12.2全等三角形的判定(3)ASA和AAS教案

合集下载

人教版八年级数学上册12.2全等三角形的判定ASA,AAS教学设计

人教版八年级数学上册12.2全等三角形的判定ASA,AAS教学设计
8.教学评价:采用多元化的评价方式,关注学生在知识掌握、能力提升、情感态度等方面的表现,激励学生持续进步。
四、教学内容与过程
(一)导入新课
1.教学活动:教师通过展示一组生活中的全等三角形实例,如剪刀、建筑物等,引导学生观察、思考这些图形的共同特征,从而导入全等三角形的概念。
2.提出问题:如何判断两个三角形是全等的?学生回答后,教师总结:全等三角形有几种判定方法,今天我们将学习其中的两种——ASA和AAS判定方法。
人教版八年级数学上册12.2全等三角形的判定ASA,AAS教学设计
一、教学目标
(一)知识与技能
1.理解并掌握全等三角形的定义,能准确识别全等三角形。
2.掌握全等三角形的判定方法ASA(角-边-角)和AAS(角-角-边),并能运用这些方法证明两个三角形全等。
3.能够运用全等三角形的性质和判定定理解决实际问题,如计算角度、边长等。
三、教学重难点和教学设想
(一)教学重难点
1.重点:全等三角形的判定方法ASA和AAS,以及如何运用这些方法证明两个三角形全等。
2.难点:理解并熟练运用全等三角形的判定条件,尤其是如何在复杂图形中识别和运用这些条件。
(二)教学设想
1.引入:通过生活中的实例或简单几何图形,引导学生回顾全等三角形的基本概念,激发学生的兴趣,为新课的学习做好铺垫。
b.填空题:给出部分信息,让学生补充完整,并判断三角形是否全等。
c.解答题:运用全等三角形的判定方法解决实际问题。
(五)总结归纳
1.教学活动:教师引导学生对全等三角形的判定方法进行总结、归纳。
2.学生分享:学生分享自己在学习过程中的收获和感悟,提高总结归纳能力。
3.教师总结:教师强调全等三角形判定方法的要点,指出学生在解题过程中容易出现的问题,提醒学生注意。

12.2三角形全等的判定(ASA,AAS)教案-人教版八年级数学上册

12.2三角形全等的判定(ASA,AAS)教案-人教版八年级数学上册
- AAS(角-角-边):两个角和其中一个角的对边对应相等的两个三角形全等。
2.学会运用ASA和AAS判定方法判断两个三角形是否全等。
3.通过实际例题,加深对ASA和AAS判定方法的理解,并培养运用这些方法解决问题的能力。
4.能够运用ASA和AAS判定方法解决实际问题,如测量角度和边长,确定物体的形状等。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形全等的ASA和AAS判定方法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些判定方法的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调ASA和AAS判定的条件和步骤这两个重点。对于难点部分,我会通过具体的图形示例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形全等判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示ASA和AAS判定方法的基本原理。
二、核心素养目标
本节课的核心素养目标主要包括:
1.培养学生的逻辑推理能力:通过探究ASA和AAS判定方法,让学生理解几何图形全等的:通过实际操作和例题分析,使学生能够在空间中正确构建和识别全等三角形,培养他们的空间想象力和直觉思维能力。
-难点三:将理论知识应用于解决具体问题,如实际测量和几何证明。
-解释:学生需要学会如何将ASA和AAS判定方法应用于解决具体问题,例如在给定一些角度和边长的情况下,确定三角形的形状和大小。

人教版八年级上册12.2.3三角形全等的条件(ASA、AAS)教案

人教版八年级上册12.2.3三角形全等的条件(ASA、AAS)教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形全等的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对ASA和AAS全等条件的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版八年级上册12.2.3三角形全等的条件(ASA、AAS)教案
一、教学内容
人教版八年级上册12.2.3节,本节课主要围绕三角形全等的条件(ASA、AAS)展开教学。内容包括:
1.掌握全等三角形的定义及性质;
2.理解并掌握“角-边-角”(ASA)全等条件;
3.理解并掌握“角-角-边”(AAS)全等条件;
-在证明过程中,强调步骤的完整性、逻辑性,示范正确的证明方法,并让学生多加练习,逐步提高证明能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三角形全等的条件(ASA、AAS)》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否完全一样的情况?”比如,在修补破损的三角板时,我们需要找到一块与原来完全一样的三角形板。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形全等的奥秘。
3.提升学生的数据分析能力,使学生能够从实际问题中提取几何信息,运用全等三角形的性质进行分析和解决问题;
4.培养学生的数学建模素养,通过构建全等三角形的模型,让学生体会数学与现实生活的联系,提高解决实际问题的能力。
三、教学难点与重点
1.教学重点

人教版八年级数学上册12.2三角形全等的判定(三)(ASA)优秀教学案例

人教版八年级数学上册12.2三角形全等的判定(三)(ASA)优秀教学案例
(四)反思与评价
1.引导学生对自己的学习过程进行反思,如“你在学习三角形全等判定方法时,遇到了哪些困难?如何解决的?”等。
2.组织学生进行自我评价和同伴评价,让学生从不同角度了解自己的学习情况,如“你觉得自己在小组合作中的表现如何?同伴们是如何评价你的?”等。
3.教师对学生的学习过程和结果进行评价,关注学生的知识掌握程度、思维能力、情感态度等方面的发展。
二、教学目标
(一)知识与技能
1.理解ASA判定方法的意义和条件,能够运用ASA判定两个三角形全等。
2.能够运用SSS、SAS、AAS、ASA四种方法判断两个三角形全等,并能够进行适当的证明。
3.掌握三角形全等的判定方法,提高解决问题的能力。
在教学过程中,我会通过讲解、示例、练习等方式,帮助学生理解和掌握ASA判定方法。同时,我会引导学生对比四种判定方法,让学生在理解的基础上,能够灵活运用各种方法判断两个三角形全等。
5.作业小结的设计:布置相关的作业,让学生巩固所学知识,培养学生的数学应用能力。同时,要求学生在作业中运用数学语言表达清晰、准确,培养学生的数学语言表达能力。鼓励学生在作业中发挥创新意识,如尝试运用不同的判定方法判断同一个问题,培养学生的数学创新能力。作业小结的设计有助于巩固学生的学习成果,提高学生的数学应用能力和创新能力。
2.引导学生通过讨论、交流,解决问题,如组织小组讨论,让学生在合作中思考,在思考中合作。
3.引导学生反思问题,总结规律,如“你觉得哪种判定方法更直观易懂?为什么?”、“你在解决问题过程中遇到了哪些困难?如何解决的?”等。
问题导向的教学策略能够激发学生的思考,培养学生的解决问题的能力,提高学生的数学思维能力。
在教学过程中,我以“探究三角形全等的判定方法”为主题,通过引导学生自主探究、合作交流,让学生在实践中掌握ASA判定方法,并能够灵活运用。在教学设计上,我注重让学生在具体的情境中感受数学与生活的紧密联系,激发学生的学习兴趣,培养学生的数学思维能力和创新能力。

人教版八年级上册数学教案:12.2三角形全等的判定(ASA、AAS)

人教版八年级上册数学教案:12.2三角形全等的判定(ASA、AAS)

课题(内容) 12.2三角形全等的判定(ASA 、AAS ) 课时数 1第 1 课时课型新授课三维目标知识与能力:1、掌握三角形全等的“角边角”“角角边”条件.能运用全等三角形的条件,解决简单的推理证明问题2.经历探索三角形全等条件的过程,体会利用操作、 归纳获得数学结论的过程.3、积极投入,激情展示,体验成功的快乐。

过程与方法:学练结合、小组合作情感态度与价值观:培养学生良好的品德和学习数学的兴趣爱好 重难点1、教学重点:已知两角一边的三角形全等探究.2、教学难点:灵活运用三角形全等条件证明资源准备 直尺、三角板、课件学案导 案 一、自主学习1、复习思考 (1).到目前为止,可以作为判别两三角形全等的方法有几种?各是什么? (2).在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两种呢?2、探究一:两角和它们的夹边对应相等的两个三角形是否全等? (1)动手试一试。

已知:△ABC求作:△'''A B C ,使'B ∠=∠B, 'C ∠=∠C ,''B C =BC ,(不写作法,保留作图痕迹)(2) 把△'''A B C 剪下来放到△ABC 上,观察△'''A B C 与△ABC 是否能够完全重合?(3)归纳;由上面的画图和实验可以得出全等三角形判定(三): 两角和它们的夹边对应相等的两个三角形 (可以简写成“ ”或“ ”)一、教师导学二、教师参与C 'B 'A 'C B AD C A B FE (4)用数学语言表述全等三角形判(三) 在△ABC 和'''A B C ∆中,∵'B B BC C ∠=∠⎧⎪=⎨⎪∠=⎩∴△ABC ≌3、探究二。

两角和其中一角的对边对应相等的两三角形是否全等(1)如图,在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF ,△ABC 与△DEF 全等吗?能利用前面学过的判定方法来证明你的结论吗?(2)归纳;由上面的证明可以得出全等三角形判定(四):两个角和其中一角的对边对应相等的两个三角形 (可以简写成“ ”或“ ”)(3)用数学语言表述全等三角形判定(四) 在△ABC 和'''A B C ∆中,∵'A A B BC ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABC ≌ 二、合作探究1、例1、如下图,D 在AB 上,E 在AC 上, AB=AC ,∠B=∠C . 求证:AD=AE .2.已知:点D 在AB 上,点E 在AC 上,∠BAO=∠CAO ,BE ⊥AC, CD ⊥AB,相交于点O ,AB=AC , 求证:BD=CEC 'B 'A 'C B A三、成果展示如图,点A、B、D、E在同一直线上,AD=EB,BC DF, C= F。

