纵断面设计——竖曲线设计
第4章纵断面设计
(三)凹形竖曲线最小半径和最小长度
设置凹竖曲线的主要目的是缓和行车时的离心力
Lmin
2.当L>ST:
h1
d12 2R
,则d1
2Rh1
h2
d
2 2
2R
,则d
2
2Rh2
ST d1 d2 2R ( h1 h2 )
R
ST2
2( h1 h2 )
最小长度:
Lmin 2(
S 2
S 2
h1 h2 )2 4
最小半径:
Rmin
Lmin
凸形竖曲线最小半径和最小长度 :
竖曲线最小长度相当于各级道路计算行车速度 的3秒行程 。
山区公路可缩短里程,降低造价。
各级公路最大纵坡的规定(表4-3)
设计速度 (km/h)
120 100 80 60 40 30 20
最大纵坡(%)
345
6
7
8
9
城市道路最大纵坡约为按公路设计速度计算的最大纵坡 减少1%
1. 设计速度为120km/h、l00km/h、80km/h 的高速公路受地形条件或其他特殊情况限制时, 经技术经济论证,最大纵坡值可增加1%。
最小合成坡度不宜小于0.5%。
当合成坡度小于0.5时,应采取综合排水措施,以 保证路面排水畅通。
3. 合成坡度指标的控制作用 : 控制陡坡与急弯的重合; 平坡与设超高平曲线的配合问题。
当陡坡与小半径平曲线重合时,在条件许可的情 况下,以采用较小的合成坡度为宜。
▪ 特别是下述情况,其合成坡度必须小于8%。
一、纵坡设计的一般要求
1.纵坡设计必须满足《标准》的各项规定。 2.为保证车辆能以一定速度安全顺适地行驶,纵 坡应具有一定的平顺性,起伏不宜过大和过于频繁。
公路设计 纵断面设计 坡度、坡长的应用及竖曲线半径的选取及设计高程的计算
五、纵坡设计的一般要求(P139)
1、纵坡设计必须满足《公路工程技术标准》中的各项 规定。
2、为保证汽车能以一定的车速安全舒顺地行驶,纵坡 应具有一定的平顺性,起伏不宜过大及过于频繁。 尽量避免采用极限纵坡值,合理安排缓和坡段,不 宜连续采用极限长度的陡坡夹最短长度的缓和坡段。 连续上坡或下坡路段,应避免设置反坡段。越岭线 垭口附近的纵坡应尽量放缓一些。
(一)坡长限制 坡长--指变坡点与变坡点之间的水平长度。
坡长
➢坡长限制,主要是对较陡纵坡的最大长度和一 般纵坡的最小长度加以限制。
最小坡长限制:任何路段 最大坡长限制:陡坡路段
1.最小坡长限制 :
(1)规定最小坡长的原因
①纵断面上若变坡点过多,纵向起伏变化频繁影响了行车的 舒适和安全;
②相邻变坡点之间的距离不宜过短,以便插入适当的竖曲线 来缓和纵坡的要求,同时也便于平、纵面线形的合理组合与 布置。
最大纵坡(%)
3
456 7 8
9
➢ 设计速度为120km/h、100km/h、80km/h的高速公路受地 形条件或其他特殊情况限制时,经技术经济论证合理,最大纵 坡可增加1%。
➢ 公路改建中,设计速度为40km/h、30km/h、20km/h的利 用原有公路的改建路段,经技术经济论证合理,最大纵坡可增 加1%。
(3) 自然因素:海拔高程、气候(积雪寒冷等)。 ➢ 纵坡度大小的优劣: 坡度大,行车困难,上坡速度低,下坡较危险。 山区公路可缩短里程,降低造价。
2.最大纵坡的确定
我国《公路工程技术标准》规定各级公路的最大纵坡 规定如表3-9所示。
最大纵坡
表3-9
公路线形设计中,什么是平曲线,什么是竖曲线?
