2. 轴向的拉伸与压缩
第二章 轴向拉伸和压缩
第二章 轴向拉伸和压缩§2−1 轴向拉伸和压缩的概念F(图2−1)则为轴向拉伸,此时杆被2−1虚线);若作用力F 压缩杆件(图(图2−2工程中许多构件,(图2−3)、各类(图2−4)等,这类结构的构2−1和图2−2。
§ 2−2 内力·截面法·轴力及轴力图一、横截面上的内力——轴力图2−5a 所示的杆件求解横截面m−m 的内力。
按截面法求解步骤有:可在此截面处假想将杆截断,保留左部分或右部分为脱离体,移去部分对保留部分的作用,用内力来代替,其合力F N ,如图2−5b 或图2−5c 所示。
对于留下部分Ⅰ来说,截面m −m 上的内力F N 就成为外力。
由于原直杆处于平衡状态,故截开后各部分仍应维持平衡。
根据保留部分的平衡条件得 mF N F N(a )(b ) (c )图2−5Ⅱ图2−1图2−2图2-4F F F F Fx==-=∑N N ,0,0 (2−1)式中,F N 为杆件任一截面m −m 上的内力,其作用线也与杆的轴线重合,即垂直于横截面并通过其形心,故称这种内力为轴力,用符号F N 表示。
若取部分Ⅱ为脱离体,则由作用与反作用原理可知,部分Ⅱ截开面上的轴力与前述部分上的轴力数值相等而方向相反(图2−5b,c)。
同样也可以从脱离体的平衡条件来确定。
二、轴力图当杆受多个轴向外力作用时,如图2−7a ,求轴力时须分段进行,因为AB 段的轴力与BC 段的轴力不相同。
要求AB 段杆内某截面m −m 的轴力,则假想用一平面沿m −m 处将杆截开,设取左段为脱离体(图2−7b),以F N Ⅰ代表该截面上的轴力。
于是,根据平衡条件∑F x =0,有 F F -=ⅠN负号表示的方向与所设的方向相反,即为压力。
要求B C 段杆内某截面n-n 的轴力,则在n −n 处将杆截开,仍取左段为脱离体(图2−7c ),以F N Ⅱ代表该截面上的轴力。
于是,根据平衡条件∑F x =0,有 02N Ⅱ=+-F F F由此得F F =N Ⅱ在多个力作用时,由于各段杆轴力的大小及正负号各异,所以为了形象地表明各截面轴力的变化情况,通常将其绘成“轴力图”(图2−7d)。
材料力学(机械类)第二章 轴向拉伸与压缩
二
章
拉伸压缩与剪切
1
பைடு நூலகம்
§2-1
轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
2
拉、压的特点:
1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3
§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4
材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。
现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:
N A
F
FN
σ
10
例题2-2
A 1
45°
C
2
轴向拉伸与压缩教学教案
轴向拉伸与压缩教学教案第一章:轴向拉伸与压缩概念介绍教学目标:1. 让学生理解轴向拉伸与压缩的基本概念。
2. 让学生了解轴向拉伸与压缩的物理现象及其在实际中的应用。
教学内容:1. 轴向拉伸与压缩的定义。
2. 轴向拉伸与压缩的物理现象。
3. 轴向拉伸与压缩的应用实例。
教学方法:1. 采用讲授法,讲解轴向拉伸与压缩的基本概念及其物理现象。
2. 通过实物展示或图片,使学生更直观地了解轴向拉伸与压缩的应用实例。
教学评估:1. 通过课堂提问,检查学生对轴向拉伸与压缩概念的理解程度。
2. 通过布置课后作业,让学生巩固所学内容。
第二章:轴向拉伸与压缩的基本理论教学目标:1. 让学生掌握轴向拉伸与压缩的基本理论。
2. 让学生了解轴向拉伸与压缩的计算方法。
教学内容:1. 轴向拉伸与压缩的基本力学原理。
2. 轴向拉伸与压缩的计算方法。
教学方法:1. 采用讲授法,讲解轴向拉伸与压缩的基本力学原理。
2. 通过示例,让学生了解轴向拉伸与压缩的计算方法。
教学评估:1. 通过课堂提问,检查学生对轴向拉伸与压缩基本理论的理解程度。
2. 通过布置课后作业,让学生巩固所学内容。
第三章:轴向拉伸与压缩的实验研究教学目标:1. 让学生了解轴向拉伸与压缩实验的原理。
2. 培养学生进行实验操作和数据处理的能力。
教学内容:1. 轴向拉伸与压缩实验的原理。
2. 轴向拉伸与压缩实验的操作步骤。
3. 实验数据的处理方法。
教学方法:1. 采用实验教学法,让学生亲身体验轴向拉伸与压缩实验。
2. 通过实验操作和数据处理,使学生更好地理解轴向拉伸与压缩的物理现象。