2024~2025学年度八年级数学上册第3课时 用“ASA”或“AAS”判定三角形全等教学设计

2024~2025学年度八年级数学上册第3课时 用“ASA”或“AAS”判定三角形全等教学设计

第3课时用“ASA ”或“AAS ”判定三角形全等教学步骤师生活动教学目标课题12.2第3课时用“ASA ”或“AAS ”判定三角形全等授课人素养目标1.掌握基本事实:两角及其夹边分别相等的两个三角形全等,经历探索“ASA ”的过程.2.证明定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS ),培养学生观察、归纳及动手能力,发展学生几何直观感知能力与推理能力.3.能用尺规作图:已知两角及其夹边作三角形,培养学生分析与作图能力.教学重点探索“ASA ”,用“ASA ”证明“AAS ”,运用“ASA ”“AAS ”判定三角形全等,尺规作图:已知两角及其夹边作三角形.教学难点“ASA ”的探究过程.教学活动教学步骤师生活动活动一:创设情境,新课导入设计意图在进入新课的探究之前设置一个悬念,既是问题,也是探究的现实意义.【情境引入】如图,小熊不慎将一块三角形模具打碎为三块,它是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具?如果可以,带哪块去合适?你能说明其中的理由吗?【教学建议】教师展示图片并提出问题,使学生经历将实际问题转化为数学问题的建模过程,激发学生的好奇心和求知欲.此处不必告知结果,使学生带着疑问在后面的探究中找寻答案.活动二:动手操作,探究新知设计意图以“两角一边分别相等”能否保证两个三角形全等切入主题,经历探索三角形全等的判定条件——“ASA”的过程,学会尺规作图:已知两角及其夹边作三角形的方法,并运用“ASA”解题.探究点1用“ASA”判定三角形全等我们在前面已经知道用三个条件探索三角形全等共有四种情况——三边分别相等、两边一角分别相等、两角一边分别相等、三角分别相等,而前两种情况已经在之前的两个课时中分别探讨了,这节课我们将探索后两种情况.问题:“两角一边分别相等”有几种可能性呢?请举例.答:有两种可能性,如图所示.我们分情况进行讨论,先来看“两角及其夹边分别相等”的情况.探究先任意画出一个△ABC.再画一个△A ′B ′C ′,使A ′B ′=AB ,∠A ′=∠A ,∠B ′=∠B(即两角和它们的夹边分别相等).把画好的△A ′B ′C ′剪下来,放到△ABC 上,它们全等吗?【教学建议】本节课继续探讨三个条件能否保证两个三角形全等.先发现“两角一边分别相等”存在两种可能性,再分两个探究点分别探究.在第一个探究过程中对“角边角”判定方法的处理与“边边边”“边角边”判定方法类似,先通过作图实验操作让学生经历探究过程,然后在让学生总结探究出的规律后,直接以基本事实的方式给出“角边角”判定方法.需要注意已知两角及其夹边作三角形也是课标要求学生能够作出的尺规作图,其中蕴含两个基本作图,可让学生口述是哪两个.也就是说,三角形的两个角的大小和它们的夹边的长度确定了,这个三角形的形状、大小就确定了.例1(教材P40例3)如图,点D在AB上,点E在AC上,AB=AC,∠∠C.求证AD=AE.分析:证明△ACD≌△ABE,就可以得出AD=AE.证明:在△ACD和△ABE中,∴△ACD≌△ABE(ASA).∴AD=AE.解:能配一块与原来一样的三角形模具,带③去合适,理由:由③可确定三角全等.由三角形内角和定理可以证明∠C=∠F.B=∠E,∴∠C=∠F.≌△DEF(ASA).因此我们可以得到下面的结论:也就是说,三角形的两个角的大小和其中一个角的对边的长度确定了,这个三角形的形状、大小就确定了.知识点睛“ASA ”与“AAS ”的区别与联系:思考三角分别相等的两个三角形全等吗?解答上述问题后,把三角形全等的判定方法做一个小结.答:不一定全等.如图,DE ∥BC ,于是∠ADE=∠B ,∠AED=∠C ,又∠A=∠A ,但显然△ADE 与△ABC 大小不同,它们不全等.注意:为方便记忆,我们可将上述这种情形简记为“AAA ”.类似于“SSA ”,“AAA ”也不能作为判定三角形全等的依据.归纳总结:【对应训练】教材P41练习第1题.定理证明.通过例2说明“AAS”是“ASA”的推论.这一系列的推导过程可使学生了解到“AAS”不是基本事实,而是定理.教师注意跟学生强调这两种判定方法之间的区别.至此,判定两个三角形全等的“三个条件”中就剩下三角分别相等的条件了.【教学建议】这里用“思考”启发学生自行探究.教师可引导学生作图,不难发现这种情形举出反例说明较容易.最后可让学生代表对三角形全等的方法做一个总结,如有不全面的地方加以补充,培养学生归纳总结及表达能力,体会数学推理的严谨性及完整性.教学步骤师生活动2.为直线AD上的点,连=6.,∴DE=3.“随堂小练”册子相应课时随堂训练.习题12.2第4,5,6,11,12题.《创优作业》主体本部分相应课时训练.第3课时用“ASA”“AAS”判定三角形全等基本事实:两角和它们的夹边分别相等的两个三角形全等(“角边角”或“ASA”).定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(“角角边”或“AAS”).尺规作图:已知两角及其夹边作三角形.先引导学生从动手操作出发探索出“ASA ”,体会利用操作、归纳获得数学结论的方法,再借助例题利用“ASA ”去证明“AAS ”,加强学生数学推理里的逻辑思维能力.初学时学生对于“AAS ”和“ASA ”的选择可能会混淆,需要讲清楚分辨方法,并通过练习加强巩固和理解.解题大招全等三角形的开放性问题开放性问题分为条件开放型与结论开放型,若是条件开放,一般从已知条件(包括隐含条件)入手,分析解决问题还缺少的条件,这个条件即为要补充的条件;若是结论开放,一般根据已知条件可以得到多种结论,可发挥想象,符合题目限制要求的答案均可.开放性问题有利于发散学生思维及提高创新能力.下面是证明全等三角形的一些常见思路总结,可作为解题时的一些参考.1.条件开放型例1如图,在△ABE 和△DCE 中,∠A =∠C ,AE =CD ,请添加一个条件:AB =CE 或∠AEB =∠CDE 或∠ABE =∠CED ,使△EAB ≌△DCE.(添加一种情况即可)解析:在△ABE 和△DCE 中,已知∠A =∠C ,AE =CD ,若根据“SAS ”,可添加AB =CE ;若根据“ASA ”,可添加∠AEB =∠CDE ;若根据“AAS ”,可添加∠ABE =∠CED.2.结论开放型例2如图,已知点A ,F ,E ,C 在同一直线上,AB ∥CD ,∠ABE =∠CDF ,AF =CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.解:(1)△ABE ≌△CDF ,△AFD ≌△CEB(答案不唯一).(2)选△ABE ≌△CDF ,证明:∵AB ∥CD ,∴∠BAE =∠DCF.∵AF =CE ,∴AF +EF =CE +EF ,即AE =CF.在△ABE 和△CDF ABE =∠CDF ,BAE =∠DCF ,=CF ,∴△ABE ≌△CDF(AAS ).培优点全等三角形中的“一线三等角”模型(1)模型特征:在一条直线上有三个相等的角.模型展示如下:(2)解题思路:通过三角形外角的性质,得到两个三角形中的对应角相等,从而证明全等.例1如图,点B ,C 在∠MAN 的边AM ,AN 上,AB =AC ,点E ,F 在∠MAN 内部的射线AD 上,且∠BED =∠CFD =∠BAC.求证:△ABE ≌△CAF.证明:∵∠BED =∠CFD =∠BAC ,∠BED =∠BAE +∠ABE ,∠BAC =∠BAE +∠CAF ,∠CFD =∠ACF +∠CAF ,∴∠ABE =∠CAF ,∠BAE =∠ACF.在△ABE 和△CAF ABE =∠CAF ,=CA ,BAE =∠ACF ,∴△ABE ≌△CAF(ASA ).例2如图,在△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D.(1)求证:△ADC ≌△CEB ;(2)AD =5cm ,DE =3cm ,求BE 的长.(1)证明:∵AD ⊥CE ,∠ACB =90°,∴∠ADC =∠ACB =90°,∴易得∠BCE =∠CAD.在△ADC 和△CEB ADC =∠CEB =90°,CAD =∠BCE ,=CB ,∴△ADC ≌△CEB(AAS ).(2)解:由(1)知△ADC ≌△CEB ,则AD =CE =5cm ,CD =BE.∴BE =CD =CE -DE =5-3=2(cm ).例3“一线三等角”模型是平面几何图形中的重要模型之一,“一线三等角”指的是图形中出现同一条直线上有3个相等的角的情况.在学习过程中,我们发现“一线三等角”模型的出现还经常会伴随着出现全等三角形.请你根据对材料的理解解答以下问题:(1)如图①,∠ADC =∠CEB =∠ACB =90°,AC =BC ,猜想DE ,AD ,BE 之间的关系并说明理由.(2)如图②,将(1)中条件改为∠ADC =∠CEB =∠ACB =α(90°<α<180°),AC =BC ,请问(1)中的结论是否成立?若成立,请给出证明;若不成立,请说明理由.(3)如图③,在△ABC 中,D 为AB 上一点,DE =DF ,∠A =∠EDF =∠B ,AE =3,BF =5,请直接写出AB 的长.分析:(1)猜想:DE =AD +BE ,证明△ADC ≌△CEB(AAS ),推出AD =CE ,CD =BE ,可得结论;(2)结论成立.证明△ADC ≌△CEB(AAS ),推出AD =CE ,CD =BE ,可得结论;(3)证明△ADE ≌△BFD(AAS ),推出AE =BD =3,AD =BF =5,即可解决问题.解:(1)猜想:DE =AD +BE.理由如下:∵∠ADC =∠CEB =∠ACB =90°,∴∠CAD +∠ACD =90°,∠BCE +∠ACD =90°,∴∠CAD =∠BCE.在△ADC 和△CEB ADC =∠CEB ,CAD =∠BCE ,=CB ,∴△ADC ≌△CEB(AAS ),∴AD =CE ,CD =BE ,∴DE =CE +CD =AD +BE.(2)成立.证明如下:∵∠ADC =∠CEB =∠ACB ,∠BCE +∠ACD =180°-∠ACB ,∠ACD +∠CAD =180°-∠ADC ,∴∠CAD =∠BCE.在△ADC和△CEB ADC=∠CEB,CAD=∠BCE,=CB,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE.∴DE=CE+CD=AD+BE.(3)AB的长为8.解析:∵∠A=∠B=∠EDF,∠ADF=∠B+∠BFD=∠ADE+∠EDF,∴∠ADE =∠BFD.在△ADE和△BFD A=∠B,ADE=∠BFD,=FD,∴△ADE≌△BFD(AAS),∴AE=BD=3,AD=BF=5,∴AB=AD+BD=5+3=8.。

全等三角形的判定ASA和AAS教案

全等三角形的判定ASA和AAS教案

全等三角形的判定ASA和AAS教案教案:全等三角形的判定(ASA和AAS)一、教学目标:1.知识与能力目标:(1)通过观察、发现和归纳,了解和掌握ASA和AAS全等定理;(2)熟练掌握ASA和AAS全等定理的应用,能够判定两个三角形是否全等。