在道路纵断面上两个相邻纵坡线的交点,被称为变坡点。为了保证行车安全、舒适以及视距的需要,在变坡处设置竖曲线。竖曲线的主要作用是:缓和纵向变坡处行车动量变化而产生的冲击作用,确保道路纵向行车视距;将竖曲线与平曲线恰当地组合,有利于路面排水和改善行车的视线诱导和舒适感。
竖曲线技术指标主要有竖曲线半径和竖曲线长度。凸形的竖曲线的视距条件较差,应选择适当的半径以保证安全行车的需要。凹形的竖曲线,视距一般能得到保证,但由于在离心力作用下汽车要产生增重,因此应选择适当的半径来控制离心力不要过大,以保证行车的平顺和舒适。
竖曲线技术指标主要有竖曲线半径和竖曲线长度。凸形的竖曲线的视距条件较差,应选择适当的半径以保证安全行车的需要。凹形的竖曲线,视距一般能得到保证,但由于在离心力作用下汽车要产生增重,因此应选择适当的半径来控制离心力不要过大,以保证行车的平顺和舒适。
道路纵断面线形常采用直线(又叫直坡段)、竖曲线两种线形,二者是纵断面线形的基本要素。竖曲线常采用圆曲线,可以分为凸形和凹形两种。
道路纵断面线形常采用直线(又叫直坡段)、竖曲线两ห้องสมุดไป่ตู้线形,二者是纵断面线形的基本要素。竖曲线常采用圆曲线,可以分为凸形和凹形两种。
在道路纵断面上两个相邻纵坡线的交点,被称为变坡点。为了保证行车安全、舒适以及视距的需要,在变坡处设置竖曲线。竖曲线的主要作用是:缓和纵向变坡处行车动量变化而产生的冲击作用,确保道路纵向行车视距;将竖曲线与平曲线恰当地组合,有利于路面排水和改善行车的视线诱导和舒适感。
竖曲线
竖曲线是在变坡点处,为了行车平顺的需要而设置的一段曲线。
竖曲线的形状,通常采用圆曲线或二次抛物线两种。
在设计和计算上抛物线比圆曲线更为方便,故一般采用二次抛物线。
在纵坡设计时,由于纵断面上只反映水平距离和竖直高度,因此竖曲线的切线长与弧长是其在水平面上的投影,切线支距是竖直的高程差,相邻两条纵坡线相交角用坡度差表示。
一、竖曲线要素计算如图3-3所示,设变坡处相邻两纵坡度分别为i1和i2,坡度差以ω表示,则坡度差ω为i1和i2的代数差,即ω= i1-i2:当ω>0时,则为凸形竖曲线;当ω<0时,则为凹形竖曲线。
图3-3竖曲线示意图1、竖曲线的基本方程二次抛物线作为竖曲线的基本形式是我国目前常用的一种形式。
如图3-4所示,用二次抛物线作为竖曲线的基本方程:3-4 竖曲线要素示意图竖曲线上任意一点的斜率为:当x=0时:k= i1,则b= i1;当x=L,r=R时:,则:因此,竖曲线的基本方程式为:或 (3-19)2、竖曲线的要素计算曲线长:(3-20)切线长:(3-21)外距:(3-22)曲线上任意一点的竖距(改正值):(3-23)二、竖曲线设计标准竖曲线的设计标准包括竖曲线的最小半径和最小长度。
1、竖曲线设计的限制因素(1)缓和冲击汽车在竖曲线上行驶时会产生径向离心力,在凸形竖曲线上行驶会减重,在凹形竖曲线上行驶会增重,如果这种离心力达到某种程度时,乘客就会有不舒适的感觉,同时对汽车的悬挂系统也有不利影响,故应对径向离心力加速度加以控制。
根据试验得知,离心加速度a限制在0.5~0.7m/s2比较合适。
汽车在竖曲线上行驶时其离心加速度为:(3-24)《标准》中确定竖曲线半径时取a=0.278 m/s2。
或(3-25)(2)行程时间不宜过短汽车从直坡段驶入竖曲线时,如果其竖曲线长度过短,汽车倏忽而过,冲击力大,旅客会感到不舒适,太短的竖曲线长度从视觉上也会感到线形突然转折。
因此,应限制汽车在竖曲线上的行程时间,一般不宜小于3s。
公路勘测设计 纵断面设计
三、公路竖曲线设计
(一)竖曲线设计基本知识
1、纵断面上相邻两条纵坡线相交的转折处,为了行车
平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲 线。
2、为方便设计和计算,竖曲线的形状一般采用二次 抛物线形式。
《公路勘测设计》
三、公路竖曲线设计
