理论力学质点系习题
理论力学复习题1
理论力学复习题1一、是非题(正确用√,错误用×)1.刚体是指在外力作用下变形很小的物体。
( )2. 刚体的运动形式为平动时,若刚体上任一点的运动已知,则其它各点的运动随之确定。
( )3.刚体作瞬时平动时,其上各点的速度相同,加速度也相同。
( )4.点的运动方向一定与作用在质点上的力的方向相同。
( )5.当质点系中每一个质点都做高速运动时,该质点系的动量不一定很大。
( )二、选择题(单选题)1. 一重W 的物体置于倾角为α的斜面上,若摩擦系数为f ,且tg α<f ,若增加物体重量,则物体会 ( ) 。
A: 静止不动; B: 向下滑动; C: 运动与否取决于平衡条件。
2. 一动点作平面曲线运动,若其速率不变,则其速度矢量与加速度矢量( ) 。
A :平行;B :夹角随时间变化;C :垂直;D :不能确定3. 牵连运动是指( )A.动系相对于静系的运动B.牵连点相对于动系的运动C.静系相对于动系的运动D.牵连点相对于静系的运动4. 图示均质杆OA 质量为m 、长度为l ,则该杆对O 轴转动惯量为( )A .12m lB .12m 2lC .3mlD .3m 2l5.质点系动量守恒的条件是( )。
A :作用于质点系的内力主矢恒等于零;B :作用于质点系的外力主矢恒等于零;C :作用于质点系的约束反力主矢恒等于零;D :作用于质点系的主动力主矢恒等于零;三、已知:右端外伸梁ABC ,受力P 、Q 和q 。
A 为固定铰链支座,B 为可动铰链支座。
试求:A 和B 处的约束反力。
理论力学填空与单选题集
第一章 质点力学填空1. 已知某质点沿x 轴的运动学方程为) cos()(t A t x ω=,其中ω ,A 为常数, 则其沿x 轴的速度分量为v x (t ) =__________, 加速度分量a x (t ) =______________.2. 质量为m 的质点受力F的作用沿x 轴的负方向运动,若已知力沿x 正向的分量为)(x F , 则质点的沿x 轴的运动微分方程为_____________.3. 质量为m 的质点在空中下落时,受到空气阻力的大小正比于其速率的平方,比例系数为k. 现采用竖直向上为正方向的一维x 坐标系描述该质点的运动,则其下落的运动微分方程为_________.4. 杆AB 的两端分别被限制在水平和竖直的导槽Ox 和Oy 上滑动(如图)。
M 为杆上一点,且已知AM=a, BM=b. 设θ=∠OBA 。
则在图示坐标系下,M 点的轨道方程为_________________.5. 质点在平面内运动,采用平面极坐标),(θr 描述,则其速度的径向分量表示为=r v _______,横向分量表示为=θv _________.6. 质点在平面内运动,采用平面极坐标),(θr 描述,则其加速度的径向分量表示为=r a _________,横向分量表示为=θa __________.7. 质点在平面内运动,采用平面极坐标描述,已知其运动学方程为Bt e r At==θ,,其中A , B 为常数, 则其速度的大小v =_________., 加速度的大小a =____________.8. 质点在空间运动,其速率保持为常数v . 在轨道上某处曲率半径为ρ,则在该处质点的切向加速度分量=τa _______, 法向加速度分量=n a ___________.9. 已知河流速率为1v ,且沿河宽不变. 一小船以相对于水的速率2v 始终朝着岸上A 点行驶. 如图所示,采用平面极坐标描述,则小船的绝对速度的径向分量为__________,横向分量为__________.10. 某船向东航行,速率为15km/h. 另一船以同样的速度向北航行. 两船的相对速率是__________km/h.11. 光滑楔子以匀加速度0a沿水平面向右运动,同时质量为m 的质点在其斜面上运动,则该质点所受惯性力可表示为___________.12. 力的作用线如果恒通过空间某一定点,则此力称为 有心力 , 该定点称为 力心 13. 质点在有心力场中的势能为r k r V /)(=,k 为常数. 则质点所受有心力=)(r F ______.14. 质点受到引力2)(r kr F =作用,k 是常数. 取无穷远处为势能零点,则势能=)(r V __________. 单选1. 在极坐标系下,下列哪一式表示的是质点的运动学方程( )A. )(θθf d dr= B. )(θr r = C. ⎩⎨⎧==)()(t t r r θθ D. 0),(=θr f 2. 采用极坐标系),(θr 描述质点的运动,其加速度的横向分量表达式为( )A. r a r =B. 2θ r r a r -= C. θθr a = D. θθθ r r a 2+= 3. 采用极坐标系),(θr 描述质点的运动,其加速度的径向分量表达式为( )A. r a r =B. 2θ r r a r -= C. θ r a r = D. θθ r r a r2+=4. 以下关于自然坐标系的说法错误的是( ) A. 自然坐标系的坐标变量称为弧坐标B. 自然坐标系只能描述质点运动轨道上的点C. 內禀方程是只能在自然坐标系下成立的方程D. 弧坐标随时间变化,只会增大,不会减小5. 对于一个相对于惯性参考系作匀速直线运动的参考系,它的内部所发生的一切力学过程,都不受参考系本身匀速直线运动的影响. 这一原理称为( )A. 爱因斯坦相对性原理B. 伽利略相对性原理C. 牛顿相对性原理D.惯性定律6. 若某场力F 是保守力,则F必定满足( )A. 0=∇FB. 0=⨯∇FC. 0=⋅∇FD. 02=∇F7. 下列哪一条,不是场力F为保守力的判据( )A. 该场力沿任何闭合路径做功为零B. 该场力沿任何路径所做功的大小,只取决于路径的初末位置.C. 该场力构成的力场的梯度F∇为零.D. 存在某标量函数)(r V , 满足F r V=∇)(.8. 质点在有心力作用下运动,下列哪一条描述是错误的( ) A. 质点的机械能必定守恒.B. 质点对力心的动量矩必定守恒.C. 质点做的必定是平面运动.D. 质点的运动轨道必是圆锥曲线.9. 下列哪一条不是质点在有心力作用下运动的基本性质( )A. 机械能守恒.B. 动量矩守恒.C. 动量守恒.D. 做平面运动10. 行星绕太阳做椭圆运动,太阳视为静止不动,无穷远处为势能零点,下列说法错误的是( )A. 行星的机械能0<E ,且守恒B. 太阳位于椭圆的一个焦点上C. 在远日点行星的速度达到最大D. 行星对太阳中心的动量矩是守恒的.11. 质量为m 的质点在空中下落时,受到空气阻力的大小正比于其速率的平方,比例系数为k . 现采用竖直向上为正方向的一维x 坐标系描述该质点的运动,则其下落的运动微分方程为( )A. mg x k x m +=2B. mg x k xm -=2C. mg x k x m --=2D. mg x k xm +-=212. 某质点在平面极坐标系下的运动方程为cte r =,bt =θ,其中b, c 均为常数. 则其加速度的横向分量为( )A .r b c )(22- B. r b c )(22+ C. bcr 2 D. br13. 下列关于惯性系的说法错误的是( )A. 牛顿定律能成立的参考系是惯性参考系B. 相对于惯性系做匀速直线运动的参考系都是惯性系C. 惯性系的定义隐含在牛顿第一定律中D. 惯性系中的物体还受到惯性力 *******************************第二章 质点组力学填空1. 含N 个质点的质点组,质点i 的质量记为i m ,位矢记为i r,N i ,...,2,1=. 则质心的位矢=C r_________2. 两质点的质量分别为1m 和2m ,速度分别是1v 和2v,则由此两质点构成的质点组的质心的速度为=C v________.3. 两质点的质量分别为1m 和2m ,构成质点组,相对于质心的速度分别为1v ' 和2v ', 则='+'2211v m v m________. 4. 含N 个质点的质点组,质点i 的质量记为i m ,位矢记为i r ,速度记为i v,N i ,...,2,1=,则该质点组对参考点的总动量矩=J_________.5. 柯尼希定理说的是:质点组的动能等于_______的动能与________的动能之和.6. 质量分别为M 和m 的两质点构成两体系统,此系统的折合质量=μ .7. 质点组中质点i 与质点j 之间的内力记为ij f , 相对位矢记为ij r,则=⨯ij ij r f _______.8. 两体碰撞,若动能守恒,则这种碰撞称为_______碰撞.9. 均匀扇形薄片,半径为a ,所对圆心角为θ2,则其质心C 到圆心O 的距离为______.单选1. 关于质点组的内力,所述正确的是( ) A. 质点组的内力做功之和必为零 B. 质点组的内力之和为零C. 质点组的内力对质点组的动能没有影响D. 质点组的内力对质点组的势能没有影响2. 下列关于质点组质心的说法错误的是( )A. 质心即质量中心,它是质点组内确实存在的一个的质点.B. 质心的动量等于整个质点组的动量C. 质心相当于是在质点组外力之和的作用下运动D. 根据质心的运动定理,质心相当于一个集中了质点组总质量的质点3. 对质点组的总动量描述错误的是 ( ) A 是所有质点的动量的矢量和 B. 等于质点组质心的动量C. 对时间的变化率等于质点组所受外力之和D. 质点组的内力对总动量也有影响.4. 如果一个质点组不受任何外力,则下列描述错误的是( ) A. 质点组的质心做惯性运动 B. 质点组动量守恒 C. 质点组的角动量守恒 D. 质点组机械能守恒5. 在质心系中观察质点组的运动,则下列说法错误的是( )A. 质点组的总动量为零B. 惯性力对质点组的动量矩定理有影响C. 惯性力对质心的总力矩无贡献D. 惯性力对质点组的动能定理无影响6. 若质点组所受外力矢量和为零,则下列说法错误的是( ) A. 质心做惯性运动 B. 质点组动量守恒C. 质点组动量矩守恒D. 质点组动量是个常矢量*************************************************第三章 刚体力学填空1. 刚体以角速度ω 绕某定点O 转动,其上某质点P 相对于O 的位矢为r,则该质点P 的线速度为=v________.2. 若某空间矢量G 大小不变,而方向以角速度ω绕空间某定点O 转动,则=dtG d__________.3. 作用在刚体上的任意力系总可简化为通过某定点P 的一个单力F 及一力偶矩为M的力偶. 此定点P 叫做__________,4. 把作用在刚体上A 点的力F平移到其作用线外另一点B , 则与原作用效果相比,会多出一个附加力偶,设r是A 相对于B 的位矢,则此力偶的力偶矩=M_________. 5. 一轮的半径为r ,以匀速0v 沿一直线做纯滚动,则轮缘上最高点的速率为_________. 单选1. 下列关于描述刚体运动所需的独立坐标变量数目,叙述错误的是 ( ) A. 一般运动需要六个独立坐标变量 B. 平动只需要一个独立坐标变量 C. 定点转动需要三个独立坐标变量 D. 定轴转动只需要一个独立坐标变量2. 若某空间矢量G 大小不变,而方向以角速度ω绕空间某定点O 转动,则dtG d等于( )A. G ⋅ωB. ω ⋅GC. G⨯ω D. ω ⨯G3. 