2.过程与方法目标:(1)培养学生的观察、发现和分析问题的能力;(2)引导学生进行合作、探究和交流,培养学生的合作意识和学科交流能力。

二、教学重点:1.ASA和AAS全等定理的理解和掌握;2.ASA和AAS全等定理的应用,判定两个三角形是否全等。

三、教学过程:1.导入:(1)让学生回顾什么是全等三角形,以及如何判定两个三角形是否全等;(2)通过两个相同的三角形,引出全等定理是什么。

2.探索:(2)引导学生讨论、发现,如果两个三角形的一组对边相等并且夹角也相等,那么这两个三角形就是全等的;(3)引出ASA全等定理:如果两个三角形的两个对边和夹角分别相等,那么这两个三角形就是全等的;3.拓展:(1)让学生自己寻找一个例子,来应用ASA全等定理判断两个三角形是否全等;(2)让学生进行交流、展示,分析判断是否正确。

4.归纳:(1)让学生讨论和总结ASA全等定理的判断条件;(2)通过学生的总结,引出AAS全等定理:如果两个三角形的两个角和一边分别相等,那么这两个三角形就是全等的;5.深化:(1)让学生自己寻找一个例子,来应用AAS全等定理判断两个三角形是否全等;(2)让学生进行交流、展示,分析判断是否正确。

6.拓展与巩固:(1)让学生在教师的指导下,完成一些多种方法判定全等的练习题;(2)通过练习题的讲解和学生的互相交流,加深对ASA和AAS全等定理的理解和应用能力。

7.小结与拓展:(1)让学生总结归纳ASA和AAS全等定理的判定条件;(2)引导学生思考,是否只有ASA和AAS这两种情况可以判定三角形全等,还有没有其他的情况可以判定三角形全等。

四、教学评价:1.通过学生的课堂表现、问题回答和练习题的完成情况,评价学生对ASA和AAS全等定理的理解和掌握程度;2.评价学生在合作、探究和交流中的表现和能力。

三角形全等的判定-人教版数学八年级上第十二章12.2第三课时教案

三角形全等的判定-人教版数学八年级上第十二章12.2第三课时教案

第十二章全等三角形12.2 三角形全等的判定第三课时“角边角”(ASA)和“角角边”(AAS)判定1 教学目标1.1 知识与技能:[1]掌握全等三角形的“角边角”(ASA)判定定理,并能运用其解决问题。

[2]熟练掌握“角角边”(AAS)定理,并能运用其解决问题。

1.2过程与方法:[1]通过探究过程,观察并归纳出ASA定理。

[2]通过结合ASA定理及三角形内角和定理,推出AAS定理。

1.3 情感态度与价值观:[1]通过学习AAS,ASA定理,运用其进行几何证明,在逻辑推导中培养良好的数学思维。

2 教学重点/难点/易考点2.1 教学重点[1]ASA,AAS判定定理。

2.2 教学难点[1]数学语言表达和证明三角形全等。

[2]区分ASA和AAS定理,避免在证明过程中标错原由3 专家建议ASA和AAS定理非常相似,只是相等的角的位置是不同的,因此教师应该在教学中注意强调这两个定理的区别,防止学生混淆定理运用错误。

此外,用数学语言证明全等也是一大挑战,学生因为此前的几何基础还不牢固,需要强调和巩固。

4 教学方法观察归纳——得到结论——补充讲解——练习提高5 教学用具多媒体,教学用尺规,学生课前准备好尺规。

6 教学过程6.1 引入新课【师】同学们好。

上节课我们学习了判定三角形全等的SAS定理,大家还记得么?【生】两边和它们的夹角分别相等的两个三角形全等。

【师】那如果相等的角不是夹角,能不能判定两个三角形全等呢?【生】不能,没有边边角定理。

【师】没错。

那我们今天来继续学习两种新的判定三角形全等的方法。

【板书】第十二章全等三角形12.2 三角形全等的判定第三课时6.2 新知介绍[1]探究活动:带走哪一块玻璃碎片最方便【师】毛手毛脚的小明又回来了,这次他打碎了教室的一块三角形玻璃。

请大家看投影,现在只有这三块碎片,如果小明要再配一模一样的,至少要带走哪块儿呢?我们一块一块地来分析,首先看,只带走第一块可以吗?【生】相当于只知道一个角,只带第一块不行。

八年级数学上册第十二章全等三角形12.2三角形全等的判定第3课时角边角和角角边教案

八年级数学上册第十二章全等三角形12.2三角形全等的判定第3课时角边角和角角边教案

第3课时角边角和角角边【知识与技能】掌握两个三角形全等的条件:“ASA”与“AAS”,并指出用它们判别三角形是否全等。

【过程与方法】经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思问题的能力,形成理性思维。

【情感态度】敢于面对教学活动中的困难,能通过合作交流解决遇到的困难。

【教学重点】理解、掌握三角形全等的条件:“ASA”、“AAS".【教学难点】探究出“ASA"“AAS”及它们的应用。

一、情境导入,初步认识问题 1 一张教学用的三角形硬纸板不小心被撕成了如图形状,你能制作出与原来同样大的纸板吗?鼓励学生提出不同的思路方法,并要求学生用纸片对自己的思路操作实验。

【教学说明】教师讲课前,先让学生完成“自主预习”。

问题2 教材探究4。

先任意画出一个△ABC.再画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B(即两角和它们的夹边分别相等).把画好的△A′B′C′剪下来,放到△ABC上,它们全等吗?要求每个学生先独立动手画图并思考,再在小组内交流。

把画好的△A′B′C′剪下,放在△ABC上,观察出现的情形,并根据结果总结规律,说出每个人的发现并交流.二、思考探究,获取新知【归纳结论】根据学生的发言,予以不同的点评,重在鼓励,最后归纳出新知识点:两角和它们的夹边对应相等的两个三角形全等,简称“角边角”或“ASA".强调注意:“边”必须是“两角的夹边".例1 如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:AD=AE。

证明:△ABE和△ACD中,∠B=∠C,AB=AC,∠A=∠A,∴△ABE≌△ACD(ASA).∴AD=AE.【课堂练习】由学生在黑板上完成证明过程.如图,AB=A′C,∠A=∠A′,∠B=∠C,求证:△ABE≌△A′CD.【分析】本例可直接应用“ASA"证得两个三角形全等,关键是准确地书写证明过程。

三角形全等的判定(asa、aas)教学设计

三角形全等的判定(asa、aas)教学设计

三角形全等的判定(ASA 、AAS )教学设计教材: 新人教版八年级数学上册12.2 P39-P41斗门区二中 肖艳兵 2014-10-21一、教材分析1、教材的地位与作用:本节课是全等三角形判定的第三课时,主要探究利用“ASA ”和“AAS ”两种方法判定三角形全等,以及定理的简单应用.通过本节课的学习,可以加深学生对已学几何图形的认识,并为今后的学习奠定基础. 2、教学目标知识与技能:要求学生掌握“ASA ”和“AAS ”判定两个三角形全等的方法及简单应用。

过程与方法:运用观察、实验、猜想、应用等教学过程,学会分析法、综合法解决问题。

数学思考:经历观察、实验、猜想、应用等数学过程,发展合情推理的能力。

情感态度与价值观:让学生在数学学习的过程中获得解决问题的经验,逐步养成良好的个性思维品质。

3、教学重点、难点教学重点:以“ASA ”和“AAS ”为条件的三角形全等的判定方法的探究和初步应用。

教学难点:利用ASA 、AAS 判定两个三角形全等方法的应用及规范化书写。

二、学情分析本节课是学生在掌握了SSS 和SAS 之后,继续探索三角形全等的条件.学生经历过一些探究的过程.本节课的学习,主要是引导学生类比前面的学习方法.三、教法设想通过创设问题情境,结合操作实践,使学生经历“实践-观察-猜想—验证-巩固”的学习过程。

四、学法指导1.自主探究2.合作学习准备教具:多媒体 圆规 三角板 三角形纸板 准备学具:三角板 圆规 剪刀五、教学过程(一)、创设情境 引出课题如右图,小明不慎将一块三角形模具打碎为三块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗? 如果可以,带哪块去合适?为什么?【设计意图】通过创设生活情境,提出问题,激发学生的学习兴趣,引发学生思考。

设置课堂悬念,揭示新课,从而引出课题。

(二)、动手操作 实验探究探究:已知△ABC ,画一个△DEF ,使DE =AB , ∠D = ∠A , ∠E= ∠B观察:△D E F 与 △ABC 全等吗?怎么验证?思考:这两个三角形全等是满足哪三个条件?【设计意图】通过学生动手画图,让学生明确已知两角及夹边怎样画出三角形.通过学生展示作品,以及同学之间观察对比,让学生确信结论的正确性. 归纳板书定理3(ASA)及符号语言:【设计意图】板书的目的,就是要规范学生的符号语言格式。

12.2 三角形全等的判定(第三课时ASA、AAS)(解析版)

12.2 三角形全等的判定(第三课时ASA、AAS)(解析版)

八年级数学上分层优化堂堂清十二章三角形12.2三角形全等的判定第三课时ASA、AAS(解析版)学习目标:1、掌握三角形全等的“角边角”“角角边”条件.能运用全等三角形的条件,解决简单的推理证明问题2.经历探索三角形全等条件的过程,体会利用操作、￿归纳获得数学结论的过程.3、积极投入,激情展示,体验成功的快乐。

