连锁遗传和性连锁
普通遗传学4第四章连锁遗传和性连锁

21379
21096
672
43785
%
1.5
48.5
48.5
1.5
csh 总数 粒数 638
结果:亲本组合=(21379+21096)/43785×100%=97.01%
重新组合=(638+672)/843785×100%=2.99%
∴相斥组的结果与相引组的结果一致,同样证实F1所成的四种配子数不等, C-sh、c-Sh连系在一起的为多。
是F1配子的种类及其比例的具体反映。
遗传学第四章 5
当前第5页\共有62页\编于星期四\18点
2.连锁遗传的解释:
可用测交的方法进行连锁遗传的分析:
a).相引组:玉米(种子性状当代即可观察)
有色、饱满CCShSh × 无色、凹陷ccshsh ↓
F1
有色饱满
×
CcShsh
无色凹陷 ccshsh
配子 CSh
例如玉米有色饱满基因: (1)基因在染色体上呈直线排列; (2)等位基因位于一对同源染色体上的两个不同成员上; (3)同源染色体上有两对不同基因时(非等位基因),它们处于不同的位置;
(4)减数分裂前期I的偶线期中各对同源染色体配对(联会),粗线期 已形成四合体,双线期同源染色体出现交叉,非姐妹染色单体在粗 线期时发生交换,随机分配到子细胞内,发育成为配子。
遗传学第四章
12
12
当前第12页\共有62页\编于星期四\18点
遗传学第四章
13
13 当前第13页\共有62页\编于星期四\18点
遗传学第四章
14
14
当前第14页\共有62页\编于星期四\18点
3.完全连锁与不完全连锁:
*不完全连锁(部分连锁):F1可产生多种配子,后代出现新性状的组合,但 新组合较理论数为少。非等位基因完全连锁的情形少见,一般是不完全连 锁。 上节所举的玉米颜色基因Cc和籽粒饱满度基因Shsh的例子就是位于玉 米第9对染色体上的两对不完全连锁的非等位基因。 * 由连锁遗传相引组和相斥组例证中可见两个问题: (1).相引组和相斥组都表现为不完全连锁,后代中均出现重组类型, 且重组率很接近,其重组型配子是如何出现的? (2).为何重组型配子数<亲型配子数,其重组率<50%?
连锁遗传和性连锁培训讲义

连锁遗传和性连锁培训讲义连锁遗传和性连锁遗传是遗传学中的两个重要概念,对于理解遗传现象和进行遗传研究非常关键。
本文将以连锁遗传和性连锁遗传为主题,给你们讲解这两个概念的基本原理和实验方法。
一、连锁遗传连锁遗传是指基因在染色体上的相对位置较靠近,因此往往以相同的方式继承给子代。
这种情况下,这些基因很有可能同时或几乎同时被传递给后代,而不会发生重组。
连锁遗传的现象主要体现在同一条染色体上的基因。
连锁遗传现象的发现主要源于第一位将此现象描述清楚的科学家摩尔根。
摩尔根通过对果蝇的遗传分析发现,有些基因表现出无法纷合的特点,而是以固定的方式遗传给后代。
这些基因被称为连锁基因。
连锁基因一般存在于同一条染色体上的不同位点,由于它们的位置紧密相连,所以会一起被遗传。
如何确定基因是否连锁?科学家们通过实验进行了一系列的研究,总结出了一些判断规则。
首先,科学家会选择有明显特征突变的果蝇进行实验,比如有不同翅膀颜色等特征,然后进行交配。
如果交配后的后代都表现出相同的突变特征,那么可以初步认定这些基因连锁。
接下来,科学家还可以通过对大量后代进行进一步观察和实验,确认基因是否真正连锁。
根据连锁遗传的原理,科学家可以通过研究连锁基因,确定基因在染色体上的相对位置,进一步揭示遗传规律。
二、性连锁遗传性连锁遗传是指某些基因只存在于性染色体上,而不在常染色体上。
这意味着这些基因表现出与性别相关的遗传模式,仅仅由父(母)亲传给子代。
性连锁遗传的发现也得益于果蝇的研究。
早期的实验发现,果蝇的性别是由染色体决定的,雄果蝇具有XY染色体,而雌果蝇具有XX染色体。
由于染色体有性别差异,并且染色体上的基因也存在性别差异,因此某些基因只存在于性染色体上,只能由父(母)亲传给子代。
性连锁遗传可以通过观察后代的性别来确定基因的遗传方式。
如果某个基因属于性连锁遗传,我们可以观察到这个基因只出现在某一性别的个体中。
比如,对于雄性连锁遗传的基因,只有雄性个体表现出突变特征,而雌性个体则没有。
连锁遗传和性连锁

