模型
洛阳理工学院数学建模竞赛培训教案
差分方程模型
周家全
对连续型变化的问题而言, 常常可建立微分方程模型. 而对离散状态转移的问题, 则可建立差分方程模型. 差分方 程与常微分方程有很多类似的性质和结论.首先引入差分的 概念.
1 差分定义及其性质
定义 设函数 y = y(x) 在等距节点 xi = x0 + ih ( i = 0,1, , n)
对于一般的差分方程 xn+2 + axn+1 + bxn = f 来讲, 其平衡 点的稳定性问题可以同样给出. 二阶方程的上述结果可以推
广到 n 阶线性差分方程, 即稳定平衡点的条件是特征根: n
次代数方程的根 λi (i = 1, 2, , n) 均有| λi |< 1.
4 经济学中的蛛网模型
1. 提出问题 在自由竞争的社会中, 很多领域会出现循环波动的现象. 在经济领域中, 可以从自由集市上某种商品的价格变化看到 如下现象:在某一时期, 商品的上市量大于需求, 引起价格 下跌, 生产者觉得该商品无利可图, 转而经营其它商品;一

Δf (0) = f (0.5) − f (0) = 0.75 ,
-2-
洛阳理工学院数学建模竞赛培训教案
Δf (0.5) = f (1) − f (0.5) = 1.25
周家全
Δ2 f (0)= Δ(Δf (0)) = Δf (0.5) − Δf (0) = 1.25 − 0.75 = 0.5
计算较多点的差分可按差分表进行, 容易看出表中每一 个需要计算的差分值分别等于其左侧的数减去左上侧的 数.每个点 xi 处的各阶差分位于与主对角线平行的斜线上.
(I) 先求解对应的特征方程
a0λn + a1λn−1 + + a0 = 0

7.数学建模-差分方程法

7.数学建模-差分方程法


pt 发生动态等幅振荡;
ab t ) p* (5) 当 0 < ab < 2 , pt ( A1 sin kt A2 cos kt)( 2 ab ab t 1 ( ) 为衰减因子 2 2

pt → p*
( t → + ∞ ) , pt 动态发展趋于稳定 .
5.差分形式的生物数量 ic(阻滞增长)模型及其稳定性研究 描述生物生长受到环境约束的微分方程模型是 Logistic(阻滞增 长)模型 。其形式是 : y
0
这时还贷公司需要还清银行的债务的时限变为:
b ln b ry0 x 503.5 ( 半月) 21年 . ln(1 r )
这表明还贷公司只用 21 年就可还清银行的债务, 由此 , 还贷公司赚 了购房人 一年的钱: 24 × 316 = 7584 ( 元 ) . 故问题 (2) 的解答是 : 此方案对还贷公司而言是有利可图的 。
模型II . 模型假设: (1) t 时刻的商品价格 pt 是商品数量 xt 的直线下降函数: pt = pM - a xt ; (2) 这一时期的商品数量 xt 是前两个时期的商品价格 pt-1 与 pt-2 的 算术平均值的直线上升函数(企业对市场的分析、判断应更成 b( pt 1 pt 2 ) 熟一些): 模型建立:
p ( 0 ) = p0 ,p(1) = p1 ( 初始价格 ) . (二阶线性常系数差分方程)
r1, 2
ab ab(ab 8) 4
p M axm p* 1 ab
(2) 当 ab = 8 时,
ab t pt ( A1 A2 t )( ) p * ( A1 A2 t )(2) t p * 4 ab t ) p* (3) 当 ab < 8 时, pt ( A1 sin kt A2 cos kt)(

数学建模之差分方程

数学建模之差分方程

差分方程模型①建立差分方程利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立差分方程模型。

一阶常系数线性差分方程的一般形式为1(),(0)t t y ay f t a +-=≠(1)②求解一阶常系数齐次线性差分方程10,(0)t t y ay a +-=≠(2)常用的两种解法1)迭代法假设0y 已知,则有2112210(),n n n n n n y ay a ay a y a y a y ----======一般有0(0,1,2,).t t y a y t ==10t t y ay +-=(3)2)特征方程法假设(0)t Y λλ=≠为方程(3)的解,代入(3)得方程的特征方程10(0),t t a λλλ+-= ≠解得特征根:.a λ=则t t y a =是方程(3)的解,所以齐次方程的通解为 (t t y ca c =为任意常数)例题:设某房屋总价为a 元,先付一半可入住,另一半由银行以年利r 贷款, n 年付清,问平均每月付多少元?共付利息多少元?解:设每月应付x 元,月利率为12r ,则第一个月应付利息为 1.12224r a ra y =⨯=第二月应付利息为2111,2121212a r r rx y x y y ⎛⎫⎛⎫=-+⨯=+- ⎪ ⎪⎝⎭⎝⎭以此类推得到 11,1212t t r rx y y +⎛⎫=+- ⎪⎝⎭此方程为一阶常系数非线性差分方程。

其相应的特征方程为(1)012r λ-+= 特征根为112r + 则得到通解为1(12t t r y c c ⎛⎫=+ ⎪⎝⎭为任意常数). 解得特解为t y x *=所以原方程通解为 112t t r y c x ⎛⎫=++ ⎪⎝⎭当112224r a ra y =⨯=时,解得24112ra x c r -=+。

所以解得满足初始条件的特解为112411211211.2121212t t t t ra x r y x r a r r r x x ---⎛⎫=++ ⎪⎝⎭+⎛⎫⎛⎫=⨯⨯++-+ ⎪ ⎪⎝⎭⎝⎭ 于是得到n 年的利息之和为11212121212121221112nnn I y y a r r a n r =++⎛⎫⨯+⨯ ⎪⎝⎭=⨯-⎛⎫+- ⎪⎝⎭ 元,平均每月需要付12121212121112nna r rr⎛⎫⨯+⨯⎪⎝⎭⎛⎫+-⎪⎝⎭元。

数学建模之差分方程

数学建模之差分方程

差分方程对连续型变量而言,我们常常回导致到微分方程的问题. 对离散型变量将导致一类的问题.一、差分的定义定义 设)(x y y =是一个函数, 自变量从x 变化到x +1, 这时函数的增量记为)()1(x y x y y x -+=∆, 我们趁这个量为)(x y 在点x 步长为1的一阶差分,简称为)(x y 的一阶差分. 为了方便我们也记)(),1(1x y y x y y x x =+=+,即 x x x y y y -=∆+1.称x x x x x x x x y y y y y y y y +-=---=∆∆+++++121122)()()(为)(x y 二阶差分,简记为x y 2∆.同样记)(2x y ∆∆为x y 3∆,并称为三阶差分.一般记)(1x n x n y y -∆∆=∆,称为n 阶差分.且有i n x i ni i n x ny C y -+=-=∆∑)1(0. 性质: 当a,b,C 是常数, y x 和z x 是函数时,(1) Δ(C )=0;(2) Δ(Cy x )= C Δ(y x );(3) Δ(ay x + b z x )= a Δy x + b Δ z x ;(4) Δ(y x z x )= z x+1Δy x +y x Δ z x = y x+1Δz x +z x Δy x ;(5) 1111++++∆-∆=∆-∆=⎪⎪⎭⎫ ⎝⎛∆x x x x x x x x x x x x x x z z z y y z z z z y y z z y . 例 已知),0(≠=x x y x α求Δ(y x ).解 Δ(y x )= ααx x -+)1(.特别, 当n 为正整数时, Δ(y x )= i n n i i n x C -=∑1, 阶数降了一阶.推论 若m, ,n 为正整数时, m,> n P(x)为n 次多项式,则0)(=∆x P m .例 已知),10(≠<=a a y x x 求Δ(y x ).解 Δ(y x )= )1(1-=-+a a a a x x x .二、差分方程定义 设是含有未知函数差分的等式,称为差分方程。

数学模型(差分方程)

数学模型(差分方程)

定义为
X ( z ) Z [ x(k )] x(k ) z k
k 0 k

其中z是复变量,因此级数 x(k ) z 的收敛域为某个圆的外部。
k 0
X ( z)
的Z反变换记作 x(k ) Z 1[ X ( z)]
(k )