【学习重点】已知两角一边的三角形全等探究.【学习难点】灵活运用三角形全等条件证明老师对你说:知识点1 全等三角形的判定3:角边角(ASA)(1)两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).(2)书写格式:如图12-2-5所示,在列举两个三角形全等的条件时,如:在△ABC和△A′B′C′中,∠A=∠A′AB=A′B′∠B=∠B′∴△ABC≌△A′B′C′(SAS).知识点2 全等三角形判定4——“角角边”(AAS)(1)两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)(2)书写格式:如图12-2-5所示,在列举两个三角形全等的条件时,如:图12-2-5在△ABC和△A′B′C′中,∠A=∠A′∠B=∠B′AC=A′C′∴△ABC≌△A′B′C′(SAS).由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.知识点3 判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA两角对应相等ASA AAS两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.注意:三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC 和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.知识点1 全等三角形的判定3:角边角(ASA ) 【例1-1】如图,点A 、D 、B 、E 在同一条直线上,若AD =BE ,∠A =∠EDF ,∠E =∠ABC.求证:AC =DF .【答案】见解析【分析】由AD=BE 知AB =ED ,结合∠A =∠EDF ,∠E =∠ABC ,依据“ASA ”可判定△ABC ≌△DEF ,依据两三角形全等对应边相等可得AC =DF .【详解】证明:∵AD =BE ,∴AD +BD =BE +BD ,即AB =ED ,在△ABC 和△DEF 中,∠ABC =∠E AB =ED ∠A =∠EDF,∴△ABC≌△DEF (ASA),∴AC =DF .【点评】本题主要考查全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键.【例1-2】在平行四边形ABCD 中,AD =2AB ,F 是AD 的中点,过点C 作CE ⊥AB ,垂足E 在线段AB 上,接EF 、CF ,则下列结论错误的是( )A.∠DCF=1∠BCD B.∠DFE=3∠AEF2C.EF=CF D.S△BEC=2S△CEF【答案】D【分析】分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF,得出对应线段之间关系进而得出答案.【详解】解:∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=1∠BCD,故此选项A正确;2设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°−x,∴∠EFC=180°−2x,∴∠EFD=90°−x+180°−2x=270°−3x,∵∠AEF=90°−x,∴∠DFE=3∠AEF,故此选项B正确;延长EF,交CD延长线于M,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A =∠MDF ,∵F 为AD 中点,∴AF =FD ,在△AEF 和△DFM 中,A FDM AF FDAFE DFM Ð=Ðìï=íïÐ=Ðî,∴△AEF ≌△DMF (ASA ),∴EF =MF ,∠AEF =∠M ,∵CE ⊥AB ,∴∠AEC =90°,∴∠AEC =∠ECD =90°,∵EF =MF ,∴CF =MF ,即CF =EF ,故选项C 正确;∵EF =MF ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC故S △BEC =2S △CE F 错误;故选项D 不成立;故选D【点拨】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF ≌△DMF是解题关键.【例1-3】如图,点C 在线段BD 上,在ABC V 和DEC V 中,A D AB DE B E Ð=Ð=Ð=Ð,,.求证:AC DC =.证明见解析【分析】直接利用ASA 证明ABC DEC ≌△△,再根据全等三角形的性质即可证明.【详解】解:在ABC V 和DEC V 中,A D AB DEB E Ð=Ðìï=íïÐ=Ðî∴()ASA ABC DEC ≌V V ∴AC DC =.【点拨】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.知识点2 全等三角形判定4——“角角边”(AAS )【例2-1】如图,在△ABC 中,D 为BC 边上一点,∠1=∠2=∠3,AC=AE .求证:△ABC≌△ADE .【答案】证明见解析【分析】由三角形外角的性质及∠1=∠2=∠3可得到∠ADE =∠B ,再结合图形并利用恒等变换可得到∠BAC =∠DAE ,最后利用AAS 即可得证.【详解】证明:∵∠ADC=∠1+∠B,即∠ADE+∠3=∠1+∠B,∵∠1=∠2=∠3,∴∠ADE=∠B,∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,在△ABC和△ADE中,∠ABC=∠ADE∠BAC=∠DAEAC=AE,∴△ABC≌△ADE(AAS).【点评】本题考查三角形全等的判定,三角形外角的性质.掌握三角形全等的判定是解题的关键.【例2-2】如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案】△ADC与△CEB全等,证明见解析【分析】先证明∠CAD=∠BCE,然后根据AAS证明△ADC≌△CEB,即可求解.【详解】解:△ADC与△CEB全等理由如下:根据题意可知:AC=CB,∠ADC=∠CEB=∠ACB=90°;在Rt△ADC中,∠CAD+∠ACD=90°,又∵∠ACD+∠BCE=90°,∴∠CAD=∠BCE.在△ADC与△CEB中,(1)求证:△BDF≌(2)若AD=5,CE=【答案】(1)见解析(2)10知识点3 判定方法的选择【例3-1】如图,AC∥BD,AE,BE 分别平分∠CAB 和∠DBA ,CD 经过点E .求证:CE =DE .【答案】证明见解析【分析】在AB 上截取AF =AC ,连接EF ,通过证明△ACE≌△AFE 和△BEF≌ΔBED ,然后根据全等三角形的性质分析求证.【详解】证明:在AB 上截取AF =AC ,连接EF .∵AE ,BE 分别平分∠CAB 和∠DBA ,∴∠CAE =∠FAE,∠EBF =∠EBD .∵AC∥BD ,∴∠C +∠D =180°,在△ACE 和△AFE 中AC =AF ∠CAE =∠FAE AE =AE,∴△ACE≌△AFE ,∴∠C =∠AFE,CE =EF ,∵∠AFE +∠EFB =180°,∠C +∠D =180°,∴∠EFB =∠D ,在△BEF 和△BED 中∠EFB =∠D ∠EBF =∠EBD BE =BE,∴△BEF≌ΔBED ,∴EF =ED ,∴CE =DE .【点评】本题考查全等三角形的判定和性质,通过添加辅助线构造全等三角形是解题关键.【例3-2】如图,在ABC V 中60A Ð=°,BE 、CF 是ABC V 的角平分线,且BE 、CF 相交于点O .求证:OF OE =.【分析】先根据三角形内角和定理得到120ABC ACB Ð+Ð=°,再利用角平分线的定义以及三角形内角和得到BOC Ð的度数;在BC 上截取BG BF =,先证明()SAS BOF BOG V V ≌得到BOF BOG Ð=Ð,OF OG =,再得到COE COG Ð=Ð,接着证明()ASA COG COE V V ≌得到OG OE =,然后利用等线段代换得到结论.解:∵180A ABC ACB Ð+Ð+Ð=°,60A Ð=°,∴120ABC ACB Ð+Ð=° ,∵BE ,CF 均为ABC V 的角平分线,∴12OBC ABC Ð=Ð,12OCB ACB ÐÐ=,∴()1602ABC ACB OBC OCB Ð+Ð=°ÐÐ+=,∴()180120BOC OBC OCB Ð=°-Ð+Ð=°.在BC 上截取BG BF =,如图所示:∵OB 平分ABC Ð,∴ABO CBO Ð=Ð,∵在BOF V 和BOG △中BF BG FBO GBO BO BO =ìïÐ=Ðíï=î,∴()SAS BOF BOG V V ≌,∴BOF BOG Ð=Ð,OF OG =,∵120BOC Ð=°,∴60BOF COE Ð=Ð=°,∴60BOG Ð=°,∴1206060COG Ð=°-°=°,∴COE COG Ð=Ð,∵OC 平分ACB Ð,∴ACO BCO Ð=Ð,∵在COG V 和COE V 中GCO ECO CO COGOC EOC Ð=Ðìï=íïÐ=Ðî,∴()ASA COG COE V V ≌,∴OG OE =,∴OF OE =.【点拨】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定方法.也考查了角平分线的定义.能力强化提升训练1.如图,线段AB 与CF 交于点E ,点D 为CF 上一点,连接AD 、AF 、BC ,已知AD BC =,12Ð=Ð.(1) 请添加一个条件________使ADF BCE V V ≌,并说明理由.(2) 在(1)的条件下请探究AE 与BE 的数量关系,并说明理由.(1)DF CE =,理由见分析;(2)AE BE =,理由见分析.【分析】(1)利用SAS 判定定理,添加DF CE =即可判断;(2)利用全等三角形的判定与性质,再结合等角对等边即可判断.(1)解:添加条件:DF CE =,理由如下:∵AD BC =,12Ð=Ð,DF CE =,∴()SAS ADF BCE ≌△△;(2)解:AE BE =,理由如下:∵ADF BCE V V ≌,∴F CEB =∠∠,AF BE=∵CEB AEF Ð=Ð,∴F AEF Ð=Ð,∴AE AF =,∴AE BE =.【点拨】本题考查了全等三角形的判定与性质以及等角对等边,掌握全等三角形的判定定理是解题的关键.2 .如图,AB =AC ,BE ⊥AC 于E ,CD ⊥AB 于D ,BE 、CD 交于点O ,求证:OB =OC .【分析】证△ABE ≌△ACD ,推出∠B =∠C ,AD =AE ,求出BD =CE ,证△BDO ≌△CEO ,根据全等三角形的性质推出即可.证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠AEB =90°,在△ABE 和△ACD 中A A AEB ADC AB AC Ð=ÐìïÐ=Ðíï=î∴△ABE ≌△ACD (AAS ),∴∠B =∠C ,AD =AE ,∵AB =AC ,∴BD =CE ,在△BDO 和△CEO 中DOB EOC B CBD CE Ð=ÐìïÐ=Ðíï=î∴△BDO ≌△CEO (AAS ),∴OB =OC .