半导体物理课件Chapter6

合集下载

【精品】半导体物理(SEMICONDUCTOR PHYSICS )PPT课件

【精品】半导体物理(SEMICONDUCTOR PHYSICS )PPT课件
• 适当波长的光照可以改变半导体的导电能力
如在绝缘衬底上制备的硫化镉(CdS)薄膜,无光照时的暗电阻为几十 MΩ,当受光照后电阻值可以下降为几十KΩ
• 此外,半导体的导电能力还随电场、磁场等的作用而改变
• 本课程的内容安排
以元素半导体硅(Si)和锗(Ge)为对象: • 介绍了半导体的晶体结构和缺陷,定义了晶向和晶面 • 讨论了半导体中的电子状态与能带结构,介绍了杂质半导体及其 杂质能级 • 在对半导体中载流子统计的基础上分析了影响因素,讨论了非平 衡载流子的产生与复合 • 对半导体中载流子的漂移运动和半导体的导电性进行了讨论,介 绍了载流子的扩散运动,建立了连续性方程 • 简要介绍了半导体表面的相关知识
• 化学比偏离还可能形成所谓反结构缺陷,如GaAs晶体中As 的成份偏多,不仅形成Ga空位,而且As原子还可占据Ga空 位,称为反结构缺陷。
• 此外高能粒子轰击半导体时,也会使原子脱离正常格点位 置,形成间隙原子、空位以及空位聚积成的空位团等。
• 位错是晶体中的另一种缺陷,它是一种线缺陷。
• 半导体单晶制备和器件生产的许多步骤都在高温下进行,因而在 晶体中会产生一定应力。
共价键方向是四面体对称的,即共价键是从正四面体中心原子出 发指向它的四个顶角原子,共价键之间的夹角为109°28´,这种正四面 体称为共价四面体。
图中原子间的二条连线表示共有一对价电子,二条
线的方向表示共价键方向。
共价四面体中如果把原子粗
略看成圆球并且最近邻的原
子彼此相切,圆球半径就称 为共价四面体半径。
图1.6 两种不同的晶列
• 晶列的取向称为晶向。 • 为表示晶向,从一个格点O沿某个晶向到另一格点P作位移 矢量R,如图1.7,则
R=l1a+l2b+l3c • 若l1:l2:l3不是互质的,通过

《半导体物理学》【ch06】pn 结 教学课件

《半导体物理学》【ch06】pn 结 教学课件
如设势垒高度为0. 7eV , 则该处的空穴浓度为
pn 结及其能带图
05 pn 结的载流子分布
6.1.5 pn 结的载流子分布
可见,在势垒区中势能比n区导带底高0.1eV 处,价带空穴浓度为p 区多数载流子浓度的10 -¹°倍, 而该处的导带电子浓度为n 区多数载流子浓度的1/50 。一般室温附近,对于绝大部分势垒区,其 中杂质虽然都已电离,但载流子浓度比起且区和p 区的多数载流子浓度小得多,好像已经耗尽了。 所以通常也称势垒区为耗尽层,即认为其中的载流子浓度很小,可以忽略,空间电荷密度就等于 电离杂质浓度。
pn 结及其能带图
01 归结的形成和杂质分布
6.1.1 归结的形成和杂质分布
1. 合金法 用合金法制造pn 结的过程,把一小粒铝 放在一块a 型单晶硅片上,加热到一定的 温度,形成铝硅的熔融体,然后降低温度, 熔融体开始凝固,在口型硅片上形成一含 有高浓度铝的p 型硅薄层,它与n 型硅衬 底的交界面处即为pn 结(这时称为铝硅 合金结〉。
pn 结及其能带图
01 归结的形成和杂质分布
6.1.1 归结的形成和杂质分布 合金结的杂质分布如图6-3 所示,其特点是:n 型区中施主杂质浓度为ND ,而且均匀分布;p 型 区中受主杂质浓度为NA ,也均匀分布。在交界面处,杂质浓度由NA(p 型)突变为ND(n 型〉, 具有这种杂质分布的pn 结称为突变结。设pn 结的位置在x =xi ,则突变结的杂质分布可以表示为
根据式(3 56 )、式( 3 57 ),令阳、均分别表示n 区和p 区的平衡电子浓度,则对非简并半 导体可得
pn 结及其能带图
04 pn 结接触电势差
6. 1. 4 pn 结接触电势差
上式表明,Vo 和pn结两边的掺杂浓度、温度、材料的禁带宽度有关。在一定的温度下,突变结 两边的掺杂浓度越高,接触电势差Vo越大;禁带宽度越大,m越小,Vo也越大,所以硅pn结的Vo 比锗pn 结的Vo 大。若NA =10¹7cm-³, No = 10¹5cm-³,在室温下可以算得硅的Vo=0. 70V , 锗的VD=0. 32V 。