下列对力偶描述错误的是( )A. 力偶是一对大小相等、方向相反、但作用线不同的力构成的B. 构成力偶的两力的矢量和为零C. 力偶矩的大小依赖于矩心的选择D. 力偶矩的方向总是垂直于力偶面4. 在主轴坐标系下研究刚体的动力学,下列哪一条叙述是错误的( ) A. 对坐标轴的转动惯量均为常数 B. 对坐标轴的惯量积均为零 C. 惯量系数均为常数.D. 惯量张量被简化为单位矩阵5. 某时刻平面平行运动的平板上,如果有一质点的速度为零,则该点是( ) A. 基点 B. 简化中心 C. 质心 D. 瞬心***********************************第四章 转动参考系填空1. 科里奥利加速度是由______运动与________运动相互影响所产生的.2. 一平板绕通过定点O 且垂直于板面的轴线以角速度ω转动,某一时刻一个小虫爬到板上P 点,相对于板面的速度为v ' . 已知P 点相对于O 的位矢为r,则小虫的绝对速度为________.3. 当质点在非惯性系中处于平衡时,主动力、约束反力和由牵连运动而引起的惯性力的矢量和为零,我们通常把这种平衡叫做___________.4. 北半球一条河流自南向北流,根据科里奥利力判断, 岸的冲刷程度较大.5. 一平板绕垂直于板面的轴以角速度ω 转动,一个质量为m 的小物体以相对速度v '在板面上移动,则该物体所受科里奥利力为 .6. 在南半球地面附近自南向北的气流,受科里奥利力影响,有朝_____的偏转. 单选1. 一个平板绕通过板上O 点、且垂直于自身板面的固定轴以角速度ω转动,一只蚂蚁在平板面上爬动,它相对于平板的速度为v ' ,相对于O 点的位矢为r,则蚂蚁的绝对速度为( )A. ω ⨯+'=r v vB. r v v ⨯+'=ωC. ω ⨯=r vD. r v v⨯-'=ω2. 转动参考系以角速度ω转动,一小物体相对转动参考系的速度为v ',则该物体的科氏加速度为( )A. v '⨯ ω2B. ω ⨯'v 2C. v '⋅ ω2D. ω⋅'v 23. 转动参考系以角速度ω转动,一质量为m 小物体相对转动参考系的速度为v ',则该物体所受的科氏力为( )A. v m '⨯ ω2B. ω ⨯'v m 2C. v m '⨯- ω2D. ω ⨯'-v m 24. 一个平板绕通过板上O 点、且垂直于自身板面的固定轴以角速度ω转动,一个蚂蚁在 平板面上爬动,则蚂蚁的绝对速度为r ωv v ⨯+'=,对此问题描述错误的是( ) A. r 是蚂蚁相对于转动定点O 的位矢, 绝对速度dt d /r v =B. 牵连点是平板上被蚂蚁占据的点, r 是牵连点相对于转动定点O 的位矢 C v '是相对速度,r ω⨯是牵连速度D. dt d /v '是相对加速度,dt d /)(r ω⨯是牵连加速度.5. 一质点在转动参考系中处于相对平衡状态,则以下判断错误的是( ) A. 该质点的相对速度为零 B. 该质点不受科里奥利力 C. 该质点的相对加速度为零D. 该质点的绝对加速度这时等于科里奥利加速度6. 北半球原本由北向南的贸易风,由于受到科氏力的作用,产生了偏移而变成了 ( ) A. 东风; B. 东北风; C. 西北风; D. 西南风。
质点力学练习题(C1练习册)
力学练习题(一)学习目标1. 掌握描述质点运动和运动变化的物理量——位置矢量、位移、速度、加速度,理解这些物理量的矢量性、瞬时性和相对性。
2. 理解运动方程的物理意义及作用,掌握运用运动方程确定质点的位置、位移、速度和加速度的方法,以及已知质点运动的加速度和初始条件求速度、运动方程的方法。
一、 选择题1. 一运动质点在某瞬时位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即(1)d d r t ;(2)d d r t ;(3)d d s t ;(4 ) A 只有(1)(2)正确 B 只有(2)正确 C 只有(2)(3)正确 D 只有(3)(4)正确2. 一小球沿斜面向上运动,其运动方程为245t t S -+=(SI ),则小球运动到最高点的时刻是( )。
A t = 4s.B t = 2s.C t = 8s.D t = 5s.3.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量) 则该质点作( )。
A 匀速直线运动. B 变速直线运动. C 抛物线运动. D 一般曲线运动. 4.下列说法哪一条正确?( )A 加速度恒定不变时,物体运动方向也不变.B 平均速率等于平均速度的大小.C 不管加速度如何,平均速率表达式总可以写成2/)(21v v v +=D 运动物体速率不变时,速度可以变化.二、 填空题1.质点p 在一直线上运动,其坐标x 与时间t 有如下关系: x = A sin ω t (SI ) A为常数)(1)任意时刻t 时质点的加速度 a =___________________;(2)质点速度为零的时间t =___________________________。
2.一人自原点出发,25s 内向东走30m ,又10s 内向南走10m ,再15s 内向正西北走18m ,设X 轴指向正东,Y 轴指向正北,求在这50s 内,(1)位移r ∆= ;(2)平均速度v = ;(3)平均速率v = 。
理论力学课后习题答案
第11章 动量矩定理一、是非题(正确的在括号内打“√”、错误的打“×”)1. 质点系对某固定点(或固定轴)的动量矩,等于质点系的动量对该点(或轴)的矩。
(×)2. 质点系所受外力对某点(或轴)之矩恒为零,则质点系对该点(或轴)的动量矩不变。
(√)3. 质点系动量矩的变化与外力有关,与内力无关。
(√)4. 质点系对某点动量矩守恒,则对过该点的任意轴也守恒。
(√)5. 定轴转动刚体对转轴的动量矩,等于刚体对该轴的转动惯量与角加速度之积。
(×)6. 在对所有平行于质心轴的转动惯量中,以对质心轴的转动惯量为最大。
(×)7. 质点系对某点的动量矩定理e 1d ()d nOO i i t ==∑L M F 中的点“O ”是固定点或质点系的质心。
(√)8. 如图所示,固结在转盘上的均质杆AB ,对转轴的转动惯量为20A J J mr =+ 2213ml mr =+,式中m 为AB 杆的质量。
(×)9. 当选质点系速度瞬心P 为矩心时,动量矩定理一定有e 1d()d nP P i i t ==∑L M F 的形式,而不需附加任何条件。
(×)10. 平面运动刚体所受外力对质心的主矩等于零,则刚体只能做平动;若所受外力的主矢等于零,刚体只能作绕质心的转动。
(×)图二、填空题1. 绕定轴转动刚体对转轴的动量矩等于刚体对转轴的转动惯量与角速度的乘积。
2. 质量为m ,绕z 轴转动的回旋半径为ρ,则刚体对z 轴的转动惯量为2ρm J z =。
3. 质点系的质量与质心速度的乘积称为质点系的动量。
4. 质点系的动量对某点的矩随时间的变化规律只与系统所受的外力对该点的矩有关,而与系统的内力无关。
5. 质点系对某点动量矩守恒的条件是质点系所受的全部外力对该点之矩的矢量和等于零,质点系的动量对x 轴的动量矩守恒的条件是质点系所受的全部外力对x 轴之矩的代数和等于零。
质点运动学 习题
000 质点运动学 姓名一.选择题: 学号1.质点的运动方程为)(5363SI t t x -+=,则该质点作 [ ] (A )匀加速直线运动,加速度沿X轴正方向. (B )匀加速直线运动,加速度沿X轴负方向. (C )变加速直线运动,加速度沿X轴正方向. (D )变加速直线运动,加速度沿X轴负方向. 2.质点在某瞬时位于矢径),(y x r的端点处其速度大小为 [ ](A)dt dr (B)dt r d (C)dt r d || (D) 22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx3.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长,湖水静止,则小船的运动是: [ ](A)匀加速运动 (B )匀减速运动 (C) 变加速运动 (D) 变减速运动 (E) 匀速直线运动 4.一个质点在做匀速率圆周运动时 [ ] (A )切向加速度改变,法向加速度也改变.(B )切向加速度不变,法向加速度改变.(C )切向加速度不变,法向加速度也不变. (D )切向加速度改变,法向加速度不变.5.如右图所示,几个不同倾角的光滑斜面,有共同的底边,顶点也在同一竖直面上.若使一物体(视为质点)从斜面上端由静止滑到下端的时间最短,则斜面的倾角应选 [ ] (A)030. (B)045. (C)060. (D)075.6.一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度 [ ](A) 等于零.(B) 等于s m /2-.(C) 等于s m /2.(D) 不能确定.7.质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈.在t 2时间间隔中,其平均速度大小与平均速率大小分别为 [ ] (A)t R π2,t R π2. (B)0,t R π2.(C)0,0. (D)tR π2,0.)-8.一质点沿x 轴作直线运动,其t v -曲线如下图所示,如0=t 时,质点位于坐标原点,则s t 5.4=时 质点在x 轴上的位置为 (A) m 0. (B)m 5.(C) m 2. (D)m 2-. (E)m 5-.9.一小球沿斜面向上运动,其运动方程为)(452SI t t S -+=,则小球运动到最高点的时刻是 [ ] (A)s t 4=. (B)s t 2=. (C)s t 8=. (D)s t 5=.10.质点在平面上运动,已知质点位置矢量的表示式为)(22SI j bt i at r +=(其中a 、b 为常量), 则该质点作 [ ] (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D) 一般曲线运动.11.质点作曲线运动,r表示位置矢量,S 表示路程,t a 表示切向加速度,下列表达式中, (1)a dtdv=,(2)v dt dr =, (3)v dt ds =, (4)t a dtv d =||.(A )只有(1)、(4)是对的. (B) 只有(2)、(4)是对的.(C )只有(2)是对的. (D ) 只有(3)是对的. 12.下列说法中,哪一个是正确的? [ ](A)一质点在某时刻的瞬时速度是s m /2,说明它在此后s 1内一定要经过m 2的路程. (B)斜向上抛的物体,在最高点处的速度最小,加速度最大. (C)物体作曲线运动时,有可能在某时刻的法向加速度为零. (D)物体加速度越大,则速度越大.13.在相对地面静止的坐标系内,A、B二船都是以s m /2的速率匀速行驶,A船沿x 轴正向,B船沿y 轴正向,今在A船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢量用i 、j表示),那么在A船上的坐标系中,B船的速度为: [ ] (A)j i 22+. (B)j i 22+-. (C)j i 22--. (D)j i22-.14.