1.几个常用离散函数的变换
一部分为当月新生的,而由题设知当月新生的兔子对数等于上上月
兔子对数,所以
h(n) h(n 1) h(n 2), n 3 h(1) h(2) 1
一、常系数线性齐次差分方程的求解方法-解析法 形如
h(n) a1h(n 1) a2h(n 2) ak h(n k ) 0 (n k , k 1,) (1)
h(n) h(n 1) 3h(n 2) 5h(n 3) 2h(n 4) 0 ( n 4,5, )
的特解 . 解:该差分方程对应的特征方程为
x 4 x3 3x 2 5 x 2 0
x 其根为:1 x2 x3 1, x4 2 ,所以
令l k N
特别地 Z[ x(k 1)] z[ X ( z) X (0)] 证 : Z[ x(k N )] x(k N ) z
k 0 N
l l 0
k

x(l ) z
l N
l N
z
N
=z [ x(l ) z x(l ) z l ] z N [ X ( z ) x(k ) z k ]
差分方程的通解为:
t
mi
重根,则该
h(n) h1 (n) h2 (n) ht (n) hi (n)

《数学建模》课件:第7章 差分方程模型(投影版)

《数学建模》课件:第7章 差分方程模型(投影版)

求得的方程的解
x=x =
b
n
称为该差分方程的平衡点(奇解)。
ai
i0
若记该差分方程的一般解(通解)为 xk,它若满足:lkim xk x,
则称 x 是稳定的, 否则,称 x 是不稳定的。
6. 特征方程
称代数方程: an n an1 n1 a1 a0 0
为差分方程 an xkn a1xk1 a0xk b 对应的特征方程。
x1 y1 x2 y2 x3
xk x0 , yk y0
P1 P2 P3 P0
xk x0 , yk y0 P1 P2 P3 P0
P0是稳定平衡点
y
f
y2 P3
yy30 y1
P2
g 曲线斜率
P4
P0
K f Kg
P1
0 x2 x0 x3 x1 x
P0是不稳定平衡点
y
P3 f
根据导数的定义:
f
'(xk )
lim =
x xk
f
(x) f (xk ) x xk
lim = f (x) f (xk ) lim = f (x) f (xk )
x xk
x xk
x xk-
x xk
于是,当分割足够细时,用差商代替微商,则得到如下差分公式:
向前差分:
f
'(xk )
数学建模
第七章 差分方程模型
数学建模
第七章 差分方程与代数方程模型
主讲教师:邵红梅
数学建模
第七章 差分方程模型
差分方程稳定性理论简介
一、差分方程
所谓n阶差分方程,简单地说,是指对于一个点列 xk ,把它的前n+1项

浙江大学数学建模第四章基于线性代数与差分方程方法的模型

浙江大学数学建模第四章基于线性代数与差分方程方法的模型
(i,i)为可取状态,这是因为总可以适当安排而使他 们是 i对夫妻。 (ii)可取运算: 过河方式可以是一对夫妻、两个男人或两个女人, 这一问题的状态和运算与 当然也可以是一人过河。转移向量可取成 ((- 前一问题有所不同,根据 im,(-1)in),其中m、n可取0、1、2,但必须 1) 题意,状态应能反映出两 满足1≤m+n≤2。当j为奇数时表示过河。 当j为偶 岸的男女人数,过河也同 数时表示由对岸回来,运算规则同普通向量的加 样要反映出性别 法。
2.移位密码体制
移位密码采用移位法进行加密,明文中的字母重新排列,本 身不变,只是位置改变了。 另一种移位 法采用将字母表中的字母平移若干位的方法来构造 早在4000多年前,古希腊人就用一种名 叫“天书”的器械 密文字母表,传说这类方法是由古罗马皇帝凯撒最早使用的, 来加密消息。该密码器械是用一条窄长的草纸缠绕在一个 故这种密文字母表被称为凯撒字母表。例如,如用将字母表向 直径确定的圆筒上,明文逐行横写在纸带上,当取下纸带 右平移3位的方法来构造密文字母表,可 得: 时,字母的次序就被打乱了,消息得以隐蔽。收方阅读消 明文字母表: ABCDEFGHIJKLMNOPQRSTUVWXYZ 息时,要将纸带重新绕在直径与原来相同的圆筒上,才能 密文字母表: DEFGHIJKLMNOPQRTSUVWXYZABC 看到正确的消息。在这里圆筒的直径起到了密钥的作用。 “WKDQN BRX” 因此 “THANK YOU” 以上两种移位较易被人破译,为打破字母表中原有的顺序还可 采用所谓路线加密法,即把明文字母表按某种既定的顺序安排 在一个矩阵中,然后用另一种顺序选出矩阵中的字母来产生密 文表。
§4.2 密码的设计,解码与破译
密码的设计和使用至少可从追溯到四千多年前的埃及 ,巴 比伦、罗马和希腊,历史极为久远 。古代隐藏信息的方法 主要有两大类: 其一为隐藏信息载体,采用隐写术 等; 其二为变换信息载体,使之无法为一般人所理解 。