3、转坡角
纵断面上相邻两条纵坡线相交形成转坡点,其相交角 用转坡角表示。
Q
l
xA
h
Y L
TB M
O E ω t
xB
i2
B
X
《公路勘测设计》
三、公路竖曲线设计
2、竖曲线曲线长: L = Rω
3、竖曲线切线长:
T=
TA
=TB
≈
L/2
= R
2
4、竖曲线的外距: E = T 2
2R
5、竖曲线上任意点至相应切线的距离: y x2
2R
式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m;
R—为竖曲线的半径,m。
《公路勘测设计》
三、公路竖曲线设计
(三)竖曲线的最小半径 1、竖曲线最小半径的确定
(1) 凸形竖曲线极限最小半径确定考虑因素: 缓和冲击; 经行时间不宜过短; 满足视距的要求。
《公路勘测设计》
三、公路竖曲线设计
(2)凹形竖曲线极限最小半径确定考虑因素 缓和冲击; 前灯照射距离要求; 跨线桥下视距要求; 经行时间不宜过短。
《公路勘测设计》
二、纵坡及坡长设计
2、最大纵坡、最小纵坡和坡长限制 (1)最大纵坡
最大纵坡是指在纵坡设计时各级道路允许使用的最大坡 度值。
①确定最大纵坡应考虑的因素 (ⅰ)汽车的动力性能; (ⅱ)公路等级; (ⅲ)自然因素。
纵断面设计竖曲线
本章主要内容: 一、纵断面设计的一般要求(1) 二、纵坡及坡长设计(1) 三、爬坡车道(1) 四、合成坡度(1) 五、竖曲线(1) 六、纵断面设计方法及表达(1) 七、视觉分析及平纵组合(1)
设计任务:1.纵断面设计,2.拉坡设计, 设计成果:1.纵断面设计图 ,2.竖曲线表
第一节 概 述
试计算竖曲线诸要素以及桩号为k5+000.00和k5+100.00处 的设计高程。
解:1.计算竖曲线要素
ω=i2- i1= - 0.04-0.05= - 0.09<0,为凸形。 曲线长 L = Rω=2000×0.09=180m
切线长 外距
T L 180 90 22
E T 2 902 2.03 2R 2 2000
夜间行车安全,前灯照明应有足够的距离;二是
保证跨线桥下行车有足够的视距。
《标准》规定竖曲线的最小长度应满足3s行程要 求。
(三)凹形竖曲线最小半径和最小长度
凹形竖曲线最小长度相当于各级道路计算行车速度 的3秒行程 。
一、纵断面设计的一般要求
1、满足设计标准 2、尽量避免使用极限值 3、纵断面和地形协调 4、填挖平衡 5、满足最小填土高度和排水要求 6、桥头和交叉口处应该平缓 7、考虑通道和农田的要求
二、纵坡及坡长设计
1、最大纵坡
3%、4%的最大纵坡适合于高速公路和一级公路,当高速公路受地 形条件或其他特殊情况限制时,经技术经济论证最大纵坡可增加 1% 。8% 9%的最大纵坡适合于设计速度为30km/h 的三级公路以 及设计速度为20km/h 的四级公路上低速行驶。5%6% 7%的最大 纵坡适合于80km/h 60km/h 40km/h 的设计速度。
设3、计。坡长限制
线路纵断面(竖曲线)测量设计
线路纵断面测量设计第一节基平测量与中平测量线路的纵断面测量设计就是把线路的各点中桩的高程测量出来,并绘制到一定比例尺的图上进行纵断面的拉坡设计、竖曲线设计、设计高程计算等。
一、基平测量当线路较长时,为保证测量中桩各点高程的准确性,通常需要把已知的高程点引测到整条线路的附近,每隔一定的距离引测一点,作为线路的基平点。
在此点附近的线路中桩高程都可以用此点作为基础高程进行测量。
这个引测得过程就称为基平测量。
如下图:图2-1实线为线路中心线,虚线为水准仪测量的路线。
BM0为已知水准高程点,BM1、BM2、……为线路基本点。
1、2、3、……为水准仪的测站点。
L1、L2、L3、……为高程传递点。
注意事项:1、水准仪在摆站时要注意整平,点位尽量落在与前视后视距离相近的位置,确保消除仪器的内部误差。