某人骑自行车以速率v 向正西方向行驶,遇到由北向南刮的风(设风速大小也为v ),则他感到风是从 [ ](A)东北方向吹来;(B)东南方向吹来;(C)西北方向吹来;(D)西南方向吹来.二.填空题:1.在XY 平面内有一运动的质点,其运动方程为)(5sin 105cos 10SI j t i t r +=,则t 时刻其速度=v-___________,其切向加速度的大小=t a ___________;该质点运动的轨迹是_____________. 2.一质点沿直线运动,其坐标x 与时间t 有如下关系:)(cos SI t Aex tωβ-=(A ,β皆为常数):(1)任意时刻质点的加速度=a __________;(2)质点通过原点的时刻=t __________.3.一物体在某瞬时以速度0v从某点开始运动,在t ∆时间内,经一长度为S的路径后,又回到出发点,此时速度为0v-,则在这段时间内:(1)物体的平均速率是:____________;(2)物体的平均加速度是:___________.4.在一个转动的齿轮上,一个齿尖P沿半径为R 的圆周运动,其路程S 随时间的规律为2021bt t v S +=,其中0v 和b 都是正的常量,则t 时刻齿尖P的速度大小为____________,加速度大小为______________. 5.质点沿半径为R 的圆周运动,运动方程为)(322SI t +=θ,则t 时刻质点的法向加速度大小为=n a _________;角加速度=β__________.6.在下列各图中质点M 作曲线运动,指出哪些运动是不可能的?7.一质点在平面上作曲线运动,其速率与路程S 的关系为,则其切向加速度以路程S 来表示的表达式为=t a _______(SI). 8.已知质点运动方程为)()314()2125(32SI j t t i t t r++-+=当s t 2=时,=a ___________. 9.一质点以060仰角作斜上抛运动,忽略空气阻力.若质点运动轨道最高点处的曲率半径为m 10,则抛出时初速度的大小为0v ___________.(重力加速度g 按2/10s m 计) 10.一质点作半径为m 1.0的圆周运动,其运动方程为:)(2142SI t +=πθ,则其切向加速度为=t a ____________.11.一质点沿半径R 的圆周运动,其路程S 随时间t 变化的规律为)(212SI ct bt S -=,式中b 、c 为大于零的常数,且Rc b >2.(1)质点运动的切向加速度=t a _____________;法向加速度=n a _____________.(2)质点经过=t _____________时,n t a a =.12.试说明质点作何种运动时将出现下述各种情况(0≠v ): (1)0≠t a ,0≠n a ;___________ . (2)0≠t a ,0=n a ;__________.13.一物体作如右图所示的斜抛运动,测得在轨道A点处速度v的大小为v ,其方向与水平方向成030的夹角,则物体在A点的切向加速度=t a __________,轨道的曲率半径=ρ_____________.14.当一列火车以s m /10的速率向东行驶时,若相对于地面竖直下落的雨滴在列车的窗子上形成的雨迹偏离竖直方向030,则雨滴相对于地面的速率是____________;相对于列车的速率是______________.15.一物体作斜抛运动,初速度为0v,与水平方向夹角为θ,如右图所示.则物体达最高点处轨道的曲率半径ρ为______________.三.计算题:1.有一质点沿X 轴作直线运动,t 时刻的坐标为)(25.432SI t t x -=.试求:(1)第2秒内的平均速度;(2)第2秒末的瞬时速度;(3)第2秒内的路程.2.一质点沿X 轴运动,其加速度为)(4SI t a =,已知0=t 时,质点位于m X 100=处,初速度00=v ,试求其位置和时间的关系式.3.由楼窗口以水平初速度0v 射出一发子弹,取枪口为坐标原点,沿0v方向为X轴,竖直向下为Y轴,并取发射时s t 0=,试求:(1) 子弹在任意时刻t 的位置坐标及轨迹方程; (2)子弹在t 时刻的速度,切向加速度和法向加速度.4.一物体悬挂在弹簧上作竖直振动,其加速度为ky a -=,式中k 为常量,y 是以平衡位置为原点所测得的坐标,假定振动的物体在坐标0y 处的速度为0v ,试求速度v 与坐标y 的函数关系式.5.一飞机驾驶员想往正北方向航行,而风以h km /60的速度由东向西刮来,如果飞机的航速(在静止空气中的速率)为h km /180,试问驾驶员应取什么航向?飞机相对于地面的速率为多少?试用矢量图说明.6.某物体的运动规律为t kv dt dv 2/-=,式中k 为大于零的常数,求速度v 与时间t 的函数关系式.7.一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为)(622SI x a +=,如果质点在原点处的速度为零,试求其在任意位置处的速度.8.一质点从静止开始作直线运动,开始加速度为a ,此后加速度随时间均匀增加,经过时间τ后,加速度为a 2,经过时间τ2,加速度为a 3,....求经过时间τn 后,该质点的加速度和走过的距离.9.一质点沿半径为R 的圆周运动,质点所经过的弧长与时间的关系为)(212SI ct bt S +=,其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.10.当火车静止时,乘客发现雨滴下落方向偏向车头,偏角为030,当火车以s m /35的速率沿水平直线行驶时,发现雨滴下落方向偏向车尾,偏角为045,假设雨滴相对于地的速度保持不变,试计算雨滴相对于地的速度大小.。
理论力学复习题(武汉理工大学)
p y - 0 y = ∑I (e ) y
( pz - p0 z = ∑I ze )
(2)质点系的动量守恒定理
若 ∑Fi 若 ∑Fi
(e ) (e )
= 0, 则 p = p0 = 恒矢量 = 0, 则 p = p0 = 恒矢量
4
(3)质心运动定理
dvC (e ) ∑ i m = F dt
maC = ∑ i F
应用时,前一式取其投影式。
e maCy Fy e J C M C ( F ) maCx Fx
e
n e maC Fn e J C M C ( F ) ma Ft
t C
7
e
四 动能定理 (1)质点系的动能定理 (2)功率方程 (3)机械能守恒定律
mg
a
B
mg
14
(1): M 0
P
2 FEH m( 4a 3g ) 0
K
C E 1 2mR 2 FEH 2 R 3maR 3mgR 0 2 FEH m( 4a g ) 0 (2): M 0 A H D 1 2mR 2 2 FEHR m( g 2a ) R 0 2 2 FCy B 1 R a FCx 2mR 2 C 2 1 1 得: a g aA 2a g 2mg FEH 6 12 2a A FEH 2ma F 4 FEH mg mg 1 2mR 3 2 D P 2ma 2mg ma a B mg 15
M IO M IZ J z
(1) (2)
0
FIR
M IO
简化为一主失
FIR maC
惯性力系简化为一主矩 则
理论力学期末前复习题-3.填空选择
一、填空题 1、质点运动方程为 r = a t ,θ= bt ,则极坐标下的轨道方程为 ,加速度大小为 。
[θbar =;224t b ab +;221t b a +] 1、质点运动方程为t b y t a x ωωsin ,cos ==(b a ,为常数)其轨道方程为 ,速度大小为 。
[t b t a v by a x ωω22222222cos sin ;1+==+] 2、单位质量的两个质点位于xy 平面上运动,在某时刻其位矢、速度分别为j i v j i v j i r j i r52,,32,32121+=-=+=+= 则此时质心位矢=c r ,质心速度为=c v ,质系动量=p,质系动能T= ,质系对原点的角动量=J。
[)43(21j i r c+=)43(21j i v c +=;j i p43+= ;T=31/2;k J 2=] 3、质量均为1的三个质点组成一质系,若其瞬时速度分别为i v k v j v3,2,2321==-=,则质系的动量为 ,质心速度为 。
[k j i223+- ;k j i3232+-]3、质量均为1的三个质点组成一质系,某时刻它们的位矢分别为,2,,32321k j r j i r k j i r+=+=++=,则质系的质心位矢为 。
[k j i r c322++=] 4、已知质点势能为)(2122y x V +=,则保守力=F 。
[j y i x F --=]5、当质点受有心力作用时,其基本守恒律的数学表达式为 和 。
[h r =θ2;E r V r rm =++)()(2122θ ] 6、一个圆盘半径为r ,质量为m ,沿直线作纯滚动,盘心速度为c v,则圆盘的转动角速度=ω ,圆盘的绝对动能T= 。
[r v c /=ω;2224121ωmr mv T c +=] 7、标出下列两图中作平面运动刚体的转动瞬心的位置:7、标出下列两图中作平面运动刚体的转动瞬心的位置:V AV BV V B VV B V A V BcV AV B VV B c V A V BcV V B c8、作用在刚体上的力可沿力的作用线任意移动而不影响它的作用效果,这叫 ,因此作用在刚体上的力是 矢量。
第一章 质点运动学 习题
质点运动学1. 某质点作直线运动的运动学方程为x =3t -5t 3 + 6,则该质点作( )(A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向.2. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作 ( )(A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动.3. 一运动质点在某瞬时位于矢径()y x r ,的端点处, 其速度大小为( )(A) t r d d (B) t r d d(C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x4. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为( )(A) 2πR /T , 2πR/T . (B) 0 , 2πR /T (C) 0 , 0. (D) 2πR /T , 0. 5. 一个质点在做匀速率圆周运动时( )(A) 切向加速度改变,法向加速度也改变. (B) 切向加速度不变,法向加速度改变. (C) 切向加速度不变,法向加速度也不变. (D) 切向加速度改变,法向加速度不变.6. 某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30°方向吹来,试问人感到风从哪个方向吹来? ( )(A) 北偏东30°. (B) 南偏东30°. (C) 北偏西30°. (D) 西偏南30°. 7. 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是( )(A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt 8.一质点从静止出发,沿半径为1m 的圆周运动,角位移θ=3+92t ,当切向加速度与合加速度的夹角为︒45时,角位移θ=( )rad :(A) 9 (B) 12 (C) 18 (D) 3.59.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是( ) (A) 匀加速运动. (B) 匀减速运动. (C) 变加速运动. (D) 变减速运动.10.一质点沿x 方向运动,其加速度随时间的变化关系为a = 3+2 t (SI) ,如果初始时质点的速度v 0为5m/s ,则当t为3s 时,质点的速度 v = 。