教学评估:1. 通过实验报告,评估学生对轴向拉伸与压缩实验原理的理解程度。
2. 通过实验操作和数据处理的评价,培养学生进行实验的能力。
第四章:轴向拉伸与压缩在工程中的应用教学目标:1. 让学生了解轴向拉伸与压缩在工程中的应用。
2. 培养学生解决实际问题的能力。
教学内容:1. 轴向拉伸与压缩在工程中的应用实例。
5 材料力学第二章 轴向拉伸和压缩
16锰钢
合金钢 铸铁 混凝土 石灰岩 木材(顺纹)
196-216
186-216 59-162 15-35 41 10-12
0.25-0.30
0.25-0.30 0.23-0.27 0.16-0.18 0.16-0.34
橡胶
0.0078
0.47
25
材料力学
§2-5
轴向拉伸时材料的机械性能
一、试验条件及试验仪器
P BC段:N 2 3 P
1
3P + P
AB段:N
3
2 P
+
–
12
2P
三、横截面上的应力
问题提出: P P (一)应力的概念 P P
度量横截面 上分布内力 的集度
1.定义:作用在单位面积上的内力值。 2.应力的单位是: Pa KPa MPa GPa
3.应力:a:垂直截面的应力--正应力σ 拉应力为正,压应力为负。
※E为弹性模量,是衡量材料抵抗弹 性变形能力的一个指标。“EA”称 为杆的抗拉压刚度。
l E Sl S E E l l EA A
胡克定律:
=Eε
23
四、横向变形
d d 1 d 0
泊松比(或横向变形系数)
d d 1 d 0 相对变形: ' d0 d0
e
DE段:颈缩阶段。
• 材料的分类:根据试件断裂时的残余相对变形率将材料分类: 延伸率(δ )>5% 塑性变形:低碳钢,铜,塑料,纤维。 延伸率(δ )<5% 脆性变形:混凝土,石块,玻璃钢,陶瓷, 玻璃,铸铁。 • 冷作硬化:材料经过屈服而进入强化阶段后卸载,再加载时,弹 性极限明显增加,弹性范围明显扩大,承载能力增大的现象。 • 强度指标:对塑性材料,在拉断之前在残余变形0.2 %(产生 0.2%塑性应变)时对应的应力为这种材料的名义屈服应力,用 0.2表示 ,即此类材料的失效应力。 锰钢、镍钢、铜等 • 脆性材料拉伸的机械性能特点: 1.断裂残余相对变形率δ <5% 0.2 or s max b 2.弹性变形基本延伸到破坏 3.拉伸强度极限比塑性材料小的多 4.b是脆性材料唯一的强度指标
材料力学课件第二章 轴向拉伸和压缩
2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。
材料力学第2章轴向拉伸与压缩
图2.5
(2)物理关系
根据物理学知识,当变形为弹性变形时,变形和力成正比。因为各“纤维” 的正应变ε 相同,而各“纤维”的线应变只能由正应力ζ 引起,故可推知横
截面上各点处的正应力相同,即在横截面上,各点处的正应力ζ 为均匀分布
,如图2.6所示。
图2.6
(3)静力学关系 由静力学求合力的方法,可得
α
和沿斜截面的切应力
,如图2.8(d)所示,即得
从式(2.4)可以看出,ζ
α
和α 都是α 的函数。所以斜截面的方位不同,截 , 即横截面上的正应力是所有截
面上的应力也就不同。当α =0时,
面上正应力中的最大值。当α =45°时,α 达到最大值,且
可见,在与杆件轴线成45°的斜截面上,切应力为最大值,最大切应力在数 值上等于最大正应力的1/2。 关于切应力的符号,规定如下:截面外法线顺时针转90°后,其方向和切应 力相同时,该切应力为正值,如图2.9(a)所示;逆时针转90°后,其方向和 切应力相同时,该切应力为负值,如图2.9(b)所示。
同理,可求得BC段内任一横截面上的轴力(见图2.4(d))为
在求CD段内任一横截面上的轴力时,由于截开后右段杆比左段杆受力简单, 所以宜取右段杆为研究对象(见图2.4(e)),通过平衡方程可求得
结果为负,说明N3的实际方向与假设方向相反。 同理,DE段内任一横截面上的轴力为
依据前述绘制轴力图的规则,所作的轴力图如图2.4(f)所示。显然,最大轴 力发生在BC段内,其值为50 kN。
由此可得杆的横截面上任一点处正应力的计算公式为
对于承受轴向压缩的杆,式(2.3)同样适用。但值得注意的是:细长杆受压
时容易被压弯,属于稳定性问题,将在第11章中讨论,式(2.3)适用于压杆 未被压弯的情况。关于正应力的符号,与轴力相同,即拉应力为正,压应力
轴向拉伸和压缩时的变形公式_概述及解释说明
轴向拉伸和压缩时的变形公式概述及解释说明1. 引言1.1 概述本文主要介绍轴向拉伸和压缩下物体的变形公式及其解释说明。
在工程领域中,了解材料在不同应力条件下的变形规律对设计和使用具有重要意义。
轴向拉伸和压缩是常见的应力状态,通过研究这两种情况下的变形公式,可以帮助工程师更好地理解和预测物体的变形行为。