数学建模例题及解析

数学建模例题及解析

.例1差分方程——资金(de)时间价值问题1:抵押贷款买房——从一则广告谈起每家人家都希望有一套(甚至一栋)属于自己(de)住房,但又没有足够(de)资金一次买下,这就产生了贷款买房(de)问题.先看一下下面(de)广告(这是1991年1月1日某大城市晚报上登(de)一则广告),任何人看了这则广告都会产生许多疑问,且不谈广告中没有谈住房面积、设施等等,人们关心(de)是:如果一次付款买这栋房要多少钱呢银行贷款(de)利息是多少呢为什么每个月要付1200元呢是怎样算出来(de)因为人们都知道,若知道了房价(一次付款买房(de)价格),如果自己只能支付一部分款,那就要把其余(de)款项通过借贷方式来解决,只要知道利息,就应该可以算出五年还清每月要付多少钱才能按时还清贷款了,从而也就可以对是否要去买该广告中所说(de)房子作出决策了.现在我们来进行数学建模.由于本问题比较简单无需太多(de)抽象和简化.a.明确变量、参数,显然下面(de)量是要考虑(de):需要借多少钱,用记;月利率(贷款通常按复利计)用R记;每月还多少钱用x记;借期记为N个月.b.建立变量之间(de)明确(de)数学关系.若用记第k个月时尚欠(de) 款数,则一个月后(加上利息后)欠款 , 不过我们又还了x元所以总(de)欠款为k=0,1,2,3,而一开始(de)借款为.所以我们(de)数学模型可表述如下(1)c. (1)(de)求解.由(2)这就是之间(de)显式关系.d.针对广告中(de)情形我们来看(1)和(2)中哪些量是已知(de).N=5年=60个月,已知;每月还款x=1200元,已知 A.即一次性付款购买价减去70000元后剩下(de)要另外去借(de)款,并没有告诉你,此外银行贷款利率R也没告诉你,这造成了我们决策(de)困难.然而,由(2)可知60个月后还清,即,从而得(3)A和x之间(de)关系式,如果我们已经知(3)表示N=60,x=1200给定时0A.例如,若R =0.01,则由(3)可算得道银行(de)贷款利息R,就可以算出053946元.如果该房地产公司说一次性付款(de)房价大于70000十53946=123946元(de)话,你就应自己去银行借款.事实上,利用图形计算器或Mathematica这样(de)数学软件可把(3)(de)图形画出来,从而可以进行估算决策.以下我们进一步考虑下面两个问题.注1问题1标题中“抵押贷款”(de)意思无非是银行伯你借了钱不还,因而要你用某种不动产(包括房子(de)产权)作抵押,即万一你还不出钱了,就没收你(de)不动产.例题1某高校一对年青夫妇为买房要用银行贷款60000元,月利率0.01,贷款期25年=300月,这对夫妇希望知道每月要还多少钱,25年就可还清.假设这对夫妇每月可有节余900元,是否可以去买房呢解:现在(de)问题就是要求使 (de)x,由(2)式知现=60000,R=0.01,k=300,算得x=632元,这说明这对夫妇有能力买房.例题2 恰在此时这对夫妇看到某借贷公司(de)一则广告:“若借款60000元,22年还清,只要;(i)每半个月还316元;(ii)由于文书工作多了(de)关系要你预付三个月(de)款,即316×6=1896元.这对夫妇想:提前三年还清当然是好事,每半个月还316元,那一个月不正好是还632元,只不过多跑一趟去交款罢了;要预付18%元,当然使人不高兴,但提前三年还清省下来(de)钱可是22752元哟,是1896元(de)十几倍哪这家公司是慈善机构呢还是仍然要赚我们(de)钱呢这对夫妇请教你给他们一个满意(de)回答.具体解法略.问题2:养老基金今后,当年青人参加工作后就要从其每月工资中扣除一部分作为个人 (de)养老基金,所在单位(若经济效益好(de)话)每月再投入一定数量(de)钱,再存入某种利息较高而又安全(de)“银行”(也可称为货币市场)到60岁退休时可以动用.也就是说,若退休金不足以维持一定(de)生活水平时,就可以动用自己(de)养老基金,每月取出一定(de)款项来补贴不足部分.假设月利率及=0.01不变,还允许在建立养老基金时自己可以一次性地存入A(不论多少),每月存入y元(个人和单位投入(de)总和);通常从一笔钱0三十一岁开始到六十岁就可以动用.这当然是一种简化(de)假设,但作为估算仍可作为一种考虑(de)出发点.本问题实际上有两个阶段,即退休前和退休后,其数学模型为其中x为每月要从养老基金中提出(de)款项.习题1 某大学年青教师小李从31岁开始建立自己(de)养老基金,他把已有(de)积蓄1万元也一次性地存入,已知月利率为0.01 (以复利计),每月存入300元,试问当小李60岁退休时,他(de)退休基金有多少又若,他退休后每月要从银行提取l000元,试问多少年后他(de)退休基金将用完你能否根据你了解(de)实际情况建立一个较好(de)养老基金(de)数学模型及相应(de)算法和程取软件).习题2 渔业(林业)管理问题设某养鱼池(或某海域)一开始有某种鱼条,鱼(de)平均年净繁殖率为R,每年捕捞x条,记第N年有鱼条,则池内鱼数按年(de)变化规律为注意,在实际渔业经营中并不按条数计算而是以吨记数(de).若对某海域(de)渔业作业中=100000吨,R=0.02,x=1000吨,试问会不会使得若干年后就没有鱼可捕捞了(资源枯竭了)例2比例分析法——席位分配问题:某学校有三个系联合成立学生会,(1)试确定学生会席位分配方案.(2)若甲系有100名,乙系60名,丙系40名.学生会设20个席位,分配方案如何(3)若丙系有3名学生转入甲系,3名学生转入乙系,分配方案有何变化(4)因为有20个席位(de)代表会议在表决提案时有可能出现10: 10(de)平局,会议决定下一届增加1席,若在第(3)问中将学生会席位增加一席呢(5)试确定一数量指标衡量席位分配(de)公平性,并以此检查(1)—(4).公平而又简单(de)席位分配办法是按人数(de)比例分配,若甲系有100名,乙系60名,丙系40名.学生会设20个席位,三个系分别应有10,6,4个席位.如果丙系有6名学生转入其他两系学习,各系人数如表所示系别学生人数所占比例(%)按比例分配(de)席位按惯例分配(de)席位甲10310乙636第二列所示,按比例分配席位时,出现了小数(见表中第四列).在将取得整数(de)19席分配完毕后,剩下(de)1席按照惯例分给余数最大(de)丙系,于是三个系仍分别占有10、6、4个席位.因为有20个席位(de)代表会议在表决提案时有可能出现10:10(de)平局,会议决定下一届增加1席,于是他们按照上述惯例重新分配席位,计算(de)结果令人吃惊:总席位增加1席,丙系反而减少1席,见下表.看来,要解决这个矛盾,必须重新研究所谓惯例分配方法,提出更加“公平”(de)办法.下面就介绍这样一个席位分配模型.设A、B两方人数分别是p1 和p2,分别占有n1 和n2 个席位,则两方每个席位所代表(de)人数分别是p1 /n12和p2/n2.很明显,仅当这两个数值相等时,席位(de)分配才是公平(de).但是,通常它们不会相等,这时席位分配得不公平.不公平(de)程度可以用数值来表示,它衡量(de)是“绝对不公平”.从下表所举(de)例子来看,A、B之间(de)“绝对不公平”与C、D之间是一样(de).但是从常识(de)角度看,A、B之间显然比C、D之间存在着更加严重(de)不公平.所以“绝对不公平”不是一个好(de)衡量标准.p n p/n p1/n1-p2/n2 A120101212-10=2B1001010C102010102102-100=2D100010100为了改进绝对标准,我们自然想到用相对标准.因为p/n越大,每个席位代表(de)人数越多,或者说,总人数一定时分配(de)席位越少.所以,如果p1/n13>p2/n2,则A方是吃亏(de),或者说,对A是不公平(de),由此,我们这样定义“相对不公平”:若p1/n1>p2/n2,则称为对A(de)相对不公平值,记做若p1/n1<p2/n2,则称为对B(de)相对不公平值,记做假设A、B两方已分别占有n1和n2个席位,我们利用相对不公平(de)城念来讨论,当总席位再增加1席时,应该给且A方还是B方不失一般性,可设p1/n1>p2/n2,即此时对A方不公平, ,有定义.当再分配1个席位时,关于p/n(de)不等式有以下三种可能:1)p1/(n1十1)>p2/n2,这说明即使A方增加1席,仍然对A不公平,所以这1席当然应给A方;2)p1/(n1十1)<p2/n2,说明当A方增加1席位,将对B不公平,此时应参照式,计算对B(de)相对不公平值3)说明当B方增加1席时,将对A方不公平,此时计算得对A (de)相对不公平值是(注意:在p1/n1p2/n2(de)假设下,不可能出现p1/n1<p2/(n2+1)(de)情况因为公平(de)席位分配方法应该使得相对不公平(de)数值尽量地小,所以如果则这1席应给A方;反之应给B方.根据(3)、(4)两式,(5)式等价于并且不难证明1从上述第1)种情况(de)p1/(n1十1)>p2/p2也可推出. 于是我们(de)结论是:当(6)式成立时,增加(de)1席应分配A方;反之,应分配给B方.若记,则增加(de)1席位应分配给Q值较大(de)一方.将上述方法可以推广到有m方分配席位(de)情况.下面用这个方法,重新讨论本节开始时提出(de),三个系分配21个席位(de)问题.首先每系分配1席,然后计算:甲系n1=1,乙系, n2=1,丙系,n3=1,因为最大,所以第4席应分配给甲系,继续计算:甲系n1=2,将与上面(de)相比,最大,第5席应分给乙系,继续计算.如此继续,直到第21席分配给某个系为止(详见列表).n甲系乙系丙系1(4)(5)578(9)2(6)(8)(15)3(7)(12)(21)4(10)(14)5(11)(18)6(13)7(16)8(17)9(19)10(20)11可以看出,用Q值法,丙系保住了它险些丧失(de)1席.你觉得这个方法公平吗习题:学校共1000名学生,235入住在A宿合,333人住在B宿合,432人住在C宿合.学生们要组织一个10人(de)委员会,试用下列办法分配各宿舍(de)委员数.1)惯例(de)方法,印按比例分配完整数名额后,剩下名额给余数最大者. 2)Q值方法.如果委员会从10人增至15人,分配名额将发生什么变化 ,例3 状态转移问题——常染色体遗传模型随着人类(de)进化,人们为了揭示生命(de)奥秘,越来越注重遗传学(de)研究,特别是遗传特征(de)逐代传播,引起人们(de)注意.无论是人,还是动植物都会将本身(de)特征遗传给下一代,这主要是因为后代继承了双亲(de)基因,形成自己(de)基因对,基因对将确定后代所表现(de)特征.下面,我们来研究两种类型(de)遗传:常染色体遗传和x—链遗传.根据亲体基因遗传给后代(de)方式,建立模型,利用这些模型可以逐代研究一个总体基因型(de)分布.在常染色体遗传中,后代从每个亲体(de)基因对中各继承一个基因,形成自己(de)基因对,基因对也称基因型.如果我们所考虑(de)遗传特征是有两个基因A和控制(de),那么就有三种基因对,记为AA,A,.例如,金草鱼由两个遗传基因决定花(de)颜色,基因型是AA(de)金鱼草开红花,型(de)开粉红色花,而型(de)开白花.又如人类(de)眼睛(de)颜色也是提高通过常染色体遗传控制(de).