2、瞄准后视读数后,立即转向瞄准前视,这时还必须保持整平状态,若此时精平水准泡错开,则瞄准前视后,还必须在此状态下进行精平,然后再读数。
3、为确保测量的准确性,要求往返测量,精度在普通测量学的要求以内,读数方可使用。
也可以用双面尺的方法进行校核,在测量中尽量每站进行校核。
4、基平测量的数据应进行平差处理后方可使用。
具体平差方法见普通测量知识。
5、测量时,水准尺应该垂直,读数时应首先消除视差,司仪者读中丝卡位的最小数据,以保证读数最准确。
6、立尺的测量员必须保证尺的底端不带泥土,用塔尺时要注意尺间不脱节。
二、中平测量中平测量就是在基平测量的基础上,基平时引测的高程点作为基准高程,用水准仪测出每个中桩的地面高程,又称中桩抄平。
图2-2三、记录记录时应该注意的是要保证填写准确,判断哪些是前视,哪些是中视,哪些是后视。
传递高程的点应该既有前视也有后视,只有中视的点没有传递高程。
例题:按下图填写表格,并计算高程,1点高程100.00。
图2-3表2-1第二节拉坡设计拉坡设计就是在中平测量的基础上,利用中平测量的每个中桩高程的数据进行地面线的设计,由此计算各中桩的设计高程。
第五章:竖曲线设计介绍
8000
60
9000
6000
40
3000
2000Βιβλιοθήκη (2)半径的选择选择竖曲线半径主要应考虑以下因素: 1)选择半径应符合表所规定的竖曲线的最小半径和最小长度 的要求。 2)在不过分增加土石方工程量的情况下,为使行车舒适,宜 采用较大的竖曲线半径。 3)结合纵断面起伏情况和标高控制要求,确定合适的外距值 ,按外距控制选择半径:
1. 竖曲线的计算
(1) 用二次抛物线作为竖曲线的基本方程式 二次抛物线一般方程为
y 1 x 2 ix 2k
i dy x i dx k
当x 0时,
i i1;
x L时,
i
L k i1
i2 ,
则
k L L
i2 i1
抛物线上任一点的曲率半径为
R
ω为正,变坡点在曲线下方,竖曲线开口向上,为凹形竖曲 线;ω为负,变坡点在曲线上方,竖曲线开口向下,为凸形 竖曲线。
各级道路在变坡点处均应设置竖曲线。 竖曲线的线形采用二次抛物线。由于在其应用范围内,圆
曲线与抛物线几乎没有差别,因此,竖曲线通常表示成圆 曲线的形式,用圆曲线半径R来表示竖曲线的曲率半径。
(3)
将(2)式和(3)式代入(1)式,得二次抛物线竖曲线基本
方程式为
y
2L
x2
i1x
或
y
1 2R
x2
i1x
式中:ω ——坡差 (%);
L——竖曲线长度 (m);
R——竖曲线半径 (m)。
(2) 竖曲线几何要素计算 竖曲线的几何要素主要有:竖曲线切线长T、曲线长L和外距E。
公路纵断面相邻竖曲线设计研究
1引言纵断面设计的合理性与行车的舒适性和安全性有较大联系。
竖曲线是纵断面设计的重要内容,相邻竖曲线则是竖曲线中的一种。
相关规范对相邻竖曲线的规定较少[1],只有“同向竖曲线间,尤其为同向凹形竖曲线间,若直线坡段接近最小坡长,则适宜合并成复曲线或单曲线”的说明。
从现有研究看,关于相邻竖曲线的研究仍然比较欠缺,因此,为进一步丰富公路设计,对相邻竖曲线的设计开展研究非常必要。
2相邻竖曲线设置的研究目前,关于相邻反向竖曲线是否可以径向连接的说法不一,部分学者认为可在相邻反向竖曲线间插入直线坡段,部分学者认为两反向竖曲线间可径向连接。
但两个反向竖曲线可否直接相连,还需从乘客舒适性和竖曲线上车辆行驶是否平稳等方面进行评价[2]。
从现有资料看:为满足汽车行驶的平稳性及舒适性要求,在竖曲线上,汽车的离心加速度应小于0.5m/s 2。
以JTG D20—2017《公路路线设计规范》(以下简称《设计规范》)所提供的一般情况进行分析:取凹形竖曲线与凸形竖曲线的离心加速度分别为0.278m/s 2和0.101m/s 2,极限最小半径R =4000m 。
在反向相连竖曲线公切点上行驶时,凹形竖曲线上的汽车会产生向下离心力,加重车辆负荷;凸形竖曲线上的汽车会产生向上离心力,减轻汽车负荷。