1.2 文章结构本文共分为四个部分进行阐述。
引言部分主要对文章进行总览和概述。
接下来,“2. 轴向拉伸时的变形公式”将详细介绍轴向拉伸过程中物体的变形规律,并包括弹性阶段和塑性阶段的应变公式以及变形模量的定义与计算方法。
“3. 轴向压缩时的变形公式”将探讨轴向压缩情况下物体的应变规律,并包括弹性阶段和塑性阶段的应变公式,以及计算压缩强度和稳定塑性流动区域大小的方法。
“4 结论”将总结轴向拉伸和压缩时的变形规律与公式,并展望其在工程实践中的意义和应用前景。
1.3 目的本文的目的是系统地介绍轴向拉伸和压缩时物体变形的公式及其解释说明。
通过深入探讨材料在不同应力状态下的变形规律,旨在增强读者对工程材料性能的理解,并提供有关设计和应用方面的参考。
此外,文章还将揭示轴向拉伸和压缩时变形公式的工程实践意义,为相关领域的研究者和从业人员提供参考。
2. 轴向拉伸时的变形公式2.1 弹性阶段的应变公式:在轴向拉伸时,当物体处于弹性阶段时,变形可以通过应变来描述。
应变是指物体在受力作用下产生的长度或形状改变与初始长度或形状之比。
弹性阶段的应变公式可以用胡克定律表示,即应力和应变成正比。
应变公式可以表示为:ε= σ/ E其中,ε表示轴向拉伸时的应变,σ表示受试样所受到的轴向拉伸力,E表示材料的弹性模量。
2.2 塑性阶段的应变公式:当材料超过其弹性极限,进入塑性阶段时,其应变特性就会发生改变。
塑性阶段的应变公式可以通过流动理论进行描述。
在塑性阶段中,通常采用等效塑性应变概念。
等效塑性应变是根据材料的真实应力-真实塑性曲线(即压缩-延展曲线)求得,在一定条件下模拟材料的本构关系。
C 材料力学第二章 轴向拉伸和压缩 第一部分
基于下列实验现象有“平面假设”
现象: 直线保持为直线。 相互垂直的直线依旧相互垂直。->无切应变 纵向线段伸长,横向线段缩短。 长度相等的纵向线段伸长后依旧相等。 长度相等的横向线段缩短后依旧相等。 即变形分布均匀,依据胡克定律应力分布也 均匀。
平面假设
根据表面变形情况,可以由表及里的做出 假设,即横截面间只有相对移动,相邻横 截面间纵线伸长相同,横截面保持平面, 此假设称为平面假设(Plane CrossSection Assumption)。
问题
(1)图示的曲杆,问公式 (2-2)是否适用?
2)图示杆由钢的和铝牢固 粘接而成,问公式(2-2) 是否适用?
(3)图示有凹槽的杆,问 公式(2-2)对凹槽段是否 适用?
σ
变截面杆横截面上的应力
F
F
应力集中 (Stress Concentration)
例:图示杆1为横截面为圆形的钢杆,直径d=16mm,杆2 为横截面为正方形的木杆,边长为100mm。在节点B处作 用20kN的力,试求1、2杆中的应力。
r ∆r o
θ
∆s
s
应力与变形的一般关系
正应力在正应力方向引起线应变,不引 起切应变 切应力引起切应变,在切应力方向不引 起线应变 这里作为结论直接给出,感兴趣可在课 后研究证明之。
轴拉伸实验
平面假设(基于实验观察)
a d e a a d e a b c b b c c d e b c d e
例 题
解:1、2杆都为二力杆,是简单拉 压问题,取节点B进行受力分析: 由节点B的平衡可得:
F N1 3 = G = 15kN 4 F N2 5 = − G = −25kN 4
A 2m
1.5m 1 2 C FN1 FN2 B G
材料力学 第2章轴向拉伸与压缩
A
FN128.3kN FN220kN
1
(2)计算各杆件的应力。
C
45°
2
B
s AB
FN 1 A1
28.3103
202
M
Pa90MPa
4
F
FN 1
F N 2 45°
y
Bx
s BC
FN 2 A2
21052103MPa89MPa
F
§2.4 材料在拉伸和压缩时的力学性能
22
5 圣维南原理
s FN A
(2-1)
(1)问题的提出
公式(2-1)的适用范围表明:公式不适用于集中力作
用点附近的区域。因为作用点附近横截面上的应力分布是非
均匀的。随着加载方式的不同。这点附近的应力分布方式就
会发生变化。 理论和实践研究表明:
不同的加力方式,只对力作
用点附近区域的应力分布有
显著影响,而在距力作用点
力学性能:指材料从开始受力至断裂的全部过程中,所表 现出的有关变形和破坏的特性和规律。
材料力学性能一般由试验测定,以数据的形式表达。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(缓慢地加载);
2、标准试件:常用d=10mm,l=100 mm的试件
d
l
l =10d 或 l = 5d
36
b点是弹性阶段的最高点.
