CCBII制动机
CCBII制动系统讲解(克诺尔制动机)
BPG BPVV To C1(..332) TP-BP TP-FL
ER
ER
EX Control MV53
EX
BPC O #21 EMV (74V) MVEM
BP Relay
EX
PVEM
C3
BP EX EX
BP LRU ER/BP Reduction BC Application
MR BP T FLT MRT
Electronic Brake Valve
电子制动阀EBV
抑制位——机车产生常用惩罚制动后,必须将手柄放置此位置使制动机复 位后,手柄 再放置运转位,机车制动作用才可缓解。在抑 制位,机车将产生常用全制动作用。 重联位——当制动机系统在补机或断电状态时,手柄应放此位置。在此位 置,均衡风缸将按常用制动速率减压到0。 紧急位——在此位置,自动制动阀上的机械阀动作,列车管压力排向大气, 触发EPCU中BPCP及机车管路中的紧急排风阀动作,产生紧急制动作用。
BC / DBTV Portions BC Release (Back-up Mode)
M R
BCCP
From 16 Portion
16
DCV1
From 20
Portion 20
# 46 EX
From 13 Portion 13 1 #3 vol 6 13 BO 16TV
AUX
AR
#57
DBTV #69 From BP Portion
3 4 2 1
EX
A1 A3 A2
DCV1
P V BCT P V BPT ELV C1 DCV2 P V 16T From BC portion PVTV TP16 TPBC
A1
和谐3型电力机车CCB-Ⅱ制动机概述
和谐3型电力机车CCB-Ⅱ制动机概述第一节 CCB-Ⅱ制动机简介一、什么是CCBⅡ制动系统?该制动机的原创是德国产的KLR型制动机,后经美国加以改造,是目前世界上最先进的制动机,尤其适用于牵引重载列车的机车使用。
CCBⅡ制动系统是第二代微机控制制动系统,为在客运和货运机车上使用而设计。
该制动系统将26L型制动机和电子空气制动设备兼容。
CCBⅡ制动系统是基于微处理器的电空制动控制系统,除了紧急制动作用的开始,所有逻辑是微机控制的。
二、 CCB-Ⅱ型制动机系统(EPCU)由8个电脑模块组成,排列方式如下:BPCP ERCP DBTV 16CP20CP BCCP 13CP PSJBCCB-Ⅱ型制动机系统(EPCU)各电脑模块作用为:BPCP-列车管控制。
ERCP-均衡风缸模拟控制,无火回送塞门装在面部。
DBTV-备份。
电脑失效时,自动控制空气制动。
16CP-作用管控制。
20CP-平均管控制。
BCCP-制动缸管控制。
13CP-单独缓解控制。
PSJB-电源模块。
三、说明制动机系统各模块的名称及代号。
答:控制管路模块——U43弹簧停车模块——B40踏面清扫模块——B50撒砂模块——F41继电器接口模块RIM——B47处理器模块IPM——B46四、CCBⅡ制动系统的优点是什么?答:(1)组装部分①采用管路柜集成组装,将EPCU、IPM、IRM、停车制动、撒砂装置、踏面清扫、升弓控制等模块安装在制动柜中,方便操作和检修②管路采用走廊地板下集中布置,管路连接采用滚压式螺纹连接方式满足制动系统气密性要求(2)控制部分①CCBII采用微机(IPM)控制模式,EPCU上各部件为智能、可更换模块②司机室LCDM制动显示屏具有本务/补机,客/货,列车管补风/不补风,列车管投入/切除等转换功能,且有系统自检,故障记录,报警等功能,方便司机操作③采用MGS2型防滑器,使制动更加有效、安全。
五、、说明CCBⅡ型电空制动机主要部件的控制方式。
ccbⅱ制动机课件(hxn5)
基础制动装置部分
基础制动装置概述
基础制动装置是ccbⅱ制动机的重要部件之一,主要作用是吸收列 车制动时的能量,使列车减速或停车。
基础制动装置的组成
基础制动装置主要由制动缸、制动盘、闸片、间隙调整器等组成。
基础制动装置的工作原理
基础制动装置在制动时,通过制动缸将压缩空气的压力转化为机械 力,再通过闸片将机械力作用于制动盘上,从而产生制动力。
液压制动系统
检查液压制动系统中的各个部件,包括制动缸、制动管路、制动 阀等,确保其完好无损,没有漏油现象。
制动性能测试
在每次定期检修时,需要对制动性能进行测试,以确保制动的可 靠性。
ccbⅱ制动机的保养建议
01
02
03
04
清洁
定期对制动机进行清洁,清除 表面的灰尘和污垢,以保持良
好的工作状态。
润滑
控制部分
负责控制制动机的各种功 能,包括制动和缓解等操 作。
制动执行部分
将控制部分传来的指令转 化为实际的制动效果,包 括基础制动装置和风缸制 动装置等。
ccbⅱ制动机的基本原理
通过控制压缩空气的流量和压力,实现 对机车制动和缓解的操作。
当需要制动时,空气压缩机将压缩空气 送入制动缸,推动基础制动装置的活塞 杆,使活塞杆移动,进而通过杠杆原理 推动闸瓦移动,使闸瓦紧贴车轮踏面,
ccbⅱ制动机的日常维护
每日检查
检查制动缸活塞是否灵活,各阀门、连接管路是 否有漏泄,并清理表面灰尘和杂质。
每周维护
进行深度清洁,检查各部件磨损情况,并加注润 滑油。
月度检查
对制动缸进行压力测试,并对相关电气部件进法
制动缸不动作
01
检查制动缸是否堵塞,各阀门是否正常工作,并重新调整制动
电力机车制动系统第五章 CCB-Ⅱ型制动系统
CCBⅡ制动机主要部件及作用
LCDM
EBV IPM EPCU RIM
制动显示屏