连锁遗传和性连锁连锁遗传和性连锁是进化中的重要概念之一,它们描述了基因在染色体上的分布和遗传方式。
本文将详细讨论这两个概念及其相关性,以及它们在遗传研究中的重要性。
首先,我们来了解连锁遗传。
连锁遗传是指基因位于同一染色体上的现象,这些基因在遗传过程中往往以固定的方式一起传递给后代,因为它们很少会发生重组。
当两个基因在同一染色体上时,它们通常一起随着染色体的移动而传递给后代。
因此,这两个基因的连锁度很高。
连锁遗传在基因图谱绘制和基因定位上起着重要的作用。
通过观察某个物种或家族的连锁关系,我们可以确定某些基因之间的相对位置,并进一步理解它们如何在遗传过程中相互作用。
这有助于研究人们对某些特定属性的遗传方式。
例如,在果蝇中,人们发现单倍型连锁遗传与眼色的相关性,这对于进一步研究进化和表型相关性非常重要。
然而,连锁遗传并不是永久的。
当发生基因重组时,位于同一染色体上的基因可以通过交叉互换的方式发生重新组合。
这就是我们接下来要讨论的性连锁。
性连锁是指基因位于性染色体上的现象。
在人类中,性连锁通常指的是X染色体和Y染色体上的基因。
由于在性染色体上的重组发生率相对较低,因此性连锁基因通常以非常高的连锁度相互关联。
这也是为什么许多性连锁疾病在男性中更为普遍的原因,因为男性只有一个X染色体,而女性有两个。
性连锁在遗传研究中有着重要的意义。
通过研究性连锁疾病,我们可以更好地了解疾病的发生机制。
例如,血友病是一种X 连锁遗传疾病,主要影响男性。
这是因为男性只有一个X染色体,一旦携带异常的血友病基因,就无法通过正常的X染色体来抵消它的效应。
另一方面,雌雄同体动物往往没有性连锁遗传。
这是因为它们的性别由其他方式决定,例如环境因素或基因的互作。
然而,在一些雌雄同体动物中,我们仍然可以观察到连锁遗传的存在,这与某些性染色体的非性别决定角色有关。
总结一下,连锁遗传和性连锁是遗传学中重要的概念。
连锁遗传指基因在染色体上的分布和传递方式,而性连锁则是指基因位于性染色体上的连锁遗传。
连锁遗传和性连锁

连锁遗传和性连锁(一)名词解释:1.交换:指同源染色体的非姊妹染色单体之间的对应片段的交换,从而引起相应基因间的交换与重组。
2.交换值(重组率):指同源染色体的非姊妹染色单体间有关基因的染色体片段发生交换的频率。
3.基因定位:确定基因在染色体上的位置。
主要是确定基因之间的距离和顺序。
4.符合系数:指理论交换值与实际交换值的比值,符合系数经常变动于0—1之间。
5.干扰(interference):一个单交换发生后,在它邻近再发生第二个单交换的机会就会减少的现象。
6.连锁遗传图(遗传图谱):将一对同源染色体上的各个基因的位置确定下来,并绘制成图的叫做连锁遗传图。
7.连锁群(linkagegroup):存在于同一染色体上的基因群。
8.性连锁(e某linkage):指性染色体上的基因所控制的某些性状总是伴随性别而遗传的现象,又称伴性遗传(e某-linkedinheritance)。
9.性染色体(e某-chromoome):与性别决定有直接关系的染色体叫做性染色体。
10.常染色体(autoome):性染色体以外其他的染色体称为常染色体。
同配性别11.限性遗传(e某-limitedinheritance):是指位于Y染色体(某Y型)或W染色体(ZW型)上的基因所控制的遗传性状只限于雄性或雌性上表现的现象。
12.从性遗传(e某-influencedinheritance):常染色体上基因所控制的性状,在表现型上受个体性别的影响,只出现于雌方或雄方;或在一方为显性,另一方为隐性的现象。
13.交叉遗传:父亲的性状随着某染色体传给女儿的现象。
14.连锁遗传:指在同一同源染色体上的非等位基因连在一起而遗传的现象。
(二)是非题:1.雄果蝇完全连锁是生物界少见的遗传现象。
这仅指某染色体上的连锁群而言。
因为它的某染色体只有一条,所以,不会发生交换。
(-)2.基因连锁强度与重组率成反比。
(+)3.基因型+C/Sh+的个体在减数分裂中有6%的花粉母细胞在Sh和C之间形成一个交叉,那么,所产生的重组型配子++和ShC将各占3%。
遗传学