σe—
oa段为直线段,材料满足 胡克定律
sE
sp
E
se sp
s
f ab
Etana s
O
f′h
反映材料抵抗弹
性变形的能力.
40
材料力学--轴向拉伸和压缩
2、轴力图的作法:以平行于杆轴线的横坐标(称为基
线)表示横截面的位置;以垂直于杆轴线方向的纵坐
标表示相应横截面上的轴力值,绘制各横截面上的轴 FN
力变化曲线。
x
§2-2 轴力、轴力图
三、轴力图
FN
3、轴力图的作图步骤:
x
①先画基线(横坐标x轴),基线‖轴线;
②画纵坐标,正、负轴力各绘在基线的一侧;
③标注正负号、各控制截面处 、单位及图形名称。
FN
4、作轴力图的注意事项: ①基线一定平行于杆的轴线,轴力图与原图上下截面对齐; ②正负分绘两侧, “拉在上,压在下”,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④整个轴力图比例一致。
50kN 50kN 50kN
第二章 轴向拉伸和压缩
第二章
轴向拉伸和压缩
第二章 轴向拉伸和压缩
§2 — 1 概述
§2 — 2 轴力 轴力图
目
§2 — 3 拉(压)杆截面上的应力
§2 — 4 拉(压)杆的变形 胡克定律 泊松比
录
§2 — 5 材料在拉伸与压缩时的力学性质
§2 — 6 拉(压)杆的强度计算
§2 — 7 拉(压)杆超静定问题
FN
作轴力图的注意事项: ①多力作用时要分段求解,一律先假定为正方向,优先考虑直接法; ②基线‖轴线,正负分绘两侧, “拉在上,压在下”,比例一致,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④阴影线一定垂直于基线,阴影线可画可不画。
§ 2-3拉(压)杆截面上的应力
§2 — 8 连接件的实用计算
§2-1 概述 §2-1 概述
——轴向拉伸或压缩,简称为拉伸或压缩,是最简单也是做基本的变形。
材料力学第二章 轴向拉伸和压缩
2、计算各杆轴向变形
C
l 2 =1m a =170mm
B'
B2
F
l1 0.48mm
3、由变形的几何条件确定B点的位移 分别以A为圆心,AB1为半径,C为圆 心,CB1为半径画弧,相较于B’点,
B"
小变形条件,可以用切线代替弧线。
材料力学
第2章 轴向拉伸和压缩
FN FN ( x)
轴力方程
即为轴力图。
即:FN随x的变化规律
以x为横坐标,以FN为纵坐标,绘制FN F( )的关系图线, N x
FN
正的轴力画在x轴的上侧,负的画在下侧.
x
材料力学
第2章 轴向拉伸和压缩
例题1
等值杆受力如图所示,试作其轴力图
F =25kN F 4=55kN 4 1=40kN F
纵向线 即: 原长相同
变形相同
横截面上各点的纵向线应变相等
c
拉压杆变形几何方程.
反映了截面上各点变形之间的几何关系.
材料力学
第2章 轴向拉伸和压缩
§2-2 横截面上的正应力 应力分布规律 找变形规律 研究思路: 试验观察 综合几何方面、物理方面、静力学方面推导应力计算公式
一、几何方面
F
a' b'
材料力学
第2章 轴向拉伸和压缩
第二章 轴向拉伸和压缩
材料力学
第2章 轴向拉伸和压缩
• • • • • •
本章主要内容 轴力及轴力图 横截面上的应力 拉压杆的变形、胡克定律 强度计算 材料的力学性质
材料力学
第2章 轴向拉伸和压缩
§2-1 概述 一、工程实际中的轴向拉压杆
工程力学 第二章 轴向拉伸与压缩.