电子制动阀 微处理器 电空控制单元 继电器接口模块
CCBⅡ制动机控制关系
主要部件控制关系
电子制动阀 EBV 电空控制单元 EPCU 基础制动 装置
继电器接口模块 RIM 机车控制系统 TCMS
集成处理器 IPM
制动显示器 LCDM
EPCU 电空控制单元
是制动系统的执 行部件,控制机 车空气管路压力。 由8个线路可更 换 BPCP 均衡风缸控制部分 ERCP DB三通阀 DBTV 16控制部分 16CP
20控制部分 20CP
制动缸控制部分 BCCP
13控制部分 13CP
电源接线盒 PSJB
EBV
电子制动阀
制动机人机接 口,也是制动 机的操纵部件。 发送指令至电 空控制单元。
LCDM 制动显示屏
制动机人机接 口,也是制动 机状态显示和 操作装置,通 过下方8个功 能键设定制动 机状态及参数。
LCDM 制动显示屏
F1-确认、执行 F2-取消 F3-进入设置检查,管压500KPa/600KPa设置,进 入其它设置 F4-操纵端/非操纵端设置,列车管压每按一次减少 10KPa设置 F5-列车管投入/切除设置,列车管每按一次增加 10KPa设置 F6-货车F2-取消/客车设置 F7-补风/不补风设置 F8-退出
DBTV模块组成和工作原理
CCBⅡ制动机控制关系
自阀
控制列车
ERCP BPCP 制动管压力 16CP BCCP 车辆制动机 机车制动缸
CCBⅡ制动机控制关系
控制机车
单阀 20CP
平均管压力
BCCP
CCB-Ⅱ制动机介绍、设置及操纵
CCB-Ⅱ制动机介绍、设置及操纵一、 CCB-Ⅱ制动机的由来该制动机的原创是德国产的KLR型制动机,后经美国加以改造,是目前世界上最先进的制动机,尤其适用于牵引重载列车的机车使用。
二、湖东机务段为何将DK-1型制动机改为CCB-Ⅱ型制动机国产DK-1型制动机也是由电来控制风,具有充风快、排风快的效果,但不能摇控,在万吨列车中,前部、中部和后部的机车不能同时对列车进行充风和排风,断钩事故不可能避免。
而CCB-Ⅱ制动机可以摇控,前部主控机车在操纵列车管的同时,发出无线网络指令,以不超过0.06秒的时间,使列车中部、后部的各台从控机车同步操纵列车管,消除了万吨列车运行中由于不同步操纵造成的前拉后拽现象,杜绝了断钩事故。
三、我局从太原局入助的SS4机车,制动机型号的分布我局从太原局大同机务段接回的12台SS4机车为DK-1型制动机,从湖东机务段接回的50台SS4机车为CCB-Ⅱ制动机。
四、 DK-1型制动机与CCB-Ⅱ型制动机的单台优缺点DK-1型制动机几经改进,仍有不少电空阀和气动部件,故障率高于CCB-Ⅱ型制动机,但一经故障后,可以转换成空气位操纵,仍然可以牵引列车运行。
CCB -Ⅱ型制动机全由电脑模块控制,没有任何气动部件,故障几乎为0,但万一发生故障只有救援,中断牵引。
五、 SS4机车上的CCB-Ⅱ型制动机的改装方式1、 SS4机车制动柜内原有的DK-1型制动机系统中所有阀类、塞门、风缸全部拆下,由CCB-Ⅱ型制动机系统(EPCU)代替,该系统由8个电脑模块组成,排列方式如下:BPCP ERCP DBTV 16CP20CP BCCP 13CP PSJBCCB-Ⅱ型制动机系统(EPCU)各电脑模块作用为:BPCP-列车管控制。
ERCP-均衡风缸模拟控制,无火回送塞门装在面部。
DBTV-备份。
电脑失效时,自动控制空气制动。
16CP-作用管控制。
20CP-平均管控制。
BCCP-制动缸管控制。
13CP-单独缓解控制。
电力机车制动系统第五章 CCB-Ⅱ型制动系统
组成及缓解状态
制动状态
无动力回送
制动管控制模块BPCP
制动管控制模块BPCP接收来自均衡风缸的压力,由内 部BP作用阀响应其变化并使制动管快速的产生与均衡 风缸相同的压力,从而完成列车的制动、保压和缓解 。它的作用相当于中继阀的作用。 当发现制动管压力快速下降或接收到来自制动制动阀 、IPM的紧急制动指令,制动管控制模块BPCP会加快 制动管减压产生紧急制动。此作用相当于紧急阀和电 动防风阀的作用。
均衡风缸控制模块ERCP
均衡风缸控制模块ERCP接收来自电子制动阀 的自动制动指令、微处理器以及机车监控系统 的指令来控制机车均衡风缸的压力。 能够准确的控制均衡风缸的压力,且具有自保 压功能,如果此模块发生了故障,会自动由其 他模块(16CP)来代替其功能 无动力回送装置也集成在均衡风缸控制模块内 部
BPCP组成及缓解状态
BPCP制动状态
BPCP紧急制动状态1
BPCP紧急制动状态2
BPCP紧急制动状态3
16CP控制模块
用来产生制动缸的控制压力,其基本功能类 似于分配阀的作用。 本机模式下,16号管增加的压力同制动管减 少的压力的比例为2.5:1,并且16号管增 加的压力最大不超过450kPa。 在ER控制单元故障情况下,16CP与制动缸 隔离,通过3个电磁阀的动作连接到均衡风 缸, 16CP可以控制均衡风缸的压力。制动 缸的控制压力则由DBTV控制。
13CP组成及工作原理
BCCP模块
BCCP从16CP或平均管接收到制动缸预控压力( 作用管),产生制动缸压力。 BCCP属大通道的空气中继阀,它用总风缸作为 供风风源,16号管和平均管作为控制压力,对机 车制动缸进行充风和排风控制。 在失电状态下,BCCP会使制动缸通过PVPL与平 均管相连,产生平均管压力。
ccbⅱ制动机课件(hxn5)
通过本课件的学习,学员应能够掌握CCBⅡ制动机的运用和故障处理能力,包括 正确操作制动机、识别和处理常见故障等。同时,学员还应了解CCBⅡ制动机的 发展趋势和未来发展方向,为从事铁路运输工作打下坚实的基础。