半导体物理课件 第六章(2015.11.20)

半导体物理课件 第六章(2015.11.20)

低空间电荷减少 ♦当pn结上外加的反向电压增加,势垒高度增
加空间电荷增加
26
偏压上升(含正负): 变窄
P区
空穴补偿 电子补偿
n区
偏压下降(含正负) : 变宽
P区
空穴释放 电子释放
n区
2015/12/26
Semiconductor Physics
27
②扩散电容 CD —当pn结上外加电压变化,扩散区的非平衡 载流子的积累相应变化所对应的电容效应. ♦当正向偏臵电压增加,扩散区内的非平衡载 流子积累很快增加 ♦在反向偏臵下,非平衡载流子数变化不大,扩 散电容 可忽略 pn结的势垒电容和扩散电容都随外加电压而变 化-- CT 和CD都是微分电容: C=dQ/dV
x xp
xn - x
eV ( x ) kT
n np 0
n nn0
eV ( x ) kT
p pp0
p pn0
n( x ) n p 0 e
p( x) p p 0e
12

平衡p-n结载流子浓度分布的基本特点: ♦ 同一种载流子在势垒区两边的浓度关系服 从玻尔兹曼关系 ♦ 处处都有n•p=ni2 ♦ 势垒区是高阻区(常称作耗尽层)
1. 热击穿
pn结的反向扩散流由平衡少子产生:
pno = ni2/ND
npo = ni2/ NA
产生电流正比于ni
反向电流密切依赖于本征载流子浓度。 |VR |
反向偏压
Pc
功 耗
Tj
结温
ni
IR
IR
击穿
ni2∝T3 exp(-Eg0/KT)
43
2. 隧道击穿
隧道效应---电子具有波动性,它可以一定几率穿过能量 比其高的势垒区,这种现象称作隧道效应。

半导体物理第六章PPT课件课件

半导体物理第六章PPT课件课件
《半导体物理第六章》PPT课件
电子和空穴的扩散方程可进一步变换为下式:
上述两式就是在掺杂和组分均匀的条件下,半导体材 料中过剩载流子浓度随着时间和空间变化规律的方程。
《半导体物理第六章》PPT课件
扩散方程的物理意义: 与时间相关的扩散方程描述过剩载流子浓度随着时间和 空间位置的变化规律。
《半导体物理第六章》PPT课件来自这一节将详细讨论过剩载流子运动的分析方法。
《半导体物理第六章》PPT课件
6.2.1 连续性方程 如下图所示的一个微分体积元,一束一维空穴流在
x处进入微分体积元,又在x+dx处离开微分体积元。 空穴的流量:Fpx+,单位:个/cm2-s,则有下式成立:
《半导体物理第六章》PPT课件
《半导体物理第六章》PPT课件
6.3.1 双极输运方程的推导
利用方程: 扩散方程; 泊松方程;
(泊松方程能建立过剩电子浓度及过剩空穴浓度与内 建电场之间的关系),其表达式为:
其中εS是半导体材料的介电常数。 《半导体物理第六章》PPT课件
扩散方程中的
项不能忽略。
《半导体物理第六章》PPT课件
双级输运方程的推导: 半导体中的电子和空穴是成对产生的,因此电子和空 穴的产生率相等,即:
Eapp:外加电场; Eint:内建电场。
《半导体物理第六章》PPT课件
内建电场倾向于将过剩电子和过剩空穴保 持在同一空间位置,因此这些带负电的过剩电 子和带正电的过剩空穴就会以同一个等效的迁 移率或扩散系数共同进行漂移或扩散运动。 这种现象称为双极扩散或双极输运过程。
《半导体物理第六章》PPT课件
§6.3 双极输运
在第5章中,导出的电子电流密度方程和空穴电流密 度方程中,引起漂移电流的电场指的是外加的电场。