在公切点周边,上述两个离心力方向相反,公切点上的离心力为上述两个离心加速度之和为0.379g ,小于0.5g 。
因此,一般情况下行车舒适性可符合要求。
因此,若出于地形的考虑,也可在相邻反向竖曲线间设置一段直线坡段。
关于两同向竖曲线间是否可设置径向连接的情况,目前尚未有明确规定。
但在《互通立交线形设计与施工》[3]一书中强【作者简介】李亚浩(1990~),男,海南万宁人,工程师,从事公路路线设计及互通立交设计与研究。
公路纵断面相邻竖曲线设计研究Design and Research on Adjacent Vertical Curves of Highway Profile李亚浩(中交第一公路勘察设计研究院有限公司海南分公司,海口570100)LI Ya-hao(Hai ’nan Branch of CCCC First Highway Consultants Co.Ltd.,Haikou 570100,China)【摘要】以现有公路路线设计规范为基础,对现有公路纵断面相邻竖曲线设计存在的问题,针对性地提出设计方法和设计质量控制措施,并结合设计示例加以说明。
铁路线路平纵断面图识读—竖曲线计算
车钩错动示意图
11
(1)竖曲线半径 ①列车通过变坡点不脱轨要求。如Δi ≥ 3‰设置竖曲线即满 足。 ②满足行车平稳要求。允许离心加速度的大小和行车速度有 关。 ③满足不脱钩要求。与相邻车辆相对倾斜引起的车钩中心线 上下位移允许值有关,Rv≥3000m即满足。 ④竖曲线半径与列车纵向力的关系。
12
项目任务4:竖曲线计算
目标:掌握纵断面设计的坡度、坡段长度、坡度代数 差的基本概念,能读懂纵断面图中主要项目及项目设 计要求,会进行竖曲线的施工计算。
知识点: 一、坡段长度
相邻两坡段的坡度变化 点称为变坡点。相邻两变 坡点间的水平距离称为坡段长度。
1.坡段长度对工程和运营的影响
不同坡长的纵断面
(1)对工程数量的影响
《线规》规定:路段设计速度为160km/h的地段,当相邻坡段的坡 度差大于1‰时,竖曲线半径应采用15000m;当路段设计速度小于 160km/h,相邻坡段的坡度差大于3‰时,竖曲线半径应采用10000m。
(2)竖曲线要素计算 ①竖曲线切线长
TSH
RSH i 2000
(m)
Vmax≥160km/h : Vmax〈160km/h :
采用较短的坡段长度可更好地适应地形起伏,减少路基、桥隧等工程 数量。但最短坡段长度应保证坡段两端所设的竖曲线不在坡段中间重叠。
2
(2)对运营的影响 从运营角度看,因为列车通过变坡点时,变坡点前后的列车运
行阻力不同,车钩间存在游间,将使部分车辆产生局部加速度,影 响行车平稳;同时也使车辆间产生冲击作用,增大列车纵向力,坡 段长度要保证不致产生断钩事故。
7
如前一坡段的坡度i1为6‰下坡,后一坡段的坡度i2为4‰上坡,则坡度差 Δi为:
竖曲线设计
竖曲线设计1、 竖曲线设计的一般要求竖曲线是否平顺,在视觉上往往是构成纵断面线形优劣的主要原因。
纵断面线形不好的原因大多数是由设置过多的竖曲线和竖曲线长度小或竖曲线半径小引起的。
所以,竖曲线设计时应遵循以下一般原则和要求。
(1) 宜选用较大的竖曲线半径竖曲线设计,首先应确定合适的半径,在不过分增加工程量的情况下,尽可能选用较大的竖曲线半径。
特别是前后两相邻纵坡的代数差小时,竖曲线更应采取大半径,以利于视觉和路容美观。
只有当地形限制或其他特殊困难在不得已时才允许采用极限最小半径。
在有条件路段,为获得平顺而连续的线形,并通视良好时,可参阅下表的规定选择竖曲线半径。
从视觉观点所需的竖曲线最小半径同向竖曲线,特别是同向凹形竖曲线间如直线段不长,应合并为单曲线或复曲线。
(3) 反向曲线间,一般由直线段连接,亦可相互直接连接反向竖曲线间,最好中间设置一段直线段,直线段长度一般不小于计算行车速度行驶3s 的行程长度,以使汽车从失重(或增重)过渡到增重(或失重)有一个缓和段。