质点力学习题与参考解答
【郑重说明】《理论力学》课程的习题及解答方面的参考书很多,学习者可以通过各种形式阅读与学习,按照学院对教学工作的要求,为了满足学习者使用不同媒体学习的实际需要,通过各种渠道收集、整理了部分习题及参考解答,仅供学习者学习时参考。
由于理论力学的题目解答比较灵活,技巧性也比较强,下面这些解答不一定是最好的方法,也可能会存在不够完善的地方,希望阅读时注意之。
学习理论力学课程更重要的是对物理概念的掌握与理解,学习处理问题的思想与方法,仅盲目的做题目或者阅读现成的答案,很难达到理想的结果。
质点动力学思考题与习题及参考解答思考题(1) 有一质量为m 的珠子, 沿一根置于水平面内的铁丝滑动, 采用自然坐标法描述. 珠子受重力g m W=, 铁丝施与的约束力b Nb n Nn t Nt Ne F e F e F F ++=.t Nt e F 即为滑动摩擦力f F, 设动摩擦因数为μ. 试判断下列各式正误: (1) mg F f μ=; (2) Nb f F F μ= (3)Nn f F F μ=;(4) 22Nb Nnf F F F +=μ(2) 用极坐标系描述单摆的运动. 某甲如思考题(2图(a)规定θ角正向, 得到动力学方程θθsin mg ml -= ; 某乙如思考题(2图(b)规定θ角正向, 则得到θθsin mg ml += . 你认为谁的做法正确?(a) (b)思考题(2图(3) 质量为m 的质点, 由静止开始自高处自由落下. 设空气阻力f F与速度成正比, 比例系数为k . 某甲建立竖直向上的坐标如思考题(3图(a), 得到方程为y k mg y m+-=. 某乙建立竖直向下的坐标如思考题(3图(b), 得到方程为y k mg y m-=.他们列出的方程对吗?(a) (b)思考题(3(4)有人认为: 用极坐标系讨论质点的平面运动时, 如果0≡r F , 则沿径向动量守恒,==rm p r 常量;若0≡θF , 则沿横向动量守恒. 这种看法对吗? (5) 试判断以下二论断是否正确:(1) 若质点对固定点O 的角动量守恒, 则对过O 点的任意固定轴的角动量守恒. (2) 若质点对固定轴的角动量守恒, 则对该轴上任一固定点的角动量守恒.(6) 一质点动量守恒, 它对空间任一固定点的角动量是否守恒? 如质点对空间某一固定点角动量守恒, 该质点动量是否守恒?(7) 当质点做匀速直线运动时, 其动量是否守恒? 角动量是否守恒?(8) 在固定的直角坐标系Oxyz 中, 质量为m 的质点的速度k v j v i v v z y x++=, 所受合力为k F j F i F F z y x ++=. 能否将质点的动能定理r F mv d )21(d 2⋅=向x 轴方向投影而得出分量方程x F mv x x d )21(d 2= 该方程是否正确?思考题解答(1) 仅(4)式正确.(2) 甲正确. 乙错在角度不可以定义为从动线指向定线.(3) 乙的方程正确. 甲错在空气阻力亦应为yk -,y 取负值,y k -取正值. (4) 仅对固定方向才有动量守恒的分量形式. 径向和横向均不是空间固定方向. (5) (1)对;(2)错. (6) 一质点动量守恒,则对空间任一固定点角动量守恒. 质点对空间某一固定点角动量守恒,其动量不一定守恒.(7) 质点作匀速直线运动时,其动量和角动量均守恒.(8) 动能定理是标量方程,不可能投影而得出分量方程. 但xF mv x d )21(d 2=是正确的. 仿照动能定理的导出,用x t v x d d =乘牛顿第二定律的x 分量方程x xF t v m=d d 即可证明.质点动力学习题及参考解答【1】研究自由电子在沿x 轴的振荡电场中的运动. 已知电场强度i t E E)cos(0ϕω+=,ϕω,,0E 为常量. 电子电量为e -, 质量为m . 初始时, 即当0=t 时i x r00=, i v v 00=. 忽略重力及阻力, 求电子的运动学方程.【解】力为时间的函数,积分两次可得)cos(200ϕωω+++=t m eE t V X x ,其中ϕωcos 2000m eE x X -=,ϕωsin 00m eE v V +=.【2】 以很大的初速度0v自地球表面竖直上抛一质点, 设地球无自转并忽略空气阻力, 求质点能达到的最大高度. 已知地球半径为R , 地球表面处重力加速度为g .【解】以地心O 为原点,建立x 轴经抛出点竖直向上. 质点受万有引力沿x 轴负方向. 所以2x GMm xm -= . 因为2R GMmmg =,故g R GM 2=. 故有22x g R x -= . 做变换)2(d d d d d d d d 2x x x x x t x x x x ===,则x x g R x d )2(d 222-= . 积分并用0=t 时R x =,0v x = 定积分常数,得到 )11()(212202R x g R v x -=- . 质点达最大高度时H R x +=,0=x,可求出 1220)21(2--=Rg v g v H .三点讨论:(1)令∞=H ,对应Rg v 20=为第二宇宙速度.(2)若Rg v 220<<,则回到重力场模型所得结果. (3)题中不考虑地球自转及空气阻力,均不大合理,试进一步讨论之.【3】 将质量为m 的质点竖直上抛, 设空气阻力与速度平方成正比, 其大小22gv mk F R =.如上抛初速度为0v , 试证该质点落回抛出点时的速率2201v k v v +=.【解】质点运动微分方程为(Oy 轴竖直向上);上升阶段22y g mk mg y m--=,下降阶段22y g mk mg ym +-=. 【4】向电场强度为E 、磁感应强度为B 的均匀稳定电磁场中入射一电子. 已知B E⊥, 电子初速0v 与E 和B 均垂直, 如题4图所示. 试求电子的运动规律. 设电子电量为e -.题4图【解】令m eB=ω,电子运动微分方程为y xω-=, (1) m eEx y-= ω, (2)0=z . (3)对(2)式求导,利用(1)式得02=+y yω,解出)sin(αω+=t A y . 0=t 时0=y 故0=α,由t A y ωωcos = ,且0=t 时m eBv Ee y0+-= ,故B Bv E A 0+-=,则t B Bv E y ωsin 0+-= . 积分得)cos 1()(20t m eB eB Bv E m y -+-=. 代入(1)式积分可得t m eB eB Bv E m t B E x sin )(20--=.【5】 旋轮线如题5图所示, 可理解为一半径为a 的圆轮在直线上做无滑滚动时轮缘上一点P 的轨迹, 其参数方程为)sin (ϕϕ+=a x , )cos 1(ϕ-=a y . 在重力场中, 设y 轴竖直向上, 一质点沿光滑旋轮线滑动, 试证质点运动具有等时性(绕O 点运动周期与振幅无关).题5图【解】(旋轮线是如图圆轮在直线AB 上作无滑滚动时P 点的轨迹,曲线上P 点切线方向即为轮上P 点速度方向. 因无滑,0P 为瞬心,故P 点切线与P P 0垂直,因此可知P 点切线与x 轴夹角为2ϕ. )以曲线最低点(0=ϕ)为自然坐标原点,弧长正方向与t e 一致. 质点运动微分方程为2sinϕmg s m -= .对曲线参数方程求微分,得ϕϕd )cos 1(d +=a x 和ϕϕd sin d a y =,所以ϕϕd 2cos 2d d d 22a y x s =+=,积分并用0=ϕ时0=s 定积分常数,得2sin 4ϕa s =. 代入质点运动微分方程消去ϕ,得到4=+s a gs ,s 作简谐振动而具有等时性. 其解为)cos(0αω+=t A s ,a g40=ω与振幅无关.【6】 一小球质量为m , 系在不可伸长的轻绳之一端, 可在光滑水平桌面上滑动. 绳的另一端穿过桌面上的小孔, 握在一个人的手中使它向下做匀速运动, 速率为a , 如题【6图所示. 设初始时绳是拉直的, 小球与小孔的距离为R , 其初速度在垂直绳方向上的投影为0v . 试求小球的运动规律及绳的张力.题6图【解】小球运动微分方程为T F r r m -=-)(2θ , (1) 0)2(=+θθr r m , (2)a r-= . (3) 由(3)式求出at R r -=,代入(2)式求出)/(0at R t v -=θ,再由(1)式求出3220)(at R R mv F T -=.【7】 一质量为m 的珠子串在一半径为R 的铁丝做成的圆环上, 圆环水平放置. 设珠子的初始速率为0v , 珠子与圆环间动摩擦因数为μ, 求珠子经过多少弧长后停止运动 (根据牛顿第二定律求解).【解】珠子的运动微分方程为2b 2n d d N N F F t v m+-=μ, (1)n 2/N F mv =ρ, (2)mg F N -=b 0, (3)R =ρ(约束方程). (4)把(2)、(3)、(4)式代入(1)式,作变换sv t v d /)21(d d d 2=,可求出]/)ln[()2/(224020Rg g R v v R s ++=μ.【8】 质量为m 的小球沿光滑的、半长轴为a 、半短轴为b 的椭圆弧滑下, 此椭圆弧在竖直平面内且短轴沿竖直方向. 设小球自长轴端点开始运动时其初速度为零. 求小球达到椭圆弧最低点时对椭圆弧的压力 (根据牛顿第二定律求解). 【解】以椭圆最低点为自然坐标原点O ,弧长正方向指向小球初始位置,θ为切向与水平方向的夹角,小球的运动微分方程为θsin mg vm -= , (1) θρcos /2mg F mv N -=. (2)Oy 竖直向上,将s y d /d sin =θ代入(1)式得s y g s v v d /d d /d -=,积分可求出小球达最低点时gb v 22=. 由轨道方程22x a a by --=求出当0=x 时0='y ,2/a b y ='',由公式可求出22/32)1(1a b y y ='+''=ρ. 再由(2)式求出0=θ时)/21(/cos 22a b mg mv mg F N +=+=ρθ.【9】 力1F 和2F分别作用在长方体的顶角A 和B 上, 长方体的尺寸和坐标系如题【9图所示. 试计算1F 和2F对原点O 及3个坐标轴的力矩.题9图【解】11bF M x =,11aF M y -=,01=z M ,2222/b a bcF M x +=,2222/b a acF M y +-=,02=z M .【10】 已知质量为0m 的质点做螺旋运动, 其运动学方程为t r x ωcos 0=, t r y ωsin 0=,kt z =,k r ,,0ω为常量. 