《半导体物理学》课件

《半导体物理学》课件
重要性
半导体物理学是现代电子科技和信息 科技的基础,对微电子、光电子、电 力电子等领域的发展具有至关重要的 作用。
半导体物理学的发展历程
19世纪末期
半导体概念的形成,科学家开始认识到 某些物质具有导电性介于金属和绝缘体
之间。
20世纪中叶
晶体管的商业化应用,集成电路的发 明,推动了电子科技和信息科技的发
半导体中的热电效应
总结词
解释热电效应的原理及其在半导体中的应用。
详细描述
当半导体受到温度梯度作用时,会在两端产生电压差 ,这一现象被称为热电效应。热电效应的原理在于不 同温度下,半导体内部载流子的分布不同,导致出现 电势差。热电效应在温差发电等领域有应用价值,可 以通过优化半导体的材料和结构来提高热电转换效率 。
分析器件在长时间使用或恶劣环 境下的性能退化,以提高其可靠 性。
THANKS
THANK YOU FOR YOUR WATCHING
06
半导体材料与工艺
半导体材料的分类和特性
元素半导体
如硅、锗等,具有稳定的化学性质和良好的半导 体特性。
化合物半导体
如砷化镓、磷化铟等,具有较高的电子迁移率和 光学性能。
宽禁带半导体
如金刚石、氮化镓等,具有高热导率和禁带宽度 大等特点。
半导体材料的制备和加工
气相沉积
通过化学气相沉积或物理气相沉积方法制备 薄膜。
05
半导体器件的工作原理
二极管的工作原理
总结词
二极管是半导体器件中最简单的一种 ,其工作原理基于PN结的单向导电性 。
详细描述
二极管由一个P型半导体和一个N型半 导体结合而成,在交界处形成PN结。 当正向电压施加时,电子从N区流向P 区,空穴从P区流向N区,形成电流; 当反向电压施加时,电流极小或无电流 。

半导体物理基础(6)PN结

半导体物理基础(6)PN结
JpxnqDLpp pxn
q(VD Vf )
qV f
pn xn pp0e
p e k0T
k0T
n0
q(VDVf )
qfV
pn xn pp0e k0T pn0ek0T
现假设:
1. 势垒区的自由载流子全部耗尽,并忽略势垒区中 载流子的产生和复合。
2. 小注入:注入的少数载流子浓度远小于半导体中 的多数载流子浓度。在注入时,扩散区的漂移电场 可忽略。
(1) 正向偏置 ( Forward bias)
外加电场与内建电场方向相反,削弱了内建电场,因而使势 垒两端的电势差由VD减小为(VD-Vf),相应地势垒区变薄。
Chapter 6 p-n Junctions(p-n结)
图1 p-n结基本结构
5.1 Fabrication Of p-n Junction
1. Alloyed Junctions (合金结) 2. Diffused Junctions (扩散结) 3. Ion Implantation (离子注入) 4. Epitaxial Growth (外延生长)
n p0
qVDqV(x)
nx nn0e k0T
qVDqV(x)
px pn0e k0T
p p0
n( x)
nn0
pn0
qVDqV(x)
nx nn0e k0T
qVDqV(x)
px pn0e k0T
5.3. p-n结电流-电压特性
I-V characteristic of a p-n junction
XDVD(2qr0)(NN AA NN DD)
由于电场作用而使非平衡载流子进入半导体的过程称为-电注入
n p0
nn0

《半导体器件物理》课件

《半导体器件物理》课件
《半导体器件物理》PPT课件
目录 Contents
• 半导体器件物理概述 • 半导体材料的基本性质 • 半导体器件的基本结构与工作原理 • 半导体器件的特性分析 • 半导体器件的制造工艺 • 半导体器件的发展趋势与展望
01
半导体器件物理概述
半导体器件物理的定义
半导体器件物理是研究半导体材料和器件中电子和空穴的行为,以及它们与外部因 素相互作用的一门学科。
可以分为隧道器件、热电子器件、异质结器 件等。
半导体器件的应用
01
通信领域
用于制造手机、卫星通信、光纤通 信等设备中的关键元件。
能源领域
用于制造太阳能电池、风力发电系 统中的传感器和控制器等。
03
02
计算机领域
用于制造计算机处理器、存储器、 集成电路等。
医疗领域
用于制造医疗设备中的检测器和治 疗仪器等。
04
02
半导体材料的基本性质
半导体材料的能带结构
总结词
能带结构是描述固体中电子状态的模 型,它决定了半导体的导电性能。
详细描述
半导体的能带结构由价带和导带组成 ,它们之间存在一个禁带。当电子从 价带跃迁到导带时,需要吸收或释放 能量,这决定了半导体的光电性能。
载流子的输运过程
总结词
载流子输运过程描述了电子和空穴在 半导体中的运动和相互作用。
•·
场效应晶体管分为N沟道 和P沟道两种类型,其结 构包括源极、漏极和栅极 。
场效应晶体管在放大、开 关、模拟电路等中应用广 泛,具有功耗低、稳定性 高等优点。
当栅极电压变化时,导电 沟道的开闭状态会相应改 变,从而控制漏极电流的 大小。
04
半导体器件的特性分析
半导体器件的I-V特性