基因型是(de)人,眼睛是棕色,基因型是(de)人,眼睛是兰色.这里因为都表示了同一外部特征,我们认为基因A 支配基因,也可以认为基因对于A 来说是隐性(de)农场(de)植物园中某种植物(de)基因型为AA,A 和.农场计划采用AA 型(de)植物与每种基因型植物相结合(de)方案培育植物后代.那么经过若干年后,这种植物(de)任一代(de)三种基因型分布如何 第一步:假设:令 ,2,1,0=n .(1) 设n n b a ,和n c 分别表示第n 代植物中,基因型为AA,Aa 和aa(de)植物占植物总数(de)百分率.令)(n x 为第n 代植物(de)基因型分布:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(当n=0时⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000)0(c b a x表示植物基因型(de)初始分布(即培育开始时(de)分布),显然有1000=++c b a(2) 第n 代(de)分布与第n-1代(de)分布之间(de)关系是通过上表确定(de).第二步:建模根据假设(2),先考虑第n 代中(de)AA 型.由于第n-1代(de)AA 型与AA 型结合,后代全部是AA 型;第n-1代(de)Aa 型与AA 型结合,后代是AA 型(de)可能性为1/2,第n-1代(de)aa 型与AA 型结合,后代不可能是AA 型.因此,当 ,2,1,0=n 时11102/1---•++•=n n n n c b a a即2/11--+=n n n b a a 类似可推出2/11--+=n n n b c a 0=n c将式相加,得111---++=++n n n n n n c b a c b a根据假设(1),有1000=++=++c b a c b a n n n对于式、式和式,我们采用矩阵形式简记为,2,1,)1()(==-n Mx x n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00012/1002/11M ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n c b a x )(式递推,得)0()2(2)1()(x M x M Mx x n n n n ====--式给出第代基因型(de)分布与初始分布(de)关系.为了计算出n M ,我们将M 对角化,即求出可逆矩阵P 和对角阵D,使1-=PDP M因而有,2,1,1==-n P PD M n n其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n nnn D 321321000000000λλλλλλ这里321,,λλλ是矩阵M(de)三个特征值.对于式中(de)M,易求得它(de)特征值和特征向量:0,2/1,1321===λλλ因此⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=00002/10001D ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0112 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 所以[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==100210111321P通过计算1-=P P ,因此有)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=0001002101110000)21(0010100210111c b a n 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=--00011)(000)2/1()2/1(0)2/1(1)2/1(11c b a c b a x n n n n n n n n ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++=--0)2/1()2/1()2/1()2/1(010010000c b c b c b a n n n n所以有⎪⎩⎪⎨⎧=+=--=--0)2/1()2/1()2/1()2/1(1010010n n n n n n n c c b b c b a当∞→n 时0)2/1(→n,所以从式得到0,1→→n n b a 和n c =0即在极限(de)情况下,培育(de)植物都是AA 型. 第三步:模型讨论若在上述问题中,不选用基因AA 型(de)植物与每一植物结合,而是将具有相同基因型植物相结合,那么后代具有三代基因型(de)概率如下表:并且)0()(x M xn n =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=14/1002/1004/11M M(de)特征值为2/1,1,1321===λλλ通过计算,可以解出与21,λλ相对应(de)两个线性无关(de)特征向量1 和2 ,及与3λ相对应(de)特征向量3 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1002 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1213 因此[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==111200101321P⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-02/1011102/111P)0(1)0()(x P PD x M x n n n -==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=00002/1011102/11)2/1(0001001111200101c b a n n所以有⎪⎩⎪⎨⎧-+==++=++010000100)2/1()2/1()2/1()2/1()2/1(bb c c b b b b a a n nn n n n当∞→n 时0)2/1(→n,所以从式得到0,)2/1(00→+→n n b b a a 和00)2/1(b c c n +→因此,如果用基因型相同(de)植物培育后代,在极限情况下,后代仅具有基因AA 和aa. 例4 合作对策模型在经济或社会活动中,几个社会实体(个人、公司、党派、国家)相互合作或结成联盟,常能获得比他们单独行动更多(de)经济或社会效益.这样合理地分配这些效益是合作对策要研究(de)问题.请看下面(de)例子.问题一:经商问题甲、乙、丙三人经商,若单干,每人仅能获利1元;甲乙合作可获利7元;甲丙合作可获利5元;乙丙合作可获利4元;三人合作可获利10元,问三人合作时如何分配10元(de)收入.甲(de)收入应按照甲对各种形式(de)合作(de)贡献来确定.对于某一合作(de)贡献定义为:有甲参加时这个合作(de)收入与无甲参加时这个合作(de)收入之差.例如甲对甲乙二人合作(de)贡献是7—1=6 (因为甲乙合作获利7元,而乙单干仅获利1元).甲可以参加(de),合作有四个:甲自己(单干视为合作(de)特例)、甲乙、甲丙、甲乙丙.甲对这些合作(de)贡献分别是甲:1一0=1元;甲乙:7—1=6元;甲内:5—1=4元;甲乙丙:10—4=6元,甲应分得(de)收入是这四个贡献(de)加权平均值,加权因子将由下面(de)一般模型给出.这个问题叫做3人合作对策,是对策论(de)一部分,这里介绍它(de)一种解法.一般(de)n人合作对策模型可以叙述如下:记n人集合为I=,如果对于I中 (de)任一子集,都对应一个实值函数v(s),满足则称为定义在I上(de)特征函数.所谓合作对策是指定义了特征函数(de)I中n个人(de)合作结果,用向量值函数来表示.在实际问题中.常可把I中各种组合(de)合作获得(de)利益定义为特征函数,上式表示合作规模扩大时,获利不会减少.不难看出,如将三人经商问题中合作(de)获利定义为特征函数v,v是满足(1)、(2)(de).为了确定,Shapley在1953年首先制定了一组应该满足(de)公理,然后证明了满足这组公理(de)(de)唯一解是其中是I中包含{i}(de)所有子集,是集合s中(de)人数,是加权因子,由确定.(3)式中可看作成员{i}对合作s(de)贡献;表示对所有包含{i}(de)集合求和.称为由v定义(de)合作(de)Shapley值.我们用(3)、(4)计算三人经商问题中各个人应得到(de)收入.甲、乙、丙分别记作{1},{2},{3},包含{1}(de)集合有{1}、{1,2}、{1,3}、{1,2,3},计算结果列入下表.S{1}{1,2}{1,3}{1,2,3}V(s)17510V(s-{1})0114V(s)- V(s-{1})1 6 4 612 23 W()1/31/61/61/3W()[V(s)-V(s-{1})]1/31 2/3 2.同样可以算出乙、丙应得收入为=3.5元,=元.问题二:三城镇(de)污水处理方案沿河有三城镇1、2和3,地理位置如图4;6所示.污水需处理后才能排入河中.三城镇或者单独建立污水处理厂,或者联合建厂,用管道将污水集中处理(污水应于河流(de)上游城镇向下游城镇输送).以Q 表示污水量(吨/秒),工表示管道长度(公里).按照经验公式,建立处理厂(de)费用为712.0173Q P =,铺设管道(de)费用为LQ P 51.0266.0=.今已知三城镇(de)污水量分别为5,3,5321===Q Q Q .L(de)数值38,202312==L L .试从节约总投资(de)角度为三城镇制定污水处理方案;包括是单独还是联合建厂;如果联合,如何分担投资额等.三城镇或单干或不同形式(de)联合,共有五种方案.下面一一计算所需(de)投资.方案一 三城镇都单干.投资分别为总投资:方案二城1、2合作.这时城1、2将从节约投资(de)角度对联合还是分别建厂作出决策,所以城1、2(de)投资为:=3500C(3)=2300总投资:方案三城2、3合作.C(1)=2300总投资:方案四城1、3合作.C(2)=1600总投资:方案五三城镇合作=5560总投资:比较五个方案可知,应该选择三城合作,联合建厂(de)方案. 下面(de)问题是如何分担总额为5560(de)费用.城3(de)负责人提出,联合建厂(de)费用按三城(de)污水量之比5:3:5分担,铺设管道费应由城1、2担负.城2(de)负责人同意,并提出从城2到城3(de)管道费由城1、2按污水量之比5:3分担;从城1到城2(de)管道费理应由城1自己担负.城1(de)负责人觉得他们(de)提议似乎是合理(de),但因事关重大,他没有马上表示同意;而是先算了一笔账.联合建厂(de)费用是4530)535(73712.0=++,城2到城3(de)管道费是730,城1到城2(de)管道费是300,按上述办法分配时,城3负担(de)费用为1740,城2(de)费用为1320,域1(de)费用为2500.