第五章连锁遗传和性连锁(一) 名词解释:1.交换:指同源染色体的非姊妹染色单体之间的对应片段的交换,从而引起相应基因间的交换与重组。
2.交换值(重组率):指同源染色体的非姊妹染色单体间有关基因的染色体片段发生交换的频率。
3.基因定位:确定基因在染色体上的位置。
主要是确定基因之间的距离和顺序。
4.符合系数:指理论交换值与实际交换值的比值,符合系数经常变动于0—1之间。
5.干扰(interference):一个单交换发生后,在它邻近再发生第二个单交换的机会就会减少的现象。
6.连锁遗传图(遗传图谱):将一对同源染色体上的各个基因的位置确定下来,并绘制成图的叫做连锁遗传图。
7.连锁群(linkage group):存在于同一染色体上的基因群。
8.性连锁(sex linkage):指性染色体上的基因所控制的某些性状总是伴随性别而遗传的现象,又称伴性遗传(sex-linked inheritance)。
9.性染色体(sex-chromosome):与性别决定有直接关系的染色体叫做性染色体。
10.常染色体(autosome):性染色体以外其他的染色体称为常染色体。
同配性别11.限性遗传(sex-limited inheritance):是指位于Y染色体(XY型)或W染色体(ZW型)上的基因所控制的遗传性状只限于雄性或雌性上表现的现象。
12.从性遗传(sex-influenced inheritance):常染色体上基因所控制的性状,在表现型上受个体性别的影响,只出现于雌方或雄方;或在一方为显性,另一方为隐性的现象。
13.交叉遗传:父亲的性状随着X染色体传给女儿的现象。
14.连锁遗传:指在同一同源染色体上的非等位基因连在一起而遗传的现象。
(二) 是非题:1.雄果蝇完全连锁是生物界少见的遗传现象。
这仅指X染色体上的连锁群而言。
因为它的X染色体只有一条,所以,不会发生交换。
(-)2.基因连锁强度与重组率成反比。
(+)3.基因型+ C/Sh +的个体在减数分裂中有6%的花粉母细胞在Sh和C之间形成一个交叉,那么,所产生的重组型配子++和 Sh C 将各占3%。
连锁遗传与性连锁培训讲义

连锁遗传与性连锁培训讲义连锁遗传与性连锁培训讲义一、引言连锁遗传和性连锁是生物学中一种重要的遗传现象,对于理解基因组的组织、基因的定位以及遗传病的传播具有重要意义。
本次培训将介绍连锁遗传和性连锁的定义、机制以及实际应用。
二、连锁遗传1. 定义连锁遗传是指两个或多个基因在染色体上的相对位置固定,它们在遗传上有着密切的联系,总是以相同的方式遗传给下一代的现象。
2. 机制连锁遗传的现象是由于两个或多个基因位点间的共位性导致的。
共位基因位点是指位于同一染色体上,距离足够近而不发生重组的遗传标记。
3. 实例连锁遗传现象最早是由托马斯·亨特·摩尔根和他的研究小组在果蝇实验中发现的。
他们观察到两对基因座A和B会同时遗传给下一代,而不会与其他染色体上的基因发生重组。
三、性连锁1. 定义性连锁是指基因位于性染色体上,并且由于性染色体的特殊性导致这些基因在遗传上的性别特异性。
2. 机制性连锁是由于性染色体在雄性和雌性个体中的差异造成的。
对于雄性个体,由于它们有XY染色体,因此只需要一个突变的等位基因就会表现出突变的特征。
而对于雌性个体,由于它们有XX染色体,需要两个突变的等位基因才会表现出突变的特征。
3. 实例最典型的性连锁现象是人类的遗传性状血友病。
血友病是一种由于凝血因子基因突变引起的疾病,该基因位于X染色体上,因此主要影响雄性个体。
四、连锁遗传和性连锁的应用1. 基因组定位连锁遗传和性连锁的现象可以帮助科学家在基因组中定位特定基因的位置。
通过分析连锁遗传的数据,可以确定不同基因位点之间的相对距离,这对于构建基因组图谱和寻找遗传病基因具有重要意义。
2. 遗传病研究连锁遗传和性连锁的现象使得研究人员可以更好地理解基因突变和遗传病的传播方式。
通过分析家系中的连锁遗传模式,可以确定遗传病的致病基因,并为疾病的预防、治疗提供参考。
3. 种群遗传学研究连锁遗传和性连锁的概念对于种群遗传学研究也具有重要意义。
遗传学第四章连锁遗传定律

A
B
A
b
A
B
A
b
a
B
a
b
a
B
a
b
(4) 经过染色单体节段的交换,形成四种基因组合的染色单 体
(5) 四种基因组合的染色单体,经过两次细胞分裂分配到
四个子细胞中去,以后发育成四种配子,其中两个是
亲本组合配子,两个是重新组合配子。连锁基因发生
交换有一定的频率,不交换的多(亲型的多),交换
的少(重组的少)。
c2+2cd
ppll :
d2
例题1:
香豌豆中紫花P是红花p的显性,长形花粉L是圆形花粉l 的显性,进行下面试验,计算配子比例。
第一组:
P
紫花长花粉PPLL×红花、园花粉ppll
F1
紫花、长花粉PpLl
F2 表现型
紫长
PL
个体数
4831
理论数
3910.5
(按9:3:3:1 )
紫园 P ll 390 1303.5
基因型
CcShsh Ccshsh
表现型
有色饱满 有色凹陷
实得粒数 4032
149
%
48.2
1.8
cSh ccShsh 无色饱满 152 1.8
csh ccshsh 无色凹陷 4035 48.2
无色凹陷 ccshsh
csh 总数
8368 100
重新组合(互换率)=149+152/8368=3.6%
利用自交法也可获得交换值。如前面的香豌豆杂交试验。
摩尔根,美国遗传学家因在 果蝇的遗传学研究中取得重 大发现获诺贝尔奖
Thomas Hunt Morgan
基因在染色体上有一定位置,并呈直线排列。设Aa、Bb是位 于一对同源染色体上的两对非等位基因,基因的行动只能听 命于染色体行为,即当配子形成时,位于同一染色体上的AB 和ab连锁基因,只能作为一个整体,随着同源染色体两个成 员的分离而进入不同配子,因此形成的配子只有两种亲型, 没有重组型出现,通过F1自交或测交,其后代个体的表现型 只 表 现 为 亲 本 组 合 , 这 种 遗 传 现 象 称 为 完 全 连 锁 ( complete linkage)。完全连锁的两对非等位基因的遗传表现,与一对基 因的表现相同。
遗传学5第四章连锁遗传和性连锁