【点拨】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.3 .(1)如图1,在等腰直角△ABC 中,∠ACB =90°,AC =BC ,过点C 作直线DE ,AD ⊥DE 于D ,BE ⊥DE 于E ,求证:△ADC≌△CEB ;(2)如图2,在等腰直角△ABC 中,∠ACB =90°,AC =BC ,过点C 作直线CE ,AD ⊥CE 于D ,BE ⊥CE 于E ,AD =2.5cm ,DE =1.7cm ,求BE 的长;(3)如图3,在平面直角坐标系中,A (−1,0),C (1,3),△ABC 为等腰直角三角形,∠ACB =90°,AC =BC ,求点B 坐标.【答案】(1)证明见解析(2)0.8cm (3)4,1【分析】(1)由题意知∠D =∠E =90°,由∠ACD +∠BCE =180°−∠ACB =90°,∠ACD +∠CAD =180°−∠D =90°,可得∠CAD =∠BCE ,进而结论得证;(2)同理(1)证明△ADC≌△CEB (AAS),则BE =CD ,CE =AD =2.5cm ,根据BE =CD =CE−DE 计算求解BE 的值即可;(3)如图3,过点C 作平行于x 轴的直线DE ,过A 作AD ⊥DE 于D ,过B 作BE ⊥DE 于E ,由(1)可得△ACD≌△CBE ,则CE =AD =3,BE =CD =2,进而可求B 点坐标.【详解】(1)证明:∵AD ⊥DE ,BE ⊥DE ,∴∠D =∠E =90°,∵∠ACD +∠BCE =180°−∠ACB =90°,∠ACD +∠CAD =180°−∠D =90°,∴∠CAD =∠BCE ,在△ADC 和△CEB 中,∵∠D =∠E ∠CAD =∠BCE AC =BC,∴△ADC≌△CEB (AAS);(2)解:∵AD ⊥CE ,BE ⊥CE ,∴∠ADC =∠E =90°,∵∠ACD +∠CAD =180°−∠ADC =90°,∠ACD +∠BCE =180°−∠E =90°,∴∠CAD =∠BCE ,在△ADC 和△CEB 中,∵∠ADC =∠E ∠CAD =∠BCE AC =BC,∴△ADC≌△CEB (AAS),∴BE =CD ,CE =AD =2.5cm ,∴BE =CD =CE−DE =0.8cm ,∴BE 的长为0.8cm ;(3)解:如图3,过点C 作平行于x 轴的直线DE ,过A 作AD ⊥DE 于D ,过B 作BE ⊥DE 于E ,由(1)可得△ACD≌△CBE ,∴CE =AD =3,BE =CD =2,∴B 4,1.【点评】本题考查了三角形内角和定理,全等三角形的判定与性质等知识.解题的关键在于证明三角形全等.堂堂清一、选择题(每小题4分,共32分)1.如图,,,AB BF ED BF CD CB ^^=,判定△EDC≌△ABC 的理由是( )A .ASAB .SASC .SSSD .无法确定【答案】A【解析】解:∵,AB BF ED BF ^^,∴90ABC EDC Ð=Ð=°,∵ACB Ð和ECD Ð为对顶角,∴Ð=ÐACB ECD ,又∵CD CB =,∴()EDC ABC ASA ≌△△.故选:A .2 .王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚可以放进一个等腰直角三角板(AC=BC, ∠ACB=90°)点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离为( )A .10cmB .14cmC .20cmD .6cm【答案】C 【解析】解:∵AC BC =,90ACB Ð=°,AD DE ^,BE DE ^,∴90ADC CEB Ð=Ð=°,∴90ACD BCE Ð+Ð=°,90ACD DAC Ð+Ð=°,∴BCE DAC Ð=Ð,∵在ADC D 和CEB D 中,ADC CEB DAC BCE AC BC Ð=ÐìïÐ=Ðíï=î∴()ADC CEB AAS D D ≌;∴6cm EC AD ==,14cm DC BE ==,∴20(cm)DE DC CE =+=,故选:C .3 .如图,AC 与DB 交于点O ,下列条件不能证明ABC DCB D @D 的是( )A .AB DC =,AC DB=B .A D Ð=Ð,ABC DCB Ð=ÐC .BO CO =,A DÐ=ÐD .AB DC =,ACB DBCÐ=Ð【解析】解:A .在ABC D 和DCB D中,Q AB DC AC BD BC BC =ìï=íï=î,()ABC DCB SSS \D @D ,故A 选项不合题意;B .在ABCD 和DCB D 中,Q A D ABC DCB BC BC Ð=ÐìïÐ=Ðíï=î,()ABC DCB AAS \D @D ,故B 选项不合题意;C .BO CO =Q ,ACB DBC \Ð=Ð,在ABC D 和DCB D 中,Q A D ABC DBC BC BC Ð=ÐìïÐ=Ðíï=î,()ABC DCB AAS \D @D ,故C 选项不合题意;D .AB DC =Q ,ACB DBC Ð=Ð,不能证明ABC DCB D @D ,故D 选项符合题意;故选:D .4 .如图,ADC ADB Ð=Ð,添加一个条件,仍不能说明ABD ACD D @D 的是( )A .AB AC =B .BAD CAD Ð=ÐC .B C Ð=ÐD .BD CD=【解析】解:A 、添加AB AC =,利用SSA 不能判定ABD ACD D @D ,故此选项符合题意;B 、添加BAD CAD Ð=Ð,利用ASA 能判定ABD ACD D @D ,故此选项不合题意;C 、添加B C Ð=Ð,利用AAS 能判定ABD ACD D @D ,故此选项不合题意;D 、添加BD CD =,可利用SAS 能判定ABD ACD D @D ,故此选项不合题意;故选:A .5 .如图,测量河两岸相对的两点A ,B 的距离时,先在AB 的垂线BF 上取两点C 、D ,使CD BC =,再过点D 画出BF 的垂线DE ,当点A ,C ,E 在同一直线上时,可证明EDC ABC @△△,从而得到ED AB =,则测得ED 的长就是两点A ,B 的距离,判定EDC ABC @△△的依据是( )A .“SSS ”B .“ASA ”C .“HL ”D .“SAS ”【答案】B 【解析】解:根据题意得AB ⊥BC ,DE ⊥CD ,∴∠ABC=∠EDC=90°,∵CD=BC ,∠ACB=∠ECD ,∴根据“ASA”可判断△EDC ≌△ABC .故选:B .6. 如图,在ABC V 中,D 是AB 的中点,//,//DE BC DF AC ,若20AE =,则DF 的值为( )A .10B .15C .20D .25【答案】C 【解析】解:∵D 是AB 的中点,∴AD DB =,∵//,//DE BC DF AC ,∴,B ADE BDF A Ð=ÐÐ=Ð,∴△ADE≌△DBF (ASA ),∴20DF AE ==.故选:C .7 .如图,经过平行四边形ABCD 的对角线AC 中点的直线分别交边CB ,AD 的延长线于E ,F ,则图中全等三角形的对数是( )A .3对B .4对C .5对D .6对【答案】C 【解析】:Q 四边形ABCD 为平行四边形,EF 经过AC 的中点,AB CD \=,AD BC =,AO CO =,AOE COF Ð=Ð,F E Ð=Ð,又AOF COE Ð=Ð,AOE COF Ð=Ð,BAF DCE Ð=Ð,()\D @D AOH COG ASA ,()D @D AOF COE ASA ,()FDG EBH ASA D @D ,()ABC CDA SSS D @D ,()D @D AFH CEG ASA .故图中的全等三角形共有5对.故选:C8 .如图,在△ABC 中,∠ABC =90°,AB =BC ,AE 是中线,过点B 作BF ⊥AE 于点F ,过点C 作CD ⊥BC 交BF的延长线于点D .下列结论:①BE =CE ;②AE =BD ;③∠BAE =∠CBD ;④∠EAC =∠BAE ;⑤BC =2CD .正确的个数是( )A .2个B .3个C .4个D .5个【答案】C 【解析】解:①∵AE 是中线,∴BE =CE ,故①正确;②∵DC ⊥BC ,BF ⊥AE ,∴∠DBC+∠D =∠DBC+∠BEA =90°.∴∠D =∠BEA .∵∠DCB =∠ABE =90°,在△DBC 与△ABE 中,90DCB EBA D AEB BC AB ÐаìïÐÐíïî==== ,∴△BCD ≌△ABE (AAS ).∴BD =AE ,故②正确;③∵△BCD ≌△ABE ,∴∠BAE =∠CBD ;故③正确;④∵AE 是中线,∴∠EAC≠∠BAE ,故④错误;⑤∵△BCD ≌△ABE ,∴BE =CD ,∵BC =2BE ,∴BC =2CD ,故⑤正确.∴正确的结论有①②③⑤,共4个.故选:C .二、填空题(每小题4分,共20分)9 .已知,如图,D A Ð=Ð,//EF BC ,添加一个条件: (AC DF AB DE ==或)BC EF = ,使得ABC DEF D @D.【解析】解://EF BC Q ,ACB DFE \Ð=Ð,又D A Ð=ÐQ ,\添加条件AC DF =,可以使得()ABC DEF ASA D @D ,添加条件AB DE =,可以使得()ABC DEF AAS D @D ,添加条件BC EF =,可以使得()ABC DEF AAS D @D ,故答案为:(AC DF AB DE ==或)BC EF =.10 .如图,已知ABC D 中,点D ,E 分别在边AC ,AB 上,连接BD ,DE ,180C AED Ð+Ð=°,请你添加一个条件,使BDE BDC D @D ,你所添加的条件是 CBD EBD Ð=Ð (只填一个条件即可).【解析】解:添加的条件是:CBD EBD Ð=Ð,理由是:180C AED Ð+Ð=°Q ,180DEB AED Ð+Ð=°,C DEB \Ð=Ð,在BDE D 和BDC D 中EBD CBD DEB CBD BD Ð=ÐìïÐ=Ðíï=î,()BDE BDC AAS \D @D ,故答案为:CBD EBD Ð=Ð.11 .如图,在Rt ABC V 中,90BAC Ð=°,AB AC =,分别过点B 、C 作经过点A 的直线的垂线段BD 、CE,若6BD =厘米,8CE =厘米,则DE 的长为______.【答案】14厘米【解析】解:90BAC Ð=°Q 90DAB EAC \Ð+Ð=°,BD DE CE DE ^^Q 90DAB DBA \Ð+Ð=°DBA EAC\Ð=Ð在Rt △ADB 与Rt △CEA 中90ADB CEA DBA EAC AB AC Ð==°ìïÐ=Ðíï=î∴Rt △ADB ≅Rt △CEA(AAS),DB AE DA EC\==8614DE DA AE EC DB \=+=+=+=故答案为:14厘米.12 .