试求: (1)t 时刻质点对坐标原点的角动量;(2) t 时刻质点对过),,(c b a P 点, 方向余弦为),,(n m l 的轴的角动量.【解】由运动学方程求出→v ,根据定义即可求出→→→→→→++--=⨯=k r m j t t t r km i t t t r km v r m L ωωωωωωω200000000)sin (cos )cos (sin ,)]cos ()sin )([(]cos )()sin ([000000),,(a t r k t r c kt m m t r c kt b t r k l m L n m l -+-----=ωωωωωω)sin cos (00200t br t ar r n m ωωωωω--+.【11】 如题【11图所示, 质量为m 的小球安装在长为l 的细轻杆的A 端, 杆的B 端与轴21O O 垂直地固连. 小球在液体中可绕21O O 轴做定轴转动, 轴承1O 和2O 是光滑的. 转动中小球所受液体阻力与角速度成正比, ωαm F R =,α为常量. 设初始角速度为0ω,试求经多少时间后, 角速度减小为初始值的一半,以及在这段时间内小球所转圈数.(忽略杆的质量及所受阻力.)题 11图【解】由对21O O 轴的角动量定理ωαωm l ml t -=)(d d2,积分可得lt /0e αωω-=,求出α/)2ln (l t =. 将角动量定理化为l /d d θαω-=,积分可以求得αωαωθπ4/)r a d (2/00l l ==(圈)【12】 质量为m 的质点沿椭圆轨道运动, 其运动学方程为kt a x cos =, kt b y sin = (k b a ,,为常量). 用两种方法计算质点所受合力在0=t 到k t 4π=时间内所做的功.【解】(1)由动能定理)(4121212222122b a mk mv mv W -=-=.(2)用曲线积分算⎰⎰+=⋅=→→2121)d d (y ym x x m r d F W ,把轨道参数方程kt b y kt a x sin ,cos ==代入,则曲线积分化为对t 的积分,可得同样结果.【13】 试用动能定理求解7题.【解】珠子的动能定理为sF F mv N N d )21(d 2b 2n 2--=μ,参见3.7提示【14】 有一小球质量为m , 沿如题【14图所示的光滑的水平的对数螺旋线轨道滑动. 螺旋线轨道方程为θa e r r -=0, a 为常数. 已知当极角0=θ时,小球初速为0v . 求轨道对小球的水平约束力N F 的大小. (用角动量及动能定理求解, 图中δ为θe 与v 方向间夹角,a =δtg.)题14图【解】因机械能守恒,小球动能不变,因此0v v =.过O 点作z 轴竖直向上(垂直纸面向外),质点对z 轴的角动量δcos rmv L z =. 质点所受对z 轴力矩δsin N z rF M -=. 由对z 轴的角动量定理得δδsin )cos (d d0N rF rmv t -=.由于θθθθθ ar ar t r r v a r -=-===-e d d d d 0,θθ r v =. 故a v v r =-=θδtan . 将它代入角动量定理方程,得到N N arF rF rmv -=-=δtan 0 . 而δδsin sin 0v v v r r -=-== ,所以θδδδa N a r mv a r mv ar mv ar mv F e 11tan 1tan sin 2020220222020+=+=+==.【15】 已知质点所受力F 的3个分量为z a y a x a F x 131211++=,z a y a x a F y232221++=, z a y a x a F z 333231++=,系数)3,2,1,(=j i a ij 都是常量. 这些ij a 满足什么条件时与力F相关的势能存在? 在这些条件被满足的条件下, 计算其势能.【解】当0=⨯∇→F 时势能存在,要求311332232112,,a a a a a a ===. 以原点为势能零点,则)222(21132312233222211xz a zy a xy a z a y a x a V +++++-=.【16】 一带有电荷q 的质点在电偶极子的场中所受的力为3c o s 2r pq F r θ=,3sin r pq F θθ=,p 为偶极距, r 为质点到偶极子中心的距离.试证此力场为有势场.【解】)/cos (d d d )d d (d 2r pq r F r F e r e r F r F r r θθθθθ-=+=+⋅=⋅→→→→→,故为有势场 【17】 如题17图所示, 自由质点在Oxy 平面内运动, 静止中心A 和B 均以与距离成正比的力吸引质点M , 比例系数为k . 试证明势能存在并求出质点的势能.v题【17图【解】y ky x kx y ky ky x b x k b x k r F d 2d 2d )(d )]()([d --=--+--+-=⋅→→)](d [22y x k +-=.故势能存在. 以O 为势能零点,则)(22y x k V +=.【18】 试用机械能守恒定律求解8题.【解】根据机械能守恒定律,以椭圆弧最低点为势能零点,mgbmv =221,可知gb v 2=,参见3.8提示.【20】 将质量为m 的质点竖直抛上于有阻力的媒质中。
理论力学运动学习题练习
C.若物体在 10s 内的平均速度是 5m/s,则物体在其中 1s 内的位移一定是 5m
D.物体通过某位移的平均速度是 5m/s,则物体在通过这段位移一半时的速度一定
是 2.5m/s
4.对瞬时速度和平均速度,下列说法中正确的是( )
A.瞬时速度是物体在某一段时间内或某一段位移内的速度
B.瞬时速度和平均速度都能精确地描述变速运动
2.如果物体在相等时间内的位移不相等,这种运动叫做_______________,公式 v x t
求得的速度只能粗略地描述物体在 t 时间内运动的快慢,这个速度叫做_______________, 通常用符号____表示,它是一个______(填“矢量”或“标量”),其方向由__________决定。
*4.河水以恒定速率向下游流淌,某时刻从一逆水而行的游艇上掉下一只救生圈。过 10min 后船工才发现失落了救生圈,马上调转船头追赶,设调转船头所用时间不计,船对水 的速率始终不变,求从调转船头追赶到追上救生圈用时多少?
第 3 节 运动快慢与方向的描述——速度
【学习目标】 1.了解从平均速度的定义到瞬时速度概念的建立过程,理解瞬时速度才是准确描述物
3.在教材第 3 页图 1-1-1(a)中,研究的问题是地球绕太阳公转一周所需的时间, 这时__________(填“可以”或“不可以”)将地球看做质点;而图 1-1-1(b)中研究地 球绕太阳公转一周地球上不同地区季节的变化、昼夜长短的变化时__________(填“能”或 “不能”)将地球看做质点。
要精确描述物体在某时刻或经过某位置时的运动快慢就要知道运动物体在某时刻或经某位置的速度这种在某一时刻或某一位置的速度称为这是一个填矢量或标量它的大小称为简称
第一章 运动的描述
理论力学 陈立群 第10章能量方法习题解答
第十章质点系动力学——能量方法 习题解答10-1半径为r 的匀质圆轮质量均为m ,图(a )和(b )所示为轮绕固定轴O 作定轴转动,角速度为ω;图(c )为轮作纯滚动,轮心速度为v 。
试写出它们的动能。
解:(a )匀质圆轮作定轴转动, 对O 点的转动惯量为 2222321mr mr mr J O =+=,动能为2224321ωωmr J T O ==。
(b )匀质圆轮作定轴转动,对O 点的转动惯量为 222121mr mr J O ==, 动能为2224121ωωmr J T O ==。
(c )匀质圆轮作作纯滚动,ωr v =,动能为222432121mv J mv T C =+=ω10-2匀质杆OA 长l ,质量为m ,绕O 点转动的角速度为ω;匀质圆盘半径为r ,质量也为m 。
求下列三种情况下系统的动能: (1)圆盘固结于杆;(2)圆盘绕A 点转动,相对杆的角速度为ω-; (3)圆盘绕A 点转动,相对杆的角速度为ω。
解:(1)圆盘固结于杆。
对O 点转动惯量为2222221342131mr ml ml mr ml J O +=++=动能为()22223812121ωωm r l J T O +==(2)圆盘绕A 点转动,相对杆的角速度为ω-,则圆盘作平移,质心速度为ωl v =。
动能为: T=T 杆+T 盘=22222223221612121ωωωml mv ml mv J O =+=+(3)圆盘绕A 点转动,相对杆的角速度为ω,则圆盘的角速度为ω2。
T=T 杆+T 盘=()()222222222412*********ωωωωωmr l m ml J mv J C O ++=++()222321ωm r l +=。
10-3质量为m 1的匀质杆,长为l ,一端放在水平面上,另一端与质量为m 2、半径为r 的匀质圆盘在圆盘中心O 点铰接。
圆盘在地面上作纯滚动,圆心速度为v 。
求系统在此位置的动能。
大学物理质点运动学习题(附答案)
第1章 质点运动学 习题及答案1.||与 有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明.r ∆r ∆t d d r dr dt t d d v dv dt解: ||与 不同. ||表示质点运动位移的大小,而则表示质点运动时其径向长度的r ∆r ∆r ∆r ∆增量;和不同. 表示质点运动速度的大小,而则表示质点运动速度的径向分量;t d d r dr dt t d d r dr dtt d d v 和不同. 表示质点运动加速度的大小, 而则表示质点运动加速度的切向分量.dv dt t d d v dv dt2.质点沿直线运动,其位置矢量是否一定方向不变?质点位置矢量方向不变,质点是否一定做直线运动?解: 质点沿直线运动,其位置矢量方向可以改变;质点位置矢量方向不变,质点一定做直线运动.3.匀速圆周运动的速度和加速度是否都恒定不变?圆周运动的加速度是否总是指向圆心,为什么?解: 由于匀速圆周运动的速度和加速度的方向总是随时间发生变化的,因此,其速度和加速度不是恒定不变的;只有匀速圆周运动的加速度总是指向圆心,故一般来讲,圆周运动的加速度不一定指向圆心.4.一物体做直线运动,运动方程为,式中各量均采用国际单位制,求:(1)第二秒2362x t t =-内的平均速度(2)第三秒末的速度;(3)第一秒末的加速度;(4)物体运动的类型。
解: 由于: 232621261212x(t )t t dx v(t )t t dtdv a(t )t dt=-==-==-所以:(1)第二秒内的平均速度:1(2)(1)4()21x x v ms --==- (2)第三秒末的速度: 21(3)1236318()v ms -=⨯-⨯=- (3)第一秒末的加速度:2(1)121210()a ms -=-⨯= (4)物体运动的类型为变速直线运动。
5.一质点运动方程的表达式为,式中的分别以为单位,试求;(1)质点2105(t t t =+r i j ),t r m,s 的速度和加速度;(2)质点的轨迹方程。
理论力学总复习(3).