不发生交换者93个
934=372个配子 372亲型配子
重组率 = 14/400 = 3.5%
某两对连锁基因之间发生交换的孢母细
胞的百分数,恰恰是重组型配子(又称
交换型配子)百分数可编辑的ppt 2倍
13
可编辑ppt
14
第二节 交换值及其测定
一、交换值 严格地讲是指同源染色体的非姊妹染色单 体间有关基因的染色体片段发生交换的频 率。 就一个很短的交换染色体片段来说,交换 值就等于重组率。 在较大的染色体区段内,由于双交换或多 交换常可发生,因而用重组率来估计的交 换值往往偏低。
现象作出解释。Morgan等(1911)以果
蝇为试验材料,通过大量遗传研究,对
连锁遗传现象作出了科学的解释。
两对基因:
眼色 红眼-显性(pr+)
紫眼-隐性(pr)
翅长 长翅-显性(vg+)
残翅-隐性(vg)
可编辑ppt
5
P pr+ pr+ vg+vg+ prprvgvg
测交 F1 pr+prvg+vg♀ prprvgvg♂
可编辑ppt
9
可编辑ppt
10
图4-6 交换与重组型可编辑配ppt子形成过程的示意1图1
三、交换及其发生机制
交换:同源染色体的非姊妹染 色单体之间的对应片段的交 换,从而引起相应基因间的 交换与重组
可编辑ppt
12
100个孢母细胞内,
发生有效交换者7个: 74=28个配子 14亲型配子
14重组型配子
PL = pl = 44%
Pl = pL = (50-44)% = 6%
交换值 = 6%*2 = 12% 可编辑ppt
第4章连锁遗传和性连锁2

Csh
cSh
7
7
7
7
亲本组合=[(193+193)/400]×100%=96.5% 重新组合=[(7+7)/400]×100%= 3.5%
两对连锁基因间发生交换的孢母细胞的百分率,恰是交换配子
百分率的2倍
第4章连锁遗传和性连锁2
无交换 两线单交换 两线双交换 三线双交换 三线双交换 四线双交换
第4章连锁遗传和性连锁2
一、连锁遗传现象 1906年,英国学者贝特生和庞尼特:花的颜色和花粉 粒的形状。 香豌豆(Lathyrus odoratus)两对相对性状杂交试验
花色:紫花(P)对红花(p)为显性; 花粉粒形状:长花粉粒(L)对圆花粉粒(l)为显性。 1.紫花、长花粉粒×红花、圆花粉粒 2.紫花、圆花粉粒×红花、长花粉粒
第4章连锁遗传和性连锁2
三、交换值与遗传距离
2、通常用交换值/重组率来度量基因间的相对距离, 也称为遗传距离(genetic distance)。
➢ 通常以1%的重组率作为一个遗传距离单位/遗传 单位(图距单位 map unit ,mu)。
➢ 后人为了纪念现代遗传学的奠基人Morgan,将 图距单位称为“厘摩”(centimorgan,cM)。
第4章连锁遗传和性连锁2
二、交换值的测定
◆ 测交法 测交后代(Ft)的表现型的种类和比例直接反 映被测个体(如F1)产生配子的种类和比例。
◆自交法 自交法的原理与过程(以香豌豆花色与花粉 粒形状两对相对性状,P-L交换值测定为例)
第4章连锁遗传和性连锁2
1、测交法: C-Sh基因间的连锁与交换
第4章连锁遗传和性连锁2
在另一条同源染色体,杂种F1一对同源染色体分别
第五章 连锁遗传和性连锁(2014年度)

×100%
亲本型配子+重组型配子
二、 交换值的测定 (一) 测交法
P 测交 CSh Ft
玉米子粒形状颜色
CCShSh ccshsh
F1 CcShsh csh Csh cSh CcShsh ccshsh
Ccshsh
ccshsh csh ccShsh
紫花、圆花粉粒 红花、长花粉粒 PPll ppLL
F1 紫花、长花粉粒 PpLl F2 实际个体数 按9:3:3:1推 紫长 P_L_ 226 紫圆 P_ll 95 红长 97 红圆 ppL_ 1 ppll 419 总数
算的理论数 235.8
78.5
78.5
26.2
419
图5 -2
香豌豆相斥组的两对性状的连锁遗传
(三)交换值与遗传距离
1. 两个连锁基因间交换值的变化范围是[0,50%],
其变化反映基因间的连锁强度、基因间的相对距
离;
2. 通常用交换值/重组率来度量基因间的相对距离,
也称为遗传距离(genetic distance)。 交换值与遗传距离(图距,genetic map unit) Centimorgan, cM ----厘摩
吉林大学植物科学学院
第五章 连锁遗传和性连锁
第一节
一、连锁
连锁与交换
1、性状连锁遗传的发现
性状连锁遗传现象是Bateson 和 Punnett(1906)在香豌豆的杂交试验中首先发现的
贝特生(1861~1926): 英国生物学家, 曾经重复过孟德尔的实验
P
紫花、长花粉粒 红花、圆花粉粒
PPLL
两点测验 ——步骤 1-确定基因间是否连锁
遗传学第三版课件(T)第五章 连锁遗传和性连锁t