如图,为了测量B 点到河对面的目标A 之间的距离,在B 点同侧选择了一点C ,测得∠ABC =65°,∠ACB =35°,然后在M 处立了标杆,使∠MBC =65°,∠MCB =35°,得到△MBC ≌△ABC ,所以测得MB 的长就是A ,B 两点间的距离,这里得到△MBC ≌△ABC 的依据是 ______.【答案】ASA【解析】解:在△ABC 和△MBC 中,ABC MBC BC BC ACB MCB Ð=Ðìï=íïÐ=Ðî,∴△MBC ≌△ABC (ASA ),故答案为:ASA .13 .如图,在△ACD 中,∠CAD =90°,AC =4,AD =6,AB ∥CD ,E 是CD 上一点,BE 交AD 于点F ,若AB =DE ,则图中阴影部分的面积为 _____.【答案】12【解析】解://AB CD Q ,BAD D \Ð=Ð,在BAF D 和EDF D 中,BFA EFD BAD D AB DE Ð=ÐìïÐ=Ðíï=î,()BAF EDF AAS \D @D ,BAF EDF S S D D \=,\图中阴影部分面积11461222BAF ACD ACEF S S S AC AD D D =+==××=´´=四边形,故答案为:12.三、解答题(共6小题,48分)14 .(8分)点B 、F 、C 、E 在直线l 上(F 、C 之间不能直接测量),点A 、D 在l 异侧,//AB DE ,A D Ð=Ð,AB DE =.(1)试说明△ABC 与△DEF 全等;(2)若10m BE =,3m BF =,求FC 的长度.【答案】(1)证明见解析;(2)4m .【解析】(1)//AB DE Q ,∴ABC DEB Ð=Ð,在△ABC 和△DEF 中,A D AB DE ABC DEB Ð=Ðìï=íïÐ=Ðî,∴△ABC ≌△DEF (ASA )(2)∵△ABC ≌△DEF ,∴BC=EF ,∴BC-FC=EF-FC ,即BF=CE ,∵10m BE =,3m BF =,∴FC=EF-BF-CE=10-3-3=4m .15 .(8分)如图,已知BC =EF ,AC ∥DF ,∠A =∠D .求证:△ACB ≌△DFE.【分析】先根据平行线的性质得到∠ACB=∠F,再利用AAS即可证明△ACB≌△DFE.【解答】证明:∵AC∥DF,∴∠ACB=∠F,在△ACB与△DFE中,,∴△ACB≌△DFE(AAS).【点评】本题主要考查了全等三角形的判定,平行线的性质,熟知全等三角形的判定定理是解题的关键.16 .(8分)已知△ABC≌△DCE,且B、C、E三点在同一直线上,△ABC与△DCE在直线BE的同一侧,AC与BD交于点F,图中还有全等三角形吗?请写出来,并说明理由.【分析】由△ABC≌△DCE,得到AB=CD,∠ABC=∠DCE,因此AB∥CD,推出∠A=∠DCF,∠ABF =∠CDF,即可证明△ABF≌△CDF(ASA).【解答】解:还有△ABF≌△CDF,理由如下:∵△ABC≌△DCE,∴AB=CD,∠ABC=∠DCE,∴AB∥CD,∴∠A=∠DCF,∠ABF=∠CDF,在△ABF和△CDF中,∴△ABF≌△CDF(ASA).【点评】本题考查全等三角形的判定和性质,关键是由△ABC≌△DCE,推出AB∥CD,得到∠A=∠DCF,∠ABF=∠CDF.17 .(8分)已知:如图∠1=∠2,∠3=∠4,求证:△ABE≌△ADE.【分析】先利用AAS判定△DEC≌△BEC,从而得出DE=BE,再利用SAS判定△ABE≌△ADE.【解答】证明:在△DEC和△BEC中∵,∴△DEC≌△BEC(ASA).∴DE=BE.∵∠3=∠4,∴∠DEA=∠BEA.∵DE=BE,AE=AE,在△ABE和△ADE中∵,∴△ABE≌△ADE(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18 .(8分)如图,在△ABC 中,∠B=∠C ,过BC 的中点D 作DE ⊥AB ,DF ⊥AC ,垂足分别为点E 、F .(1)求证∶DE=DF ;(2)若∠BDE=55°,求∠BAC 的度数.【答案】(1)见解析;(2)110゜【解析】(1):∵DE ⊥AB ,DF ⊥AC ,∴∠BED=∠CFD=90°,∵D 是BC 的中点,∴BD=CD ,在△BED 与△CFD 中BED CFD B CBD CD Ð=ÐìïÐ=Ðíï=î∴△BED≌△CFD (AAS ),∴DE=DF ;(2解:∵55,,BDE DE AB Ð=°^∴∠C=∠B=35°,∴∠BAC=1803535110.°-°-°=°19 .(8分)在Rt △ABC 中,∠C =90°,AC =BC ,如图1所示,BC 边在直线l 上,若Rt △ABC 绕点C 沿顺时针方向旋转α,过点A 、B 分别作l 的垂线,垂足分别为点D 、E .(1) 当0<α<90°时,证明:△ACD ≌△CBE ,并探究线段AD 、BE 和DE 的数量关系并说明理由;(2) 当90°<α<180°,且α≠135°时,探究线段AD 、BE 和DE 的数量关系(直接写出结果).【答案】(1)DE =AD +BE ,理由见分析;(2)AD =DE +BE【分析】(1)由“AAS”可证△BCE ≌△CAD ,可得BE =CD ,AD =CE ,可得结论;(2)由“AAS”可证△BCE ≌△CAD ,可得BE =CD ,AD =CE ,可得结论.(1)解:DE =AD +BE ,理由如下:证明:∵BE ⊥ED ,AD ⊥DE ,∴∠BEC =∠ADC =90°=∠ACB ,∴∠ACD +∠BCE =90°=∠ACD +∠DAC ,∴∠DAC =∠BCE ,在△ACD 和△CBE 中,ADC BEC DAC BCE AC BC Ð=ÐìïÐ=Ðíï=î,∴△ACD ≌△CBE (AAS ),∴CD =BE ,AD =CE ,∴DE =AD +BE ;(2)解: AD =DE +BE ,理由如下:如图,∵BE ⊥ED ,AD ⊥DE ,∴∠BEC =∠ADC =90°=∠ACB ,∴∠ACD +∠BCE =90°=∠ACD +∠DAC ,∴∠DAC =∠BCE ,在△BCE 和△CAD 中,BEC ADC BCE DAC BC AC Ð=ÐìïÐ=Ðíï=î,∴△BCE≌△CAD(AAS),∴BE=CD,AD=CE,∴AD=DE+BE.【点拨】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.拓展培优*冲刺满分1 .如图,∠BCD=90°,BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.(1)判断:∠ABC________∠PDC(填“>”或“=”或“<”);(2)猜想△ACE的形状,并说明理由;【答案】(1)=;(2)△ACE是等腰直角三角形;理由见解析;(3)45°<α<90°.【分析】(1)由四边形ABCD的内角和与邻补角的性质证明∠EDC=∠ABC,即可得到结论.(2)由旋转的性质可得:∠ACE=∠BCD=90°,证明∠ECD=∠BCA,再证明△ECD≌△ACB,从而可得结论;(3)当∠PDC=∠ABC=α=90°时,△ABC的外心在其斜边上,∠ABC=α>90°时,△ABC的外心在其外部,从而可得到答案.【详解】解:(1)∵AB⊥AD,∠DCB=90°,∴∠CDA+∠ABC=360°−90°−90°=180°,∵∠CDA+∠CDE=180°,∴∠EDC=∠ABC.故答案为:=.(2)△ACE是等腰直角三角形.理由如下:由旋转可得:∠ACE=∠BCD=90°,∴∠ECD+∠DCA=90°=∠DCA+∠BCA,∴∠ECD=∠BCA,在△ECD与△ACB中,{∠ECD=∠BCA CD=CB∠EDC=∠ABC∴△ECD≌△ACB(ASA)∴EC=AC,又∵∠ACE=90°∴△ACE是等腰直角三角形.【点评】本题考查的是四边形的内角和,三角形的外接圆的性质,旋转的性质,三角形全等的判定与性质,掌握以上知识是解题的关键.2 .在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到如下图所示的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到如下图所示的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,不必证明;(3)当直线MN绕点C旋转到如图的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,不必证明.【答案】(1)①见解析;②见解析(2)AD=BE+DE(3)BE=AD+DE【分析】(1)①用AAS证明△ADC≌△CEB即可;②根据全等三角形的性质,得出AD=CE,BE=CD,进而得出DE=BE+CD;(2)先证明△ACD≌△CBE(AAS),可得AD=CE,BE=CD,进而得出AD=CD+DE=BE+DE;(3)先证明△ACD≌△CBE(AAS),可得AD=CE,BE=CD,进而得出BE=CD=CE+DE=AD+DE.【详解】(1)证明:①∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∵∠BCA=90°,∴∠ACD+∠BCE=90°,∠BCE+CBE=90°,∴∠ACD=∠CBE,在△ADC和△CEB中,∵∠ADC=∠CEB=90°∠ACD=∠CBEAC=BC,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴AD=CE,BE=CD,∴DE=DC+CE=BE+AD.(2)解:AD=BE+DE.∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠CBE=90°,∴∠ACD=∠CBE,在△ACD和△CBE中,∵∠ADC=∠CEB∠ACD=∠CBEAC=BC,∴△ACD≌△CBE(AAS),∴AD=CE,BE=CD,∴AD=CD+DE=BE+DE.(3)解:BE=AD+DE.∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠CBE=90°,∴∠ACD=∠CBE,在△ACD和△CBE中,∵∠ADC=∠CEB∠ACD=∠CBEAC=BC,∴△ACD≌△CBE(AAS),∴AD=CE,BE=CD,∴BE=CD=CE+DE=AD+DE.【点评】本题主要考查了全等三角形的判定与性质,垂线的定义,余角的性质.解题的关键熟练掌握三角形全等的条件,证明△ACD≌△CBE.3. 如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【解答】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)存在,理由:①若△ACP≌△BPQ,则AC=BP,AP=BQ,则,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,则,解得:;综上所述,存在或,使得△ACP与△BPQ全等.【点评】本题主要考查了全等三角形的判定与性质,两边及其夹角分别对应相等的两个三角形全等.在解题时注意分类讨论思想的运用.。