02
ccbⅱ制动机概述
ccbⅱ制动机定义
01
CCBⅡ制动机:CCBⅡ制动机是 指由美国通用电气(GE)公司研 制的干线铁路电空制动系统。
液压管路系统
液压泵
将油液从油箱中抽出,通过管路 输送到制动系统。
制动缸及传动装置
将液压油液的压力转化为机械能 ,推动制动缸活塞运动,实现制 动效果。
制动缸及传动装置
制动缸
是制动系统的执行机构,通过活塞运 动推动闸片与车轮贴合,实现制动效 果。
传动装置
包括传动杆、连杆等部件,将制动缸 的机械能传递到闸片,使其与车轮贴 合。
在紧急情况下,如列车脱轨、线路故障等,需要 立即触发紧急制动。
紧急制动操作方法
按照规定的操作方法,迅速、准确地触发紧急制 动,确保列车及时停车。
紧急制动后的处理
在紧急制动触发后,应立即采取措施,如疏散乘 客、通知相关部门等,确保乘客安全。
安全防护措施
防护装置配备
ccbⅱ制动机应配备完善的安全防护装置,如制动缸安全阀、压力 传感器等,确保制动机在异常情况下能够安全停车。
实践性强
课程结合实际案例,对ccbi制动机的故障诊断、 应急处理等方面进行了深入的讲解,提高了学员 的实践操作能力。
教学效果显著
通过本次课程的学习,学员们对ccbi制动机有了 更深入的了解,为今后的工作和学习打下了坚实 的基础。
未来发展趋势预测
技术创新
01
随着科技的不断进步,ccbi制动机将会在技术上不断创新,提
CCB制动机介绍
C C B制动机介绍Company number:【0089WT-8898YT-W8CCB-BUUT-202108】CCB-Ⅱ制动机介绍、设置及操纵一、CCB-Ⅱ制动机的由来该制动机的原创是德国产的KLR型制动机,后经美国加以改造,是目前世界上最先进的制动机,尤其适用于牵引重载列车的机车使用。
二、湖东机务段为何将DK-1型制动机改为CCB-Ⅱ型制动机国产DK-1型制动机也是由电来控制风,具有充风快、排风快的效果,但不能摇控,在万吨列车中,前部、中部和后部的机车不能同时对列车进行充风和排风,断钩事故不可能避免。
而CCB-Ⅱ制动机可以摇控,前部主控机车在操纵列车管的同时,发出无线网络指令,以不超过秒的时间,使列车中部、后部的各台从控机车同步操纵列车管,消除了万吨列车运行中由于不同步操纵造成的前拉后拽现象,杜绝了断钩事故。
三、我局从太原局入助的SS4机车,制动机型号的分布我局从太原局大同机务段接回的12台SS4机车为DK-1型制动机,从湖东机务段接回的50台SS4机车为CCB-Ⅱ制动机。
四、DK-1型制动机与CCB-Ⅱ型制动机的单台优缺点DK-1型制动机几经改进,仍有不少电空阀和气动部件,故障率高于CCB-Ⅱ型制动机,但一经故障后,可以转换成空气位操纵,仍然可以牵引列车运行。
CCB-Ⅱ型制动机全由电脑模块控制,没有任何气动部件,故障几乎为0,但万一发生故障只有救援,中断牵引。
五、SS4机车上的CCB-Ⅱ型制动机的改装方式1、SS4机车制动柜内原有的DK-1型制动机系统中所有阀类、塞门、风缸全部拆下,由CCB-Ⅱ型制动机系统(EPCU)代替,该系统由8个电脑模块组成,排列方式如下:CCB-Ⅱ型制动机系统(EPCU)各电脑模块作用为:BPCP-列车管控制。
ERCP-均衡风缸模拟控制,无火回送塞门装在面部。
DBTV-备份。
电脑失效时,自动控制空气制动。
16CP-作用管控制。
20CP-平均管控制。
BCCP-制动缸管控制。
CCBⅡ制动机操作使用
CCBⅡ制动机操作使用CCBII制动机是一种电动机械式制动器,广泛应用于各类机械设备中。
在使用CCBII制动机之前,需要对其进行正确的操作和使用。
下面是CCBII制动机的操作使用指南。
1.确保安全:在操作CCBII制动机之前,首先要确保工作场所的安全。
检查周围环境,清理杂物,并确保没有人员在机器运行的范围内。
同时,还要保证自身的安全,佩戴适当的个人防护装备,如安全帽、安全眼镜和防护手套等。
2.检查CCBII制动机:在使用CCBII制动机之前,要对其进行初步检查。
检查制动器的外观,确保没有明显的损坏或松动的部件。
检查电气连接,确保插头无破损,并与电源连接稳固。
同时,还需要检查制动器的机械零部件,如齿轮、制动片等,确保其正常运行。
3.启动CCBII制动机:启动CCBII制动机前,要先确保停机制冷器已关闭。
然后,打开电源开关,将电流控制器调至零档,并逐渐增加电流直至达到设定值。
在启动过程中,要观察制动器是否正常运转,如果有异常现象,需要立即停机检查。
4.使用CCBII制动机:在使用CCBII制动机时,首先需要将工件放置在制动器上,并通过固定装置将其固定住,以避免滑动或脱落。
然后,通过控制电流大小,调节制动器的制动力大小。
调节时要注意控制力大小的平稳性,避免突然增减,以免对工件造成损坏。
5.停止CCBII制动机:停止使用CCBII制动机时,要将电流控制器逐渐降低直至零档,并关闭电源开关。
在停机之前,要观察制动器是否完全停止,并等待其冷却后再进行后续操作。
需要注意的是,以上操作指南是基本步骤,具体操作方法可能会因不同的CCBII制动机型号而有所不同,因此在使用CCBII制动机之前,最好仔细阅读和遵守制造商提供的操作说明书。
同时,为了保证CCBII制动机的安全运行,还需要定期检查和维护,及时更换磨损或损坏的零部件,并定期进行润滑保养。
CCBⅡ型机车制动系统—CCBⅡ型机车制动系统主要部件及作用
防滑阀