结果出乎意料之外,城3和城2(de)费用都比单独建厂时少,而城1(de)费用却比单独建厂时(de)C(1)还要多.城1(de)负责人当然不能同意这个方法,但是一时他又找不出公平合理(de)解决办法.为了促成联合(de)实现,你能为他们提供一个满意(de)分担费用(de)方案吗首先,应当指出,城3和城2负责人提出(de)办法是不合理(de):从前面(de)计算我们知道,三城联合,才能使总投资节约了640(de)效益应该分配给三城,使三城分配(de)费用都比他们单干时要少,这是为促成联合所必须制定(de)一条原则.至于如何分配,则是下面要进一步研究(de)问题. 把分担费用转化为分配效益,就不会出现城1联合建厂分担(de)费用反比单独建厂费用高(de)情况.将三城镇记为I={1,2,3},联合建厂比单独建厂节约(de)投资定义为特征函数.于是有v(φ)=0,v({1})=v({2})=v({3})=0,v({1,2})=c(1)+c(2)-c(1,2)=2300+1600-3500=400,v({2,3})=c(2)+c(3)-c(2,3)=1600+2300-3650=250,v({1,3})=0,v(I)=c(1)+c(2)+c(3)-c(1,2,3)=640.S {1} {1,2} {1,3} {1,2,3} V(s) 0 400 0 640 V(s-{1}) 0 0 0 250 V(s)- V(s-{1})0 400 0 39012 23 W()1/31/61/61/3W()[V(s)-V(s-{1})] 0 67 0 130即197)(1=v ϕ同理得321)(2=v ϕ,122)(3=v ϕ那么, 城1分担(de)费用为2300-197=2103, 城2分担(de)费用为1600-321=1279, 城3分担(de)费用为2300-122=2178,合计5560. 习题:某甲(农民)有一块土地.如果从事农业生产可年收入100元;如果将土地租给某企业家用于工业生产,可年收入200元;如果租给某旅店老板开发旅游业,可年收入300元;当旅店老板请企业家参与经营时,年收入可达400元.为实现最高收入,试问如何分配各人(de)所得才能达成协议例5动态规划模型有不少动态过程可抽象成状态转移问题,特别是多阶段决策过程(de)最优化如最短路径问题,最优分配,设备更新问题,排序、生产计划和存储等问题.动态规划是一种将复杂问题转化为一种比较简单问题(de)最优化方法,它(de)基本特征是包含多个阶段(de)决策.1951年,美国数学家贝尔曼(R.Bellman)等人,提出了解决多阶段决策问题(de)“最优化原理”,并研究了许多实际问题,从而创建了动态规划·动态规划方法(de)基本思想是:将一个复杂问题分解成若干个阶段,每一个阶段作为一个小问题进行处理,从而决定整个过程(de)决策,阶段往往可以用时间划分这就具有“动态”(de)含义,然而,一些与时间无关(de)静态规划中(de)最优化问题,也可人为地把问题分成若干阶段,作为一个多阶段决策问题来处理,计算过程单一化,便于应用计算机.求解过程分为两大步骤,①先按整体最优化思想递序地求出各个可能状态(de)最优化决策;②再顺序地求出整个题(de)最优策略和最优路线.下面,结合一个求最短路径(de)例子,来说明动态规划(de)一些基本概念.最短路径问题如图所示(de)交通网络,节点连接线路上(de)数字表示两地距离,计算从A 到E(de)最短路径及长度.1.阶段.把所要处理(de)问题,合理地划分成若干个相互联系(de)阶段,通常用k 表示阶段变量.如例中,可将问题分为4个阶段,k=1,2,3,4. 2.状态和状态变量.每一个阶段(de)起点,称为该阶段(de)状态,描述过程状态(de)变量,称为状态变量,它可以用一个数、一组数或一个向量来描述,常用k x 来表示第k 阶段(de)某一状态.如果状态为非数量表示,则可以给各个阶段(de)可能状态编号,i x i k =)(()(i k x 表示第k 个阶段(de)第i 状态).第k 阶段状态(de)集合为},,,,,{)()()2()1(T k i k k k k x x x x X =如例6中,第3阶段集合可记为}3,2,1{},,{},,{321)3(3)2(3)1(33===C C C x x x X3.决策和决策变量.决策就是在某一阶段给定初始状态(de)情况下,从该状态演变到下一阶段某状态(de)选择.即确定系统过程发展(de)方案.用一个变量来描述决策,称这个变量为决策变量.设)(k k x u 表示第k 个阶段初始状态为k x (de)决策变量.)(k k x D 表示初始状态为k x (de)允许决 策集合,有)(k k x u ∈)(k k x D ={k u }如例6中},,{)(3211B B B A D =,若先取2B ,则21)(B A u =. 4.策略和子策略.由每段(de)决策)(k k x u 组成(de)整个过程(de)决策变量序列称为策略,记为n P ,1,即n P ,1=)}(,),(),({2211n n x u x u x u从阶段k 到阶段n 依次进行(de)阶段决策构成(de)决策序列称为k 子策略,记为n k P ,即)(1,x P n k =)}(,),(),({11n n k k k k x u x u x u ++显然,k=1时(de)k 子策略就是策略.如例6,选取路径E D C B A →→→→221就是一个子策略.从允许策略集中选出(de)具有最佳效果(de)策略称为最优策略. 5.状态转移方程.系统在阶段k 处于状态k x ,执行决策)(k k x u (de)结果是系统状态(de)转移,即由阶段K(de)状态k x 转移到阶段K 十1(de)状态1+k x 适用于动态规划方法求解(de)是一类具有无后效性(de)多阶段决策过程.无后效性又称马尔科夫性,指系统从某个阶段往后(de)发展,完全由本阶段所处(de)状态以及其往后(de)决策决定,与系统以前(de)状态及决策无关,对于具有无后效性(de)多阶段过程,系统由阶段k 向阶段k+1(de)状态转移方程为))(,(1k k k k k x u x T x =+意即1+k x 只与k x ,)(k k x u 有关,而与前面状态无关.))(,(k k k k x u x T 称为变换函数或算子.分确定型和随机型,由此形成确定型动态规划和随机型动态规划. 6.指标函数和最优指标函数.在多阶段决策中,可用一个数量指标来衡量每一个阶段决策(de)效果,这个数量指标就是指标函数,为该阶段状态变量及其以后各阶段(de)决策变量(de)函数,设为n k V ,即n k x x u x V V n k k k n k n k ,,2,1),,,,(1,, ==+指标(de)含义在不同(de)问题中各不相同,可以是距离、成本、产品产 量、资源消耗等.例6中,指标(de)含义就是距离,指标函数为A 到E(de)距离,为各阶段路程(de)和.最常见(de)指标函数取各阶段效果之和(de)形式,即∑==nk j j j j n k u x V V ),(,指标函数nk V ,(de)最优值,称为相应(de)最优指标函数,记为)(k k x fnk k k optV x f ,)(=式中opt 是最优化之意,根据问题要求取max 或min . 7.动态规划最优化原理.贝尔曼指出“作为整个过程(de)最优策略具有这样(de)性质:即无论过去(de)状态和决策如何,对前面(de)决策所形成(de)状态而言,余下(de)诸决策必须构成最优策略”基于这个原理,可有如下定理:定理 若策略*,1n P 是最优策略,则对于任意(de)k(1<k<n),它(de)子策略*,n k P 对于以),(*1*11*---=k k k k u x T x 为起点(de)k 到n 子过程来说,必是最优策略. 实质上,动态规划(de)方法是从终点逐段向始点方向寻找最短路径(de)一种方法.8.动态规划(de)数学模型.利用最优化原理,可以得到动态规划(de)数学模型)}(),({)(11+++=k k k k k k k x f u x V opt x f ))(1,,1,(k k k x D u n n k ∈-=0)(11=++n n x f这是一个由后向前(de)递推方程.下面以例6(de)最短路径问题说明这种递序解法.指标函数为两点之间(de)距离,记为),(k k u x d ,例中共分4个阶段. (倒推) 第4阶段2)(),()(5114=+=E f E D d D f 3)(),()(5224=+=E f E D d D f 5)(),()(5334=+=E f E D d D f 0)(5=E f第3阶段6835)(),(624)(),(min )(2421141113=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{11*4,3E D C P =4431)(),(826)(),(min )(2422141223=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{22*4,3E D C P =6651)(),(1239)(),(min )(3433243333=⎭⎬⎫⎩⎨⎧=+=+=+=+=D f D C d D f D C d C f},,{33*4,3E D C P =第2阶段7734)(),(1367)(),(min )(2321131112=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{221*4,2E D C B P =7734)(),(826)(),(min )(2322131222=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{222*4,2E D C B P =91468)(),(945)(),(min )(3333232332=⎭⎬⎫⎩⎨⎧=+=+=+=+=C f C B d C f C B d B f},,,{223*4,2E D C B P =第1阶段10111192)(),(74)(),(1073)(),(min )(323221211=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=+=+=+=+=+=+=B f B A d B f B A d B f B A d A f},,,,{221*4,1E D C B A P =故最短路径为E D C B A →→→→221,从A 到E(de)最短距离为10. 上述步骤可归纳为下述递推公式)}(),(m in{)(11+++=k k k k k k x f u x d x f 1,2,3,4(=k )0)(55=x f此递推关系叫做动态方程,即最短路径问题(de)动态规划模型,应用动态规划方法解决问题(de)关键是根据所给问题建立具体(de)动态规划模型,建立动态规划模型时(de)主要困难在于:如何将所遇到(de)最优化解释为合适(de)多段决策过程问题.从例6看出,划分I 阶段、定义状态、确定指标函数,是动态规划模型化时(de)主要工作,其合适性决定应用动态规划(de)成败.建模时,除将实际问题根据时间和空间恰当地划分若干阶段外,还须明确下列几点: (1)正确选择状态变量,使它既能描述过程(de)状态,又。

