含导函数的抽象函数的构造

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含导函数的抽象函数的构造

1.对于()()'0f x a a >≠,可构造()()h x f x ax =-

例1:函数()f x 的定义域为R ,()12f -=,对任意R x ∈,()2f x '>,则

()24f x x >+的解集为( )

A .()1,1-

B .()1-+∞,

C .()1-∞-,

D .()-∞+∞,

【答案】B

【解析】构造函数()()24G x f x x =--,所以()()2G x f x ''=-,由于对任意

R x ∈,()2f x '>,

所以()()20G x f x ''->=恒成立,所以()()24G x f x x =--是R 上的增函数, 又由于()()()112140G f -=----⨯=,所以()()240G x f x x -->=, 即()24f x x >+的解集为()1-+∞,.故选B .

2.对于()()'0xf x f x +>,构造()()h x xf x =;对于()()'0xf x f x ->,构造

()()f x h x x

=

例2:已知函数()y f x =的图象关于y 轴对称,且当(),0x ∈-∞,

()()0f x xf x '+<成立,()0.20.2

22a f =,()log

3log 3b f π

π=,()33log 9log 9c f =,则a ,

b ,

c 的大小关系是( )

A .a b c >>

B .a c b >>

C .c b a >>

D .b a c >>

【答案】D

【解析】因为函数()y f x =关于y 轴对称,所以函数()y xf x =为奇函数.

因为()()()xf x f x xf x ''=+⎡⎤⎣⎦,所以当(),0x ∈-∞时,()()()0xf x f x xf x ''=+<⎡⎤⎣⎦,

函数()y xf x =单调递减,当()0,x ∈+∞时,函数()y xf x =单调递减.

因为0.2122<<,0log 31π<<,3log 92=,所以0.230log 32log 9π<<<,所以

b a

c >>.故选

D .

3.对于'()()0f x f x +>,构造()()e x h x f x =;对于'()()f x f x >或'()()0f x f x ->,构造()

()e x

f x h x =

例3:(2020年)已知()f x 为R 上的可导函数,且R x ∀∈,均有()()f x f x '>,则有( ) A .2016e (2016)(0)f f -<,2016(2016)e (0)f f >

B .2016e (2016)(0)f f -<,2016(2016)e (0)f f <

C .2016e (2016)(0)f f ->,2016(2016)e (0)f f >

D .2016e (2016)(0)f f ->,2016(2016)e (0)f f < 【答案】D

【解析】构造函数()()e x

f x

g x =

,则()()()()

()

()()

2

e e e e x x x

x f x f x f x f x g x ''-'-'=

=

因为R x ∀∈均有()()f x f x '>并且e 0x >,所以()0g x '<,故函数()()e

x f x g x =在

R 上单调递减,

所以(2016)(0)g g ->,(2016)(0)g g <,即2016

(2016)

(0)

e f f -->,2016(2016)(0)e f f <, 也就是2016e (2016)(0)

f f ->,2016(2016)e (0)f f <.

4.()f x 与sin x ,cos x 构造

例4:已知函数()y f x =对任意的,22x ππ⎛⎫

∈-

⎪⎝⎭

满足()()cos sin 0f x x f x x '+>,则

( ) A .(

)04f π⎛⎫ ⎪⎝⎭ B .()03f f π⎛⎫

<2- ⎪⎝⎭

C

34f ππ⎛⎫

⎛⎫< ⎪ ⎪⎝⎭

⎝⎭

D

34f ππ⎛⎫⎛⎫

-<- ⎪ ⎪⎝⎭⎝⎭

【答案】D

【解析】提示:构造函数()

()cos f x g x x

=.

一、选择题

1.若函数()y f x =在R 上可导且满足不等式()()0xf x f x '+>恒成立,对任意正数a 、b ,若a b <, 则必有( )

A .()()af b bf a <

B .()()bf a af b <

C .()()af a bf b <

D .()()bf b af a <

【答案】C

【解析】由已知()()0xf x f x '+>∴构造函数()()F x xf x =, 则()()()0F x xf x f x ''=+>,从而()F x 在R 上为增函数。 ∵a b <,∴()()F a F b <,即()()af a bf b <,故选C .

2.已知函数()()R f x x ∈满足()11f =,且()12

f x '<,则()12

2

x f x <+的解集

为( )

对点增分集训

相关文档
最新文档