防滑阀结构
防滑阀主要由两个动作膜板、一个双阀电磁 阀和一个阀座组成,阀座上有缩堵dc和dd。 两个阀座 (VD, VC)均一个膜板开关控制。 D膜板用于开关D室至C室的通道。 C膜板使C室通大气。
双阀电磁阀由两个3/2通电磁阀 (VM1排气, VM2进气)组成,簧圈共在一个塑料盒内。
SL1型电力机车制动系统司机室设备
司机室设备
EBV-电子制动阀
EBV位于操纵台上,司机用它 来控制单独制动(机车)及自动 制动(列车)。 除紧急制动情况下之下,EBV 是一个全电子制动阀。
LCDM
LCDM显示 ER, BP, MR, BC的实时压力值以及流量。它还用于分配功率( Distributive Power applications) 时的系统链接、测试、状态及报警显示 。
Control unit, based on “ESRA”控制 单元,基于“ESRA”
Speed sensor GI6 / rotatinggear速度 传感器G16/旋转齿轮
Anti skid valve GV12-ESRA防滑阀 GV12-ESRA
基本逻辑:速度传感器的脉冲信号 传输到电子控制单元,控制单元对 本车或本转向架的速度进行处理, 对已经发生滑行情况发出防滑控制 指令,操纵防滑电磁阀,控制制动 缸的压力。以保证最佳利用有效粘 着,最短的制动距离。
SL1型电力机车制动系统制动控制模块
Wheel Slide Protection 车轮防滑
Electronic System for Railway Applications 轨道用电子系统
MGS2 - Wheelslide Protection System MGS2-车轮防滑系统
和谐机车制动机.
和谐3型电力机车CCB-Ⅱ制动机概述第一节 CCB-Ⅱ制动机简介一、什么是CCBⅡ制动系统?该制动机的原创是德国产的KLR型制动机,后经美国加以改造,是目前世界上最先进的制动机,尤其适用于牵引重载列车的机车使用。
CCBⅡ制动系统是第二代微机控制制动系统,为在客运和货运机车上使用而设计。
该制动系统将26L型制动机和电子空气制动设备兼容。
CCBⅡ制动系统是基于微处理器的电空制动控制系统,除了紧急制动作用的开始,所有逻辑是微机控制的。
二、 CCB-Ⅱ型制动机系统(EPCU)由8个电脑模块组成,排列方式如下:BPCP ERCP DBTV 16CP20CP BCCP 13CP PSJBCCB-Ⅱ型制动机系统(EPCU)各电脑模块作用为:BPCP-列车管控制。
ERCP-均衡风缸模拟控制,无火回送塞门装在面部。
DBTV-备份。
电脑失效时,自动控制空气制动。
16CP-作用管控制。
20CP-平均管控制。
BCCP-制动缸管控制。
13CP-单独缓解控制。
PSJB-电源模块。
三、说明制动机系统各模块的名称及代号。
答:控制管路模块——U43弹簧停车模块——B40踏面清扫模块——B50撒砂模块——F41继电器接口模块RIM——B47处理器模块IPM——B46四、CCBⅡ制动系统的优点是什么?答:(1)组装部分①采用管路柜集成组装,将EPCU、IPM、IRM、停车制动、撒砂装置、踏面清扫、升弓控制等模块安装在制动柜中,方便操作和检修②管路采用走廊地板下集中布置,管路连接采用滚压式螺纹连接方式满足制动系统气密性要求(2)控制部分①CCBII采用微机(IPM)控制模式,EPCU上各部件为智能、可更换模块②司机室LCDM制动显示屏具有本务/补机,客/货,列车管补风/不补风,列车管投入/切除等转换功能,且有系统自检,故障记录,报警等功能,方便司机操作③采用MGS2型防滑器,使制动更加有效、安全。
五、、说明CCBⅡ型电空制动机主要部件的控制方式。
和谐1型电力机车CCB-II制动机
和谐(héxié)1型电力机车CCB-II制动机一、和谐1型电力机车使用的CCB-II空气制动系统由4个部分组成:1、自动制动(即非直接制动)是通过电子制动阀EBV的自动制动手柄来实施控制的。
它通过控制列车管(BP)的充、排风来对实现对整个列车缓解、制动的控制。
在自动制动时,机车自身也将使用电制动。
2、单独制动由司机进行操作,仅用来控制机车制动缸制动和缓解。
3、后备制动(即纯空气制动)在主制动系统失效后,通过纯空气的司机制动阀控制列车管的排风,对整列车施加制动。
制动由司机制动阀在位置上的时间决定。
4、停车制动。
当机车静止且在非操控状态时,停车制动可确保机车不会溜动。
停车制动通过弹簧(tánhuáng)蓄能实现制动的,它通过位于每个司机室后墙上的两个按钮控制:一个用于施加停放制动,另外一个用于缓解停放制动。
两个按钮都将读入控制系统,以实现在重联车或同一列车中间部位机车的停车制动的制动与缓解。
当蓄电池主开关断开时,机车停车制动将自动处于制动状态。
为增加整列车的制动力,自动制动和机车电制动可以结合起来操作,实现空电混合制动。
二、CCB-II型空气制动机的构成1、CCB-II型空气制动机组成CCB-II型空气制动机组成由4个主要部件组成:电子制动阀、扩展集成处理模块、继电器接口模块、电-空控制单元。
2、电子制动阀(EBV)电子制动阀(EBV)上安装有自动制动手柄(大闸)和单独制动手柄(小闸)。
电子制动阀(EBV)链接在DP的LON网络上,并与电空制动屏(EPCU)中的5个“智能(zhì nénɡ)”模块进行实时通讯。
在电子制动阀(EBV)上,左侧是自动制动手柄(大闸),右侧是单独制动手柄(小闸),中间标牌上用汉语注明手柄的位置。