差分方程数学建模分析

差分方程数学建模分析
=Y — 一X ) >0 o ( o,
规 律 和运 算关 系等式 ,建 立起 差分 方 程 。 12 对事 物 系统进 行 划分 ,划分 成若干 子 系统 ,在 每个 子 系统 . 中 引入恰 当的 变量 或 向量 ,然 后分析 建 立起 子过 程 间的这 种 量 的关 系等式 ,从而 建立 起 差分 方程 , 着重 强调 的是在 此过 程 中 ,时段 或子 系统 的 划分方 式是 非 常非 常 重要 的 ,应 当结 合 已有 的信 息和 分 析条 件 ,从 多种可 选方 式 中挑 选 易于 分 析 、针对 性 强的 划分 ,同时 ,对 划 分后 的时 段或 子过 程 ,引入 哪些 变量 或 向量 都是 至关 重要 的 ,要 仔 细分 析 、选择 ,尽 量 扩大 对 过程 或 系统 的数 量感 知范 围 ,包 括对 已有的 、 已知的 若干 量 进行 结 合运 算 、取 最运 算等 处理 方式 , 目的 是 建立 起 简洁 、深 刻 、易于 求解 分析 的 差分方 程 。 2 模 型 举 例
Y =f hy ) [( 】
这就 是 两个 差分 方程 , 属一 阶非 线性 差分 方程 。
于是 2.1 x++
即 2. + x+ 2
一+a , =(+a )o l px 1  ̄ X
++ l :(+ )。 1
3几 何模 型 分析
为了表现出两个变量 X 和 的变化过程, 我们可以借助已有的函 数 f 和 g , 过对应 关系 的几何表现 把点列 ( , ,和 n 在 通 Y) +Y) l 坐标 系 中描 绘 出来 ,进而 分析 它们的变化规 律 、 势、找稳 定点. 中 趋 其 (nY ) X, ( ) Y) X g + ) X , =(nf x) ( , :(n ( ) 将 点 列 P( I 。 P (2Y)P (3Y )P (4Y ) … 一 接起来 , 1X, ) 2X 1 3X 3 x ,,… Y, , , 连 就会形成 象蛛 一样的折线,这个图形被称作为蛛网模型。

差分方程和差分方程组的求解方法

差分方程和差分方程组的求解方法

差分方程和差分方程组的求解方法差分方程(difference equation)是一类离散时间的数学方程,它的形式是$$f(x_{n}) = g(x_{n-1},x_{n-2},\dots,x_{n-k})$$其中,$f$ 和 $g$ 是给定的函数,$x_n$ 表示第 $n$ 个时间点上的值,$k$ 是差分方程的阶数。

差分方程可以看做是差分格式(discretization scheme)的离散时间版本,它在数学建模中有着广泛的应用,特别是在自然科学、工程科学和金融学等领域。

在实际问题中,常常会遇到包含多个变量的复杂差分关系,这时候就需要考虑差分方程组(difference equation system),它可以写成如下形式:$$\mathbf{x}_n = \mathbf{g}(\mathbf{x}_{n-1},\mathbf{x}_{n-2},\dots,\mathbf{x}_{n-k})$$其中,$\mathbf{x}_n$ 是一个 $m$ 维列向量,表示第 $n$ 个时间点上所有变量的取值,$\mathbf{g}$ 是一个$m$ 维列向量函数,它的每个分量 $g_i$ 表示与 $\mathbf{x}$ 的第 $i$ 个分量有关的函数。

如果差分方程组是非线性的,那么它的求解通常需要使用数值方法,比如欧拉法(Euler method)、龙格-库塔方法(Runge-Kutta method)、辛普森法(Simpson's rule)等数值积分方法。

接下来我们将介绍这些常用的求解方法。

欧拉法欧拉法(Euler method)是一种初值问题的数值解法,它的核心思想是将连续的问题离散化,然后用迭代的方式在离散时间上逐步逼近真实解。

对于一阶差分方程$$y_n = f(y_{n-1},t_{n-1},\Delta t)$$欧拉法的迭代公式可以写成如下形式:$$y_{n+1} = y_n + \Delta t f(y_n,t_n,\Delta t)$$其中,$\Delta t$ 表示时间间隔,它可以取足够小的正数以保证求解精度。

数学建模中的差分法

数学建模中的差分法

步数n可任意大,但n太大,会有误差积累。
优点:容易编程计算。
西北大学数学系
例2 从 t0 出发并取 t 1
的近似解。 dN rN , dt
,求下列初值问题 N (0) N0
解 t0 0, N (0) N0
t1 t0 t 1 t2 t1 t 2 t3 3
(t, x, t) (1 ) f (t, x) f (x t , y t f (t, x)) 2 2
西北大学数学系
(t, x, t) (1 ) f (t, x) f (x t , y t f (t, x)) 2 2
(t, x, t) f (t, x)

yn1

yn

g(tn ,
xn ,
yn )t
步数n可任意大,但n太大,会有误差积累。
西北大学数学系
对捕食模型
dx dt

3x

xy

dy
dt

xy

2
y
用Euler法求出前三次逼近,初始条件为
t0 0, x0 1, y0 2, t 0.1
解 t1 t0 t 0.1 t2 t1 t 0.2 t3 0.3
xk1 axk b, k 0,1,2,,
(1)
满足方程 x ax b 的解,称为上方程的平衡点。
即平衡点为 x b . 1 a
当k 时,xk x, 则称 x 是稳定的, 否则是不稳定的。
西北大学数学系
xk1 axk b, k 0,1,2,,
(4)
平衡点为 x 0. 为了得到(4)零点的稳定性
我们求解方程(4)。