如受条件限制也可相互直接连续,或插入短直线。
(4) 竖曲线设置应满足排水需要若相邻纵坡之代数差很小时,采用大半径竖曲线可能导致竖曲线上的纵坡小于0.3%,这样不利于排水,应重新设计,以避免这种情况。
2、 半径的选择竖曲线半径的选择主要考虑的因素有:1) 选择半径应符合规范定的竖曲线最小长度要求。
2) 在不过分增加土石方工程数量的情况下,为使行车舒适,应采用较大的半径。
3) 结合纵断面起伏情况和标高控制要求,确定合适的外距值,按外距控制半径,计算公式如下28ωER =4) 考虑相邻竖曲线的连接(即保证最小直坡段长度或不发生重叠)限制曲线长度,按切线长度选择半径。
如ωTR 2=5) 过大的竖曲线半径将使竖曲线过长,从施工和排水来看都是不利的,选择半径时应注意。
6) 夜间行车交通量较大的路段考虑灯光照射方向的改变,使前灯照射范围受到限制,选择半径时应适当加大,以使其有较长的照射距离。
竖曲线的相关知识点汇总,测绘人一定要收藏!
竖曲线是测绘学中常用的一种曲线形式,主要用于平面道路、铁路以及河道等工程设计中,用以规划线路的走向和纵向变化。
下面将为大家汇总一些关于竖曲线的相关知识点,希望对测绘人员有所帮助。
一、竖曲线的定义竖曲线是指平面道路或轨道的纵断面上,由两段直线连接而成的一种变曲线。
它可以用来描述道路或轨道在垂直方向上的变化情况,即纵向曲率。
二、竖曲线的作用1. 平滑过渡:竖曲线可在不同坡度之间实现平滑的过渡,使车辆或列车运行时保持稳定,并减少行驶时的颠簸感。
2. 提供视距:通过调整曲率半径,竖曲线可以提供足够的视距,让驾驶员或司机在前方拐弯处能够清晰地见到目标点。
3. 减小视觉疲劳:竖曲线的存在可以使驾驶员或司机的视线产生变化,缓解连续行驶长时间后的视觉疲劳。
三、竖曲线的要素1. 曲率半径:竖曲线的曲率以曲率半径来表示,曲率半径越大,曲线越平缓。
2. 设计速度:竖曲线的设计速度是指车辆或列车在曲线上行驶的预定速度。
3. 切线长:切线长是指在竖曲线中,两段直线的连接部分的长度。
4. 过渡曲线:过渡曲线是指连接竖曲线两段直线的自由曲线,用于实现平滑的过渡。
四、常见的竖曲线形式1. 圆形竖曲线:曲率半径不变,变化率恒定,适用于交通量较小的道路或弯道处。
2. 抛物线竖曲线:曲率半径随纵坐标按二次或三次函数变化,能够实现更加平滑的过渡。
3. 其他形式的竖曲线:根据具体要求和设计条件,还可以采用折线、三角形等形式的竖曲线。
五、竖曲线的设计方法竖曲线的设计需要根据实际情况和设计要求进行,主要包括以下几个步骤:1. 确定设计速度和曲率半径;2. 计算切线长,根据切线长选择过渡曲线形式;3. 进行竖曲线的绘制和计算,包括确定各个坐标点和切线点的位置;4. 检查竖曲线的可行性和合理性,并做出必要的调整。
六、竖曲线的测量与矫正在实际工程中,竖曲线的设计很难完全按照理论来实现,常常需要进行实地测量和矫正。
测量方法主要包括全站仪测量和激光测距仪测量,通过对实测数据进行处理和分析,可以对竖曲线进行精确的矫正,以保证工程质量和安全。
路线纵断面竖曲线计算与设计 竖曲线及其要素的计算
=
+ 1
2
式中:R——抛物线顶点处的曲
率半径
i1——竖曲线顶(底)点
处切线的坡度
竖曲线诸要素的
计算公式
竖曲线要素计算公式
切线纵坡:竖曲线上任一点切线的斜率。 =
=
(1)竖曲线长度L
=
(2)竖曲线切线长T
= =
2
2
(3)竖曲线上任一点h
ℎ=
−
2
2
=
2
2
竖曲线的线形是二次抛物线。
竖曲线的要素有三个:L、T、E。
竖曲线及其要素的计算
模块三
路线纵断面线形组成分析
01
路线纵断面
02
路线纵断面竖曲线计算与设计
竖曲线及其要素的计算
03
路线纵断面设计
路线纵断面设计成果
C
目
录 ONTENTS
1 竖曲线的作用及线形
2 竖曲线诸要素的计算公式
1
竖曲线的作用与线形
竖曲线 纵断面上两个坡段的转折处,为了便于行车用一段曲线来缓和,
称为竖曲线。
变坡点 相邻两条坡度线的交点。
变坡角 相邻两条坡度线的坡角差,通常用坡度值之差代替,用ω表示。
= 1 − 2 ≈ 2 − 1 = 2 − 1
ω<0:凸形竖曲线
ω>0:凹形竖曲线
竖曲线的作用
➢ (1)缓冲作用:以平缓曲线取代折线可消除汽车在变坡点的冲击。
➢ (2)保证公路纵向的行车视距:
凸形:纵坡变化大时,盲区较大。
凹形:下穿式立体交叉的下线。
➢ (3)将竖曲线与平曲线恰当的组合,有利于路面排水和改善行车的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纵断面设计——竖曲线设计
纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。
竖曲线的形状,通常采用平曲线或二次抛物线两种。
在设计和计算上为方便一般采用二次抛物线形式。
纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。
当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。
一、竖曲线
如图所示,设相邻两纵坡坡度分别为i1 和i2,则相邻两坡度的代数差即转坡角为ω= i1-i2 ,其中i1、i2为本身之值,当上坡时取正值,下坡时取负值。
当i1- i2为正值时,则为凸形竖曲线。
当i1 - i2 为负值时,则为凹形竖曲线。
(一)竖曲线基本方程式
我国采用的是二次抛物线形作为竖曲线的常用形式。
其基本方程为:
若取抛物线参数为竖曲线的半径,则有:
(二)竖曲线要素计算公式
竖曲线计算图示
1、切线上任意点与竖曲线间的竖距通过推导可得:
2、竖曲线曲线长:L = Rω
3、竖曲线切线长:T= TA =TB ≈ L/2 =
4、竖曲线的外距:E =
⑤竖曲线上任意点至相应切线的距离:
式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m;
R—为竖曲线的半径,m。
二、竖曲线的最小半径
(一)竖曲线最小半径的确定
1.凸形竖曲线极限最小半径确定考虑因素
(1)缓和冲击
汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。
(2)经行时间不宜过短
当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。
因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。
(3)满足视距的要求
汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。
为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。
2.凹形竖曲线极限最小半径确定考虑因素
(1)缓和冲击:
在凹形竖曲线上行驶重量增大;半径越小,离心力越大;当重量变化程度达到一定时,就会影响到旅客的舒适性,同时也会影响到汽车的悬挂系统。
(2)前灯照射距离要求
对地形起伏较大地区的路段,在夜间行车时,若半径过小,前灯照射距离过短,影响行车安全和速度;在高速公路及城市道路上有许多跨线桥、门式交通标志及广告宣传牌等,如果它们正好处在凹形竖曲线上方,也会影响驾驶员的视线。
(3)跨线桥下视距要求
为保证汽车穿过跨线桥时有足够的视距,汽车行驶在凹形竖曲线上时,应对竖曲线最小半径加以限制。
(4)经行时间不宜过短
汽车在凹形竖曲线上行驶的时间不能太短,通常控制汽车在凹形竖曲线上行驶时间不得小于3秒钟。
a凸、凹形竖曲线都要受到上述缓和冲击、视距及行驶时间三种因素控制。
b竖曲线极限最小半径是缓和行车冲击和保证行车视距所必须的竖曲线半径的最小值,该值只有在地形受限制迫不得已时采用。
c通常为了使行车有较好的舒适条件,设计时多采用大于极限最小半径1.5~2.0倍,该值为竖曲线一般最小值。
我国按照汽车在竖曲线上以设计速度行驶3s行程时间控制竖曲线最小长度。
d各级公路的竖曲线最小长度和半径规定见教材表3-6所列,在竖曲线设计时,不但保证竖曲线半径要求,还必须满足竖曲线最小长度规定。
公路竖曲线最小半径和竖曲线最小长度表3—6
设计速度(Km/h) 120 100 80 60 40 30 20
凸形竖曲线半径(m) 极限最小值11000 6500 3000 1400 450 250 100
一般最小值17000 10000 4500 2000 700 400 200
凹形竖曲线半径(m) 极限最小值4000 3000 2000 1000 450 250 100
一般最小值6000 4500 3000 1500 700 400 200
竖曲线最小长度(m) 100 85 70 50 35 25 20
三、竖曲线的设计和计算
(一)竖曲线设计
竖曲线设计,首先应确定合适的半径。
在不过分增加工程量的情况下,宜选择较大的竖曲线半径;只有当地形限制或其它特殊困难时,才选用极限最小半径。
从视觉观点考虑,竖曲线半径通常选用表3-6所列一般最小值的1.5~4.0倍,即如下表所示(见教材表3-7):
设计速度
(km/h)竖曲线半径(m)
凸形凹形
120 20000 12000
100 16000 10000
80 12000 8000
60 9000 6000
40 3000 2000
相邻竖曲线衔接时应注意:
1.同向竖曲线:特别是两同向凹形竖曲线间如果直线坡段不长,应合并为单曲线或复曲线形式的竖曲线,避免出现断背曲线。
2.反向竖曲线:反向竖曲线间应设置一段直线坡段,直线坡段的长度一般不小于设计速度的3秒行程。
3.竖曲线设置应满足排水需要。
(二)竖曲线计算
竖曲线计算的目的是确定设计纵坡上指定桩号的路基设计标高,其计算步骤如下:
(1)计算竖曲线的基本要素:竖曲线长:L;切线长:T;外距:E。
(2)计算竖曲线起终点的桩号:竖曲线起点的桩号= 变坡点的桩号-T
竖曲线终点的桩号= 变坡点的桩号+T
(3)计算竖曲线上任意点切线标高及改正值:
切线标高= 变坡点的标高±()i ;改正值:y=
(4)计算竖曲线上任意点设计标高
某桩号在凸形竖曲线的设计标高= 该桩号在切线上的设计标高-y
某桩号在凹形竖曲线的设计标高= 该桩号在切线上的设计标高+ y
〔例4-1〕:某山岭区二级公路,变坡点桩号为K3+030 .00,高程为427 .68 ,前坡为上坡,i1= +5%,后坡为下坡,i2 = -4%,竖曲线半径R=2000m。
试计算竖曲线诸要素以及桩号为K3+000.00 和
K3+100.00处的设计标高。
(1)计算竖曲线要素
ω= i1 - i2 = 5% -(-4%) =0.09 所以该竖曲线为凸形竖曲线
曲线长:L = R ω=2000 ×0.09 = 180 m
切线长:T = L/2 =180 / 2 = 90m
外距: E = m
(2)竖曲线起、终点桩号
竖曲线起点桩号=(K3+030.00)-90 = K2+940.00
竖曲线终点桩号= (K3+030.00) + 90 = K3 +120.00
(3)K3+000.00、K3+100.00的切线标高和改正值
K3+000.00的切线标高= 427.68 -(K3+030.00-K3+000.00)×5%= 426.18m
K3+000.00的改正值=
K3+100.00的切线标高=427.68 -(K3+100.00-K3+030.00)×4%= 424.88m
K3+100.00的改正值=
4)K3+000.00和K3+100.00的设计标高
K3+000.00的设计标高= 426.18 -0.9 = 425.28m
K3+100.00的设计标高= 424.88 -0.1 =424.78 m。