人教版八年级上册数学12.2《三角形全等的判定》教案第3课时

人教版八年级上册数学12.2《三角形全等的判定》教案第3课时

第十二章全等三角形12.2全等三角形的判定第3课时一、教学目标1.掌握三角形全等“ASA”和“AAS”条件.2.能运用“ASA”和“AAS”条件判定两个三角形全等.二、教学重点及难点重点:经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,.难点:“角边角”和“角角边”判定条件的理解和应用三、教学用具电脑、多媒体、课件、三角形硬纸板、直尺、刻度尺四、相关资源“已知两角及其夹边”作一个三角形与已知三角形重合的过程;三角形全等的判定微课五、教学过程(一)情境导入(1)一张教学用的三角形硬纸板不小心被撕坏了,如下图,你能制作一张与原来同样大小的新教具吗?能恢复原来三角形的原貌吗?(2)到目前为止,可以作为判别两个三角形全等的方法有几种?各是什么?三种:(1)定义;(2)SSS;(3)SAS.今天我们接着探究已知两角一边是否可以判断两三角形全等?设计意图:设置问题情境,激发学生的求知欲,明确本节课要探究的内容.(二)探究新知1.拿出准备好的三角形硬纸片△ABC ,再画一个△A ′B ′C ′,使A ′B′=AB ,∠A ′=∠A ,∠B ′=∠B (即保证两角和它们的夹边对应相等).把画好的△A ′B ′C ′,放到△ABC 上,它们全等吗?学生活动:(1)学生自己动手,利用直尺、三角尺、量角器等工具画出A ′B′C ′,将△ABC 与△A ′B′C 重叠,比较结果.(2)作好图形后,与同伴交流作图心得,讨论发现什么样的规律.操作结果展示:画一个△A ′B ′C ′,使A ′B ′=AB ,∠A ′=∠A ,∠B ′=∠B .(1)画A′B′=AB ;(2)在A′B′ 的同旁画∠DA′B′=∠A ,∠EB′A′=∠B ,A′D ,B′E 相交于点C ′.将做好的△A ′B′C 剪下,发现△ABC 与△A ′B′C ′全等.由此得出判定方法:两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA ”).几何语言表示:如图,在△ABC 和△DEF 中,B E BC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴△ABC ≌△DEF (ASA ).设计意图:类比“边边边”和“边角边”探究得出“角边角”的两个三角形全等的判定方法,学生通过动手操作、自主探究、交流、获得新知,进一步增强了动手能力,渗透类比思想.2.在两个三角形中,是不是只要有两个角对应相等,一条边对应相等,这两个三角形就全等呢?下面,我们来看一个问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF .求证:△ABC ≌△DEF .证明:在△ABC 中,∠A +∠B +∠C =180°,∴∠C =180°-∠A -∠B .同理∠F =180°-∠D -∠E .又∠A =∠D ,∠B =∠E ,∴∠C =∠F .在△ABC 和△DEF 中B E BC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴△ABC ≌△DEF (ASA ).由此得出:两角和其中一角的对边分别相等的两个三角形全等(可以简写成“角角边”或“AAS ”).几何语言表示:如图,在△ABC 和△DEF 中,A DB E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△ABC ≌△DEF (AAS ).设计意图:用“角边角”证明满足两角和其中一角的对边分别相等的两个三角形全等的正确性,得出“角角边”的判定方法.(三)例题解析【例】如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C .求证:AD =AE .证明:在△ACD 和△ABE 中,A A AC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴△ACD ≌△ABE (ASA ).∴AD =AE .设计意图:运用“角边角”判定方法证明两个三角形全等,从而证明两条线段相等.(四)课堂练习1.如图,点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AB =AC ,∠B =∠C .求证:BO =CO .2.解决课前导入的问题:一张教学用的三角形硬纸板不小心被撕坏了,如下图,你能制作一张与原来同样大小的新教具吗?能恢复原来三角形的原貌吗?学生独立完成.答案:1.证明:在△ACD 和△ABE 中,A A AC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴△ACD ≌△ABE (ASA ).∴AD =AE .∵AB =AC ,∴AB -AD =AC -AE .即BD =CE .在△BOD 和△COE 中,BOD COE B C BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△BOD ≌△COE (AAS ).∴BO =CO .2.被撕坏的这块三角形硬纸板保留了原三角形硬纸板的两角及其夹边,新制作的三角形硬纸板的两角及其夹边和被撕坏的这块三角形硬纸板对应相等,新制作的三角形硬纸板和原三角形硬纸板满足“角边角”,自然就同样大小了,所以能恢复原来三角形的原貌.设计意图:运用“角边角”和“角角边”的判定方法证明两个三角形全等,体会全等三角形判定方法的多样性,锻炼学生挖掘题目中隐含条件的能力.六、课堂小结1.如何找对应相等的边和角?寻找对应相等的边:公共边、中点或中线、通过计算(同加或同减)、作辅助线(构造公共边等).寻找对应相等的角:公共角、角平分线平分角、直角或垂直(90°)、平行线性质、通过计算(同加或同减);同角的余角相等.对应边所对的角是对应角,对应角所对的边是对应边.2.我们现在学了五种判定三角形全等的方法:(1)全等三角形的定义;(2)边边边(SSS);(3)边角边(SAS);(4)角边角(ASA);(5)角角边(AAS).3.要根据题意选择适当的判定方法.4.用三角形全等来证明线段相等或角相等.设计意图:通过小结,使学生梳理本节所学内容,理解“角边角”和“角角边”的判定方法,灵活选择全等三角形的判定方法判定两个三角形全等.七、板书设计12.2三角形全等的判定(“角边角”和“角角边”)“角边角”(ASA):两角和它们的夹边分别相等的两个三角形全等.“角角边”:两角和其中一角的对边分别相等的两个三角形全等.“角边角”的几何语言“角角边”的几何语言。

人教版初中数学课标版八年级上册第十二章12.2 三角形全等的判定 教案

人教版初中数学课标版八年级上册第十二章12.2 三角形全等的判定 教案

人教版初中数学课标版八年级上册第十二章12.2 三角形全等的判定教案12.2.3全等三角形的判定(ASA与AAS)教学设计一、教学目标1、知识与技能:(1)让学生掌握已知三角形两个内角和一条边的长度怎么画三角形;(2)掌握三角形全等的证明方法:ASA和AAS;(3)熟练掌握证明的标准步骤;(4)通过对问题的共同探讨,培养学生的协作、交流能力。

2、过程与方法:探究式教学,让学生通过探究,体会分类讨论的思想.3、情感、态度与价值观通过探究全等三角形的证明方法,体会分类讨论的思想,有助于学生形成严谨的学习习惯以及形成较强的逻辑推理能力.(1)在探索三角形全等条件的过程中,培养学生有条理的思考能力、概括能力和语言表达能力。

(2)培养学生善于思考、积极参与数学学习活动、勇于探索的钻研精神及作交流的意识.(3)在教学过程中,使学生获得用所学数学知识解决实际问题的成功体验,提升用数学的意识.二、学习重点和难点1、重点:指导学生分析问题,寻找判定三角形全等的条件及应用角边角定理解决问题。

2、难点:三角形全等条件的探索过程。

三、教学方法了什么?(学生分享小组的作法----学生上台展示自己所画的图形—学生分享他们的结论)(2)得到实验结论:所画的三角形均能相互重合。

(3)师提出问题:你能根据作图要求具体说说所画的是什么样的两个三角形吗?(学生回答,并让学生对实验结论进行猜想,后有教师补充,从而形成判定)(4)师生归纳:三角形全等的判定(三):两角和它们的夹边对应相等的两个三角形全等。

(可以简写成“角边角”或者“ASA”)(5)符号语言:在△ABC和△DEF中,∠A=∠DAB=DE∠B=∠E∴△ABC≌△DEF (ASA)学生活动:除了这已经写出来的符号语言,你还能尝试转换写一下别的符号语言表达吗?(学生自主举手上台板书){设计说明:让学生体会在全等证明的过程中条件不是固定的,激发学生的知识扩展,学了知识能举一反三的能力}2、说理证明(探究6),探索新知(角角边)探究:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC和△DEF 全等吗?能利用角边角证明你的结论吗?证明:在△ABC中,∠A+∠B+∠C=180°∴∠C=180-∠A-∠B同理∠F=180°-∠D-∠E又∠A=∠D ,∠B=∠E∴∠C=∠F在△ABC和△DEF 中∠B=∠EBC=EF∠C=∠F∴△ABC≌△DEF (ASA)(让学生交流从这道题中得到什么启发,然后代表起来分享启发,教师再做点评,从而形成判定)(设计意图:培养学生合作意识与探究意识)(3)归纳:三角形全等的判定(四):两个角和其中一个角的对边对应相等的两个三角形全等。

人教版数学八年级上册12.2三角形全等的判定ASA、AAS教学设计

人教版数学八年级上册12.2三角形全等的判定ASA、AAS教学设计
2.各小组分享讨论成果,教师点评并给予指导,引导学生深入理解全等三角形的判定方法。
(四)课堂练习
1.设计具有层次性的练习题,包括基础题、提高题和挑战题,让学生在课堂上独立完成。
-基础题:直接应用ASA和AAS判定方法判断两个三角形是否全等;
-提高题:在复杂图形中寻找对应角和对应边,判断全等关系;
-挑战题:运用全等三角形的性质和判定方法解决实际问题。
3.培养学生的团队协作意识和集体荣誉感,通过小组合作解决问题,体会合作的重要性。
-在小组讨论和问题解决中,鼓励学生互相交流、支持和帮助,培养合作精神,增强集体荣誉感。
二、学情分析
八年级学生对几何图形的观察、分析和推理能力已有一定基础,但在全等三角形的判定和应用方面,仍需进一步引导和巩固。学生在之前的学习中,掌握了三角形的性质和分类,能够识别基本的几何图形,但对全等概念的理解可能仍停留在表面,对ASA、AAS判定方法的掌握和应用尚不熟练。此外,学生在解决实际问题时,可能缺乏将理论知识与生活实际相结合的能力。因此,本章节教学应注重以下方面:
(二)教学设想
1.利用多媒体和实物模型,通过直观演示和动手操作,帮助学生建立对全等三角形判定方法的认识。
-使用动态几何软件展示全等三角形的变换过程,让学生直观感受全等的概念。
-设计动手操作活动,如让学生使用剪纸或模型拼图,亲身体验全等三角形的构造和判定。
2.创设问题情境,引导学生通过探究、讨论和合作学习,攻克教学难点。
-学生能够运用逻辑推理,通过给定三角形的两个角和非夹边的一条边相等,推导出另外两边和第三个角也相等,从而判断两个三角形全等。
2.能够运用尺规作图画出全等三角形,并在具体的几何图形中识别和应用全等三角形的性质。
-学生能够利用尺规准确画出给定角度和线段的三角形,并能够根据全等的性质,完成图形的证明或构造。

12.2三角形全等的判定(第3课时)教案

12.2三角形全等的判定(第3课时)教案

12.2 三角形全等的判定(3)探究4:1. 先任意画出一个厶 ABC 再画一个厶 A'BC , 使 A'B' = AB / A' =Z A , / B' =Z B (即两角和它 们的夹边对应相等).学生先自己独立思考,动手画一画。

在画的过程中若遇到不能解决的问题.可小组 合作交流解决.2.把画好的厶ABC'剪下,放到△ ABC 上,看看它 们是否全等.结论:两角和它们的夹边分别相等的两个三角形 全等(可以简写成“角边角”或“ASA ”).注意:“边”必须是“两角的夹边”.例题讲解: 例 3 如图,D 在 AB 上, E 在 AC 上, AB=AC / B=/ C.例 4 在厶 ABC 和△ DEF 中,/ A =/ D,/ B= / E , BC = EF ,A ABC 与厶DEF 全等吗?能利用角边 角条件证明你的结论吗?让学生独立尝试画△A'B'C'.目的是给学 生独立思考、自主探 究的时间,培养独立 面对问题的勇气•并 在独立作图过程中, 提高分析、作图能力, 获得“ ASA 的初步感 知.保证作图的正确性,这是探究出正确 规律的前提.探究新知求证:AD=AE[ 分析]AD 和AE 分 别在△ ADC ^A AEB 中, 所以要证AD=AE 只需 证明△ADC^A AEB 即 可.证明:在厶 ADC 和厶AEB 中留给学生较充分的独 立思考、探究的时间, 在探究过程中,提高 逻辑推理能力.A —A AC = AB所以△ ADC^A AEB (ASA 所以AD=AE引导学生先确定探究 的思路与方法,进一 步培养理性思维.也为学生提供创 新的空间与可能.。

12.2 第3课时 三角形全等的判定(ASA,AAS)