数学建模第四章差分方程方法

数学建模第四章差分方程方法
r t
t
随着时间增加,人口按指数规律无限增长
阻滞增长模型(Logistic模型)
人口增长到一定数量后,增长率下降的原因: 资源、环境等因素对人口增长的阻滞作用 且阻滞作用随人口数量增加而变大 假设 r是x的减函数
r ( x) r sx (r, s 0)
r s xm
r~固有增长率(x很小时)
xm xm 1 ( 1)e rt x0
0
t
x(t)~S形曲线, x增加先快后慢
在研究人口或种群数量的实际增长情况时,有时采 用离散化的时间变量更为方便。例如,有些种群具 有相对较为固定的繁殖期,按时段统计种群数量更 接近种群的实际增长方式。人口增长虽无这种特征, 但人口普查不可能连续统计,任何方式的普查都只 能得到一些离散时刻的人口总量(指较大范围的普 查)。这样,如何建立人口问题的离散模型的问题 十分自然地提了出来。
n
Fn
{
Fn 定义为fibonacci数列。
Fn Fn1 Fn2 F 1 F2 1
1.差分方程的解法
常系数线性齐次差分方程的解法
形如: an b1an1 b2an2
的差分方程,称为
bk ank 0
(1)
an
的k阶常系数线性齐次差分方程,其中
bi
为常数,
建立离散模型的一条直接途径是 用差分代替微分。从人口问 题的Logistic模型
dP P aP a P aP 1 dt N
N (a ) a
可导出一阶差分方程
时,种群增长接 近Malthus模型;当Pt接近N时,这一因子将 越来越明显地发挥阻尼作用, 若Pt<N,它将使种群增长速 度 在Pt接近N时变得越来越慢,若 Pt >N,它将使种群呈负 增长。 a Pt 1 (a 1) Pt (1)式可改写为 (2) 1 (a 1) N Pt

差分和积分方程及其应用

差分和积分方程及其应用

差分和积分方程及其应用随着科技的不断发展,越来越多的问题需要用数学方法来解决。

其中,差分方程和积分方程是经典的数学模型,广泛应用于自然科学和工程学科中。

一、差分方程差分方程是一种数学模型,用于描述离散的时间序列变化规律。

差分方程的一般形式可以表示为:$$f_n=F_n\left(f_{n-1},f_{n-2},\dots,f_{n-k}\right)$$其中,$f_n$表示第$n$个时刻的状态,$F_n$表示转移函数,$k$表示历史状态所依赖的个数。

差分方程的求解可以使用迭代法、递推法等方法。

迭代法即对初始值不断迭代,逐步逼近稳定状态;递推法则是从已知初值出发,一步步扩展到目标时刻。

差分方程的应用非常广泛,比如在物理学、经济学、生物学和工程学等领域中,都可以使用差分方程模型来描述系统的演化规律。

二、积分方程积分方程是一种数学模型,用于描述连续时间序列变化规律。

积分方程的一般形式可以表示为:$$f(t)=g(t)+\int_{t_0}^tK(t,s)f(s)ds$$其中,$f(t)$表示第$t$时刻的状态,$g(t)$表示瞬态解,$K(t,s)$为核函数。

积分方程的求解需要具有一定的数学基础,可以采用变量分离、特殊函数法、拉普拉斯变换等方法。

需要注意的是,积分方程的解不一定存在,且可能不唯一。

在工程和物理学中,积分方程的应用也非常广泛,比如在电磁学、流体力学和声学等领域中,可以使用积分方程模型来描述场和流动的变化规律。

三、差分和积分方程应用于信号处理在信号处理中,差分和积分方程都有重要的应用。

特别是在数字信号处理中,这两种模型是最常用的。

比如,在数字滤波中,可以使用差分方程模型来设计数字滤波器。

其中,滤波器的传递函数可以表示为一个线性差分方程,然后通过差分方程求解方法,得到系统的频率响应和滤波器系数。

在声音处理中,积分方程也有重要的应用。

比如,在语音降噪和增强中,可以将降噪算法描述为一个积分方程模型,其中,核函数表示预测误差的相关系数。

差分方程

差分方程

第八章 差分方程模型在经济与管理及其它实际问题中,许多数据都是以等间隔时间周期统计的。

例如,银行中的定期存款是按所设定的时间等间隔计息,外贸出口额按月统计,国民收入按年统计,产品的产量按月统计等等。

这些量是变量,通常称这类变量为离散型变量。

描述离散型变量之间的关系的数学模型成为离散型模型。

对取值是离散化的经济变量,差分方程是研究他们之间变化规律的有效方法。

下面介绍差分方程的基本概念、解的基本定理及其解法,与微分方程的基本概念、解的基本定理及其解法非常类似,可对照微分方程的知识学习本章内容。

函数的差分对离散型变量,差分是一个重要概念。

下面给出差分的定义。

设自变量t 取离散的等间隔整数值:,,,, 210±±=t t y 是t 的函数,记作)(t f y t =。

显然,t y 的取值是一个序列。

当自变量由t 改变到1+t 时,相应的函值之差称为函数)(t f y t =在t 的一阶差分,记作t y ∆,即)()1(1t f t f y y y t t t -+=-=+∆。

由于函数)(t f y t =的函数值是一个序列,按一阶差分的定义,差分就是序列的相邻值之差。

当函数)(t f y t =的一阶差分为正值时,表明序列是增加的,而且其值越大,表明序列增加得越快;当一阶差分为负值时,表明序列是减少的。

按一阶差分的定义方式,我们可以定义函数的高阶差分。

函数)(t f y t =在t 的一阶差分的差分为函数在t 的二阶差分,记作t y 2∆,即)()()(11212t t t t t t t t y y y y y y y y ---=-==++++∆∆∆∆∆t t t y y y +-=++122。