R ,质量为
m的匀质圆盘在其自身平面内作平面运动。
点速度大小为 B
在图示位置时,若已知图形上 A、B 二点的速度方向如图所示。
45 ,且知
v B ,则圆轮的动能为
②
2、已知匀质杆长L,质量为m,端点B的速度为v,则杆的动能为 ②
3、图示三棱柱重P,放在光滑的水平面上,重Q的匀质圆柱体静止释放后
(a 0 g ) sin / L 0
1、倾角为 的楔形块A质量为 m1 ,置于光滑水平面上,物块B的 质量为 m2 ,放置在楔块斜面上。系统由静止开始运动。求A、 B的相互作用力。(不计两物块之间的摩擦)
第九章 质点系动力学基础
一、是非题
1、任意质点系(包括刚体)的动量可以用其质心(具有系统的质量)的动量来 表示。 (√ ) 2、质点系中各质点都处于静止时,质点系的动量为零。于是可知如果质点系的 动量为零,则质点系中各质点必须静止。 ( ×) 3、不管质点系作什么样的运动,也不管质点系内各质点的速度如何,只要知道 质点系的总质量和质点系质心的速度,即可求得质点系的动量。 (√ ) √ 4、冲量的量纲与动量的量纲相同。 ( ) 5、质点系对某轴的动量矩等于质点系中各质点的动量对同一轴之矩的代数和。 (√ ) 6、刚体的质量是刚体平动时惯性大小的度量,刚体对某轴的转动惯量则是刚体 绕该轴转动时惯性大小的度量。 ( ) √
1、半径为r,质量为M的光滑圆柱放在光滑水平面上,如图所示。一质 量为m的小球从圆柱顶点无初速下滑,试求小球离开圆柱前的轨迹。
2、重为 W1 的物体A,沿三棱体D的光滑斜面下降,同时借一绕过滑轮 C的绳子使重为 W2 的物块B运动。三棱体D重为 W 0 ,斜面与水平 面成 角,如略去绳子和滑轮的重量,求三棱体D给凸出部分E
(完整版)《理论力学》试题库
《理论力学》试题库第一部分填空题:第一类:1,已知某质点运动方程为x=2bcoskt,y=2bsinkt,其中b、k均为常量,则其运动轨迹方程为-—————-———--,速度的大小为——-—————-———,加速度的大小为—————————-—-。
2、已知某质点运动方程为x=2cos3t,y=2sin3t,z=4t则其运动速度的大小为,加速度的大小为 .3、已知某质点运动方程为r=e ct,θ=bt,其中b、c是常数,则其运动轨道方程为——-———-—-——-———-————--,其运动速度的大小为--———————-,加速度的大小为———-————————。
4、已知某质点的运动方程为x=2bcos2kt,y=bsin2kt,则其运动轨道方程为;速度大小为 ;加速度大小为。
5、已知质点运动的参数方程为y=bt,θ=at,其中a、b为常数,则此质点在极坐标系中的轨道方程式为,在直角坐标系中的轨道方程式为。
6、已知某质点的运动方程为r=at,θ=bt,其中a、b是常数,则其运动轨道方程为—-———-——-——-——————————,其运动速度的大小为——-———————,加速度的大小为—-—-———-————。
7、已知某质点运动方程为r=at,θ=b/t,其中a、b是常数,则其运动轨道方程为---—-———--————-,其运动速度的大小为—-—-—--———,加速度的大小为———-—————.8、已知某质点的运动方程为x=at,y=a(e t-e-t)/2,其中a为常数,则其运动轨道方程为—-—-——-—---—————---———,曲率半径为——-———————。
第二类:9、质点在有心力作用下,其————————————-—-—-———均守恒,其运动轨道的微分方程为—--——-——-——————--—————,通常称此轨道微分方程为比耐公式。
10、柯尼希定理的表达式为—-——-——————--————-—-,其中等式右边第一项和第二项分别为——————————————————————---—-—————-——————-——-——-———。
《大学物理》质点力学例题(浙大)
质点力学例题1.一质点沿x 轴方向运动,其加速度随时间的变化关系为 a = 3 + 2t (SI),如果初始时质点的速度为5 m/s ,则当 t = 3 s 时,质点的速度v = __________ m/s 。
)m/s (23)3(5d )23(53023=++=++=⎰t t t t v2.质量为0.25 kg 的质点,受力F = t i (SI )的作用,式中t 为时间,t = 0 s 时该质点以v 0 = 2j m/s 的速度通过坐标原点,则该质点任意时刻的位置矢量是__________。
i F a t m 4==j i 222+=t v j i r t t 2323+=3.已知一质点的运动方程为 r = 2 t i +(2 - t2)j (SI ),则t = 2 s 时质点的位置矢量为__________,2秒末的速度为__________。
j i r 24-= j i 42-=v4.一个具有单位质量的质点在力场 F = ( t 2 - 4t ) i + ( 12t - 6 ) j (SI )中运动,设该质点在t = 0时位于原点,且速度为零。
则t 时刻该质点的位置矢量r = ____________。
j i r )32()32121(2334t t t t -+-=5.一质点从静止出发沿半径 R = 1 ( m )的圆周运动,其角加速度随时间t 的变化规律是 α = 12t 2 - 6t (SI)。
则质点的角速度ω =_________,法向加速度a n =_________,切向加速度a τ =_________。
230234d )612(t t t t tt-=-=⎰ω t t R a 6122-==ατ 2232)34(t t R a n -==ω6.一质点在水平面内以顺时针方向沿半径为2 m 的圆形轨道运动,质点的角速度与时间的关系为ω = kt 2(其中k 为常数),已知质点在第二秒末的线速度为32 m/s ,则在t = 0.5 s 时,该质点的切向加速度a τ = _______;法向加速度a n = _______。
大学物理力学习题
力学(一)质点运动学的描述一、 选择题1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向.[]2、一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m . (C) 0. (D) -2 m .(E)-5 m. []3、几个不同倾角的光滑斜面,有共同的底边,顶点也在同一竖直面上.若使一物体(视为质点)从斜面上端由静止滑到下端的时间最短,则斜面的倾角应选(A) 60°.(B) 45°. (C) 30°.(D) 15°.[]4、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是 (A) 匀加速运动.(B) 匀减速运动. (C) 变加速运动.(D) 变减速运动. (D) 匀速直线运动.[]二、填空题1、一质点沿x 方向运动,其加速度随时间变化关系为a = 3+2 t (SI) ,如果初始时质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度v =. 2、一质点沿直线运动,其运动学方程为x = 6 t -t 2 (SI),则在t 由0至4s 的时间间隔内,质点的位移大小为 _________,在t 由0到4s 的时间间隔内质点走过的路程为_________________.-12O3、灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M =.三、计算题 1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.2、有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2– 2 t 3 (SI) .试求:(1) 第2秒内的平均速度; (2) 第2秒末的瞬时速度; (3) 第2秒内的路程. 一、 DBBC 二、23m/s 3分8 m2分10 m 2分h 1v /(h 1-h 2) 3分 三、解:设质点在x 处的速度为v ,62d d d d d d 2x tx x t a +=⋅==v v 2分()x x xd 62d 02⎰⎰+=v v v2分()2 213x x +=v 1分解:(1) 5.0/-==∆∆t x v m/s 1分(2) v = d x /d t = 9t - 6t 21分 v (2) =-6 m/s 1分(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m 2分力学(二)圆周运动与相对运动一、 选择题1、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2p R /T , 2p R/T .(B) 0 , 2πR /T(C) 0 , 0. (D) 2πR /T , 0. []2、对于沿曲线运动的物体,以下几种说法中哪一种是正确的: (A) 切向加速度必不为零.(B) 法向加速度必不为零(拐点处除外).(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零. (D) 若物体作匀速率运动,其总加速度必为零.(E) 若物体的加速度a ϖ为恒矢量,它一定作匀变速率运动.[] 3、质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A)t d d v . (B) R 2υ.(C)R t 2d d v v +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v . []4、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i ϖ、j ϖ表示),那么在A 船上的坐标系中,B 船的速度(以m/s为单位)为 (A) 2i ϖ+2jϖ. (B) -2i ϖ+2j ϖ.(C) -2i ϖ-2j ϖ. (D) 2i ϖ-2jϖ.[]二、填空题1、质点沿半径为R 的圆周运动,运动学方程为223t+=θ (SI) ,则t时刻质点的法向加速度大小为a n =;角加速度β=.2、设质点的运动学方程为j t R i t R r ϖϖϖsin cos ωω+= (式中R 、ω 皆为常量) 则质点的vϖ=___________,d v /d t =_________________.3、如图所示,小船以相对于水的速度vϖ与水流方向成α角开行,若水流速度为uϖ,则小船相对于岸的速度的大小为_______________,与水流方向的夹角为_________________.三、计算题1、质点M 在水平面内的运动轨迹如图所示,OA 段为直线,AB 、BC 段分别为不同半径的两个1/4圆周.设t =0时,M 在O 点,已知运动学方程为S =30t +5t 2 (SI)αu ϖv ϖ求t =2 s 时刻,质点M 的切向加速度和法向加速度.2、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S +=其中b 、c 是大于零的常量,求从0=t开始到切向加速度与法向加速度大小相等时所经历的时间.一、 选择题1、两个质量相等的小球由一轻弹簧相连接,子剪断的瞬间,球1和球2的加速度分别为 (A) a 1=g,a 2=g. (B) a 1=0,a 2=g. (C)a 1=g,a 2=0. (D) a 1=2g,a 2=0.2、水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F ϖ如图所示.欲使物体A 有最大加速度,则恒力F ϖ与水平方向夹角θ 应满足(A) sin θ =μ.(B) cos θ =μ.(C) tg θ =μ. (D) ctg θ =μ.[]B3、一只质量为m 的猴,原来抓住一根用绳吊在天花板上的质量为M 的直杆,悬线突然断开,小猴则沿杆子竖直向上爬以保持它离地面的高度不变,此时直杆下落的加速度为(A) g .(B)g M m .(C) g MmM +. (D)g m M m M -+ . (E) g MmM -.[ ]4、一公路的水平弯道半径为R ,路面的外侧高出内侧,并与水平面夹角为θ.要使汽车通过该段路面时不引起侧向摩擦力,则汽车的速率为(A)Rg . (B)θtg Rg .(C) θθ2sin cos Rg . (D)θctg Rg[]二、填空题1、沿水平方向的外力F 将物体A 压在竖直墙上,由于物体与墙之间有摩擦力,此时物体保持静止,并设其所受静摩擦力为f 0,若外力增 至2F ,则此时物体所受静摩擦力为_____________.2、如图,在光滑水平桌面上,有两个物体A 和B 紧靠在一起.它们的质量分别为m A =2 kg ,m B =1 kg .今用一水平力F =3 N 推物体B ,则B 推A 的力等于______________.如用同样大小的水平力从右边推A ,则A 推B 的力等于___________________.3、一圆锥摆摆长为l 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角θ,则(1) 摆线的张力T=_____________(2) 摆锤的速率v=_____________.三、计算题1、如图所示,质量为m的摆球A悬挂在车架上.求在下述各种情况下,摆线与竖直方向的夹角α和线中的张力T.(1)小车沿水平方向作匀速运动;(2)小车沿水平方向作加速度为a的运动.2、一质量为60 kg的人,站在质量为30 kg的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s2的加速度上升,人对绳子的拉力T2多大?人对底板的压力多大? (取g=10 m/s2)一、 DCCB 二、f 0 3分)/(m M F + 2分)/(m M MF + 2分θcos /mg 1分θθcos sin gl2分 三、解:(1)0=α 1分mg T = 1分(2) ma T =αsin ,mg T =αcosg a /tg =α [或)/(tg 1g a -=α] 1分22g a m T += 2分解:人受力如图(1) 图2分 a m g m N T 112=-+ 1分底板受力如图(2) 图2分 a m g m N T T 2221=-'-+ 2分 212T T = 1分 N N ='由以上四式可解得 a m m g m g m T )(421212+=-- ∴5.2474/))((212=++=a g m m T N1分5.412)(21=-+=='T a g m N N N 1分力学(四)功、势能一、 选择题1、一辆汽车从静止出发在平直公路上加速前进.如果发动机的功率一定,下面哪一种说法是正确的?(A) 汽车的加速度是不变的.