《半导体物理》PPT课件

《半导体物理》PPT课件

半导体物理 Semiconductor Physics
若B沿[1 1 1]方向, 则与上述六个<100>
方2向的方2 向 余2弦相1/等3:
对于每个旋转椭球来
讲:
mn*
mt mt ml
mt 2 mt 2 ml 2
mt
3ml 2mt ml
大小相等,对应的回旋频率大小相同,因此只有一个吸收峰
半导体物理 Semiconductor Physics
上式代表的等能面不再是球面(只有当 C为零时是球面),而是扭曲的球面, 重空穴带的扭曲比轻空穴带的扭曲更为 显著。
半导体物理 Semiconductor Physics
两个带下面的第三个能带,由于自旋-轨道 耦合作用,使能量降低了Δ,与以上两个能 带分开,具有球形等能面。其能量表示式
半导体物理 Semiconductor Physics
在Si中,其它能 谷比<100>谷高 的多
半导体物理 Semiconductor Physics
硅和锗的价带结构
半导体物理 Semiconductor Physics
硅锗的价带结构是比较复杂的。价带 顶位于k=0。在价带顶附近有三个带, 其中两个最高的带在k=0处简并,分别 对应于重空穴带和轻空穴带(曲率较 大的为轻空穴带),下面还有一个带, 是由于自旋-轨道耦合分裂出来的。
半导体物理 Semiconductor Physics
若B沿[1 0 0]方向,则:
对于[1 0 0] 轴上的两个 椭球来讲,其
2 2 0 2 1
mn*
mt mt ml
mt 2 mt 2 ml 2
mt
半导体物理 Semiconductor Physics

《半导体物理基础》课件

《半导体物理基础》课件
当电子从导带回到价带时,会释 放能量并发出光子,这就是发光 效应。发光效应是半导体的一个 重要应用,如发光二极管和激光 器等。
04 半导体中的载流子输运
CHAPTER
载流子的产生与复合
载流子的产生
当半导体受到外界能量(如光、热、电场等)的作用时,其 内部的电子和空穴的分布状态会发生改变,导致电子和空穴 从价带跃迁到导带,产生电子-空穴对。
06 半导体物理的应用与发展趋势
CHAPTER
半导体物理在电子器件中的应用
01
02
03
晶体管
利用半导体材料制成的晶 体管是现代电子设备中的 基本元件,用于放大、开 关和整流信号。
集成电路
集成电路是将多个晶体管 和其他元件集成在一块芯 片上,实现特定的电路功 能。
太阳能电池
利用半导体的光电效应将 光能转化为电能,太阳Hale Waihona Puke 电池是可再生能源的重要 应用之一。
半导体物理在光电子器件中的应用
LED
发光二极管,利用半导体的光电效应发出可见光 ,广泛应用于照明和显示领域。
激光器
利用半导体的光放大效应产生激光,用于数据存 储、通信和医疗等领域。
光探测器
利用半导体的光电效应探测光信号,用于光纤通 信、环境监测等领域。
半导体物理的发展趋势与展望
新材料和新型器件
随着科技的发展,人们不断探索新的半导体材料和新型器件,以 提高性能、降低成本并满足不断变化的应用需求。
闪锌矿结构
如铬、钨等金属的晶体结构。
如锗、硅等半导体的晶体结构。
面心立方结构(fcc)
如铜、铝等金属的晶体结构。
纤锌矿结构
如氮化镓、磷化镓等半导体的晶 体结构。
晶体结构对半导体性质的影响