自动制动手柄(大闸)的档位包括运转位、初制动位、全制动位、抑制位、重联位和紧急制动位。
初制动位和全制动位之间是制动区。
克诺尔CCB2制动机
CCBⅡ制动机继电器接口模块
• 继电器接口模块(RIM)位于机车 制动柜,是微处理器(IPM)与机 车进行通信的继电器接口。
• 信号输入部分包括:由安全装置( ATP)产生的惩罚制动和紧急制动 ,A/B端司机室操作激活信号,再 生制动投入信号,MREP压力开关 工作状态信号,机车速度信号。
• 信号输出部分包括:紧急制动信号 ,动力切除(PCS)信号,撒砂动 作信号,再生制动切除信号,重联 机车故障信号。
CCBⅡ制动机电空控制模块
• 电空控制单元(EPCU) 由电空阀和空气阀组成 ,来控制机车空气管路 的压力。它是制动系统 的执行部件,所有电空 阀和空气阀集成到8个 线路可更换模块( LRU)。 其中5个为智 能型的,相互可通讯
CCBⅡ制动机电空控制模块
BPCP
ERCP
DBTV
P
20CP
BCCP 13CP PSJB
CCBⅡ制动机制动显示屏
• 制动显示屏(LCDM)位于司机室操纵台左 侧,是CCBII制动机的主要显示和操作装置 。它由10.4”液晶显示器,下方8个功能键 和左侧3个亮度调节键组成。功能键用来实 现操作菜单的选择及制动功能的选定。操 作菜单可以用中文或英文显示。
CCBⅡ制动机制动显示屏
CCBⅡ制动机制动显示屏
• 电子制动阀采用水平安装结构,自动制动手柄位 于左侧,单独制动手柄位于右侧,中间为手柄位 置指示牌。在EBV内部有一个机械阀,当自动制 动手柄置于紧急制动位时机械阀动作,保证机车 车辆在任何状态下均能产生紧急制动作用。
CCBⅡ制动机电子制动阀
CCBⅡ制动机电子制动阀
• HXD3型电力机车的每一个司机室均装有一 个电子制动阀。当操纵端司机室的制动显 示屏(LCDM)被激活,微处理器(IPM) 将激活电子制动阀,操纵者可以用来进行 制动控制;此时非操纵端司机室的电子制 动阀未被激活,也不能送出制动指令。未 被激活电子制动阀的自动制动手柄需用销 子将其锁定在重联位,以免误动作触发紧 急制动,单独制动手柄应置于运转位。
CCBII制动系统讲解(克诺尔制动机)
制动系统的技术创新将带动整个产业链的协同发展,包括材料、零 部件、装备制造等相关领域。
提升行业竞争力
通过技术创新和改进,提高制动系统的性能和安全性,增强行业的 竞争力,推动行业的快速发展。
引领行业变革
制动系统的技术创新将引领整个行业的变革,推动行业向智能化、绿 色化、高效化的方向发展。
通过摩擦力将动能转化为热能 ,实现列车减速或停车。
与其他制动系统的比较
01
与KB型制动系统相比,CCBII制 动系统具有更高的制动性能和更 稳定的防滑控制。
02
与EP2002型制动系统相比, CCBII制动系统的维护成本较低, 且对环境适应性较强。
03
ccbii制动系统在克诺尔制动机中的应
用
应用场景
在全球范围内,CCBII制动系统的应用 前景广阔,特别是在高速铁路、城市 轨道交通等领域,具有广泛的市场需 求和应用前景。
未来,CCBII制动系统有望与其他智能 技术相结合,实现更加智能化、自动 化的列车制动控制,进一步提高列车 运行的安全性和效率。
THANKS
感谢观看
城市轨道交通
克诺尔CCBII制动系统广泛应用于城市轨道交通车辆,提供可靠的 制动解决方案,确保列车运行安全。
高速铁路
在高速动车组中,克诺尔CCBII制动系统也得到了广泛应用,为列 车提供快速、稳定的制动响应。
货运列车
对于货运列车,克诺尔CCBII制动系统同样适用,满足不同重量和 速度的制动需求。
实际效果与表现
市场前景与发展趋势
市场需求增长
随着轨道交通行业的快速发展,对高性能制 动系统的需求不断增长,市场前景广阔。
技术升级换代
随着技术的不断进步,制动系统将不断升级换代, 提高性能和安全性,满足更高标准的需求。
CCB系统介绍
CCB-Ⅱ制动机介绍、设置及操纵一、CCB-Ⅱ制动机的由来该制动机的原创是德国产的KLR型制动机,后经美国加以改造,是目前世界上最先进的制动机,尤其适用于牵引重载列车的机车使用。
二、湖东机务段为何将DK-1型制动机改为CCB-Ⅱ型制动机国产DK-1型制动机也是由电来控制风,具有充风快、排风快的效果,但不能摇控,在万吨列车中,前部、中部和后部的机车不能同时对列车进行充风和排风,断钩事故不可能避免。
而CCB-Ⅱ制动机可以摇控,前部主控机车在操纵列车管的同时,发出无线网络指令,以不超过0.06秒的时间,使列车中部、后部的各台从控机车同步操纵列车管,消除了万吨列车运行中由于不同步操纵造成的前拉后拽现象,杜绝了断钩事故。
三、我局从太原局入助的SS4机车,制动机型号的分布我局从太原局大同机务段接回的12台SS4机车为DK-1型制动机,从湖东机务段接回的50台SS4机车为CCB-Ⅱ制动机。
四、DK-1型制动机与CCB-Ⅱ型制动机的单台优缺点DK-1型制动机几经改进,仍有不少电空阀和气动部件,故障率高于CCB-Ⅱ型制动机,但一经故障后,可以转换成空气位操纵,仍然可以牵引列车运行。
CCB-Ⅱ型制动机全由电脑模块控制,没有任何气动部件,故障几乎为0,但万一发生故障只有救援,中断牵引。
五、SS4机车上的CCB-Ⅱ型制动机的改装方式1、SS4机车制动柜内原有的DK-1型制动机系统中所有阀类、塞门、风缸全部拆下,由CCB-Ⅱ型制动机系统(EPCU)代替,该系统由8个电脑模块组成,排列方式如下:CCB-Ⅱ型制动机系统(EPCU)各电脑模块作用为:BPCP-列车管控制。