图(1)ϖa ϖ图(2) T ϖ g m 1(B) 汽车的加速度随时间减小.(C) 汽车的加速度与它的速度成正比. (D) 汽车的速度与它通过的路程成正比. (E) 汽车的动能与它通过的路程成正比.[]2、一个质点同时在几个力作用下的位移为:k j i r ρρρρ654+-=∆(SI)其中一个力为恒力k j i F ρρρρ953+--=(SI),则此力在该位移过程中所作的功为(A)-67 J . (B) 17 J .(C) 67 J . (D) 91 J .[]3、对功的概念有以下几种说法:(1) 保守力作正功时,系统内相应的势能增加. (2) 质点运动经一闭合路径,保守力对质点作的功为零. (3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.在上述说法中:(A) (1)、(2)是正确的. (B) (2)、(3)是正确的. (C) 只有(2)是正确的. (D) 只有(3)是正确的.[]4、有一劲度系数为k 的轻弹簧,原长为l 0,将它吊在天花板上.当它下端挂一托盘平衡时,其长度变为l 1.然后在托盘中放一重物,弹簧长度变为l 2,则由l 1伸长至l 2的过程中,弹性力所作的功为(A) ⎰-21d l l x kx . (B) ⎰21d l l x kx .(C)⎰---0201d l l l l x kx . (D)⎰--0201d l l l l x kx .[]二、填空题1、已知地球质量为M ,半径为R .一质量为m 的火箭从地面上升到距地面高度为2R 处.在此过程中,地球引力对火箭作的功为_____________________.2、如图所示,一斜面倾角为θ,用与斜面成α角的恒力F ρ将一质量为m 的物体沿斜面拉升了高度h ,物体与斜面间的摩擦系数为μ.摩擦力在此过程中所作的功W f =________________________. 三、 计算题1、一物体按规律x =ct 3 在流体媒质中作直线运动,式中c 为常量,t 为时间.设媒质对物体的阻力正比于速度的平方,阻力系数为k ,试求物体由x =0运动到x =l 时,阻力所作的功.2、一质量为m 的质点在Oxy 平面上运动,其位置矢量为j t b i t a r ρρρωωsin cos +=(SI)式中a 、b 、ω是正值常量,且a >b .(1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F ρ以及当质点从A 点运动到B 点的过程中F ρ的分力x F ρ和y F ρ分别作的功.一、 BCCC 二、)131(R R GMm -或 RGMm 32- 3分θαμθμsin sin ctg Fh mgh +-3分Fα θ三、解:由x =ct 3可求物体的速度:23d d ct tx==v 1分 物体受到的阻力大小为:343242299x kc t kc k f ===v 2分力对物体所作的功为:⎰=W W d =⎰-lx x kc 03432d 9=7273732l kc - 2分解:(1)位矢j t b i t a r ρρρωωsin cos += (SI) 可写为t a x ωcos =,t b y ωsin =t a t x x ωωsin d d -==v ,t b ty ωωcos d dy -==v在A 点(a ,0) ,1cos =t ω,0sin =t ωE KA =2222212121ωmb m m y x =+v v 2分在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v 2分(2) j ma i ma F y x ρρρ+==j t mb i t ma ρρωωωωsin cos 22-- 2分由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 2分⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω 2分习题(五)动能定理、功能原理、机械能宁恒一、 选择题1、质量为m 的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M ,万有引力恒量为G ,则当它从距地球中心R 1处下降到R 2处时,飞船增加的动能应等于(A)2R GMm (B)22R GMm(C) 2121R R R R GMm -(D) 2121R R R GMm -(E) 222121R R R R GMm[ ]2、今有一劲度系数为k 的轻弹簧,竖直放置,下端悬一质量为m 的小球,开始时使弹簧为原长而小球恰好与地接触,今将弹簧上端缓慢地提起,直到小球刚能脱离地面为止,在此过程中外力作功为(A)kg m 422 (B)kg m 322(C)kg m 222(D)kg m 222(E)kg m 224[]3、如图所示,子弹射入放在水平光滑地面上静止的木块而不穿出.以地面为参考系,下列说法中正确的说法是(A) 子弹的动能转变为木块的动能. (B) 子弹─木块系统的机械能守恒. (C) 子弹动能的减少等于子弹克服木块阻力所作的功. (D) 子弹克服木块阻力所作的功等于这一过程中产生的热.[]二、填空题1、如图所示,质量m=2 kg的物体从静止开始,沿1/4圆弧从A滑到B,在B处速度的大小为v=6 m/s,已知圆的半径R=4 m,则物体从A到B的过程中摩擦力对它所作的Array功W=_________.2、质量m=1kg的物体,在坐标原点处从静止出发在水平面内沿x轴运动,其所受合力方向与运动方向相同,合力大小为F=3+2x(SI),那么,物体在开始运动的3 m内,合力所作的功W=________________;且x=3 m时,其速率v=_________________.三、计算题1、某弹簧不遵守胡克定律. 设施力F,相应伸长为x,力与伸长的关系为F=52.8x+38.4x2(SI)求:(1)将弹簧从伸长x1=0.50 m拉伸到伸长x2=1.00 m时,外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17 kg 的物体,然后将弹簧拉伸到一定伸长x2=1.00 m,再将物体由静止释放,求当弹簧回到x1=0.50 m时,物体的速率.(3)此弹簧的弹力是保守力吗?2、如图所示,质量m为0.1 kg的木块,在一个水平面上和一个劲度系数k为20 N/m的轻弹簧碰撞,木块将弹簧由原长压缩了x=0.4 m.假设木块与水平面间的滑动摩擦系数 k为0.25,问在将要发生碰撞时木块的速率v为多少?CCC-42.4 J18 J6 m/s解:(1) 外力做的功=31 J(2) 设弹力为F ′= 5.34 m/s(3) 此力为保守力,因为其功的值仅与弹簧的始末态有关.解:根据功能原理,木块在水平面上运动时,摩擦力所作的功等于系统(木块和弹簧)机械能的增量.由题意有222121v m kx x f r -=-而mg f k r μ=由此得木块开始碰撞弹簧时的速率为mkx gx k 22+=μv= 5.83 m/s[另解]根据动能定理,摩擦力和弹性力对木块所作的功,等于木块动能的增量,应有20210v m kxdx mgx x k -=--⎰μ其中2021kx kxdx x =⎰力学(六)动量守恒定律一、 选择题⎰⎰⋅+==21d )4.388.52(d 2x x xx x xF W ρρ⎰⎰⋅=-==1212d d 21'2x x x x Wx F x F m ρρv mW2=v︒30v ϖ2 1、质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为(A) m v . (B)m v .(C) m v . (D) 2m v .[]2、质量为20 g 的子弹沿X 轴正向以500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为 (A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s .[]3、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力) (A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒. (C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒. (D) 总动量在任何方向的分量均不守恒.[]4、质量为20 g 的子弹,以400 m/s 射入一原来静止的质量为980 g 的摆球中,(A) 2 m/s . (B) 4 m/s .(C) 7 m/s . (D) 8 m/s .[]二、填空题1、两块并排的木块A和B,质量分别为m 1和m 2 ,静止地放置在光滑的水平面上,一子弹水平地穿过两木块,设子弹穿过两木块所用的时间分别为∆t 1 和∆t 2 ,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为____ ,木块B 的速度大小为______.2、一物体质量M =2 kg ,在合外力i t F ϖ)23(+=(SI )的作用下,从静止开始运动,式中i ϖ为方向一定的单位矢量,则当t=1 s 时物体的速度1v ϖ=_________.A CA B233、一质量为30 kg的物体以10 m·s-1的速率水平向东运动,另一质量为20 kg 的物体以20 m·s-1的速率水平向北运动。
《理论力学》第十章 质心运动定理 动量定理 习题共7页
第十章 质心运动定理 动量定理 习题解[习题10-1] 船A 、B 的重量分别为kN 4.2及kN 3.1,两船原处于静止间距m 6。
设船B 上有一人,重N 500,用力拉动船A ,使两船靠拢。
若不计水的阻力,求当两船靠拢在一起时,船B 移动的距离。
解:以船A 、B 及人组成的物体系统为质点 系。
因为质点系在水平方向不受力。
即:设B 船向左移动了S 米, 则A 船向右移动了6-S 米。
由质点系的动量定理得:[习题10-2] 电动机重1P ,放置在光滑的水平面上,另有一匀质杆,长L 2,重2P ,一端与电动机机轴固结,并与机轴的轴线垂直,另一端则刚连一重3P 的物体,设机轴的角速度为ω(ω为常量),开始时杆处于铅垂位置并且系统静止。
试求电动机的水平运动。
解:以电动机、匀质杆和球构成的质点系为研究对象。
其受力与运动分析如图所示。
匀质杆作平面运动。
因为质点系在水平方向上不受力,所以 由动量定理得:这就是电动机的水平运动方程。
[习题10-3] 浮动起重机起吊重kN P 201=的重物,起重机重kN P 2002=,杆长m OA 8=,开始时杆与铅垂位置成060角,忽略水的阻力,杆重不计,当起重杆OA 转到与铅垂位置成030角时,求起重机的位移。
解:以重物和起重机构成的物体系统为质系。
因为质点系在水平方向不受力,所以0=x Fconst x C =。
即OA 运动前后,质点系的质心保持不变。
也就是质心守恒。
当OA 杆转到与铅垂位置成030角时,质点系质心的横坐标为: 当OA 杆转到与铅垂位置成030角时, 质点系质心的横坐标为: 因为质心守恒,所以21C C x x =,即:故,当起重杆OA 转到与铅垂位置成030角时,起重机向左移动了0.2662米。
[习题10-4] 匀质圆盘绕偏心轴O 以匀角速度ω转动。
重P 的夹板借右端弹簧推压面顶在圆盘上,当圆盘转动时,夹板作住复运动。
设圆盘重W ,半径为r ,偏心距为e ,求任一瞬时作用于基础和别螺栓的动反力。
理论力学 第7章质点动力学习题解答
1第七章 质点动力学 习题解答7-1 质量为40 g 的小球M 以初速度v =8 j (m/s)从点A (0, 0, 0.3m)抛出后,受到沿i 方向恒定的电磁力作用,其大小F = 0.8 kN ,如图所示。
求小球M 到达xy 平面点B 时,点B 的坐标和小球的速度。
解:取小球M 为研究对象,小球所受到的主动力为 k i F mg F R -=由质点运动微分方程R F m =r ,写出投影式F x m = ,0=ym ,mg z m -= 初始条件为000====t t y x ,3.00==t z ;000====t t z x,v y t ==0 解得质点的速度方程为t mFx= ,v y = ,gt z -= 质点的运动方程为 22t m F x =,vt y =,3.022+-=t gz 当0=z 时,小球到达xy 平面,由03.022=+-=t g z 解得s 247.01=t ,于是小球到达xy 平面时的各速度分量为m/s 7.494811===t mFxt t ,m/s 81===v y t t ,m/s 425.211-=-==gt z t t . 各坐标为m 2.6122211===t m F x t t ,m 979.111===vt y t t ,m 137.23.02211-=+-==t gz tt .7-2 图示A ,B 两物体的质量分别为m A 和m B ,二者用一细绳连接,此绳跨过一定滑轮,滑轮半径为r 。
运动开始时,两物体的高度差为h ,且m A > m B ,不计滑轮质量。
求由静止释放后,两物体达到相同高度时所需的时间。
解:分别取A 和B 物体为研究对象,受力图如图示,列出动力学方程TA A A A F W x m -= , TB B B B F W x m -= , 式中g m W A A =,g m W B B =,根据题意,有TB TA F F =,B A x x -=,B A xx -= 初始条件00==t A x ,h x t B ==0,00==t A x,00==t B x . 解以上初值问题,得题7-2图题7-2受力图2g m m m m xBA B A A +-= , ()22gt m m m m x B A BA A +-=g m m m m x B A B A B +--= , ()h gt m m m m x B A BA B ++--=22令B A x x =,即()()h gt m m m m gt m m m m B A BA B A B A ++--=+-2222解得当两物体达到相同高度时 ()()gm m h m m t B A B A -+=...7-3 质量为m 的质点M 受到引力F = -k 2m r 的作用,其中k 为常量,运动开始时,质点M在轴x 上,OM 0 = b ,初速度v 0与轴x 的夹角为β,如图所示。
理论力学习题答案(修改6月19日)
⃗rc
=
m1⃗r1
+
m2⃗r2 M
+ m3⃗r3
=
1 3
( 2ˆi + ˆj +
) 3kˆ ,
⃗vc
=
⃗r˙c
=
ˆj
+
1 kˆ, 3
p⃗c = M⃗vc = 3ˆj + kˆ,
∑3 J⃗ = mi⃗ri × ⃗vi = −3ˆi + 3kˆ,
i=1
T
=
∑3
1 2
mi
vi2
=
4.