占总配子数的百分率进行估算。
交换值 (
%)
重组型配子数 总配子数
100
应用这个公式估算交换值,首先要知道重组型配子数。 测定重组型配子数的简易方法有测交法和自交法两种。
二、交换值的测定
(一)测交法
以玉米籽粒颜色和形状这两对连锁基因为例,来说明估算交换值的方法。 玉米籽粒的有色(C)对无色(c)为显性,饱满(Sh)对凹陷(sh)为显性。
连锁遗传:原来亲本所具有的两个性状,在F2连系在一起 遗传的现象。
相引相(组):甲乙两个显性性状,连系在一起遗传、而甲 乙两个隐性性状连系在一起的杂交组合。
如:PL/pl
相斥相(组):甲显性性状和乙隐性性状连系在一起遗传, 而乙显性性状和甲隐性性状连系在一起的杂交 组合。
如:Pl/pL。
(二) 连锁遗传的解释 试验结果是否受分离规律支配?
第五章 连锁遗传和性连锁
1900年孟德尔遗传规律重新发现以后,生物界广泛重 视,进行了大量试验。
其中有些属于两对性状的遗传结果不符合独立分配规律, 因此不少学者对于孟德尔的遗传规律曾一度发生怀疑。
摩尔根以果蝇为试验材料进行深入细致的研究 提出连锁遗传规律(遗传学第三规律) 创立基因论 认为基因成直线排列在染色体上,进一步发展为细 胞遗传学。
完全连锁:
灰身长翅
黑身残翅
由于F1杂合雄蝇(BbVv)只产生两种类型的配子,数目 相等,所以用双隐性雌蝇测交的后代,只能有两种表现 型,比例为1:1
不完全连锁:
灰身长翅
黑身残翅
灰身长翅 灰身残翅 黑身长翅 黑身残翅
当两对非等位基因为不完全连锁时,F1不仅产生亲本型 配子也产生重组型配子。
非等位基因完全连锁的情形较少,一般是不完全连锁。
遗传学名词解释

第四章连锁遗传和性连锁名词解释1. 基因连锁:是指原来为同一亲本所具有的两个性状在F2中有连系在一起遗传倾向的现象。
其原因是控制两个性状的基因位于同一条染色体上而造成基因连锁。
在遗传研究中的应用主要是进行连锁基因的定位和连锁遗传图谱的构建等。
2. 连锁遗传:原来亲本所具有的两个性状,在F2连系在一起遗传的现象。
3. 完全连锁遗传:位于同源染色体上非等位基因之间不能发生非姐妹染色单体之间的交换,F1只产生两种亲型配子、其自交或测交后代个体的表现型均为亲本组合。
4. 不完全连锁遗传 (部分连锁):F1可产生多种配子,后代出现新性状的组合,但新组合较理论数为少。
5. 基因定位:确定基因在染色体上的位置。
6. 性染色体:指直接与性别决定有关的一个或一对染色体。
7. 常染色体:指除了性染色体之外的各对染色体。
8. 连锁相:指两个显性(或隐性)基因在同源染色体上所处的位置。
如果两个显(隐)性基因位于同一染色体上,称为相偶相;如果两个显(隐)性基因位于一对同源染色体上,称为相斥相。
9. 性连锁:控制某性状的基因位于雌、雄体共有的性染色体(X或Z染色体)上,因而该性状的表现与该性染色体动态相联系,伴随性别而遗传的现象。
其原因是控制某性状的基因位于雌、雄体共有的性染色体(X染色体或Z染色体)上,因而该性状的表现与该性染色体动态相联系。
在遗传研究中的应用可以明确性染色体上所带的连锁基因、构建性染色体连锁图谱、早期鉴别畜禽或蚕的性别等。
10. 伴性遗传:由于控制某性状的基因位于性染色体上,该性状的遗传与性别相伴,这一遗传方式称为伴性遗传。
11. 限性遗传:是指位于Y染色体(X是指由Y型)或W染色体(ZW型)上的基因所控制的遗传性状只局限于雄性或雌性上表现的现象。
12. 从性遗传或称性影响遗传:不X及Y染色体上基因所控制的性状,而是因为内分泌及其它关系使某些性状只出现于雌、雄一方;或在一方为显性,另一方为隐性的现象。
13. 异配性别:能产生两种不同配子的性别称为异配性别。
第4章连锁遗传与性连锁