半导体物理课件:第六章 p-n结

半导体物理课件:第六章 p-n结

当存在外间电压时,电压主要降落在这个势垒区,而扩散
区和中性区几乎没有。
16
2020/9/30
重庆邮电大学微电子教学部
6.2 p-n结电流电压特性
6.2.1 p-n结电场和电势 泊松方程
何为泊松方程? 其来历? 反映一定区域电势、电场、电荷之关系。
由麦克斯韦方程的微分形式:
D
D r0E
dV 2
6.2.3 理想p-n结的电流电压关系
计算电流密度方法 – 计算势垒区边界处注入的非平衡少子浓度, 以此为边界条件,计算扩散区中非平衡少子 的分布 – 将非平衡载流子的浓度代入扩散方程,算出 扩散密度,再算出少数载流子的电流密度 – 将两种载流子的扩散密度相加,得到理想pn结模型的电流电压方程式
2
2020/9/30
重庆邮电大学微电子教学部
引言
6.1 p-n结及其能带图 6.2 p-n结电流电压特性 6.3 p-n结电容 6.4 p-n结击穿 6.5 p-n结隧道效应
3
2020/9/30
重庆邮电大学微电子教学部
6.1 p-n结及其能带图
6.1.1 p-n结的形成及杂质分布
p型半导体和n型半导体结合,在 二者的交界面形成的接触结构, 就称为p–n结。
空穴漂移 电子扩散
27
电子漂移 空穴扩散
2020/9/30
重庆邮电大学微电子教学部
6.2.2 非平衡p-n结的能带图
反向偏压V
(p负,n正,V<0)
外加电场n→p 内建场n→p →外加电场加强了内建 场的强度,势垒升高
→n区的EF低于p区的EF
p区电子被不断的抽走 ——少子的抽取
28
2020/9/30

半导体物理 第六章 pn结ppt课件

半导体物理 第六章 pn结ppt课件

E E cn x n n exp( ) x n 0 k T 0
qV ( x ) qV D n ) n 0exp( k T 0
当 X=Xn时,V(x)=VD,
n(x)=nn0
当 X=-Xp时,V(x)=0, n(-xp)=nn0
qV D n ( x ) n n exp( ) p p 0 n 0 k T 0
产生漂移电流
6.1.3
电子从费米能级高的n区流 向费米能级低的p区, 空穴从p流到n区。
最后,Pn具有统一费米能级EF,
EFn不断下移,EFp不断上 Pn结处于平衡状态。 移,直到EFn=EFp,
能带发生整体相对移动与pn结空 间电荷区中存在内建电场有关。
随内建电场(np)不断增大, V(x)不断降低,
使漂移电流〉扩散电流
少数载流子的抽取或吸出:n区边界nn’处的空穴被 势垒区强场驱向p区, p区边界pp’处的电子被驱向n 区。
qV D p p exp( ) n 0 p 0 k T 0
平衡时,pn结具有统一的费米 能级,无净电流流过pn结。 1. 外加电压下,pn结势垒的变化及载流子的运动 势垒区:载流子浓度很小,电阻很大; 势垒外:载流子浓度很大,电阻很小; 外加正向偏压主要降在势垒区;外加正向电场与 内建电场方向相反, 产生现象:势垒区电场减小,使势垒区空间电荷减小; 载流子扩散流〉漂移流, 净扩散流〉0 ; 宽度减小; 势垒高度降低(高度从qVD降到q(VD-V)
高温熔融的铝冷却后,n型硅片 上形成高浓度的p型薄层。
P型杂质浓度NA,
n型杂质浓度ND,
特点:交界面浓度发生突变。
在n型单晶硅片上扩散受主杂质,形成pn结。 杂质浓度从p到n 逐渐变化,称为缓变结。

半导体器件物理 课件 第六章

半导体器件物理 课件 第六章

p沟道耗尽型MOSFET 零栅压时已存在反型沟道,VTP>0
37
耗尽型:栅压为0时已经导通 N沟(很负才关闭) P沟(很正才关闭)
增强型:栅压为0时不导通
N沟(正电压开启 “1”导通)
P沟(负电压开启 “0”导通)
38
6.3.2 N 沟道增强型 MOS 场效应管工作原理
1. VGS对半导体表面空间电荷区状态的影响
EFS Ev
费米能级
价带顶能级
6
6.1 MOS电容
小的正栅压情形
表面能带图:p型衬底(2)
(耗尽层)
大的正栅压情形
X dT
(反型层+耗尽层)
EFS Ev
EFS EFi
EFS Ev
EFS EFi
7
6.1 MOS电容
表面能带图:n型衬底(1)
正栅压情形
EFS Ec
EFS EC
8
6.1 MOS电容
小的负栅压情形
n型
(耗尽Hale Waihona Puke )大的负栅压情形n型
(反型层+耗尽层)
表面能带图:n型衬底(2)
EFS Ec
EFS EFi
EFS Ec
EFS EFi
9
6.1 MOS电容 空间电荷区厚度:表面耗尽情形
表面势 s / s 半导体表面电势与 体内电势之差
Al SiO2 Si : fp 0.228V
(T 300K, Na 1014 cm3)
ms 0.83V
15
6.1 MOS电容 功函数差:n+掺杂多晶硅栅(P-Si)
简并:degenerate 退化,衰退

半导体物理学第六章

半导体物理学第六章
注入n区边界nn‘处的非平衡载流子浓度为:
qV pn ( xn ) pn ( xn ) pn 0 pn 0 k0T
1
注入势垒区边界pp‘和nn’处的非平衡少数载流子是外加电压的 函数,同时也是解连续性方程的边界条件。
在稳定态时,空穴扩散区中非平衡少子的连续性方程为:

代入,
xn x qV pn ( x) pn ( x) pn 0 pn 0 exp( ) 1 exp L k0T p
同理,注入p区的非平衡少子可以求得
xp x qV n p ( x) n p ( x) n p 0 n p 0 exp( ) 1 exp k0T Ln
半导体物理学
理学院物理科学与技术系
第六章 pn结
6.1
pn结及其能带图 6.2 pn结电流电压特性 6.3 pn结电容
6.1 pn结及其能带图
1、pn结的形成和杂质分布
在一块p型(或n型)半导体单晶上,用适 当的工艺方法(如合金法、扩散法、离子注 入等),把n型(p型)掺入其中,使这块单 晶的不同区域分别具有n型和p型的导电类型, 在两者交界处就形成pn结。
讨论: (1)正向偏压下,当V一定时,在势垒区边界处非平衡少数载流子浓度一定, 对扩散区形成了稳定的边界浓度;扩散区,非平衡少子按指数规律衰减; (2)反向偏压下,
q V k0T exp(
( xn x ) Lp
qV )0 k0T
N区
pn ( x) pn0e
小注入时,扩散区不存在电场,在n区边界处,空穴扩 散电流密度为: qD p pn 0 qV dpn ( x) J p ( xn ) qD p exp 1 x xn dx Lp k0T

半导体物理学PPT课件

半导体物理学PPT课件
EA EV
半导体的掺杂
Ⅲ、Ⅴ族杂质在Si、Ge晶体中分别为受 主和施主杂质,它们在禁带中引入了能 级;受主能级比价带顶高 EA,施主能级 比导带底低 ED,均为浅能级,这两种 杂质称为浅能级杂质。
杂质处于两种状态:中性态和离化态。 当处于离化态时,施主杂质向导带提供 电子成为正电中心;受主杂质向价带提 供空穴成为负电中心。
解:(a)
r 1 (1 24
3a)
3a 8
(b)
8 4r3
3 a3

3
16
0.34
间隙式杂质、替位式杂质
杂质原子位于晶格原子间的间隙位置, 该杂质称为间隙式杂质。
间隙式杂质原子一般比较小,如Si、Ge、 GaAs材料中的离子锂(0.068nm)。
杂质原子取代晶格原子而位于晶格点处, 该杂质称为替位式杂质。
半导体物理学
一.半导体中的电子状态 二.半导体中杂质和缺陷能级 三.半导体中载流子的统计分布 四.半导体的导电性 五.非平衡载流子 六.pn结 七.金属和半导体的接触 八.半导体表面与MIS结构
半导体的纯度和结构
纯度
极高,杂质<1013cm-3
结构
晶体结构
单胞
对于任何给定的晶体,可以用来形成其晶体结构的 最小单元
半导体中净杂质浓度称为有效杂质 浓度(有效施主浓度;有效受主浓 度)
杂质的高度补偿( NA ND )

肖特基缺陷
只存在空位而无间隙原子 间隙原子和空位这两种点缺陷受温度影响较
大,为热缺陷,它们不断产生和复合,直至 达到动态平衡,总是同时存在的。 空位表现为受主作用;间隙原子表现为施主 作用
E(0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档