ERCP-均衡风缸模拟控制,无火回送塞门装在面部。
DBTV-备份。
电脑失效时,自动控制空气制动。
16CP-作用管控制。
20CP-平均管控制。
BCCP-制动缸管控制。
13CP-单独缓解控制。
PSJB-电源模块,将DC110V降至66V。
2、CCB-Ⅱ型制动机自身的控制风缸,U77号塞门没有带入,仍使用DK-1型制动机的控制风缸及97号塞门。
CCBII制动机故障诊断测试装置介绍解读
CCBII制动机故障诊断测试装置介绍一、CCBII制动机功能介绍CCBII制动机是由NYAB-KNORR公司生产的新一代电控空气制动系统,它由制动屏(LCDM)、集成处理器模块(IPM)、电子制动阀(EBV)、电空控制单元(EPCU)、继电器接口模块(RIM)构成,实现对列车管和制动缸的控制。
二、硬件设计1、测试台及转接模块设计CCBII制动机故障诊断测试装置由测试台、气路接口板(包括气路母板、储风缸、EP阀、气路转接板)、电气信号箱、电源转换柜组成。
测试台是由工控机、信号箱、液晶显示器、键盘鼠标、电源指示灯、保险盒、电源开关等部件组成,实现测试装置的人机交互功能。
其设计原型如下图所示。
图4 测试台硬件实物图气路接口板实现气路模块测试过程中的气路接口,其设计原理图如下所示:图5 气路接口设计原理电气接口模块是由差分输入阵列、带输出反馈的过流短路保护输出阵列、带双口RAM的A/D信号采集模块、基于PC/104和嵌入式QNX的控制板构成,其设计原理图如下所示。
图6 电气接口设计原理三、操作规程3.1 ERCP空气管路与控制原理(1)比例阀403产生ERBU压力,备用模式(2)检测口504用于检测403输出压力是否正确(3)传感器204用于检测均衡风缸压力(4)比例阀401本缓解没作用(5)传感器202 用于检测列车管压力(6)传感器201用于检测总风压力(7)均衡和列车管压力表用于显示均衡和列车管压力3.1.1 网络参数测试(1)LRU上电测试LRU通电时刻:T1检测到LON网络上电信号时间:T2标准:通电后五秒内LRU必须发送上电信号(PowerUp)网络数据结果:通过/失败(2)LRU智能芯片及工作参数信息1)智能芯片信息请求成功,具体内容为:芯片型号:Neuron 3150/3120Chip网络变量总数:XX地址总数:XX程序标志信息:XX读写保护:打开/关闭双域名:是/否显性地址:是/否2)工作参数信息请求成功,具体内容为:模块ID参数:XX XX XX XXXX XX程序ID参数:XX XX XX软件版本参数:yyyy/mm/dd系统ID参数:XX XX3)网络变量列表利用LONTALK Management Command操作获取LRU的所有网络列表:网络变量地址:1~65优先级别:优先/正常设置方向:输入/输出网络变量号:1~1024双向节点:是/否服务类型:确认帧/请求确认帧/重复帧/非确认帧认证交互:是/否地址索引:1~10243.1.2 状态初始化测试过程:系统模拟IPM发送系统初始化数据组包判断标准:LRU完成初始化并发送正常ERT传感器数据和MRT传感器数据3.1.3 传感器校准MRT校准过程:1、进入传感器校准模式2、将总风缸风排干净,确保压力为0kPa3、检测MRT风缸压力值,设置最低压力值4、给总风缸充风到指定压力(800~950kPa)5、检测MRT风缸压力值,设置中间压力值6、如果BPCP传输的MRT或者测试装置的总风缸传感器失效,则自动进入缺省校准模式7、恢复BPCP为正常模式ERT校准过程:1、进入传感器校准模式2、设置ERCP压力为0kPa3、检测ER风缸压力值,设置最低压力值4、设置ERCP压力为760kPa5、检测ER风缸压力值,设置最高压力值6、如果ERCP传输的ERT或者测试装置的均衡风缸传感器失效,则自动进入缺省校准模式7、恢复ERCP为正常模式3.1.4 ERCP模块自检测试过程:1、设置ERCP为系统自检模式2、均衡风缸缓解,充风到600kPa3、检测ERT压力在[586,607]范围内,否则返回故障码11024、缓解状态均衡风缸缓解漂移5、验证五秒内ERT压力变化范围在[-7,7],否则返回故障码1103 6、均衡风缸全制动,设置ERT为420kPa7、检测ERT压力在[406,427]范围内,否则返回故障码11048、全制动状态均衡风缸缓解漂移9、验证五秒内ERT压力变化范围在[-7,7],否则返回故障码1105 10、ERCP的AW4断点5秒后吸合MVER,检测MVER排风速率11、检测ERT压力在[260,360]范围内,否则返回故障码110612、AW4上电,充风18秒13、检测ERT压力在[406,427]范围内,否则返回故障码110714、恢复ERCP为正常模式3.1.5 ERCP操作端模式检测测试过程:1、设置ERCP为操作端模式2、设置EBV大闸运转位,小闸运转位3、检测ERT压力在[586,607]范围内,否则返回故障码14、设置EBV大闸初制动,小闸运转位5、检测ERT压力在[536,557]范围内,否则返回故障码26、设置EBV大闸制动区(500kPa),小闸运转位7、检测ERT压力在[486,507]范围内,否则返回故障码38、设置EBV大闸制动区(450kPa),小闸运转位9、检测ERT压力在[436,457]范围内,否则返回故障码410、设置EBV大闸全制动,小闸运转位11、检测ERT压力在[406,427]范围内,否则返回故障码512、设置EBV大闸重联位,小闸运转位13、检测ERT压力在[0,21]范围内,否则返回故障码614、设置EBV大闸运转位,小闸运转位,ERCP充风至600kPa15、设置EBV大闸紧急位,小闸运转位16、检测ERT压力在[0,7]范围内,否则返回故障码717、设置EBV大闸运转位,小闸运转位18、测试完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录· CCB概述·设备识别· LRU管路图·故障检测CCB概述CCB Ⅱ®制动控制系统为一基于网络的电动-气动空气制动系统,用于干线货运和客运机车。
CCB Ⅱ采用一种基于分布式体系结构的线上可换式(LRU)设计方法。
每一LRU模块均具备自身诊断能力。
CCB Ⅱ包含大量冗余功能,在故障情况下有独特的识别、重新配置和备份关键部件的能力。
在司机室内安装一集成式机车计算机(ILC),用于显示空气制动数据以及操作界面,用于系统设置和监控。
CCB Ⅱ系统由3个主要部件组成。
EPCU——电动-气动控制单元BIPM——集成处理器模块EBV(2)——电子制动阀设备识别EPCU电动-气动控制单元EPCU为多阀箱体,其上安装多个LRU(即线上可换式单元)EPCU由8个LRU组成每一LRU均包含若干气动部件(与其行使的机车功能有关)。
本图的智能型LRU 还具有一个节点,该节点包含有与其功能相关的电子器件和软件EPCU由5个带节点的LRU组成,每一EBV上一个节点智能型(即具有结点)LRU为:Array· BP——制动管控制部· ER——均衡风缸控制部· 16——16管控制部· 20——20管控制部· 13——13管控制部· EBV——电子制动阀EPCU由8个LRU组成ER——均衡风缸LRU对司机给出的自动制动阀手柄的移动作出响应。
均衡风缸压力是对位于BPLRU中的制动管中继阀的控制压力。
BP——制动管LRU对所有BP功能(包括紧急制动)进行控制。
EPCU由8个LRU组成无火机车装置塞门和无火机车调节器也位于ER LRU内EPCU由8个LRU组成DBTV——气动备用三通阀为LRU,当在气动备用方式下CCB Ⅱ的诊断设备投入系统时,该LRU对16管压力进行控制。
DBTV的主要部件为一气动作用部,其总是在工作,但是,由于制动系统的计算机控制使前者的作用无法觉察。
EPCU由8个LRU组成16 LRU——16部LRU对CCB Ⅱ系统内的16管压力进行控制。
16管压力是BC LRU内的制动缸(BC)中继阀的控制压力。
EPCU由8个LRU组成20 LRU——20部LRU,作为本务机车方式使用,对由司机给出的EBV的单独制动阀手柄的移动作出响应;作为辅助牵引机车方式使用,20 LRU对制动平衡(20)管列车风管压力的改变作出响应。
EPCU由8个LRU组成BC——制动缸LRU为一制动缸中继阀,其对16管和20管压力的改变作出响应。
BC LRU对所有的机车制动缸制动和缓解进行控制。
EPCU由8个LRU组成13 LRU——13管控制部在ER备用方式下对通往ER控制部的16ERBU压力进行控制。
13控制部也包含逻辑和BOBU中继元件,用于对DBI-1(三通阀单独缓解)电磁阀进行控制。
EPCU由8个LRU组成PSJB——电源分线盒在EPCU上处于中心位置,所有节点和IPM均与之连接。
PSJB有内置电源为CCB Ⅱ系统和面板上的几个连接器(使EPCU、EBV和B-IPM相互连接)供电EBV电子制动阀EBV位于司机控制台中,由司机用来对单独制动机(机车)和自动制动机(列车和机车)进行控制。
EBV电子制动阀EBV为一全电子式制动阀(除紧急制动)。
在紧急制动情况下,EBV背面有一气动阀用来激活EPCU使之进入紧急制动方式,同时电子装置也启动一次紧急制动。
B-IPM集成式处理器模块B-IPM位于机车的无线电机柜中,为CCB Ⅱ制动控制系统的中央处理器。
LRU管路图ER均衡风缸部提供并调节ER(均衡风缸)压力。
该压力为制动管部的控制压力。
提供“无火拖送”制动限制功能。
ER均衡风缸APP作用电磁阀通电——为MR提供压力,用于为均衡风缸管线充风。
断电——停止MR对均衡风缸管线充风。
REL缓解电磁阀通电——引导ER管线压力排风。
断电——停止ER压力向大气排风。
MVER均衡风缸电磁阀通电——允许ER压力对BP中继阀进行控制。
断电——(失去动力期间)允许ER压力向大气放风引起一次制动施行。
DE无火机车通/断(Cut-in/Cut-out)塞门断(out)——关闭制动管与无火机车调节器的连接。
通(in)——打开BP与无火机车调节器的连接从而主风缸能由BP充风。
注:当机车处于无火状态,MR可由BP充风,但是充风会非常缓慢,而且压力受到DE 调节器的限制。
DER无火机车调节器对主风缸充风,压力由制动管压力充到无火机车调节器压力设定值。
注:该调节器压力设定值设定在36磅力/英寸2(250 kPa)。
C2无火机车充风节流阀限制由制动管向主风缸的充风速率。
CV止回阀防止在遮断塞门(Cut-out Cock)没扳到OUT位的情况下较高的MR压力(来自正在运行的机车)被导入BP。
MRT主风缸传感器产生一与主风缸压力成比例的电压信号。
ERT均衡风缸传感器产生一与均衡风缸压力成比例的电压信号。
TP ER均衡风缸测点测试接头,用于校准的测试表。
TP MR主风缸测点测试接头,用于校准的测试表。
ER部ER充风(自动BC缓解)ER部ER减压(自动BC制动)ER部无火机车接通(CUT-IN)BP制动管部提供并调节制动管压力。