2 sin ( 2 cos 1 )ctg 3.9 103 m
B1 B B1 B3 B3 B
B B
B B12 B1 B 2 4.45 10 3 m
[例2-11] 薄壁管壁厚为,求壁厚变化和直径变化D。
解:1)求横截面上的正应力
dx
N ( x) l dx EA( x) l
例[2-4] 图示杆,1段为直径 d1=20mm的圆杆,2 段为边长a=25mm的方杆,3段为直径d3=12mm的圆杆。 已知2段杆内的应力σ 2=-30MPa,E=210GPa,求整个 杆的伸长△L
解: P 2 A2
30 25 18.75KN
N 1l Pl l1 l2 EA 2 EA cos l1 Pl cos 2 EA
[例2-8]求图示结构结点A 的垂直位移和水平位移。
解:
N1 P, N 2 0
Pl l1 , l2 0 EA Pl y l1 EA
N1
N2
Pl x l1ctg ctg EA
F
FN
FN F
F
F
CL2TU2
2.实验现象:
平截面假设
截面变形前后一直保持为平面,两个平行的截面之 间的纤维伸长相同。 3.平面假设:变形前为平面的横截面变形后仍为平面。 4.应力的计算 轴力垂直于横截面,所以其应力也仅仅是正应力。按 胡克定律:变形与力成正比。同一截面上各点变形相 同,其应力必然也相同。 FN (2-1) A 式中: A横截面的面积;FN该截面的轴力。 应力的符号:拉应力为正值应力,压缩应力为负 值应力。
1. 截面法的三个步骤 切: 代: 平:
F F F F
轴向拉伸与压缩的名词解释
轴向拉伸与压缩的名词解释引言:轴向拉伸与压缩是物理学领域中常见的概念,用于描述物体在力的作用下的变形情况。
本文将对轴向拉伸与压缩进行详细的解释与探讨。
一、轴向拉伸轴向拉伸是指物体在受到拉力作用下沿着其长度方向发生的变形现象。
当外力作用于物体的两端,并朝外拉伸时,物体会在轴向上发生拉伸。
拉伸的大小可以通过物体的伸长率来衡量,伸长率定义为单位长度的伸长与初始长度之比。
轴向拉伸现象广泛应用于工程领域,例如建筑中的钢筋,拉伸试验中的拉力传感器等。
钢筋在混凝土中起到增强材料的作用,能够抵抗建筑物的拉力。
而拉力传感器则是一种能够测量外力大小的传感器,利用了材料的拉伸特性。
二、轴向压缩轴向压缩是指物体在受到压力作用下沿着其长度方向发生的变形现象。
当外力作用于物体的两端,并朝内压缩时,物体会在轴向上发生压缩。
压缩的大小可以通过物体的压缩率来衡量,压缩率定义为单位长度的压缩与初始长度之比。
轴向压缩现象同样广泛应用于工程领域。
例如,桥梁中的墩柱、压缩试验中的压力传感器等。
墩柱是承受桥梁重力和交通荷载的重要结构部件,压缩试验中的压力传感器则是能够测量外力大小的传感器,利用了材料的压缩特性。
三、轴向拉伸与压缩的应用轴向拉伸与压缩的应用十分丰富,不仅在工程领域中有广泛应用,在其他领域中也有其独特的应用价值。
1. 材料科学:轴向拉伸与压缩是材料性能研究的重要手段。
通过对材料在拉伸和压缩条件下的变形进行测试,可以获得材料的各种力学性能参数,例如抗拉强度、抗压强度等。
这对材料的设计和应用具有重要的指导意义。
2. 生物医学:轴向拉伸与压缩在生物医学研究中具有重要的作用。
例如,在骨骼生物力学研究中,可以通过对骨骼的拉伸和压缩测试,了解骨骼力学特性并分析疾病的发生机制。
3. 电子工程:轴向拉伸与压缩的特性也可以应用于电子工程领域。
例如,电子产品中常使用弹性材料来保护内部电路。
这些材料可以在外力作用下发生轴向拉伸或压缩,起到减缓冲击力的作用。
材料力学 第02章 轴向拉伸和压缩及连接件的强度计算
弹屈 性服 阶阶 段段
强 化 阶 段
颈 缩 阶 段
33/113
2.3 材料在拉伸或压缩时的力学性能 2.3.1 低碳钢Q235拉伸时的力学性能-弹性阶段
Oa段应力与应变成正比
s Ee
s
b a
弹性模量E是直线Oa的斜率 Q235 E≈200GPa
直线部分的最高点a所对应的应力称为 比例极限,sp Oa段材料处于线弹性阶段
(2) 杆AB段上与杆轴线夹45°角(逆时针方向)斜截面上的正应力 和切应力。
A 1 300 mm B 500 kN 300 mm 2 C 3 300 kN 400 mm
26/113
D
200 kN
2.2 拉压杆截面上的内力和应力 【例2-3】解
A 1 300 mm B 500 kN 300 mm 2 C
内力相同,
但是常识告诉我们,
F F
直径细的拉杆更容易破坏。
求得各个截面上的轴力后,并不能直接判断杆件是否具有足 够的强度。必须用横截面上的应力来度量杆件的受力程度。 用横截面上的应力来度量杆件的受力程度。
18/113
2.2 拉压杆截面上的内力和应力 2.2.2 1 拉压杆横截面上的应力
a
F
c
c' d'
F4
D
FN4
F
x
0 FN4 F4 0
FN4 20 kN 拉
16/113
同一位置处左右侧截面上的内力分量具有相同的正负号
2.2 拉压杆截面上的内力和应力 【例】解
1
FR A F1
F1=40kN,F2=55kN,F3=25kN,F4=20kN
2
F2 B
第2章 轴向拉伸与压缩
2.5.5 塑性材料和脆性材料的主要区别
(5) 塑性材料承受动载荷的能力强,脆性材料承 受动荷载的能力很差,所以承受动载荷作用的构 件多由塑性材料制做。
2.5.5 塑性材料和脆性材料的主要区别
对于脆性材料,当应力达到其强度极限σb 时, 构件会断裂而破坏;对于塑性材料,当应力达到 屈服极限σs时,将产生显著的塑性变形,常会 使构件不能正常工作。
2.5.2 低碳钢拉伸时的力学性能
OB:弹性阶段__弹性极限σe BC:屈服阶段__屈服极限σs CD:强化阶段__强度极限σb DE:颈缩阶段
2.5.2 低碳钢拉伸时的力学性能
OB:弹性阶段---弹性极限σe OA:线性阶段---比例极限σP
σ=Eε 胡克定律
E: 弹性模量 σe≈σP
伸长率
Fbs
Fbs
Fbs
实际挤压面
挤压应力:
2.8.2 挤压和挤压强度计算
smaxBiblioteka dFbs(a)
smax
(b)
t
(b)
ssj bs
(c) (c)
挤压面 计算挤压面积 =dt
两种材料的极限应力分别是? 许用应力=?
2.6 拉压杆的变形
2.6 拉压杆的变形
例: 已知等截面直杆横截面面积A=500mm2,弹性模量 E=200GPa,试计算杆件总变形量。
6KN
8KN 5KN
3KN
1m
2m
1.5m
ΔL=?
2.8 拉压杆接头的计算
2.8 拉压杆接头的计算
2.8.1 剪切和剪切强度计算
(1) 多数塑性材料在弹性变形范围内,应力与应 变成正比关系,符合胡克定律;多数脆性材料在 拉伸或压缩时σ-ε图一开始就是一条微弯曲线, 即应力与应变不成正比关系,不符合胡克定律, 但由于σ-ε曲线的曲率较小,所以在应用上假设 它们成正比关系。
材料力学第二章 轴向拉伸与压缩
§2-1 轴向拉伸与压缩概念 §2-2 轴向拉压时横截面上的内力与应力 §2-3 直杆轴向拉压时斜截面上的应力
§2-1 轴向拉伸与压缩的概念和实例
1、轴向拉压的受力特点: 外力的合力作用线与杆的轴线重合。
2、轴向拉压的变形特点:
轴向拉伸: 轴向伸长,横向缩短。 轴向压缩: 轴向缩短,横向变粗。 3、力学模型
p
sin
s
cos
sin
1s
2
sin 2
s的正负号: 拉应力为正,压应力为负。 的正负号: 绕所保留的截面, 顺时针为正,
逆时针为负。
四、sα 、α出现最大的截面
1、=0º即横截面上,s达到最大
s s cos 2 s
0
2、=45º的斜截面上, 剪应力达最大
A
PA FN2
B
PB B
PB FN3
C
PC C
PC C
PC FN4
FN 2P
5P P
-3P
D PD
D PD
D PD D
PD
x
★轴力图的特点:
1)遇到集中力,轴力图发生突变; 2)突变值 = 集中载荷的大小
★轴力(图)的突变规律:
1)遇到向左的P, 轴力FN 向正方向突变;
自左向右: 2)遇到向右的P , 轴力FN 向负方向突变;
FN
FN
FN>0
N 与外法线同向,为正轴力(拉力)-
--产生拉伸变形内力为正;
FN
FN
FN<0
N与外法线反向,为负轴力(压力)--
-产生压缩变形内力为负.
4、 轴力图—— FN (x) ~x 的图象表示
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 const
0 const
A FN
FN
A
符号规定:拉应力为正,压应力为负
工程力学系
第二章 轴向拉伸与压缩
讨论:如图所示两根杆件的正应力分布情况。
F
F (x) F
A( x)
x q
F ( x) 2qx
A
q x
( x) FN ( x)
A( x)
工程力学系
F
第二章 轴向拉伸与压缩
2、内力图——轴力图
轴力图:表示轴力沿杆轴变化的图 例:画出图示杆件的轴力图。
解:(1)计算各段轴力 AB 段: FN1 F BC段: FN2 F CD段: FN3 2F
(2)绘轴力图 选截面位置为横坐标;相应截
面上的轴力为纵坐标,根据适当比 例,绘出图线。
设正法 求轴力时,外力不能沿作用线随意移动 截面不能刚好截在外力作用点处
实验标准:国家标准《金属拉力试验法》 (GB 228—87); 实验条件:常温(室温)、
静载(加载的速度要平稳缓慢); 实验设备:对试件施加载荷的万能材料试验机;
测量试样变形的引伸仪。
实验记录:拉伸图:横坐标—Δl,纵坐标—P; 应力—应变图:横坐标—ε ,纵坐标—σ 。
工程力学系
第二章 轴向拉伸与压缩
工程力学系
思考:
第二章 轴向拉伸与压缩
1、建立强度条件时,为什么要引入安全系数,安全 系数如何选择?
2、为什么强度极限的安全系数大于屈服极限的安全 系数?
工程力学系
第二章 轴向拉伸与压缩
§2-5 拉伸或压缩时的变形
1、纵向变形 F
b1 F
l
b
l1
纵向的绝对变形
l l1 l
纵向的相对变形
l
实验表象 2、应力随应变非线性增长。非线性
不可由线性虎克定理近似代替;
3、破坏形式为出现与轴线成45度角
的裂纹。
c
参考值 强度极限: c
b
o
实验结论 不可用拉伸实验代替压缩实验来测出所需的参
考值,因为 c 2 ~ 5 b
工程力学系
第二章 轴向拉伸与压缩
思考:
1、试解释铸铁在轴向压缩破坏时断裂面与轴线成 45 的原因(材料内摩擦不考虑)。
第二章 轴向拉伸与压缩
4、桁架的节点位移
桁架的变形通常用节点的位移表示,现以图示桁架 为例,说明节点位移的分析方法,求B点的位移。
解:1)利用平衡条件求内力
FN1 FN 2 cos 0
FN 2 sin F 0
FN1
F
tan
,FN 2
F
sin
2)沿杆件方向绘出变形:拉力伸长;压力缩短 3)以切线代替圆弧,交点即为节点新位置。
l
——纵向线应变,拉应变为正,压应变为负。
工程力学系
第二章 轴向拉伸与压缩
2、虎克定律
实验证明:
l FN l EA
式中: E ——表示材料弹性性质的一个常数,称为 拉压弹性模量,亦称杨氏模量。
EA ——反映杆件抵抗拉伸(或压缩)变形的 能力,称为杆件的抗拉(压)刚度。
虎克定律的适用条件:
(1)材料在线弹性范围内工作,即 P 。
实验试件:(a)圆截面标准试件:l 10d 或l 5d
(b)矩形截面标准试件(截面积为A):l 11.3 A 或 l 5.65 A
工程力学系
实验原理:
第二章 轴向拉伸与压缩
工程力学系
第二章 轴向拉伸与压缩
1、低碳钢的拉伸实验
低炭钢——含炭量在0.25%以下的碳素钢。
e
d
b c
a a
s p e
工程力学系
第二章 轴向拉伸与压缩
铸铁拉伸应力—应变图
实验表象
1、以弹性变形为主,且很小; 2、应力-应变曲线近似符合虎克定律,并以
割线的斜率作为弹性模量; 3、断裂时,断口处的横截面积几乎没有变化。
参考值
强度极限: b
b
o
工程力学系
第二章 轴向拉伸与压缩
5、脆性材料在压缩时的力学性能
1、同时存在弹性和塑性变形,塑性 变形较大;
工程力学系
第二章 轴向拉伸与压缩
第二章 轴向拉伸与压缩
§2-1 §2-2 §2-3 §2-4 §2-5 §2-6 §2-7
轴向拉伸与压缩的概念与实例 横截面上的内力和应力 材料在拉伸与压缩时的力学性能 许用应力、强度条件 拉伸或压缩时的变形 拉伸或压缩时的静不定问题 应力集中的概念
工程力学系
第二章 轴向拉伸与压缩
f
b
oo1 Biblioteka 2o3 o4 工程力学系
第二章 轴向拉伸与压缩
四个阶段
塑性材料拉伸性能
两个指标 一个概念
工程力学系
第二章 轴向拉伸与压缩
四个阶段 弹性阶段
(oa段)
屈服阶段
(ac段)
强化阶段
(ce段)
颈缩阶段
(ef 段)
实验表象
参考值
1、只有弹性变形;
2、有符合虎克定理σ=Eε的线性阶段;
3、试样无明显表象。
第二章 轴向拉伸与压缩
拉(压)杆横截面上的应力分析 观察拉压杆受力时的变形特点:
F
F
观察结果:1. 纵线与横线仍为直线,横线仍垂直于纵线; 2. 横线沿轴线方向平移。
假设: 横截面仍保持为平面,且仍垂直于杆件轴线;
平面假设
工程力学系
平面假设
第二章 轴向拉伸与压缩
横截面上没有切应变 正应变沿横截面均匀分布
F
x
=2.8o
锥度5o时, max 与 av 的相对误差<5%
=5.8o =11o
两端受均匀分布载荷时锥形杆x方向正应力分布情况
工程力学系
q
q x
第二章 轴向拉伸与压缩
F
一般l/h5时,可近似 使用拉压杆应力公式
FN 的适用范围:
A
1.等截面直杆受轴向载荷; (一般也适用于锥度较小( 5o)的变截面杆) 2.若轴向载荷沿横截面非均匀分布,则所取截面应 远离载荷作用区域
5%的材料称为脆性材料。如铸铁、混凝土等。 2、截面收缩率:
A A1 100%
A
式中:A ——试样原横截面面积; A1 ——试样断裂处的横截面面积 。
工程力学系
第二章 轴向拉伸与压缩
一个概念
卸载定律:在卸载过程中,应力和应变按直线规律变化。
冷作硬化:应力超过屈服极限后卸载,再次加载,材 料的比例极限提高,而塑性降低的现象。
利:提高了材料在弹性阶段内的σ
σ
承载能力。
利之用:用冷加工的方法来提高
材料的强度 。
弊:降低了材料的塑性。
弊之屏:进行退火处理 。
O
O
ε
工程力学系
第二章 轴向拉伸与压缩
2、其它塑性材料拉伸时的力学性能
这些材料与低碳钢相同之处 是断裂前要经历大量塑性变
形,不同之处是没有明显的
屈服阶段。
。
b
名义屈服极限:对于没有。 明显屈服阶段的塑性材料, 0.2 通常以产生 0.2%塑性应变。 时的应力作为屈服极限。。
a a
s p e
e f
b
工程力学系
第二章 轴向拉伸与压缩
三个阶段 弹性阶段 屈服阶段 强化阶段
实验表象
参考值
1、只有弹性变形;
2、有符合虎克定理σ=Eε的线性阶段;
3、试样无明显表象。
比例极限:σp 弹性极限:σe
1、同时存在塑性和弹性变形; 2、应力不明显波动,应变快速增加; 3、试样被压扁。
FN BC
y
3
FN BC 2F A钢 钢 600106 160106 N 96kN 所以从钢杆来看 F 70 kN 40.4kN
30
B
FN AB
F
x
3
只有木杆与钢杆均满足强度条件时,吊架才安全,故吊架的 。
许可载荷应取为 40.4 kN 。 许可载荷是由最先达到许可内力的那根杆的强度决定。
问题:下列哪些杆件是拉压杆?
F F q
q
工程力学系
第二章 轴向拉伸与压缩
§2-2 横截面上的内力和应力
1、横截面上的内力
由截面法得:FN F
内力:相互作用力,作用线与 杆件轴线重合,称轴力
轴力的符号规定:拉力为正, 压力为负。
思考:取左段轴力向右,右段轴力 向左,不是相反吗?
工程力学系
第二章 轴向拉伸与压缩
段范围内,直至试样最后断裂。
颈缩
工程力学系
四个阶段试件的变化:
第二章 轴向拉伸与压缩
工程力学系
第二章 轴向拉伸与压缩
两个塑性指标
1、延伸率:
l1 l 100%
l
式中:l1——试样拉断后标距的长度; l ——试样原标距的长度;
塑性材料与脆性材料的量化标准:
5%的材料称为塑性材料。如低碳钢和青铜等;
解:假想地将吊架截开,保留部分如图所示。由保留
C
部分的平衡
Y 0 FN BC sin 300 F 0 X 0 FN AB FN BC cos 300 0
由强度条件得:
FN BC 2F
FN AB 3F
30
B
A
F
FN AB 3F A木 木 104 106 7 106 N 70kN 所以从木杆来看 F 70 kN 40.4kN
屈服极限:σs
1、同时存在塑性和弹性变形; 2、应力随应变非线性增长;
无
3、试样被明显压扁成鼓形,但并不破坏。
实验结论 对于大多数塑性材料,可用拉伸实验代替压缩实验 来测出所需的参考值。
工程力学系
第二章 轴向拉伸与压缩