12.2 第3课时 三角形全等的判定(ASA,AAS)
图 12-2-29
分层作 业
1.[2018·成都]如图 12-2-30,已知∠ABC=∠DCB,添加以下条件,不能判定
△ABC≌△DCB 的是( C )
A.∠A=∠D
B.∠ACB=∠DBC
C.AC=DB
D.AB=DC
图 12-2-30
2.如图 12-2-31,点 D,E 分别在线段 AB,AC 上,AE=AD,不添加新的线 段和字母,要使△ABE≌△ACD,需添加的一个条件是 ∠ADC=∠AEB或 ∠CEB=∠BDC或∠C=∠B或AB=AC或B(D只=写C一E个条件即可).
线上,可以说明△EDC≌△ABC,从而可得 ED=AB,因此测得 ED 的长就是 AB
的长,判定△EDC≌△ABC 最恰当的理由是( B )
A.边角边
B.角边角
C.边边边
D.边边角
图 12-2-28
4.[2017·黔东南州]如图 12-2-29,点 B,F,C,E 在同一条直线上,已知 FB =CE,AC∥DF,请你添加一个适当的条件:(答案不唯一)如AC=FD或∠B,= 使得△ABC≌△DEF.
5.[2018·昆明]如图 12-2-34,在△ABC 和△ADE 中,AB=AD,∠B=∠D, ∠1=∠2.
求证:BC=DE.
图 12-2-34
证明:∵∠1=∠2, ∴∠1+∠DAC=∠2+∠DAC, 即∠BAC=∠DAE. 在△ABC 和△ADE 中,
∠ABB==A∠DD,, ∠BAC=∠DAE,
求证:BC=AE.
图 12-2-25
证明:∵DE∥AB,∴∠CAB=∠EDA. 在△ABC 和△DAE 中,
∠CAB=∠EDA, AB=DA, ∠B=∠DAE,
∴△ABC≌△DAE(ASA), ∴BC=AE.

全等三角形判定方法3及推论(ASA与AAS)的教学设计

全等三角形判定方法3及推论(ASA与AAS)的教学设计

第十二章全等三角形判定第三课时§12.2-3 全等三角形的判定(ASA、AAS)1教学目标1.1知识技能:掌握全等三角形的判定方法3及推论:(ASA、AAS)1.2过程与方法:经历探索三角形全等条件的过程,体会如何探索研究问题,让学生初步体会分类思想,提高分析问题和解决问题的能力。

1.3情感态度与价值观:通过画图、比较、验证,培养学生注重观察、善于思考、不断总结的良好思维习惯。

2 教学重点/难点/易考点2.1教学重点:应用“角边角”、“角角边”判定三角形全等.2.2教学难点:学会综合法解决几何推理问题.2.3关键:把握综合分析法的思想,寻找问题的切入点.3.教学建议:本节课可以通过创设一个学生熟悉的问题情境,让学生感受数学源于生活,用于生活。

通过画图,验证自己的猜想,合作交流得到“角边角”定理。

再通过层层铺垫引出其推论。

通过改编例题为开放题,训练学生的发散思维,这就是本课的创新之处。

在教学过程中,笔者注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生合作交流、团结互助的精神和主动探索、善于发现的科学精神。

同时,在合作交流、探索的过程中,学会用类比的方法发现结论,采用启发、诱导的方法来指导学生“会学”,引导学生反思、小结数学的思想方法,知识的获取,指导学生“善学”,让学生看到自我的价值,增强学习的乐趣和信心。

4教学方法:采用“问题教学法”,在问题情境中,激发学生的求知欲.5 教学用具:多媒体,直尺,圆规.量角器等。

6教学过程6.1 知识回顾【师】三角形全等判定方法 1三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。

用符号语言表达?【生】用符号语言表达为:在△ABC和△ DEF中AB=DE∵BC=EFCA=FD∴△ABC ≌△ DEF(SSS)【师】三角形全等的判定方法 2【生】两边和它们的夹角对应相等的两个三角形全等。

(可以简写成“边角边”或“SAS”)第 1 页共 6 页。

12.2 三角形全等的判定(ASA、AAS)教案

12.2 三角形全等的判定(ASA、AAS)教案

课题: 12.2三角形全等的判定(ASA、AAS)教案第3课时临沭县第一初级中学刘玉峰课题12.2 三角形全等的判定(ASA、AAS)教案课型新授教学目标知识技能1. 理解“角边角”、“角角边”判定三角形全等的方法及运用.2. 熟练掌握证明三角形全等时的书写格式.过程方法1.经历探究全等三角形判定的过程,进一步体会操作、•归纳获得数学规律的过程.2.能运用全等三角形的判定,解决简单的推理证明问题.情感态度1.通过尺规作图、探究、归纳、交流,使学生获得一些研究问题的经验和方法,发展实践能力和创新精神.2.培养良好的几何推理意识,发展数学思维,感悟全等三角形的应用.重点已知两角一边的三角形全等探究.难点灵活运用三角形全等条件证明.教学准备圆规、直尺、多媒体辅助教学教学过程设计教学过程教师活动学生活动估时自主探究到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?还有其他的判定方法吗?(请完成学案自主探究部分)检查指导,帮助有困难的同学.在探究过程中安排2个小组分别演示、口述教师进行多媒体课件演示,使学生加深对“ASA”的理解.点拨:你能用几何语言描述吗?自学课本P39-P41内容先任意画出一个△ABC,再画一个△A/B/C/,使A/B/=AB,∠A/ =∠A,∠B/ =∠B(即使两角和它们的夹边分别相等)。

把画好的△A/B/C/剪下,放到△ABC上进行比较,它们是否重合?由此你能得出什么结论?自己动手操作,然后与同伴交流,发现规律.组内交流提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).15尝试应用鼓励学生大胆发表自己的见解,对于有困难的要适时帮助,锻炼学生的发散思维,这也是本课的创新之处.进行适当的引导(AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB).提示:∠A=∠D,∠B=∠E,那么∠C=∠F吗?然后我们可不可以用学过的知识来再来证明这两个三角形全等呢?鼓励引导小组合作学习,当学生思维受阻时,适度引导、激励,使学生更大程度地投入到课堂中,同时也激发了学生的思维,大胆猜想归纳,积极主动参与探索知识的发生过程,从而培养学生的分析能力、概括能力.教师点评(总结提升):转化思想例3 .如图12.2-9,D在AB上,E在AC上,AB=AC,∠B= ∠C. 求证:AD=AE.由2名小组代表板书,并进行展示,其他各组同学提出自己的疑问.例4.在△ABC与△DEF中,∠A=∠D ,∠B=∠E,BC=EF, 求证:△ABC≌△DEF归纳总结:两角和它们其中一角的对边分别相等的两个三角形全等(可以简写为“角角边”或“AAS”)20补偿提高巡查指导,鼓励学生对刚学到的知识、方法进行应用,从而把知识转化为技能,提高解决实际问题的能力完成学案:补偿提高组内交流并派出代表展示,其他组同学提出自己的疑问.9布置作业作业:1.P44 4,5,6 2.同步学习与探究 1教后反思。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时教案
课题§全等三角形的判定(3)——ASA和AAS
教材分析1.本节的主要内容是探索三角形全等的条件,及利用全等三角形进行证明.2.为了让学生经历一个完整地探索三角形全等的过程,教科书给了两个探究。

探究一让学生从满足六个条件中的一个或两个入手,探究在这样的情形下能否保证两个三角形全等.从探究二开始让学生探究满足六个条件中的三个能否保证两个三角形全等,本次课主要探究ASA的情形.
学情%
分析
学生刚刚认识了全等三角形以及全等三角形的性质,对判定两个三角形全等暂时还不太熟悉,所以让孩子们通过自己的探究来得出两个角和一条边对应相等,两三角形全等的结论还是非常有必要的.
重点ASA,AAS
难点ASA,AAS的理解与灵活应用
教学方法1.教师教法:启发式引导发现法.
%
2.学生学法:独立思考,主动发现.
教学内容及过程
教学环节教学内容学习内容设计意图
复习回顾$ 1.什么是全等三角形
2.判定两个三角形全等要具备什么条件
边边边(SSS)
边角边(SAS)
*
思考:如果两个三角形中只有一组对应
边相等,那么还需要什么条件能够判断
两个三角形全等呢
问题1:如果已知一个三角形的两角及
一边,那么有几种可能的情况呢
角边角(ASA)
角角边(AAS)
^
!
设置情境引入课题探究1:一张教学用的三角形硬纸板不小心被撕坏了(如下图),你能制作一张与原来同样大小的新教具吗能恢复原来三
角形的原貌吗


分析问题
探究新知

|
分析问题

探究新知探究1反映的规律是:
两角和它们的夹边对应相等的两个三角形全等.
(可以简写成“角边角”或“ASA”)
用数学符号表示:
)

|
?
举一反三
^
巩固新知: 例1.已知:点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C. 求证:(1)AD=AE; (2)BD=CE。

)
练习1:已知:如图,∠1=∠2,∠3=∠4
求证:AC=AD
探究2:如下图,在△ABC和△DEF中,∠A =
∠D, ∠B=∠E, BC=EF, △ABC与△DEF全等
吗能利用角边角条件证明你的结论吗
证明:在△ABC和△DEF中,
|
∠A +∠B +∠C=1800,
∠D +∠E +∠F =1800,
∵∠A =∠D, ∠B=∠E,
∴∠C=∠F,
∴∠B=∠E,
BC=EF,
∠C=∠F,
∴△ABC ≌△DEF (ASA)
,
探究2反映的规律是:
两个角和其中一个角的对边对应相等的两个
三角形全等(可以简写成“角角边”或“AAS”)用数学符号表示:
:
例2: 如图,O是AB的中点,∠A= ∠B,△AOC
与△BOD全等吗为什么

变式: 如图,O是AB的中点,∠C= ∠D,
△AOC与△BOD全等吗为什么
|
1、如图,BE=CD,∠1=∠2,则AB=AC吗为什么
2.已知:如图∠B=∠DEF, BC=EF, 求证:ΔABC≌ΔDEF
#
(1)若要以“SAS”为依据,还缺条件______;
(2)若要以“A SA”为依据,还缺条件______;
(3)若要以“SSS” 为依据,还缺条件______;
(4)若要以“AAS” 为依据,还缺条件______课堂小结本节课你的收获是什么
)检测题1.已知:如图,在ABC
∆中,D、E、F分别是AB、AC、BC上的点,连接DE、EF,AB∥EF,DE∥BC,DE=FC. 求证:ADE
∆≌EFC

~
2、已知:如图,∠1=∠2,∠3=∠4.求证:ABC
∆≌ABD

板书
设计
背投
作业数学新目标检测:P25
抽测数学新目标检测:P25 T5。

相关文档
最新文档