给出制动管充风断开(Cut-off)。
使制动管放风以起动紧急制动。
制动管中继阀按需要提供主风缸空气以对制动管压力进行充风和排风,以与均衡风缸相匹配。
制动管排风节流阀1/4″限流孔对制动管减压率进行限制,用于自动常用制动的施行。
BPCO——制动管遮断阀开(Open)——将制动管由中继阀连接到制动管。
闭(Closed)——将制动管与中继阀断开连接。
中继阀这时不能对制动管充风、停止充风或调节其压力。
注:当BP压力低于7~13磅力/英寸2(48~90 kPa)时BPCO将自行关闭。
MV-53断电——制动管压力驱使打开BPCO。
通电——制动管中继阀压力被由使动侧排风,弹簧力使BPCO关闭。
C1(0.3075)充风节流阀限制主风缸压力流向BP中继阀供风侧产生一个与主风缸空气容量(被引向制动管用于充风)成比例的压力降(流量)。
注:通过C1的压力差用作对BP流速(用CMM校准)的一种指示。
MVEM紧急制动电磁阀(24 V)断电——21管被关闭从而不排风(正常运行)。
通电——21管压力被排风,PVEM被驱使从而使BP压力放风至零值。
注:这是一种来自EPCU的用于计算机驱动紧急制动的指令。
EMV紧急制动电磁阀(74 V)断电——21管被关闭从而排风(正常运行)。
通电——21管压力被排风,PVEM被驱使对BP压力进行排放。
注:这是一种BIPM直接紧急制动指令。
BPT制动管传感器产生一与BP压力成比例的电压信号。
MRT主风缸传感器。
产生一种与MR压力(在充风节流阀之前)成比例的电压信号。
FLT流量传感器产生一与MR压力(在充风节流阀之后)成比例的电压信号。
TP BP测试点——制动管试验接头,用于配校准的测试表。
BP LRU ER/BP充风/BC缓解BP LRU ER/BP减压BC制动施行BP LRU 紧急制动施行(由司机发起)1616管部正常——为制动缸提供作用压力。
备用——提供均衡风缸充风压力。
提供紧急限制制动缸压力。
REL缓解电磁阀通电——将16 ERBU管线连接至排风(大气)。
断电——停止16压力排向大气。
APP作用电磁阀通电——允许MR压力供应给16 ERBU管线。
断电——停止MR向16 ERBU管线供风。
16 ERBU16均衡风缸备用正常运行——当施行自动/单独(Auto/Ind)制动时向16供风用于BC制动的施行。
备用——将均衡风缸压力提供至ERBU管线。
MV16电磁阀16MV16是16的默认电磁阀。
通电用于16压力的正常状态(计算机控制)。
断电用于16压力的气动备用(DBTV)控制。
PVTV导阀——三通阀开——当MV16正处于调节时的正常自动/单独(Auto/Ind)BC控制。
闭——在备用方式或当MV16不在调节状态时。
注:当MV16在备用方式中时将16管线控制传递至16TV管线。
DCV2双单向止回阀2DCV2在16/16TV或ELV中选最高值并用该最高值向16容积管线(16 vol Line)充风。
注:16/16TV最大压力将为60~64磅力/英寸2(414~441 kPa)。
PVE紧急压力阀PVE当BP压力低于20磅力/英寸2(138 kPa)时打开并将ELV与DCV2连接。
注:当BP小于20磅力/英寸2(138 kPa)时紧急阀超越16/16TV压力。
ELV紧急限制阀以一紧急限定设定值减小MR压力提供紧急16管压力。
典型值为65磅力/英寸2(448 kPa)。
DCV1双单向止回阀1DCV1在BP(制动管)或BO(单独缓解)之间选最高压力值,并用该最高压力关闭PVE。
13管部在单独缓解(单缓)期间指令16管线自动BC压力降至零并使位于三通阀部上的DBI2电磁阀通电。
ELV压力必须由PVE排放。
注:单独制动手柄必须保持在常用制动区,否则20磅力/英寸2(138 kPa)的单独缓解(单缓)压力将缓解机车制动机。
BPT制动管传感器产生一与BP压力成比例的电压信号。
BCT制动缸传感器产生一与BC压力成比例的电压信号。
16T16管线传感器产生一与16 ERBU压力成比例的电压信号。
TP 16测试接头16容量/管线为一试验接头,用于连接校准的测试表。
TP BC测试接头(制动缸)为一试验接头,用于连接校准的测试表。
16 LRU BP减压/16/BC充风16 LRU BP充风/16/BC缓解BC制动缸中继阀建立及排放制动缸压力。
在本务机车方式下当ER压力减小时失去EPCU期间BC LRU为BC供风从而为制动平衡(20)管线/容积充风。
在本务机车方式当运行在ERBU(均衡风缸备用)模式下,BC LRU为BC供风从而为制动平衡(20)管线/容积充风和引导制动平衡(20)管线/容积向大气排风。
制动缸中继阀BCCP为高功能空气中继阀,其以MR为风源,以较高的16或20部压力为控制压力,必要时,为与控制管线压力相匹配,对机车制动缸进行充风和排风。
DCV1双单向止回阀DCV1选择16管线或20管线中的最高压力,并将该压力作为控制压力发送至BCCP(制动缸中继阀)。
PVPL在ERBU方式下将制动缸连接至制动平衡(20)管线。
■ DBI 1■动力制动联锁——1型——通电——DBI 1阻止和排放16管线制动作用控制压力至BC中继阀。
——混合制动期间或当处于BC备用方式时,该电磁阀由TL21给电以避免制动过量。
BC部BC缓解(正常模式)BC部BC作用(正常模式)DBTV三通阀部随着制动管压力的上升而排放BC控制部分(16TV)和为辅助风缸充风。
将辅助风缸压力导至BC控制部分(与制动管压力降低成比例)。