依次定义函数)(t f y t =在t 的三阶差分为t t t t t t t y y y y y y y ∆∆∆∆∆∆∆∆+-=-==+++12212232)(t t t t y y y y -+-=+++12333。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N2(k+1)=N1(k) e 0.8 N3(k+1)=N2(k) e 0.8 N4(k+1)=N3(k) e 0.8
5
1.2210 N1 (k 1) N0 (k ) 11 1.2210 N0 (k )
11
N0 (k ) 1.10910 [0.5N3 (k ) N 4 (k )]e
dx ax bxy dt 假定食肉鱼的出生率与群体规模y(t)成正比,而 真正能活下来的小鱼只是那些找到食物部分(与 食用鱼相遇部分),所以它的有效出生率是与两 种鱼规模成正比。我们假定它的自然死亡率也与 群体规模y成正比,即 dy cy dxy dt 在人类没有捕捞的情况下,两种互相制约的鱼类的 群体规模增长规律性可用常微分方程组描述 (Volterra模型) 参考文献:电子科技大学数学系,《实用数值计算 方法》,高等教育出版社,2000年
1 龄鱼 1.2200
2 龄鱼 0.2970
3 龄鱼 0.1010
4 龄鱼 0.0329
推导在没有人类捕捞的条件下,各年龄组的鱼数量在 第一到第五年内的变化规律. 设各年龄组的鱼群数量分别为 Nj(t),(j = 1,2,3,4)。 在没有人类捕捞的情况下,每个年龄组的鱼群在第k年 到每k+1年的一年时间内数量变化应服从如下规律
(1997年全国大学生数学建模竞赛题) 假设某类鱼群按生长的规律被分为四个年龄组,即 一龄鱼、二龄鱼、三龄鱼、四龄鱼.规定每年的前八个 月为捕捞期,后四个月为产卵期.三龄鱼和四龄鱼在每 年 的 9—12 月 产 卵 并 孵 化 . 每 一 条 四 龄 鱼 平 均 产 卵 1.109×10 5,而每条三龄鱼平均产卵数为四龄鱼的一 半。孵化成活率为: 成活的小鱼数 1.221011 鱼卵数 1.221011 鱼卵数 由卵孵化成活的小鱼到了次年的一月成为一龄鱼.各年 龄组的鱼的死亡率均为 ,当年存活下来的一龄鱼到了 次年一月时,将成为二龄鱼。同理,存活下来的二龄 鱼和三龄鱼到了次年一月,分别变为三龄鱼和四龄鱼. 而四龄鱼到年底产卵之后便死亡.已知第一年年初时各 龄鱼的条数
…… K=0,1,2,3,
0.8
2 3
五、树群增长的数学模型
将某树群的树分为三类:幼树、成树和老树。树龄从 0—10年为幼树;树龄从10—40年为成树;树龄在40年 以上为老树。在没有采伐的条件下,假定在第一个单 位时间(2年)内,树群的生长满足下列条件
1)幼树中的1/5成长为成树,每一棵幼树平均繁殖1/2棵新树; 2)成树中的1/15成长为老树,每一棵成树平均繁殖一棵新树; 3)老树中的1/15要老死,每一棵老树平均繁殖1/5棵新树。
dx x bx (1 ) cx dt K
当x = K ( 1 – c / b)时,达到平衡。捕捞率(单位时间 内捕捞量与渔场中鱼量之比)可以人为地控制,以 保证在鱼量稳定的条件下获得最大捕捞量。这需要 求函数y = cx在条件 x bx (1 ) cx 0 K 下的极大值。结果为c = b/2,此时渔场中渔量稳定 值为最大鱼量的一半K / 2,最大捕捞量为bK/4。 参考文献: 费培之、程中瑗,《数学模型实用教程》,四川大 学出版社,1998
设x1(k)为在第k个单位k个单位时间内 老树的数量。于是可推出在没有砍伐条件下的树群数 量变化的差分方程组.
对于有砍伐的情形 , 将上面的数学模型作修改。
六、动物饲养的数学模型
农场饲某种动物所能达到的最大年龄为15岁,将其 分为三个年龄组:第一组0~5岁;第二组6~10岁;第三 组11~15岁。从第二个年龄组开始繁殖后代,第二个年 龄组动物在其年龄段平均繁殖4个后代,第三年龄组动 物在其年龄段平均繁殖3个后代。第一年龄组和第二年 龄组的动物能顺利进入下一个年龄组的存活率分别为 0.5和0.25。假设现有三个年龄段的动物各1000头, 1)建立动物各年龄段数量预测的数学模型; 2)计算5年后、10年后、15年后、20年后各年龄段动物 数量; 3)如果每五年平均向市场供应动物数c=[s1 s2 s3]T,在 20年后农场动物不至灭绝的前提下,c应取多少为好?
1.储蓄问题
银行帐户的钱数增长服从马尔萨斯法则。设b是 利率,令P(n)为第n年开始时帐单上的钱的总数, 则有 P(n + 1) = P(n) + bP(n)= (1 + b)P(n) (1)假设某公司有200万元存在银行,如果以年 计息b=0.04请分别计算一年后、两年后、……、 第六年后银行帐户上的存款数目;如果利息不 变,按月计息b应该为多少? (2)依照下列利率:1%,2%,5%,7%,13% 按年计息使一笔存款达到本金的两倍分别计算 所用的时间是多久。
dN j rN j ( k t k 1) dt N (t ) t k N j (k ) j
( j=1,2,3,4)
这一初值问题的解为 N j (t ) N j (k )e0.8(t k ) k t k 1 根据鱼群变化规律,得 差分方程组如下:
问题1:根据常微分方程组右端常数分别讨 论:y的变化对x的影响,x的变化对y的影响。
dx d t x b xy d y y d xy dt
问题2:当x>0,y>0时Volterra模型在相平面 上的轨线满足一阶常微分方程
dy y(c dx) dx x(a by)
差分方程与微分方程
一、人口模型 二、鱼类生存竞争的数学模型 三、捕鱼模型 四、鱼的种群数量发展规律 五、树群增长的数学模型 六、动物饲养的数学模型 七、常微分方程初值问题的数值求解方法
1. 离散形式马尔萨斯(Malthus)模型(1798)
P(n)表示某人口群体在第n年的总数,设初始年为零, 记为P(0),令增量ΔP(n)=P(n+1) - P(n).马尔萨斯认为, 人口的增长速度与人口的总数成正比,即 ΔP(n)=b P(n)
2.蚂蚁群体问题
蚂蚁群体的死亡率同当时的数目成 正比。如果不出生幼蚁,则在一周 末总数减少一半。然而,由于要产 幼蚁,出生率也同群体总数成正比 变化。并且两周内蚁群总数翻一番。 试确定每周该群体的出生率,将连 续解同用差分方程所得离散解作比 较。
本世纪二十年代,意大利生物学家(D’Ancona)在研 究互相依赖、互相制约的各种鱼类总数增长情况时, 发现在第一次世界大战期间食肉的鱼类占鱼类总数的 百分比急剧增加,他认为这是由于战争时期整个捕鱼 量大大减少的缘故。但是为什么捕鱼量的减少会对食 肉鱼有利呢?生物学家将此问题求教于一位意大利数 学家(Volterra)。 Volterra将鱼分成两类:食用鱼及食肉鱼,分别以x(t) y(t) 表示它们在时刻t时的总数。假定食用鱼有充分的食物, 而食肉鱼是以食用鱼为食物的。 如果不存在食肉鱼,食用鱼x(t)的增长应服从马尔萨斯 模型,但是有食肉鱼的存在,则被食肉鱼吃掉是食用 鱼死亡一个重要原因。两种鱼相遇(发生被吃现象) 机会与两个群体规模乘积成正比,所以在马尔萨斯模 型的基础上增加一项:- bxy,即
n1
2.verhulst模型(1840) 比利时人口学家verhulst将马尔萨斯模型修改为 P(n +1) = (1+ b) P(n) – c (P(n)) 2 他认为个体的存活机会依赖于自身应付同其它人竞争 冲突的能力。c是竞争冲突常数。 考虑这一模型的数值计算求解。取b = c = 0.1, P(0) = 0.8计算,可以得出人口总数随时间变化逐渐增 大并稳定在一个不变的水平上。如果取P(0)=1.5计算, 可以得出人口总数随时间变化逐渐减少并稳定在同一 水平上。 3.连续形式马尔萨斯模型 设某生物群体的总数N随时间t连续变化(这种假定对 诸如原子、细菌、记忆细胞等总数充分大的群体是合 理的),并设N(t)关于t可微,则马尔萨斯模型可以用 微分方程表示
其中,b表示出生率与死亡率之差。于是
得一阶差分方程
P(n 1) P(n) P(n) P(n) bP(n)
P(n+1) = (1+b)P(n) 反复递推,得
P(n 1) (1 b) P(n) (1 b)(1 b) P(n 1) (1 b) 2 P(n 1) (1 b) P(0) 当b>0时,随着n的增大,P(n)无限增大,就象马尔萨斯所说的, “人口按几何级数增大”。
dN bN dt 设在时刻t = 0有初值 N (0) = N 0 ,在以后的任何时刻 群体总数由微分方程解函数描述
N (t ) N0e
bt
4. Logistic模型 verhulst模型的连续形式是微分方程
dN bN cN 2 dt

dN N bN (1 ) dt k
在这一模型中,常数 k被称为环境容量. 参考文献:萧礼、张志军编译,《模型数学》—— 连续动力系统和离散动力系统,科学出版社,1998
问题3. 取参数a =1,b =0.01,c =0,d =0.02。 取初值为x(0)=20,y(0)=20。求该问题的数值 解并作图,结合图形分析两个生物种群数量变 化的规律。
渔业资源是一种再生资源。在渔场中捕鱼从 长远利益来看,既希望能使渔声中鱼量保持 稳定,同时又获得最大捕鱼量和最优的经济 效益。假设如下: (1)无捕捞时,鱼量变化符合Logistic模型; (2)有捕捞时,鱼量变化与捕捞量有关。 记时刻t渔场中的鱼量为x(t)。记渔场资源限制 的最大鱼时为K,鱼的自然净相对增长率为b, 单位时间的捕鱼量与渔场中的鱼量成正比, 比例常数c是捕捞率。在捕捞过程中,渔场中 鱼量满足常微分方程
相关文档
最新文档