AB Ab aB ab
a
b
c
d
AB a AABB
a2
Ab b
AAbb
b2
aB c
aaBB
c2
ab d
aabb
d2
2020/6/28
遗传距离 genetic distance
用交换值表示两个基因座在染色体上的相对 距离,称为遗传距离。
1%交换值定义为一个遗传距离(map unit )。
用重组率估算交换值。 将重组率转换成遗传距离,称为图距,厘摩
② SCO(a-c) acb a++ +cb +++ TT 8% ③ SCO(c-b) acb ac+ ++b +++ TT 7% ④ DCO(二线) acb a+b +c+ +++ TT 2%
⑤ DCO(1-3,2-3三线) a+b ac+ +cb +++ TT 2% ⑥ DCO(2-4,2-3三线) acb a++ ++b +c+ TT 1% ⑦ DCO(1-3,2-4四线) a++ ac+ +cb ++b TT 0%
2020/6/28
两点测验的局限性: • 工作量大,烦。 • 当遗传距离大于5cM,准确性不高。
2020/6/28
三点测验 1次杂交、1次测交,同时确定3个基因座的
相对位置。
2020/6/28
凹陷非糯性有色 × 饱满糯性无色 shsh + + + + ↓ + +wxwx cc
遗传学5第四章连锁遗传和性连锁课件.ppt

pl PpLl Ppll 48.8 2381.44 58.56
pL pl 1.2 48.8
PpLL PpLl 58.56 2381.44
PpLl Ppll 1.44 58.56
ppLL PpLl 1.44 58.56
PPLl ppll 58.56 2381.44
F1配子种类 粒数 交换类别 + wx c 2708 亲型
凹陷、非糯性、有色 sh + + 2538
饱满、非糯性、无色 + + c
626 单交换
凹陷、糯性、有色 sh wx + 601
凹陷、非糯性、无色 sh + c 113 单交换
饱满、糯性、有色
+ wx + 116
饱满、非糯性、有色 + + +
4 双交换
表4-1 玉米两点测验的3个测交的结果
实验类别 世代
P1 P2
相引组
Ft
P1 P2
相斥组
Ft
P1
相引组
P2
Ft
表现型及 基因型
种类
亲型/重组型
有、饱(CCSS) 无、凹(ccss)
有 无、 、饱 饱((cCccSSss)) 有、凹(Ccss) 无、凹(ccss) 糯、饱(wwSS) 非糯、凹(WWss)
二、完全连锁和不完全连锁
连锁遗传:在同一同源染色体上的非等 位基因连在一起而遗传的现象 完全连锁:同一同源染色体的两个非等 位基因之间不发生非姊妹染色单体之间 的交换,则二者总是连系在一起而遗传 的现象 不完全连锁:同一同源染色体上的两个 非等位基因之间或多或少地发生非姊妹 染色单体之间的交换,测交后代中大部 分为亲本型,少部分为重组型的现象
连锁遗传与性连锁

连锁遗传与性连锁引言连锁遗传是遗传学中的一个重要概念,它描述了基因在染色体上的分布模式及其遗传方式。
在连锁遗传中,某个基因与其他基因紧密相连,它们以连锁的方式遗传给后代。
而性连锁则是指基因的连锁分布与性别有关,即某些基因仅存在于性染色体上。
本文将介绍连锁遗传的基本概念和机制,并进一步探讨性连锁在遗传学中的意义。
连锁遗传的基本概念在遗传学中,连锁遗传是指两个或多个基因存在于同一染色体上,并且它们倾向于一起遗传给后代。
这是因为在染色体复制和分裂的过程中,这些基因通常作为一个整体进行传递。
连锁遗传是基于体细胞(非性细胞)的染色体遗传机制。
相对而言,性细胞(精子和卵子)的染色体遗传机制则是基于性连锁的。
关于性连锁将在后文中详细介绍。
连锁遗传的基本机制是重组。
在染色体复制和分裂过程中,有时会出现染色体断裂和重连的现象,这会导致两个连锁基因中的一部分发生交换。
这个过程就是重组。
重组的发生概率受到基因之间的距离影响,相距越远的基因发生重组的概率越高。
连锁遗传通过连锁分析来研究。
连锁分析是通过观察某个性状与基因连锁的关系来判断基因间是否存在连锁关系。
通过观察家族中某一性状的分布和基因之间的连锁方式,可以推断基因在染色体上的相对位置。
性连锁的基本概念性连锁是基于性染色体的连锁遗传。
在人类和其他哺乳动物中,雌性有两个X 染色体,而雄性有一个X染色体和一个Y染色体。
性连锁就是指基因存在于性染色体上,并且遵循性连锁的遗传规律。
在性连锁中,X染色体上的基因表现出不同的遗传模式。
对于雌性来说,X染色体的基因按照常规的连锁遗传方式进行遗传,与非性染色体上的基因一样。
而对于雄性来说,X染色体上的基因遵循特殊的遗传规律。
雄性只有一个X染色体,所以如果其中的一个基因有突变,那么这个突变就必然会表现出来。
因此,雄性是X连锁遗传疾病(比如血友病和色盲)的高风险人群。
而对于雌性来说,由于有两个X染色体,即使其中一个X染色体上的基因有突变,另一个正常的基因仍然可以弥补,所以她们患病的风险相对较低。
连锁遗传和性遗传

(二) 连锁遗传的解释
摩尔根的果蝇杂交试验; 摩尔根的果蝇杂交试验;
Pr+pr+vg+vg+红长 × Prprvgvg(紫残) P F1 pr+prvg+vg × prprvgvg 测交 Pr+prvg+vg Prprvgvg Pr+prvgvg Prprvg+vg 1339 1195 151 154
Punnet 认为似乎两对基因在杂交子代中的组合并 不是随机的,而是原来属于同一亲本的两个基因 更倾向于进入同一配子,此叫做相引(coupling), 原来属于不同亲本的两个基因之间在形成配子时 相互排斥,称为相斥(repulsion)。 当两个非等位基因a和b处在一个染色体上,而在 a b 其同源染色体上带有野生型A、B时,这些基因被 称为处于相引相(coupling phase)(AB/ab);若每个 同源染色体上各有一个突变基因和一个野生型基 因,则称为相斥相(repulsion phase)(Ab/aB)。
vg+ vg+ vg+
图5-1 两对位于同一条染色体 上的等位基因的简单遗传
Pr Vg Pr Vg+ Vg Pr Vg Pr Vg Pr Vg+ Pr
Pr+ Vg+ Pr+ Vg+
Pr+ Vg Pr+ Vg+
Pr+ Vg
Pr+ Vg+
图5-2 在减数分裂中染色体交换
连锁交换规律
处在同一染色体上的两个或两个以上的基因 在遗传时,联合在一起的频率大于重新组合 的频率。重组类型的产生是由于配子形成过 程中,同源染色体的非姐妹染色单体间发生 了局部交换的结果。 连锁和交换的重组称为染色体内重组(intra连锁和交换的重组称为染色体内重组(intrachromosomal recombination),因染色体自 recombination),因染色体自 由组合而产生的重组称为染色体间重组(inter由组合而产生的重组称为染色体间重组(interchromosomal recombination)。 recombination)。
第三章连锁遗传和性连锁

二倍体生物连锁群的数目等于其染色体的对数。
第四节 真菌类的连锁和交换
(以真菌类的子囊菌——红色面包霉为例)
一、红色面包霉的生活史
8个子囊孢子严格顺序排列
二、 四分子分析:(对四分子进行遗传分析)
(在基本培养基上正常生长) lys+atsts
5. 环境对性别分化的影响
性别也是一种性状,性别分化除受染色体或基因 的控制外,也受环境的影响。
① 蜂的性决定
蜂王
不受精的卵 —— 雄峰(n = 16)
蜂王浆供应5天,质量好 —— 蜂王 受精卵
蜂王浆供应2~3天,质量差 —— 工蜂
② 后螠的性决定
中性幼虫
落到雌虫吻部 —— 雄虫 落到海底生活 —— 雌虫
三点测验的步骤:
2. 确定三对基因在染色体上的排列次序
在测交后代中找出个体数最少的双交换型和个体数最多的亲本 型,将两种类型相比,二者应只有一种性状差别,而且控制该差别 的基因应在其他两基因的中间。
三点测验的步骤:
3. 确定三对基因在染色体上的相对距离
由于每个双交换实际上是同时发生了两次单交换,因此,为了 确切地估算出单交换的交换值,应将双交换值考虑进去,这样才能 真实反映出单交换的频率。
当两对非等位基因的遗传为完全连锁时,其遗传表现与一对基因的遗传很近似。
不完全连锁:
如果两对基因位点间发生交换,则为不完全连锁。这时F1 自交或测交后代除产 生亲本型配子,还产生重组型配子。
二、交换
交换:指同源染色体的非姊妹染色单体之间的对应片段 发生位置互换,从而引起相应基因间的交换与重组。
发生于减数分裂的前期 I 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连锁遗传和性连锁
第一节 连锁与交换 一、连锁遗传及解释 1、性状连锁遗传的发现
性状连锁遗传现象是Bateson和 Punnett(1906)在香豌豆的杂交试验 中首先发现的。
连锁遗传和性连锁
P
紫花、长花粉粒 红花、圆花粉粒
PPLL
ppll
F1
紫花、长花粉粒
PpLl
F2
紫长 紫圆
连锁遗传和性连锁
连锁遗传和性连锁
遗完 传全
连 锁
不完全连锁(incomplete linkage)
不完全连锁 (incomplete linkage) 指杂种F1不仅产生亲本类型的配 子,还会产生重组型配子。
F1的每个孢母细胞产生4种配子AB、Ab、 aB、ab,比例为1:1:1:1。但为什么Ft四种 表现型(基因型)不是1:1:1:1?
连锁遗传和性连锁
从相引组和相斥组结果看: (1)F1虽然形成四种配子,但其比例 不符合1:1:1:1 (2)两种亲型配子多,两种重组型配 子-少 (3)两种亲型配子数大致相等,两种
重组型配子数也大致相等 Morgan解释:控制眼色和翅长的两对
基因位于同一同源染色体上。减数分
裂时部分细胞中同源染色体的两条非
连锁遗传和性连锁
1、测交法 玉米 3.6%
P 测交
CCShSh ccshsh
F1 CcShsh ccshsh
Ft CcShsh Ccshsh ccShsh ccshsh
粒数 4032
149 152
连锁遗传和性连锁
4035
2、自交法 香豌豆 12 %
P
紫花、长花粉粒 红花、圆花粉粒
PPLL
紫眼-隐性(pr) 翅长 长翅-显性(vg+)
残翅-隐性(vg) 连锁遗传和性连锁
P pr+ pr+ vg+vg+ prprvgvg
测交 F1 pr+prvg+vg♀ prprvgvg♂
Ft
pr+prvg+vg 1339
prprvgvg 1195
pr+prvgvg
151
prprvg+vg
154
连锁遗传和性连锁
两个非姐妹染色单体间的单交换与等位基因间的重组
连锁遗传和性连锁
连锁遗传和性连锁
பைடு நூலகம்
第二节 交换值及其测定
一、交换值 严格地讲是指同源染色体的非姊妹染色单 体间有关基因的染色体片段发生交换的频 率。 就一个很短的交换染色体片段来说,交换 值就等于重组率。 在较大的染色体区段内,由于双交换或多 交换常可发生,因而用重组率来估计的交 换值往往偏低。 交换值(%)=重组型配子/总配子数100
连锁遗传和性连锁
重组型配子的比例
F1中发生非姊妹染色单体交换的每个孢母细胞产 生4种配子AB、Ab、aB、ab,比例为1:1:1:1, 重 组型配子占50%。但为什么Ft的四种表现型(基因 型)不是1:1:1:1,重组型比例小于50%?
原因:并不是F1所有的孢母细胞都发生连锁基因间区 段的交换。
ppll
F1
紫花、长花粉粒
PpLl
F2
紫长 紫圆 红长 红圆 总数
P_L_ P_ll ppL_ ppll
实际个体数 4831 390 393 1338 6952
连锁遗传和性连锁
F1形成四种配子,即PL、Pl、pL、pl a、 b、 c、 d
F2=(aPL:bPl:cpL:dpl)2 ppll=dd=d2 pl频率为d2的开方,即d。本例F2表现型 ppll的个体数1338为总数6952的19.2%,F1 配子pl的频率为44% PL = pl = 44% Pl = pL = (50-44)% = 6%
重组型配子比例是发生交换的孢母细胞比例的一半, 并且两种重组型配子的比例相等,两种亲本型配子的 比例相等。
连锁遗传和性连锁
100个孢母细胞内发生有效交换者7个:
74=28个配子 14亲型配子 14重组型配子
不发生交换者93个 934=372个配子 372亲型配子 重组率 = 14/400 = 3.5% 某两对连锁基因之间发生交换的孢母细胞 的百分数,恰恰是重组型配子(又称交换 型配子)百分数的2倍
P_L_ P_ll
实际个体数 4831 390
按9:3:3:1推
红长 红圆 ppL_ ppll 393 1338
总数 6952
算的理论数 3910.5 1303.5 1303.5 434.5 6952
图4-1 香豌豆相引连锁组遗传的和性两连锁对性状的连锁遗传
P
紫花、圆花粉粒 红花、长花粉粒
PPll
姊妹染色单体之间发生交换,形成重
组型配子。
连锁遗传和性连锁
4种配子 1:1:1:1
2种配子 1:1 4种配子 每个孢母细胞产生 1:1:1:1,重组型配 子占50% 两对等位基因在染连锁色遗传体和性上连锁位置与遗传特点
二、完全连锁和不完全连锁
连锁遗传:在同一同源染色体上的非等 位基因连在一起而遗传的现象 完全连锁:同一同源染色体的两个非等 位基因之间不发生非姊妹染色单体之间 的交换,则二者总是连系在一起而遗传 的现象 不完全连锁:同一同源染色体上的两个 非等位基因之间或多或少地发生非姊妹 染色单体之间的交换,测交后代中大部 分为亲本型,少部分为重组型的现象
ppLL
F1
紫花、长花粉粒
PpLl
F2
紫长 紫圆
P_L_ P_ll
实际个体数 226 95
按9:3:3:1推
红长 红圆 ppL_ ppll 97 1
总数 419
算的理论数 235.8 78.5 78.5 26.2 419
图4-2 香豌豆相斥连锁组遗传的和性两连锁对性状的连锁遗传
2、连锁遗传的解释
Bateson和Punnett未能对性状连锁遗传 现象作出解释。Morgan等(1911)以果 蝇为试验材料,通过大量遗传研究,对 连锁遗传现象作出了科学的解释。 两对基因: 眼色 红眼-显性(pr+)
图 4-3 果蝇相引组连锁的遗传两和性对连锁相对性状的连锁遗传
P
pr+pr+vgvg prprvg+vg+
测交 F1 pr+prvg+vg♀ prprvgvg♂
Ft
pr+prvg+vg 157
Prprvgvg
146
pr+prvgvg 965
prprvg+vg 1067
图 4-4 果蝇相斥组的两对相对性状的连锁遗传
连锁遗传和性连锁
图4-6 交换与重组连锁型遗传和配性连子锁 形成过程的示意图
三、交换及其发生机制 交换:同源染色体的非姊妹染色单体之间的 对应片段的交换,从而引起相应基因间的 交换与重组,打破原有的连锁关系,表现 出不完全连锁。 重组型配子产生原因:减数分裂前期 I 的 粗线期非姊妹染色单体间在连锁基因之间 的区段交换。