二次函数公式(精华)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

★二次函数知识点汇总★

1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数.

2.二次函数2ax y =的性质

(1)抛物线2ax y =)(0≠a 的顶点是坐标原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系.

①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0

3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.

4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中

a

b a

c k a b h 4422-=-=,. 5.二次函数由特殊到一般,可分为以下几种形式:

①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.

6.抛物线的三要素:开口方向、对称轴、顶点.

①a 决定抛物线的开口方向:

当0>a 时,开口向上;当0

②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .

7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.

8.求抛物线的顶点、对称轴的方法

(1)公式法:a b ac a b x a c bx ax y 44222

2-+⎪⎭

⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a

b x 2-=. (2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴

是h x =.

(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的

垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.

★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★

9.抛物线c bx ax y ++=2中,c b a ,,的作用

(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.

(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故: ①0=b 时,对称轴为y 轴;②0>a

b (即a 、b 同号)时,对称轴在y 轴左侧; ③0

(即a 、b 异号)时,对称轴在y 轴右侧.

(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.

当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ):

①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0

b . 10.几种特殊的二次函数的图像特征如下:

(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.

(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.

(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.

12.直线与抛物线的交点

(1)y 轴与抛物线c bx ax y ++=2得交点为(c ,0)

(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).

(3)抛物线与x 轴的交点

二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程 02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:

①有两个交点⇔0>∆⇔抛物线与x 轴相交;

②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切;

③没有交点⇔0<∆⇔抛物线与x 轴相离.

(4)平行于x 轴的直线与抛物线的交点

同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.

(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组

⎩⎨⎧++=+=c

bx ax y n kx y 2的解的数目来确定: ①方程组有两组不同的解时⇔l 与G 有两个交点;

②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.

(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为

()()0021,,,x B x A ,由于1x 、2x 是方程02

=++c bx ax 的两个根,故 a c x x a b x x =⋅-=+2121, ()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=--=-=-=44422

2122122121 13.二次函数与一元二次方程的关系:

(1)一元二次方程c bx ax y ++=2就是二次函数c bx ax y ++=2当函数y 的值为0时的情况.

(2)二次函数c bx ax y ++=2的图象与x 轴的交点有三种情况:有两个交点、有一个交点、

没有交点;当二次函数c bx ax y ++=2的图象与x 轴有交点时,交点的横坐标就是当0=y 时自变量x 的值,即一元二次方程02=++c bx ax 的根.

相关文档
最新文档