i=1
4. 证明:两质点系的角动量为,J⃗ = R⃗ c × M V⃗c + ⃗r × µ⃗v,其中,M = m1 + m2, µ 为折合质量,⃗r 为相对位矢,c 表示质心。
6
6. 半径为 r 的均质圆球在半径为 R 的固定圆柱的内表面滚动,试求圆球绕平
衡位置做微振动的运动方程及周期。
解:
vc
=
(R
−
r)θ˙, ω
=
(R
− r
r)θ˙ , Ic
=
2 mr2 5
T
=
1 2
mvc2
+
1 2
Icω2
= 7 m(R − r)2θ˙2 10
V = mg (R − (R − r) cos θ)
l
2± 2 g
7
8. 如果上题的双摆系统不是系在固定点上,而是系在一个可以在光滑水平杆 上自由运动的质量为 2m 的小环上,继续令 m1 = m2 = m,l1 = l2 = l,试 求系统的运动方程及周期。
解:
L=T −V
=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
o
v
i
A x
(2)向心力的平均值多大和方向 答案:(d) (a) 0
mv2 (c) R
v2 (b) m R 2mv2 (d) R
t2
2mv2 F j R
t1 p 2mv F j R t t v
Fdt
一船浮于静水中,船长L,质量为m,一个 质量也为m的人从船尾走到船头。不计水和 空气的阻力,则在此过程中船将 (A)不动(B)后退L (C)后退L/2(D)后退L/3
B
v
O R
mg
v0
2
A
v m g cos m R
v gRcos
小球从B点时脱出后, 作抛体运动。经过t时,到 达O点,则由抛体运动规律, 可知
B
vt
1 2 gt 2
O R
12 rOB v t gt 2
mg
从向量几何关系,易得
1 2 vt R tan gt cos 2 2 1 sin 2 v gR 解之,得: 2 cos
如图所示,一个小球以速 度v0从一半径为R的竖直圆 轨道最低点A处水平射出, 沿光滑圆轨道运动到B点脱 离轨道抛出,然后经过圆 心O,求小球初始速度v0 。
B
O
v0
R
A
解:
小球运动到B点时刚 好脱出,这时轨道正好没 有支持力,向心力由重力 在BO方向上的分量提供。 设小球运动到B点时速度 为v,速度方向与水平方 向夹角为,则由牛顿第 二定律,有 2
相撞小车上的小球
小车A和B的质量均为M,B车上挂有质量为 M/4的金属球C(如图),C球相对于B车静 止,其悬线长为L=0.4m。两车以相同的速率 v=1.8m/s在光滑水平上相向而行,相碰后扣 在一起。(设碰撞时间很短,g=10m/s2)求: (1) C球摆到最高点时的速度。 (2) C球到最高点时,摆线与竖直方向的夹角。
3-20 一人从10.0m深的井中提水,起 始桶中装有10.0kg的水,由于水桶漏水,每 升高1.00m要漏去0.20kg的水.求水桶被匀 速地从井中提到井口,人所作的功.
10 一人造地球卫星质量为m, 在地球 表面上空2倍于地球半径R的高度沿圆轨道 运行,用m、R、引力常数G和地球质量M 表示(1)卫星的动能;(2)系统的引力势能. 2 Mm v Mm 2 G ,得 mv G 解 (1) 由 m 2 3R 3R (3R) 1 Mm 2 Ek mv G R 2R 2 6R Mm (2) EP G 3R
O
dp d [(l y )v] l lg N dt dt y 2 v (l y )a 2 v 2ay, a g 作用于桌面上的压力等于已落 N 3gy 到桌面上链条的重量的三倍。
y
质量为M的木块放置在光滑水平桌面上, 质量为m,速度为v0的子弹水平射入木块, 子弹在木块内经距离d后相对于木块静止。 假设木块对子弹的阻力恒定,则从子弹射 入木块到子弹相对于木块静止这段时间内, 木块向前滑动的距离L为————。
水平光滑细杆上穿一质量为m的小环,环上 系有长度为l的细绳,其另一端挂一质量为M 的小球。用手将小球拉到杆的高度,并将绳 拉直,然后将小球自静止释放。当绳与杆角 度为时,试求:(1)此时绳的角速度; (2)此时小环离开出发点的距离x。
O m x l M
mvm MvM , x 0
Ml sin vm mM
vM ,m l
vM , x vM ,m, x vm l sin vm
M xl (1 cos ) mM
1 2 1 2 mv m Mv M Mgl sin 0 2 2 2(m M ) g sin vM , y l cos 2 l (m M cos )
y
v0
u
v0 cos
m v v0 cos u o M m x m v u M m v0 sin mv0 sin 则 x vt v g M mg u
x
x
[例] 有一质量为m0的宇宙飞船以初速 v0 穿过宇宙 尘埃,由于尘埃粘贴到飞船上,使飞船的速度发 生改变.求飞船的速度与其在尘埃中飞行时间的 关系. (设想飞船的外形是面积为S 的圆柱体)
(SI )
运动,则在t=2s到t=4s时间内,作用在该质点上的 合外力所做的功为________。
480J
3、质点自某高度以初速 v0 水平抛出,已知落地时速率 为 v ,试求其运动时间为多 少? 1 1 2 2 解:由机械能守恒定律 mv0 mgh mv 2 2
1 2 又有竖直方向 h gt 2 解得 t
A
B
(A) 弹簧由初态恢复为原长的过程中,以A、 B、弹簧为系统,动量守恒 (B) 在上述过程中,系统机械能守恒 (C) 当A离开墙后,整个系统动量守恒,机 械能不守恒 (D) A离开墙后,整个系统机械能守恒,动 量为零
B
动能定理的应用
• 质量为5Kg的质点,由静止开始沿曲线
2 r 2t i 3tj
mv0 (m M )v
1 2 fL Mv 2 1 2 1 2 f ( L d ) mv mv 0 2 2 m L d mM
Eg3-34 如图,物体质 量 m 2 kg ,沿固定 的四分之一圆弧由A静 止滑下,到达B点时的 1 速率 v 6 m s ,求摩 擦力作的功.
m2
v0
r0 4 R
v R m1
库伦散射:一个粒子从远处以速率v0射向 一个原子序数为Z的重原子核附近,受到库 仑力的作用而改变了运动方向。原子核离 粒子原运动路径延长线的垂直距离,称为瞄 准距离b,试求在散射过程中粒子离原子核 最近距离。
A
Hale Waihona Puke R=4 m O m=2 kg
不动
v=6 m·-1 s
v B
解法1 应用动能定理求 A R=4m O 1 WG WFf WFN mv 2 0 2 m=2kg WG mgR WFN 0 ; v B 1 v=6m·-1 s WFf mv 2 mgR 44 J 不动 2 Ff 解法2 应用功能原理求 FN WFf Ek 2 Ep2 (Ek1 Ep1 ) 1 mv 2 mgR G=mg 2
解:分析在最高位置时, y 系统水平方向的动量守
u
v0
恒。以地面为参考系,
取图示坐标。
o
x
设人向后抛出物体后水平速率为 v ,则(哪一 式是正确的?)
m M v0 cos Mv mu m M v0 cos Mv mv0 u m M v0 cos Mv mv u
完全弹性碰撞
• 质量为M,高为h的滑轨,放在光滑水平地面上, 其底部恰与水平面相切。质量为m的小物块自滑 轨顶端由静止下滑,则 (1)物块滑到地面的速度为v=___________; (2)整个下滑过程中,滑轨对物块所作的功为 W=______。
v
2 gh M M (1 ) m m
1 W mgh M 1 m
3-34 如图所示,一个质量为 m 的小球, 从内壁为半球形的容器边缘点 A 滑下.设容 器质量为m’,半径为R,内壁光滑,并放置在 摩擦可以忽略的水平桌面上.开始时小球和 容器都处于静止状态.当小球沿内壁滑到容 器底部的点B时,受到向上的支持力为多大?
探究学习一例 —— 行星的俘获截面 行星的俘获截面: 一无动力的宇航 器以靶距b向目标行星靠近,行星的 半径为R.由于行星引力作用,存在 一个临界值b0 >R.对于b > b0,宇航 器将从行星旁边掠过,而不会命中 在行星着陆;反之若b ≤b0,则宇航 2 器将命中该行星.定义面积 π b0 为行星对宇航器的俘获截面,设M为行星的质量,v0为 宇航器的初速.忽略太阳及其它因素的影响,临界值b0 应满足什么关系?
v0
A
比较动力学和运动学得到的结果,可知
1 sin gR cos v gR 2 cos
2 2
于是,可得
3 cos 3
3 v gR 3
2
从A到B过程中,没有非保守力做功,小 球的机械能守恒,即
1 2 1 2 mv 0 mv mgR (1 cos ) 2 2 v0 gR (2 3 ) 由此即得
结果讨论:
MG GMm / R b0 R 1 2 2 R 1 2 Rv0 mv0 / 2
S0 b R [1
2 0 2
E p ( R) Ek ,0
]
Ek ,0 0, S0
Ep 0, S0 R
2
例5. 发射一宇宙飞船去考察一质量为 m1 ,半径 为 R 的行星,当飞船静止在空间距行星 4 R时, v0 m2 m2 以速度 发射一质量为 的仪器( 远小于 飞船质量),要使该仪器刚好掠着行星表面着 陆, 角应是多少?着陆滑行初速度为多大?
v v0
2
2
讨论:本题初看以为是力学中的运动学问题,
往往会直接运用运动学方法求解。但会发现已 知条件少,求解周折,而采用能量方法却十分 简洁
g
例题5、 质量为 的人手中拿着一质量为 m 的 M 物体。此人用与水平面成 角的速率0 向前跳 v
去,当他到达最高点时,他将物体以相对于人为 u 的水平速率向后抛出,问由于抛出物体,他跳跃 的距离增加了多少?
非弹性碰撞
• 在由两个物体组成的系统不受外力作用而 发生非弹性碰撞的过程中,系统的 (A) 动量和动能都守恒 (B) 动量和动能都不守恒 (C) 动量守恒,动能不守恒 (D) 动量不守恒,动能守恒
C
守恒条件
• 两木块A、B的质量分别为m1和m2,用一 个质量不计、劲度系数为k的弹簧连接起 来。把弹簧压缩x0并用线扎住,放在光滑 水平面上,A紧靠墙壁,如图所示,然后 烧断扎线。判断下列说法哪个正确: