高三数学平面向量的基本性质与运算1

合集下载

高三数学向量专题复习(高考题型汇总及讲解)(1)

高三数学向量专题复习(高考题型汇总及讲解)(1)

向量专题复习向量是高考的一个亮点,因为向量知识,向量观点在数学、物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视。

一、平面向量加、减、实数与向量积 (一)基本知识点提示1、重点要理解向量、零向量、向量的模、单位向量、平行向量、反向量、相等向量、两向量的夹角等概念。

2、了解平面向量基本定理和空间向量基本定理。

3、向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。

4、向量形式的三角形不等式:||a |-|b ||≤|a ±b |≤|a |+|b |(试问:取等号的条件是什么?);向量形式的平行四边形定理:2(|a |2+|b |2)=|a -b |2+|a +b |25、实数与向量的乘法(即数乘的意义)实数λ与向量的积是一个向量,记λ,它的长度与方向规定如下:(1)|λa |=|λ|²|a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λ=,方向是任意的.6、共线向量定理的应用:若≠,则∥⇔存在唯一实数对λ使得=λ⇔x 1y 2-x 2y 1=0(其中=(x 1,y 1),=(x 2,y 2)) (二)典型例题例1、O 是平面上一 定点,A 、B 、C 是平面上不共线的三个点,动点P 满足).,0[||||+∞∈++=λλAC AB 则P 的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心+是在∠BAC 的平分线上,∴选B例2、对于任意非零向量与,求证:|||-|||≤|±|≤||+||证明:(1)两个非零向量与不共线时,+的方向与,的方向都不同,并且||-||<|±|<||+||(3)两个非零向量a 与b 共线时,①a 与b 同向,则a +b 的方向与a 、b 相同且|a +b |=|a |+|b |.②a 与b 异向时,则a +b 的方向与模较大的向量方向相同,设|a |>||,则|+|=||-||.同理可证另一种情况也成立。

高三数学 平面向量的概念及运算 知识精讲 人教实验版(B)

高三数学 平面向量的概念及运算 知识精讲 人教实验版(B)

高三数学 平面向量的概念及运算 知识精讲 人教实验版(B )一. 教学内容:平面向量的概念及运算向量的概念、向量的线性运算、向量的分解和向量的坐标运算二. 课标要求:(1)平面向量的实际背景及基本概念通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示;(2)向量的线性运算①通过实例,掌握向量加、减法的运算,并理解其几何意义;②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义。

(3)平面向量的基本定理及坐标表示①了解平面向量的基本定理及其意义;②掌握平面向量的正交分解及其坐标表示;③会用坐标表示平面向量的加、减与数乘运算;④理解用坐标表示的平面向量共线的条件。

三. 命题走向本讲内容属于平面向量的基础性内容,与平面向量的数量积比较,出题量小。

以选择题、填空题考查本章的基本概念和性质,重点考查向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。

此类题难度不大,分值5~9分。

预测高考:(1)题型可能为1道选择题或1道填空题;(2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。

【教学过程】一. 基本知识要点回顾1. 向量的概念①向量:既有大小又有方向的量。

向量一般用c b a ,,……来表示,或用有向线段的起点与终点的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。

向量的大小即向量的模(长度),记作|AB |,即向量的大小,记作|a |。

向量不能比较大小,但向量的模可以比较大小。

②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。

由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。

高中数学备课教案平面向量的引入与基本运算

高中数学备课教案平面向量的引入与基本运算

高中数学备课教案平面向量的引入与基本运算高中数学备课教案平面向量的引入与基本运算一、引言在高中数学教学中,平面向量是一个重要的概念。

通过引入平面向量的基本知识和运算规则,学生可以更好地理解和应用数学知识,提高解决实际问题的能力。

本教案将介绍平面向量的引入方法和基本运算规则。

二、引入平面向量1. 定义平面向量平面向量是具有大小和方向的几何对象,通常用箭头表示。

在二维平面中,平面向量可以表示为有序实数组成的二元组。

例如,向量AB可以表示为向量→AB=(x,y),其中x和y分别表示向量在x轴和y轴上的分量。

2. 表示平面向量平面向量可以用箭头表示,箭头的起点表示向量的起点,箭头的终点表示向量的终点。

常见的表示方法还包括使用坐标表示向量的分量,例如→AB=(3,4),表示向量AB的x轴分量为3,y轴分量为4。

3. 向量的模长和方向角向量的模长是指向量的长度,可以通过勾股定理求得,即∣→AB∣=√(x²+y²)。

向量的方向角是指向量与x轴的夹角α,可以通过三角函数求得,其中tan(α)=y/x。

三、平面向量的基本运算1. 向量的加法和减法向量的加法满足平行四边形法则,即→AB+→BC=→AC。

向量的减法可以通过向量加法和取负得到,即→AB-→BC=→AB+(-→BC)。

2. 向量的数量积向量的数量积也称为点乘,表示为→AB·→BC=|→AB||→BC|cosθ,其中θ为向量→AB和→BC之间的夹角。

若两向量夹角为直角,则向量的数量积为0,即→AB·→BC=0。

3. 向量的数量积的性质向量数量积具有以下性质:- 交换律:→AB·→BC=→BC·→AB- 分配律:(→AB+→BC)·→CD=→AB·→CD+→BC·→CD4. 向量的向量积向量的向量积也称为叉乘,表示为→AB×→BC=|→AB||→BC|sinθn,其中θ为向量→AB和→BC之间的夹角,n为单位法向量。

高三数学平面向量考点解析

高三数学平面向量考点解析

高三数学平面向量考点解析1、高中数学知识点总结平面向量的概念:平面向量是既有大小又有方向的量。

向量和数量是数学中讨论的两种量的形式,数量是实数。

2、平面向量的三种形式:(1)字母形式:用单独的小写字母带箭头或者用两个大写字母带箭头表示向量;(2)几何形式;用平面内的有向线段表示向量,零向量是一个点;(3)坐标形式:向量可以在坐标平面内用坐标表示,向量坐标等于它的终点坐标减去始点坐标。

3、平面向量的相关概念,(1)模(绝对值):向量的大小或者向量的长度叫做向量的模,模是大于等于的实数。

模也叫作绝对值、大小、长度,这几个说法是一个意思。

(2)相等向量:方向相同、大小相等的向量叫做相等向量(或者叫相同向量),两个相等向量的x,y坐标对应相等。

(3)相反向量:方向相反、大小相等的向量叫做相反向量。

一个向量加负号即变为其相反向量,在向量化简和运算中很常见、很重要。

(4)平行(共线)向量:平面内两个向量所在的直线平行或者重合,则说这两个向量平行(或者共线),用平行符号表示。

因为向量可以自由平移,所以对向量来讲平行和共线是一个意思。

两个非零向量平行时,必定方向相同或相反。

规定零向量和任意向量都平行,但不能说零向量和其它向量方向相同或相反。

(5)垂直向量:两向量所在的直线垂直(或者说夹角为90度),则说这两个向量为垂直向量,用垂直符号表示。

规定零向量和任意向量都垂直,但不能说夹角90度。

(6)零向量:大小为零(或者说模、绝对值、长度为零都是一个意思)的向量叫做零向量,规定零向量的方向是任意的,不能讨论零向量和其它向量方向的关系及夹角问题。

规定零向量和任意向量都平行且垂直。

(7)单位向量:长度为1的向量叫做单位向量。

一个向量除以自己的模得到和这个向量同方向的单位向量;单位向量乘以一个向量的模得到这个向量。

(8)位置向量:向量AB可以表示点B相对点A的位置,所以向量AB可以叫做点B关于点A的位置向量。

(9)方向向量:一个非零向量与一条直线平行,则这个向量叫做这条直线的平行向量。

考点10 平面向量(核心考点讲与练)-2023年高考数学核心考点讲与练(新高考专用)(解析版)

考点10  平面向量(核心考点讲与练)-2023年高考数学核心考点讲与练(新高考专用)(解析版)
设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.
①数量积:a·b=|a||b|cosθ=x1x2+y1y2.
②模:|a|= = .
③夹角:cosθ= = .
④两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.
⑤|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤ · .
,注意与平面向量平行的坐标表示区分.
3.(2021年全国高考甲卷)若向量 满足 ,则 _________.
【答案】
【分析】根据题目条件,利用 模的平方可以得出答案
【详解】∵

∴ .
故答案为: .
4.(2021年全国新高考Ⅰ卷)已知 为坐标原点,点 , , , ,则()
A. B.
C. D.
【答案】AC
2.三个常用结论
(1)O为△ABC的重心的充要条件是 + + =0;
(2)四边形ABCD中,E为AD的中点,F为BC的中点,则 + =2 ;
(3)对于平面上的任一点O, , 不共线,满足 =x +y (x,y∈R),则P,A,B共线⇔x+y=1.
注意向量共线与三点共线的区别.
3.平面向量基本定理实际上是向量的分解定理,并且是平面向量正交分解的理论依据,也是向量的坐标表示的基础.
【答案】D
【分析】根据所给图形,由向量的线性运算,逐项计算判断即可得解.
【详解】 + + = + =0,A正确;
+ + = + + =0,B正确;
+ + = + = + = ,C正确;
+ + = +0= = ≠ ,D错误,
故选:D.
2.(2020内蒙古鄂尔多斯市第一中学)下列结论正确的是
A.若向量 , 共线,则向量 , 的方向相同

平面向量的应用重难点解析版

平面向量的应用重难点解析版

突破6.4 平面向量的应用一、学情分析高考对本部分的考查主要涉及平面向量的数量积和向量的线性运算,以运算求解和数形结合为主,重点掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系,掌握向量加法、减法、数乘的运算及其几何意义等,注重转化与化归思想的应用.1.平面向量的数量积一直是高考的一个热点,尤其是平面向量的数量积,主要考查平面向量的数量积的 运算、向量的几何意义、模与夹角、两向量的垂直等问题.题型一般以选择题、填空题为主.2.平面向量的基本定理及坐标表示是高考中的一个热点内容,尤其是用坐标表示的向量共线的条件是高 考考查的重点内容,一般是通过向量的坐标表示,将几何问题转化为代数问题来解决,多以选择题或填空题的形式呈现,有时也作为解答题中的条件,应用向量的平行或垂直关系进行转换.二、学法指导与考点梳理考点一 向量在平面几何中的应用 (1)用向量解决常见平面几何问题的技巧: 问题类型 所用知识 公式表示线平行、点共线等问题共线向量定理a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=0, 其中a =(x 1,y 1),b =(x 2,y 2),b ≠0 垂直问题数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0,其中a =(x 1,y 1),b =(x 2,y 2),且a ,b 为非零向量夹角问题数量积的定义cos θ=a ·b|a ||b |(θ为向量a ,b 的夹角),其中a ,b 为非零向量长度问题数量积的定义|a |=a 2=x 2+y 2,其中a =(x ,y ),a 为非零向量平面几何问题――→设向量向量问题――→运算解决向量问题――→还原解决几何问题。

考点二 正弦定理和余弦定理1.在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则 定理 正弦定理余弦定理公式a sin A =b sin B =c sin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C常见 变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin A ∶sin B ∶sin C ;(4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的个数一解两解一解一解无解重难点题型突破1 平面向量在平面几何中的应用(奔驰定理)例1、(1).(2022·四川西昌·高二期末(理))在平面上有ABC 及内一点O 满足关系式:0OBC OAC OAB S OA S OB S OC ⋅+⋅+⋅=△△△即称为经典的“奔驰定理”,若ABC 的三边为a ,b ,c ,现有0a OA b OB c OC ⋅+⋅+⋅=则O 为ABC 的( )A .外心B .内心C .重心D .垂心【答案】B 【解析】 【分析】利用三角形面积公式,推出点O 到三边距离相等。

平面向量的运算

平面向量的运算

平面向量的运算在数学中,平面向量是由大小和方向确定的量,常用于表示物体在平面上的位移或力的作用方向。

平面向量的运算是指对平面向量进行加法、减法、数乘和点乘等操作。

本文将介绍平面向量的基本概念和运算规则。

一、平面向量的表示方法平面向量通常用有向线段表示,由两个点确定,例如AB表示从点A到点B的平面向量。

可以用字母加箭头(如→)表示平面向量,如:AB →其中A为向量的起点,B为终点。

二、平面向量的加法对于两个平面向量AB → 和CD →,它们的和可以通过平行四边形法则得到。

具体步骤如下:1. 将向量CD → 的起点与向量AB → 的终点相重合,得到新的向量AC →;2. 连接向量AB → 的起点和向量CD → 的终点,得到新的向量AD →;3. 新的向量AD → 就是原始向量AB → 和CD → 的和,即AD → = AB → + CD →。

三、平面向量的减法向量的减法可以通过向量加法的逆运算得到。

对于向量AB → 和CD →,它们的差可以表示为AB → - CD →,具体步骤如下:1. 取向量CD → 的终点B为新向量的起点,向量AB → 的起点A为新向量的终点,得到新的向量BA →;2. 新的向量BA → 就是原始向量AB → 和CD → 的差,即BA → = AB → - CD →。

四、平面向量的数乘平面向量的数乘是指将向量的长度乘以一个实数,从而改变向量的大小。

设有向量AB → 和实数k,它们的数乘表示为kAB →,其具体步骤如下:1. 将向量AB → 的长度乘以实数k,得到新向量AC →;2. 新的向量AC → 的方向与原来向量AB → 相同,而长度为原来的k倍,即AC → = kAB →。

五、平面向量的点乘平面向量的点乘(内积)运算可以得到两个向量的乘积,结果为一个实数。

设有向量AB → 和CD →,它们的点乘表示为AB → · CD →,具体计算方法如下:1. 将向量AB → 和CD → 的长度相乘,得到实数AC;2. 计算向量AB → 与向量CD → 之间夹角的余弦值,得到实数cosθ;3. 点乘的结果为AB → · CD → = ACcosθ。

高三数学总复习讲义——向量

高三数学总复习讲义——向量

高三数学总复习讲义——向量一、知识清单(一)向量的有关定义1.向量:既有大小又有方向的量叫做向量.向量的大小叫向量的模(也叫向量的长度).用|表示|2.向量的表示方法:(1)字母表示法:如,,,a b c r r rL 等.(2)坐标表示法:在平面直角坐标系中,设向量OA u u u r的起点O 为在坐标原点,终点A 坐标为(),x y ,则(),x y 称为OA u u u r 的坐标,记为OA u u u r=(),x y .(3)几何表示法:用一条有向线段表示向量.如AB uuu r ,CD uuu r 等.注:向量既有代数特征,又有几何特征,它是数形兼备的好工具.3.相等向量:长度相等且方向相同的向量.向量可以自由平移,平移前后的向量相等.两向量a r 与b r相等,记为a b =r r .注:向量不能比较大小,因为方向没有大小.4.零向量:长度为零的向量叫零向量.零向量只有一个,其方向是任意的.5.单位向量:长度等于1个单位的向量.单位向量有无数个,每一个方向都有一个单位向量.6.共线向量:方向相同或相反的非零向量,叫共线向量.任一组共线向量都可以移到同一直线上.规定:0r与任一向量共线.注:共线向量又称为平行向量.7.相反向量: 长度相等且方向相反的向量. (二)向量的运算 1.运算定义①向量的加减法,②实数与向量的乘积,③两个向量的数量积,这些运算的定义都是 “自然的”,它们都有明显的物理学的意义及几何意义.其中向量的加减法运算结果仍是向量,两个向量数量积运算结果是数量。

研究这些运算,发现它们有很好地运算性质,这些运算性质为我们用向量研究问题奠定了基础,向量确实是一个好工具.特别是向量可以用坐标表示,且可以用坐标来运算,向量运算问题可以完全坐标化.运 算 图形语言符号语言坐标语言加法与减法OA --→+OB --→=OC --→OB --→OA --→-=AB --→记OA --→=(x 1,y 1),OB --→=(x 1,y 2)则OA OB +uu u r uuu r=(x 1+x 2,y 1+y 2) OB OA -uuu r uu u r=(x 2-x 1,y 2-y 1)OA --→+AB --→=OB --→实数与向量的乘积AB --→=λa →λ∈R记a →=(x ,y ) 则λa →=(λx ,λy )两个向量的数量积cos ,a b a b a b ⋅=⋅r r r r r r 记1122(,),(,)a x y b x y ==r r则a →·b →=x 1x 2+y 1y 22.运算律加法:①a b b a +=+r r r r (交换律); ②()()a b c a b c ++=++r r r r r r (结合律) 实数与向量的乘积:①()a b a b λλλ+=+r r r r ; ②()a a a λμλμ+=+r r r;③()()a a λμλμ=r r两个向量的数量积: ①a →·b →=b →·a →; ②(λa →)·b →=a →·(λb →)=λ(a →·b →);③(a →+b →)·c →=a →·c →+b →·c →注:根据向量运算律可知,两个向量之间的线性运算满足实数多项式乘积的运算法则,正确迁移实数的运算性质可以简化向量的运算, 例如(a →±b→)2=222a a b b →→→→±⋅+3.运算性质及重要结论⑴平面向量基本定理:如果12,e e u r u u r是同一平面内两个不共线的向量,那么对于这个平面内任一向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r ,称1122e e λλ+u r u u r 为12,e e u r u u r的线性组合。

高考数学平面向量及其综合运用 人教版

高考数学平面向量及其综合运用 人教版

高考数学平面向量及其综合运用 人教版复习要点:Ⅰ、平面向量知识结构表Ⅱ、内容概述1、向量的概念向量有三种表示法:①有向线段,②a 或AB ,③坐标a =(x , y )。

注意:共线向量与相等向量的联系与区别。

2、向量的运算加法、减法、数乘向量和向量的数量积。

如:11221212(,)(,)a b x y x y x x y y =⋅=+注意:几何运算与坐标运算 3、平面向量的定理及相关性质(1)两个非零向量平行的充要条件: a ∥b ⇔ a =λb (λ∈R)设a =(x1,y1),b = (x2,y2) 则a ∥b ⇔ x1y2-x2y1=0(2)两个非零向量垂直的充要条件: a ⊥b ⇔ a·b =0 设a =(x1,y1),b =(x2,y2)则a ⊥b ⇔ x1·x2+y1·y2=0(3)平面向量基本定理:如果有e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使 a =λ1e1+λ2e2.(4)三点共线定理:平面上三点A 、B 、C 共线的充要条件是:存在实数α、β,使OC OB OA βα+=,其中α+β=1,O 为平面内的任一点。

4、 常用公式及结论a 、向量模的公式:设a =(x,y ),则︱a ︱=22y x +b 、两点间的距离公式:21P P =212212)()(y y x x -+- [P1(x1,y1),P2(x2,y2)]c 、线段的定比分点坐标公式:向量向量的概念向量的运算向量的运用向量的加、减法实数与向量的积 向量的数量积 两个向量平行的充要条件两个向量垂直的充要条件定比分点公式平移公式 在物理学中的应用 在几何中的应用d 、中点坐标公式: 或)(21OB OA OM +=其中M (x0 ,y0)是线段AB 中点。

e 、两向量的夹角公式:cos θ=222221212121y x y x y y x x ba ba +⋅++=⋅⋅其中0°≤θ≤180°,a=(x1,y1),b =(x2,y2)f 、图形平移公式:若点P(x,y)按向量a =(h,k)平移至P '(x ',y '), 则g 、有关向量模的常用结论: ① aa a ⋅=2② 22222bb a a )b a (b a +⋅±=±=± ③ba b a ≤⋅,a b a b a b-≤±≤+④222||||2||2||a b a b a b ++-=+ 范例及其点评(一)平面向量学科内综合运用深刻理解平面向量的相关概念与性质,熟练掌握向量的各种运算,熟悉常用公式及结论,理解并掌握两向量共线、垂直的充要条件。

第一节 平面向量的概念讲义--高三数学一轮复习备考

第一节 平面向量的概念讲义--高三数学一轮复习备考

平面向量与复数第一节平面向量的概念一、课程标准1.向量概念(1)通过对力、速度、位移等的分析,了解平面向量的实际背景,理解平面向量的意义和两个向量相等的含义;(2)理解平面向量的几何表示和基本要素.2.向量运算(1)借助实例和平面向量的几何表示,掌握平面向量加、减运算及运算规则,理解其几何意义;(2)通过实例分析,掌握平面向量数乘运算及运算规则,理解其几何意义.理解两个平面向量共线的含义;(3)了解平面向量的线性运算性质及其几何意义;(4)通过物理中功等实例,理解平面向量数量积的概念及物理意义,会计算平面向量的数量积;(5)通过几何直观了解平面向量投影的概念及投影向量的意义.新高考命题方向:主要考查平面向量的线性运算(加法、减法、数乘向量)及其几何意义、共线向量基本定理,有时也会有创新的新定义问题;题型以选择题、填空题为主,属于中低档题目,偶尔会在解答题中作为工具出现.考查理性思维、数学探究、数学抽象学科素养.二、知识梳理知识点一向量的有关概念名称定义备注向量既有又有的量;向量的大小叫做向量的(或称)平面向量是自由向量零向量长度为的向量记作,其方向是任意的单位向量长度等于长度的向量非零向量a的单位向量为±a|a|平行向量方向或的非零向量(又叫做共线向量)0与任意向量或共线相等向量长度且方向的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量0的相反向量为01.对于平行向量易忽视两点:(1)零向量与任意向量平行;(2)表示两平行向量的有向线段所在的直线平行或重合,易忽视重合这一情况.2.单位向量的定义中只规定了长度,没有方向限制. 知识点二 向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算法则法则(1)交换律:a +b = (2)结合律:(a +b )+c =减法 求a 与b 的相反向量-b 的和的运算叫做a 与b 的差法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算|λa |= ;当λ>0时,λa 的方向与a 的方向 ;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =λ(μa )=(λμ)a ;(λ+μ)a = ;λ(a +b )=知识点三 共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得 . 知识点四 平面向量的数量积 1.向量的夹角 定义图示范围共线与垂直已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则 就是a 与b 的夹角设θ是a 与b 的夹角,则θ的取值范围是θ=0或θ=π⇔ ,⇔a ⊥b• 温馨提醒 •对于两个非零向量a 与b ,由于当θ=0°时,a ·b >0,所以a ·b >0是两个向量a ,b 夹角为锐角的必要不充分条件;a ·b =0也不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b .2.平面向量的数量积 (1)投影向量①如图,设a ,b 是两个非零向量,AB → =a ,CD →=b ,分别过A ,B 作CD 的垂线,垂足分别为A 1,B 1,得到,我们称上述变换为向量a 向向量b 投影,叫做向量a 在向量b 上的投影向量.如图,在平面内任取一点O 作OM → =a ,ON →=b ,过M 作ON 的垂线,垂足为M 1,则就是向量a 在向量b 上的投影向量,设与b 方向相同的单位向量为e ,〈a ,b 〉为θ,则=(|a |cos θ)e .两个向量数量积的几何意义:a ·b 等于a 在b 上的投影数量与b 的模的乘积. (2)向量数量积的运算律①a ·b = ;②(λa )·b =λ(a ·b )= ;③(a +b )·c = .• 温馨提醒 •1.数量积运算律要准确理解、应用,例如,a ·b =a ·c (a ≠0)不能得出b =c ,两边不能约去一个向量.2.a ·b =0不能推出a =0或b =0,因为a ·b =0时,有可能a ⊥b . 3.在用|a |=a 2 求向量的模时,一定要先求出a 2再进行开方.三、基础自测1.若m ∥n ,n ∥k ,则向量m 与向量k ( )A .共线B .不共线C .共线且同向D .不一定共线 2.已知a·b =-122 ,|a |=4,a 和b 的夹角为135°,则|b |为( ) A .12 B .6 C .33 D .33.(易错题)已知两个非零向量a 与b 的夹角为θ,则“a ·b >0”是“θ为锐角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( ) A .4 B .3 C .2 D .05.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA → =a ,OB → =b ,则DC → =________,BC →=________(用a ,b 表示).四、核心题型题型一 平面向量的有关概念及线性运算例1(1) (多选)已知a ,b 是两个单位向量,下列命题中正确的是( )A .|a |=|b |=1B .a ·b =1C .当a ,b 反向时,a +b =0D .当a ,b同向时,a =b(2)设a ,b 都是非零向量,下列四个条件中,一定能使a |a | +b|b |=0成立的是( )A .a =2bB .a ∥bC .a =-13b D .a ⊥b(3)在△ABC 中,D 为AB 的中点,点E 满足EB → =4EC → ,则ED →=( )A .56 AB → -43 AC → B .43 AB → -56 AC → C .56 AB → +43 AC →D .43AB → +56AC →题型二 平面向量共线定理的应用例2(1)已知两个非零向量a ,b 互相垂直,若向量m =4a +5b 与n =2a +λb 共线,则实数λ的值为( )A .5B .3C .52 D .2(2)设a ,b 是不共线的两个向量,已知BA → =a +2b ,BC → =4a -4b ,CD →=-a +2b ,则( )A .A ,B ,D 三点共线 B .B ,C ,D 三点共线 C .A ,B ,C 三点共线 D .A ,C ,D 三点共线(3)已知O 为△ABC 内一点,且AO → =12 (OB → +OC → ),AD → =tAC →,若B ,O ,D 三点共线,则t 的值为( )A .14B .13C .12D .23题型三 平面向量的数量积及应用例3(1)已知在矩形ABCD 中,AB =4,AD =2.若E ,F 分别为AB ,BC 的中点,则DE → ·DF →=( )A .8B .10C .12D .14(2)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM → =2MA → ,CN →=2NA → ,则BC → ·OM →的值为( )A .-15B .-9C .-6D .0(3) 已知|a |=6,e 为单位向量,当向量a ,e 的夹角θ分别等于45°,90°,135°时,求向量a 在向量e 上的投影向量.(4)(2021·全国甲卷)若向量a ,b 满足|a |=3,|a -b |=5,a·b =1,则|b |=________. (5)已知向量a ,b 满足(a +2b )·(5a -4b )=0,且|a |=|b |=1,则a 与b 的夹角θ为( )A .3π4B .π4C .π3D .2π3(6)(2020·全国Ⅱ卷)已知单位向量a ,b 的夹角为45°,k a -b 与a 垂直,则k =________.五、变式训练1.如图所示,在直角梯形ABCD 中,DC → =14 AB → ,BE → =2EC → ,且AE → =rAB → +sAD →,则2r +3s =( )A .1B .2C .3D .42..设两个非零向量a 与b 不共线.(1)若AB → =a +b ,BC → =2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.3.已知a ,b 均为单位向量,它们的夹角为60°,那么|a +3b |=( )A .7B .10C .13D .44.非零向量a ,b ,c 满足a ·b =a ·c ,a 与b 的夹角为π6 ,|b |=4,则c 在a 上的投影向量的长度为( )A .2B .23C .3D .4六、作业一轮复习资料《课时作业》437页 A 组:全部 B 组:2、3。

高三数学高考第一轮复习课件:平面向量

高三数学高考第一轮复习课件:平面向量

第33讲 │ 知识要点
第33讲 │ 双基固化 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第31讲 │ 双基固化
第31讲 │ 双基固化
第31讲 │ 双基固化
第31讲 │ 能力提升 能力提升
第31讲 │ 能力提升
第31讲 │ 能力提升
第31讲 │ 规律总结 规律总结
第32讲 │ 解斜三角形及应用举例
第32讲 解斜三角形及应用举例
第32讲 │ 编读互动 编读互动
第32讲 │ 知识要点 知识要点
第五单元 │ 考点解读
(6)掌握平面两点间的距离公式以及线段的定比分点 和中点坐标公式,并且能熟练运用,掌握平移公式.
(7)掌握正弦定理、余弦定理,并能初步运用它们解 斜三角形.
第五单元 │ 复习策略
复习策略
1.向量具有的几何形式和代数形式的“双重身份”,使 它成为中学数学知识的一个交汇点,成为多项内容的媒介.本 单元内容为新增知识点,在近几年的考试中所占分值比例正逐 年加大,分值在16~17分,较多情况是2小1大(一选择 一填空,解答题中一部分)或1小2大(选择或填空,解答题 以向量为背景或叙述形式). 2.本单元主要命题方式及考点: (1)主要考查向量的性质和运算法则以及基本运算技 能.要求掌握和、差、数乘和向量的数量积的运算法则,理解 其直观的几何意义.
第28讲 │ 双基固化
第28讲 │ 双基固化

高三数学平面向量的概念及几何运算试题答案及解析

高三数学平面向量的概念及几何运算试题答案及解析

高三数学平面向量的概念及几何运算试题答案及解析1.已知平面向量, 且, 则 ( )A.B.C.D.【答案】C【解析】由向量, 且.所以.即.故选C.【考点】1.向量平行的性质.2.向量的模的运算2. [2014·龙岩质检]已知向量a=(1,-1),b=(1,2),向量c满足(c+b)⊥a,(c-a)∥b,则c=()A.(2,1)B.(1,0)C.(,)D.(0,-1)【答案】A【解析】设c=(x,y),则c+b=(x+1,y+2),c-a=(x-1,y+1).由(c+b)⊥a,(c-a)∥b 可得,解得,因此c=(2,1).3.在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ=.【答案】2【解析】由平行四边行的性质知,AC与BD互相平分,又+==2所以λ=24.在四边形中,,,则四边形的面积为()A.B.C.2D.【答案】A【解析】由,可知四边形为平行四边形,且,因为,所以可知平行四边形ABCD的角平分线BD平分∠ABC,四边形为菱形,其边长为,且对角线对于边长的倍,即,则,即,所以三角形的面积为,所以四边形的面积为,选A5.已知△ABC中,点D是BC的中点,过点D的直线分别交直线AB、AC于E、F两点,若,,则的最小值是()A.9B.C. 5D.【答案】D【解析】由题意得,,又D、E、F在同一条直线上,可得.所以,当且仅当2λ=μ时取等号.故选D.6.在△ABC中,M为边BC上任意一点,N为AM中点,,则λ+μ的值为() A.B.C.D.1【答案】A【解析】∵M为边BC上任意一点,∴可设.∴N为AM中点,∴.∴.故选A.7.已知双曲线的右顶点、左焦点分别为A、F,点B(0,-b),若,则双曲线的离心率值为()(A)(B)(C)(D)【答案】B【解析】由得,又,,则,,所以有,即,从而解得,又,所以,故选.【考点】向量的运算、双曲线的离心率、解一元二次方程.8.已知点A(1,3),B(4,-1),则与向量同方向的单位向量为()A.B.C.D.【答案】A【解析】=(3,-4),则与同方向的单位向量为=(3,-4)=.故选A.9.直线的一个法向量可以是【答案】【解析】已知直线的一般式方程为,因此其一个法向量为.【考点】直线的法向量.10.设a,b是两个非零向量,下列选项正确的是().A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|【答案】C【解析】对于A,可得cos〈a,b〉=-1,因此a⊥b不成立;对于B,满足a⊥b时,|a+b|=|a|-|b|不成立;对于C,可得cos〈a,b〉=-1,因此成立,而D显然不一定成立.11.已知O,A,M,B为平面上不同的四点,且=λ+(1-λ) ,λ∈(1,2),则().A.点M在线段AB上B.点B在线段AM上C.点A在线段BM上D.O,A,M,B四点共线【答案】B【解析】根据题意知=λ+-λ=λ(-)+,则-=λ(-),即=λ.由λ∈(1,2)可以判断出点M在线段AB的延长线上,即点B在线段AM上.12.如图,为直线外一点,若,,,,,,,中任意相邻两点的距离相等,设,,用,表示,其结果为 .【答案】【解析】设的中点为A,则A也是,…的中点,由向量的中点公式可得,同理可得,故.【考点】平面向量的加法法则,中点公式.13.如图,在中,点是边上靠近的三等分点,则()A.B.C.D.【答案】C【解析】由平面向量的三角形法则,可得:,又因为点是边上靠近的三等分点,所以,==.【考点】平面向量的三角形法则.14.在边长为6的等边△ABC中,点M满足,则等于.【答案】 24【解析】【考点】本小题考查向量的线性运算及其向量的数量积。

高中数学第二章平面向量2.3.2平面向量的坐标运算(1)课件苏教版必修4

高中数学第二章平面向量2.3.2平面向量的坐标运算(1)课件苏教版必修4
答案
知识点三 思考 1
平面向量的坐标运算
设i、j 是与x轴、y轴同向的两个单位向量,若设a =(x1 ,y1) ,b
=(x2,y2),则a=x1i+y1j,b=x2i+y2j,根据向量的线性运算性质,向 量a+b,a-b,λa(λ∈R)如何分别用基底i、j表示?
答 a+b=(x1+x2)i+(y1+y2)j,
第2章 §2.3 向量的坐标表示
2.3.2 平面向量的坐标运算(一)
学习目标
1.了解平面向量的正交分解,掌握向量的坐标表示. 2.掌握两个向量和、差及数乘向量的坐标运算法则. 3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.
问题导学
题型探究
达标检测
问题导学
知识点一 平面向量的正交分解
则(-1,2)=λ1(1,2)+λ2(-2,3)=(λ1-2λ2,2λ1+3λ2),
λ =1, 1 7 -1=λ1-2λ2, ∴ 解得 4 2=2λ1+3λ2, λ= . 2 7
1 4 ∴a=7e1+7e2.
解析答案
1
2
3
4
5
→ 1→ 4.已知两点 M(3,2),N(-5,-5),MP=2MN,则点 P
返回
题型探究
类型一 求向量的坐标
例1 如图,在直角坐标系xOy中,OA
重点难点 个个击破
= 4 , AB = 3 , ∠AOx = 45°, ∠OAB → → =105°, OA =a, AB =b.四边形 OABC为平行四边形. (1)求向量a,b的坐标;
解析答案
→ (2)求向量BA的坐标;

解析 因为点 P 在 MN 的延长线上,|MP|=2|PN|,
→ → 又MN=(0,5)-(2,-1)=(-2,6),所以MP=(-4,12),

高三数学一轮复习平面向量基本定理及坐标表示

高三数学一轮复习平面向量基本定理及坐标表示

A. 2
√B. 5
C. 10
D.5
解析 根据题意可得1×t=2×(-2),可得t=-4,
所以a+b=(-1,-2),
从而可求得|a+b|= 1+4= 5,故选 B.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4.已知平面直角坐标系内的两个向量a=(1,2),b=(m,3m-2),且平面内的任
∴-2×(4-k)=-7×(-2k),解得 k=-23.
3 课时作业
PART THREE
基础保分练
1.已知 M(3,-2),N(-5,-1),且M→P=12M→N,则 P 点的坐标为
A.(-8,1)
√B.-1,-23
解析 设 P(x,y),则M→P=(x-3,y+2).
C.1,32
D.(8,-1)
而12M→N=12(-8,1)=-4,12,
x-3=-4, ∴y+2=12,
x=-1, 解得y=-32,
∴P-1,-23.故选 B.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.(2019·山西榆社中学诊断)若向量A→B=D→C=(2,0),A→D=(1,1),则A→C+B→C等于
2.平面向量的坐标运算
(1)向量加法、减法、数乘及向量的模
设a=(x1,y1),b=(x2,y2),则 a+b= (x1+x2,y1+y2) ,a-b= (x1-x2,y1-y2) , λa= (λx1,λy1) ,|a|= x21+y21 .
(2)向量坐标的求法
①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A(x1,y1),B(x2,y2),则 A→B= (x2-x1,y2-y1),|A→B|= x2-x12+y2-y12 . 3.平面向量共线的坐标表示 设a=(x1,y1),b=(x2,y2),其中b≠0.a,b共线⇔ x1y2-x2y1=0 .

向量知识点总结高中高三

向量知识点总结高中高三

向量知识点总结高中高三一、向量的概念和性质向量是指既有大小又有方向的量,通常用箭头表示。

记作→AB或AB。

向量的大小称为模,用|→AB|表示。

向量的方向可以用角度、方向角或单位向量表示。

二、向量的表示方法1. 自由向量表示:以起点为原点,终点为坐标,用坐标向量<AB>表示。

2. 定位向量表示:以某个点为原点,另一点为坐标,用坐标<AB>表示。

三、向量的基本运算1. 向量的加减法向量的加法满足交换律和结合律,即A+B=B+A,(A+B)+C=A+(B+C)。

向量的减法可以转化为加法,即A-B = A + (-B)。

2. 数乘将一个向量与一个实数相乘,得到的新向量与原向量的方向一致(同方向或反方向),大小为原向量的模与实数的乘积。

3. 数量积(点积)定义:两个向量的数量积等于它们模的乘积与它们夹角的余弦值的乘积。

性质:数量积满足交换律和分配律,即A·B=B·A,A·(B+C)=A·B+A·C。

定理:若A·B=0,则向量A与向量B垂直。

4. 向量积(叉积)定义:两个向量的向量积等于以这两个向量为邻边的平行四边形的有向面积。

性质:向量积满足反交换律和分配律,即A×B=-(B×A),A×(B+C)=A×B+A×C。

定理:向量A与向量B的向量积等于向量A、B、O组成的三角形的有向面积的二倍。

四、向量的线性相关与线性无关若存在不全为0的实数k1、k2、…、kn,使得k1A1+k2A2+…+knAn=0,那么向量组A1、A2、…、An线性相关;否则,它们线性无关。

五、向量的夹角和投影1. 夹角定义对于两个非零向量A和B,它们的夹角θ满足0≤θ≤π。

夹角θ的余弦称为方向余弦。

2. 向量的投影若A和B是两个非零向量,A在B上的投影为|(A·B)/|B||∥B∥。

六、平面向量的应用1. 平面向量的平移平面上的向量可以进行平移操作,即将向量A的起点与向量B的终点重合,得到一个新向量C,记作C=A+B。

2023年新高考数学大一轮复习专题21 平面向量的概念、线性运算及坐标表示(解析版)

2023年新高考数学大一轮复习专题21 平面向量的概念、线性运算及坐标表示(解析版)

专题21平面向量的概念、线性运算及坐标表示【考点预测】 一.向量的有关概念(1)定义:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)向量的模:向量AB 的大小,也就是向量AB 的长度,记作||AB . (3)特殊向量:①零向量:长度为0的向量,其方向是任意的. ②单位向量:长度等于1个单位的向量.③平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行. ④相等向量:长度相等且方向相同的向量. ⑤相反向量:长度相等且方向相反的向量. 二.向量的线性运算和向量共线定理 (1)向量的线性运算①交换律b b a =+②结合律 )a b c ++=(a b c ++a 与b 的相反向量b -的和的运算叫做a b 的差 ()a b a b -=+-求实数λ与a 的积的运算(|||||a a λ=(0λ>时,a λ与a 的方向相同;当λ<a λ与a 的方向相同;时,0a λ=()()a a λμλμ=)a a a λμλμ+=+(1)向量表达式中的零向量写成0,而不能写成0.(2)两个向量共线要区别与两条直线共线,两个向量共线满足的条件是:两个向量所在直线平行或重合,而在直线中,两条直线重合与平行是两种不同的关系.(3)要注意三角形法则和平行四边形法则适用的条件,运用平行四边形法则时两个向量的起点必须重合,和向量与差向量分别是平行四边形的两条对角线所对应的向量;运用三角形法则时两个向量必须首尾相接,否则就要把向量进行平移,使之符合条件.(4)向量加法和减法几何运算应该更广泛、灵活如:OA OB BA -=,AM AN NM -=,+OA OB CA OA OB CA BA CA BA AC BC =⇔-=⇔-=+=.三.平面向量基本定理和性质 1.共线向量基本定理如果()a b R λλ=∈,则//a b ;反之,如果//a b 且0b ≠,则一定存在唯一的实数λ,使a b λ=.(口诀:数乘即得平行,平行必有数乘).2.平面向量基本定理如果1e 和2e 是同一个平面内的两个不共线向量,那么对于该平面内的任一向量a ,都存在唯一的一对实数12,λλ,使得1122a e e λλ=+,我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记为{}12,e e ,1122e eλλ+叫做向量a 关于基底{}12,e e 的分解式.注意:由平面向量基本定理可知:只要向量1e 与2e 不共线,平面内的任一向量a 都可以分解成形如1122a e e λλ=+的形式,并且这样的分解是唯一的.1122e e λλ+叫做1e ,2e 的一个线性组合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理论依据,也是向量的坐标表示的基础.推论1:若11223142a e e e e λλλλ=+=+,则1324,λλλλ==. 推论2:若11220a e e λλ=+=,则120λλ==. 3.线段定比分点的向量表达式如图所示,在ABC △中,若点D 是边BC 上的点,且BD DC λ=(1λ≠-),则向量1AB ACAD λλ+=+.在向量线性表示(运算)有关的问题中,若能熟练利用此结论,往往能有“化腐朽为神奇”之功效,建议熟练掌握.4.三点共线定理平面内三点A ,B ,C 共线的充要条件是:存在实数,λμ,使OC OA OB λμ=+,其中1λμ+=,O 为平面内一点.此定理在向量问题中经常用到,应熟练掌握.A 、B 、C 三点共线⇔存在唯一的实数λ,使得AC AB λ=; ⇔存在唯一的实数λ,使得OC OA AB λ=+;⇔存在唯一的实数λ,使得(1)OC OA OB λλ=-+; ⇔存在1λμ+=,使得OC OA OB λμ=+.5.中线向量定理如图所示,在ABC △中,若点D 是边BC 的中点,则中线向量1(2AD AB =+)AC ,反之亦正确.四.平面向量的坐标表示及坐标运算 (1)平面向量的坐标表示.在平面直角坐标中,分别取与x 轴,y 轴正半轴方向相同的两个单位向量,i j 作为基底,那么由平面向量基本定理可知,对于平面内的一个向量a ,有且只有一对实数,x y 使a xi yj =+,我们把有序实数对(,)x y 叫做向量a 的坐标,记作(,)a x y =.(2)向量的坐标表示和以坐标原点为起点的向量是一一对应的,即有 向量(,)x y 一一对应向量OA一一对应点(,)A x y .(3)设11(,)a x y =,22(,)b x y =,则1212(,)a b x x y y +=++,1212(,)a b x x y y -=--,即两个向量的和与差的坐标分别等于这两个向量相应坐标的和与差.若(,)a x y =,λ为实数,则(,)a x y λλλ=,即实数与向量的积的坐标,等于用该实数乘原来向量的相应坐标.(4)设11(,)A x y ,22(,)B x y ,则AB OB OA =-=12(,x x -12)y y -,即一个向量的坐标等于该向量的有向线段的终点的坐标减去始点坐标.五.平面向量的直角坐标运算①已知点11()A x y ,,22()B x y ,,则2121()AB x x y y =--,,||(AB x = ②已知11(,)a x y =,22(,)b x y =,则a b ±1212()x x y y =±±,,11(,)a x y λλλ=, =a b ⋅1212x x y y +,21||a x y =+.a b ∥⇔12210x y x y -=,a b ⊥⇔12120x x y y +=【方法技巧与总结】(1)向量的三角形法则适用于任意两个向量的加法,并且可以推广到两个以上的非零向量相加,称为多边形法则.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量.即122311n n n A A A A A A A A -+++=.(2)||||||||||||a b b a a b -≤±≤+,当且仅当,b a 至少有一个为0时,向量不等式的等号成立.(3)特别地:||||||||b b a a -≤±或||||||a a b b ±≤+当且仅当,b a 至少有一个为0时或者两向量共线时,向量不等式的等号成立.(4)减法公式:AB AC CB -=,常用于向量式的化简.(5)A 、P 、B 三点共线⇔(1)OP t OA tOB =-+()t R ∈,这是直线的向量式方程.【题型归纳目录】题型一:平面向量的基本概念 题型二:平面向量的线性表示 题型三:向量共线的运用 题型四:平面向量基本定理及应用 题型五:平面向量的直角坐标运算【典例例题】题型一:平面向量的基本概念例1.(2022·全国·高三专题练习)已知平面四边形ABCD 满足AB DC =,则四边形ABCD 是( ) A .正方形 B .平行四边形C .菱形D .梯形【答案】B 【解析】 【分析】根据平面向量相等的概念,即可证明AB DC =,且//AB DC ,由此即可得结论. 【详解】在四边形ABCD 中, AB DC =,所以AB DC =,且//AB DC , 所以四边形ABCD 为平行四边形. 故选:B例2.(2022·全国·高三专题练习)给出如下命题: ①向量AB 的长度与向量BA 的长度相等; ②向量a 与b 平行,则a 与b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同; ④两个公共终点的向量,一定是共线向量;⑤向量AB 与向量CD 是共线向量,则点A ,B ,C ,D 必在同一条直线上. 其中正确的命题个数是( ) A .1 B .2C .3D .4【答案】B【解析】 【分析】根据向量的基本概念,对每一个命题进行分析与判断,找出正确的命题即可. 【详解】对于①,向量AB 与向量BA ,长度相等,方向相反,故①正确;对于②,向量a 与b 平行时,a 或b 为零向量时,不满足条件,故②错误; 对于③,两个有共同起点且相等的向量,其终点也相同,故③正确; 对于④,两个有公共终点的向量,不一定是共线向量,故④错误;对于⑤,向量AB 与CD 是共线向量,点A ,B ,C ,D 不一定在同一条直线上,故⑤错误. 综上,正确的命题是①③. 故选:B .例3.(2022·全国·高三专题练习)下列说法:①若两个空间向量相等,则表示它们有向线段的起点相同,终点也相同;②若向量AB →,CD →满足AB CD →→>,且AB →与CD →同向,则AB CD →→>;③若两个非零向量AB →与CD →满足0AB CD →→→+=,则AB →,CD →为相反向量; ④AB CD →→=的充要条件是A 与C 重合,B 与D 重合. 其中错误的个数为( ) A .1 B .2 C .3 D .4【答案】C 【解析】 【分析】①错误. 两个空间向量相等,但与起点和终点的位置无关;②错误. 向量不能比较大小;③正确. AB →,CD →为相反向量;④错误. A 与C ,B 与D 不一定重合.【详解】①错误.两个空间向量相等,其模相等且方向相同,但与起点和终点的位置无关. ②错误.向量的模可以比较大小,但向量不能比较大小.③正确. 0AB CD →→→+=,得AB CD →→=-,且AB →,CD →为非零向量,所以AB →,CD →为相反向量.④错误. 由AB CD →→=,知AB CD →→=,且AB →与CD →同向,但A 与C ,B 与D 不一定重合.故选:C 【点睛】易错点睛:向量是一个既有大小,又有方向的矢量,考虑向量的问题时,一定要注意这一点.例4.(2022·江苏江苏·一模)平面内三个单位向量a ,b ,c 满足230a b c ++=,则( ) A .a ,b 方向相同 B .a ,c 方向相同 C .b ,c 方向相同 D .a ,b ,c 两两互不共线【答案】A 【解析】 【分析】根据230a b c ++=,得32c a b =--,两边利用单位向量的平方等于1,即可求出a,b 0<>=,解得a ,b 方向相同.【详解】因为230a b c ++=, 所以32c a b =--, 所以22(3)(2)c a b =--, 所以222944?c a b a b =++, 所以9144cos ,a b a b =++<>, 所以4411cos ,a b =⨯⨯<>, 所以cos ,1a b <>= 所以a,b 0<>=, 所以a ,b 方向相同, 故选:A.例5.(2022·吉林吉林·模拟预测(文))已知向量()4,3a =,则与向量a 垂直的单位向量的坐标为( ) A .43,55⎛⎫ ⎪⎝⎭B .34,55⎛⎫- ⎪⎝⎭C .43,55⎛⎫-- ⎪⎝⎭或43,55⎛⎫ ⎪⎝⎭D .34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭【答案】D 【解析】 【分析】先写出与之垂直的一个向量,然后再求得与此垂直向量平行的单位向量即得. 【详解】易知(3,4)b =-是与a 垂直的向量,5b =,所以与b 平行的单位向量为134(,)555b =-或134(,)555b -=-,故选:D .例6.(多选题)(2022·全国·高三专题练习)下列命题中正确的是( ) A .若a b =,则32a b > B .0BC BA DC AD ---=C .若向量,a b 是非零向量,则a b a b a +=+⇔与b 方向相同D .向量a 与()0b b ≠共线的充要条件是:存在唯一的实数λ,使λa b 【答案】CD 【解析】 【分析】利用向量的知识对选项逐一分析,由此确定正确选项. 【详解】向量不等比较大小,故A 选项错误.向量加法、减法的结果仍为向量,故B 选项错误. a b a b a +=+⇔与b 方向相同,C 选项正确.根据向量共线的知识可知D 选项正确. 故选:CD例7.(多选题)(2022·全国·高三专题练习)下列有关四边形ABCD 的形状,判断正确的有( ) A .若AD BC =,则四边形ABCD 为平行四边形 B .若13AD BC =,则四边形ABCD 为梯形C .若AB AD AB AD +=-,则四边形ABCD 为菱形 D .若AB DC =,且AC BD ⊥,则四边形ABCD 为正方形 【答案】AB 【解析】 【分析】依据平行四边形判定定理判断选项A ;依据梯形判定定理判断选项B ;依据菱形判定定理判断选项C ;依据正方形判定定理判断选项D.【详解】选项A :若AD BC =,则//AD BC ,=AD BC ,则四边形ABCD 为平行四边形.判断正确; 选项B :若13AD BC =,则//AD BC ,AD BC ≠,则四边形ABCD 为梯形. 判断正确;选项C :若AB AD AB AD +=-,则2240AB AD AB AD AB AD -=+⋅=-,则AB AD ⊥,即90BAD ∠=.仅由90BAD ∠=不能判定四边形ABCD 为菱形.判断错误;选项D :若AB DC =,则//AB DC ,=AB DC ,则四边形ABCD 为平行四边形, 又由AC BD ⊥,可得对角线AC BD ⊥,则平行四边形ABCD 为菱形. 判断错误. 故选:AB例8.(多选题)(2022·全国·高三专题练习)下列说法错误的是( ) A .若a b =,则a b =或a b =- B .若ma mb =,m R ∈,则a b = C .若//a b , //c b ,则//a cD .若0ma =,m R ∈,则0m =或0a = 【答案】ABCD 【解析】 【分析】对于A ,模长相等的两个向量方向任意,不一定平行;对于B ,两个向量相等要求向量方向相同且模长相等,当0m =时,无法推出这两点,故B 不正确;对于C ,当0b =时,选项不正确;对于D ,00ma m =⇒=或0a =,即可得到D 错误.【详解】对于A ,若a b =,则两个向量的方向可以是任意的,不一定是平行的,故A 不正确; 对于B ,两个向量相等要求向量方向相同且模长相等,当0m =时,满足0ma mb ==, a 和b 的方向可以是任意的,且两者的模长也不一定相同,故B 不正确;对于C ,若//a b , //c b ,当0b =时,满足//a b , //c b ,但是不满足//a c ,故C 错误; 对于D ,00ma m =⇒=或者||0a =,即0m =或0a =,故D 错误; 故选:ABCD.【方法技巧与总结】准确理解平面向量的基本概念是解决向量题目的关键.共线向量即为平行向量,非零向量平行具有传递性,两个向量方向相同或相反就是共线向量,与向量长度无关,两个向量方向相同且长度相等,就是相等向量.共线向量或相等向量均与向量起点无关.题型二:平面向量的线性表示例9.(2022·山东潍坊·模拟预测)在平行四边形ABCD 中,,M N 分别是,AD CD 的中点,BM a =,BN b =,则BD =( )A .3243a b +B .2233ab C .2334a b +D .3344a b +【答案】B【解析】 【分析】设,AB m AD n ==,根据向量的线性运算,得到11()()22BD x y n x y m =+--,结合BD n m =-,列出方程组,求得,x y 的值,即可求解.【详解】如图所示,设,AB m AD n ==,且BD xa yb =+,则1111()()()()2222BD xa yb x n m y n m x y n x y m =+=⋅-+⋅-=+--,又因为BD n m =-,所以112112x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得22,33x y ==,所以2233BD a b =+.故选:B.例10.(2022·河南·平顶山市第一高级中学模拟预测(文))如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2EO AE =,则EB ( )A .1566AB AD - B.1566AB AD +C .5166AB AD -D .5166AB AD +【答案】C 【解析】 【分析】根据平面向量线性运算法则计算可得; 【详解】解:因为2EO AE =,所以()111366AE AO AC AB AD ===+, 所以()151666EB AB AE AB AB AD AB AD =-=-+=-. 故选:C.例11.(2022·吉林吉林·模拟预测(文))如图,ABCD 中,AB a =,AD b =,点E 是AC 的三等分点13⎛⎫=⎪⎝⎭EC AC ,则DE =( )A .1233a b -B .2133a b -C .1233a b +D .2133ab 【答案】B 【解析】 【分析】根据向量的加法法则和减法法则进行运算即可. 【详解】 2221()3333DE AE AD AC AD AB AD AD a b =-=-=⋅+-=- 故选:B.例12.(2022·安徽·合肥市第八中学模拟预测(文))在平行四边形ABCD 中,2233AE AB CF CD ==,,G 为EF 的中点,则DG =( )A .1122AD AB -B .1122AB AD -C .3142AD AB -D .3142AB AD -【答案】B 【解析】 【分析】根据题意和平面向量的线性运算即可得出结果. 【详解】 ()1111112111·2222323622DG DE DF DA AE DC AD AB AB AB AD ⎛⎫=+=++=-++=- ⎪⎝⎭.故选:B.例13.(2022·湖南师大附中三模)艺术家们常用正多边形来设计漂亮的图案,我国国旗上五颗耀眼的正五角星就是源于正五边形,正五角星是将正五边形的任意两个不相邻的顶点用线段连接,并去掉正五边形的边后得到的图形,它的中心就是这个正五边形的中心.如图,设O 是正五边形ABCDE 的中心,则下列关系错误的是( )A .AD DB OB OA +=-B .0AO BE ⋅=C .3AC AD AO +=D .AO AD BO BD ⋅=⋅【答案】C【解析】【分析】由平面向量的运算对选项逐一判断【详解】对于A ,,AD DB AB OB OA AB +=-=,故A 正确,对于B :因为AB AE =,OB OE =,所以AO BE ⊥,故B 正确,对于C :由题意O 是ACD △的外心,不是ACD △的重心设CD 中点为M ,则2||=||||||||cos36||2cos 18AM AO OM AO AO AO +=+︒=⋅︒,24cos 18AC AD AO +=︒,故C 错误, 对于D :2211||||22AO AD AD BD BO BD ⋅===⋅,故D 正确. 故选:C 例14.(2022·河北·石家庄二中模拟预测)数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,该直线被称为三角形的欧拉线,设点,,O G H 分别为任意ABC 的外心、重心、垂心,则下列各式一定正确的是( )A .12OG OH =B .23OH GH =C .23AO AH AG +=D .23BO BH BG += 【答案】D【解析】【分析】根据三点共线和长度关系可知AB 正误;利用向量的线性运算可表示出,AG BG ,知CD 正误.【详解】,,O G H 依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,12OG GH ∴=,13OG OH ∴=,32OH GH =,A 错误,B 错误; ()112333AO AH AG AO OG AO OH AO AH AO +=+=+=+-=,C 错误; ()112333BO BH BG BO OG BO OH BO BH BO +=+=+=+-=,D 正确. 故选:D.例15.(2022·全国·模拟预测)在平行四边形ABCD 中,设CB a =,CD b =,E 为AD 的中点,CE 与BD 交于F ,则AF =( )A .23a b +-B .23a b +-C .23a b --D .23a b -- 【答案】B【解析】【分析】 根据题意得()13AF AC AD =+,再分析求解即可. 【详解】如下图所示,连接AC 与BD 交于O ,则O 为AC 的中点,因为E 为AD 的中点,所以F 为三角形ACD 的重心,所以()()112333a b AF AC AD a b a +=+=---=-. 故选:B.例16.(2022·黑龙江·哈尔滨三中模拟预测(文))ABC 中,E 是边BC 上靠近B 的三等分点,则向量AE =( )A .1133AB AC + B .1233AB AC + C .2133AB AC + D .2233AB AC + 【答案】C【解析】【分析】利用向量的三角形法则以及线性运算法则进行运算,即可得出结论.【详解】解:因为点E 是BC 边上靠近B 的三等分点,所以13BE BC =, 所以1121()3333AE AB BE AB BC AB BA AC AB AC =+=+=++=+; 故选:C.例17.(多选题)(2022·山东·烟台二中模拟预测)中华人民共和国的国旗图案是由五颗五角星组成,这些五角星的位置关系象征着中国共产党领导下的革命与人民大团结.如图,五角星是由五个全等且顶角为36°的等腰三角形和一个正五边形组成.已知当2AB =时,1BD =,则下列结论正确的为( )A .DE DH =B .0AF BJ ⋅=C .51AH AB +=D .CB CD JC JH +=- 【答案】AB【分析】连接DH ,AF ,CH ,BH ,利用五角星的结构特征逐项分析判断作答.【详解】对于A ,连接DH ,如图,由DF =FH ,108DFH ∠=得:36DHF E ∠==∠,DE DH =,A 正确;对于B ,连接AF ,由,AD AH FD FH ==得:AF 垂直平分DH ,而//BJ DH ,即AF BJ ⊥,则0AF BJ ⋅=,B 正确; 对于C ,AH 与AB 不共线,C 不正确;对于D ,连接CH ,BH ,由选项A 知,DH DE BC ==,而//BC DH ,则四边形BCDH 是平行四边形, CB CD CH JH JC +==-,D 不正确.故选:AB【方法技巧与总结】(1)两向量共线问题用向量的加法和减法运算转化为需要选择的目标向量即可,而此类问题又以“爪子型”为几何背景命题居多,故熟练掌握“爪子型”公式更有利于快速解题.(2)进行向量运算时,要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的基本向量或首尾相接的向量,运用向量加、减法运算及数乘运算来求解.(3)除了充分利用相等向量、相反向量和线段的比例关系外,有时还需要利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.题型三:向量共线的运用例18.(2022·陕西·西北工业大学附属中学模拟预测(文))设a 、b 都是非零向量,下列四个条件中,使a a b b=成立的充分条件是( )A .a b =且a b ∥B .a b =-C .a b ∥D .2a b = 【答案】D【解析】根据充分条件的定义以及平面向量的有关概念即可解出.【详解】对于A ,当a b =且a b ∥时,a a b b =或a b a b =-,A 错误; 对于B ,当a b =-时,a b a b =-,B 错误; 对于C ,当a b ∥时,a ab b =或a b a b =-,C 错误; 对于D ,当2a b =时,a a b b =,D 正确.故选:D . 例19.(2022·四川绵阳·二模(理))已知平面向量a ,b 不共线,46AB a b =+,3BC a b =-+,3CD a b =+,则( )A .A ,B ,D 三点共线B .A ,B ,C 三点共线 C .B ,C ,D 三点共线D .A ,C ,D 三点共线【答案】D【解析】 【分析】根据给定条件逐项计算对应三点确定的某两个向量,再判断是否共线作答.【详解】平面向量a ,b 不共线,46AB a b =+,3BC a b =-+,3CD a b =+,对于A ,3(3)6BD BC CD a b a b b =+=-+++=,与AB 不共线,A 不正确;对于B ,因46AB a b =+,3BC a b =-+,则AB 与BC 不共线,B 不正确;对于C ,因3BC a b =-+,3CD a b =+,则BC 与CD 不共线,C 不正确;对于D ,46(3)393AC AB BC a b a b a b CD =+=++-+=+=,即//AC CD ,又线段AC 与CD 有公共点C ,则A ,C ,D 三点共线,D 正确.故选:D 例20.(2022·全国·高三专题练习)已知1e ,2e 是不共线向量,则下列各组向量中,是共线向量的有( )①15a e =,17b e =;②121123a e e =-,1232b e e =-; ③12a e e =+,1233b e e =-.A .①②B .①③C .②③D .①②③【解析】【分析】 根据平面向量共线定理得到,对于①57a b =,故两向量共线;对于②16a b =,故两向量共线;对于③不存在实数λ满足λa b ,故不共线.【详解】对于①15a e =,17b e =,57a b =,故两向量共线; 对于②121123a e e =-,1232b e e =-,16a b =,故两向量共线; 对于③12a e e =+,1233b e e =-,假设存在,a b λλ=⇒()121233e e e e λ=-+()()123131e e λλ⇒-=+,因为1e ,2e 是不共线向量,故得到3131λλ-=+无解.故选:A.例21.(2022·内蒙古·包钢一中一模(文))已知向量1e ,2e 是两个不共线的向量,122a e e =-与12b e e λ=+共线,则λ=( )A .2B .2-C .12-D .12 【答案】C【解析】【分析】根据向量共线的充要条件建立方程直接求解. 【详解】因为122a e e =-与12b e e λ=+共线,所以ka b =,0k ≠,所以12121212()22=k k e e e e e e e e k λλ-+⇒-=+, 因为向量1e ,2e 是两个不共线的向量,所以21k k λ=⎧⎨-=⎩,解得12λ=-, 故选:C .例22.(2022·安徽·合肥市第六中学模拟预测(理))如图,在ABC 中,M ,N 分别是线段AB ,AC 上的点,且23AM AB =,13AN AC =,D ,E 是线段BC 上的两个动点,且(,)AD AE x AM y AN x y +=+∈R ,则12x y+的的最小值是( )A .4B .43C .94D .2【答案】B【解析】【分析】 根据平面向量共线定理可设AD mAB nAC =+,1m n +=,AE AB AC λμ=+,1λμ+=,再结合AD AE x AM y AN +=+得26x y +=,最后运用基本不等式可求解.【详解】设AD mAB nAC =+,1m n +=,AE AB AC λμ=+,1λμ+=,则AD AE mAB nAC AB AC λμ+=+++=3()()()3()2m AB n AC m AM n AN λμλμ+++=+++x AM y AN =+,3()2m x λ+=,3()n y m μλ+=⇒+=23x ,13n y μ+=,21222633m n x y x y λμ+++=⇒+=⇒+=.所以12112(2)6x y x y x y ⎛⎫+=++= ⎪⎝⎭14142222663y x x y ⎛⎛⎫+++≥++= ⎪ ⎝⎭⎝, 当且仅当32x =,3y =时等号成立. 所以12x y +的的最小值是43. 故选:B例23.(2022·全国·模拟预测)在ABC 中,点F 为线段BC 上任一点(不含端点),若()20,0AF xAB yAC x y =+>>,则12x y +的最小值为( ) A .9B .8C .4D .2【答案】A【解析】【分析】 根据向量共线定理得推论得到21x y +=,再利用基本不等式“1”的妙用求解最小值.【详解】因为点F 为线段BC 上任一点(不含端点),所以21x y +=,故()12122221459y x x y x y x y x y ⎛⎫+=++=+++≥+ ⎪⎝⎭, 当且仅当22y x x y =,即13x y ==时等号成立, 故选:A例24.(2022·山东泰安·模拟预测)已知向量m ,n 不共线,向量53OA m n =-,OB xm n =+,若O ,A ,B 三点共线,则x =( )A .53-B .53C .35D .35【答案】A【解析】【分析】根据O ,A ,B 三点共线,则OA OB ∥,R λ∃∈,OB OA λ=,代入整理.【详解】因为O ,A ,B 三点共线,则OA OB ∥所以R λ∃∈,OB OA λ=,即()53xm n m n λ+=-整理得:()()531x m n λλ-=+ 又∵向量m ,n 不共线,则5310x λλ-=+=,则53x =- 故选:A .例25.(2022·云南·昆明一中高三阶段练习(文))已知向量a ,b ,且2AB a b =+,BC 56a b =-+,72CD a b =-,则一定共线的三点是( )A .A ,B ,DB .A ,B ,C C .B ,C ,D D .A ,C ,D【答案】A【解析】【分析】 由已知,分别表示出选项对应的向量,然后利用平面向量共线定理进行判断即可完成求解.【详解】因为2AB a b =+,BC 56a b =-+,72CD a b =-,选项A ,2AB a b =+,(56)(72)24B a b D B D b C a C b a ++-+==-+=,若A ,B ,D 三点共线,则AB BD λ=,即2(24)a b a b λ+=+,解得12λ=,故该选项正确;选项B ,2AB a b =+,BC 56a b =-+,若A ,B ,C 三点共线,则AB BC λ=,即2(56)a b a b λ+=-+,解得λ不存在,故该选项错误;选项C ,BC 56a b =-+,72CD a b =-,若B ,C ,D 三点共线,则BC BD λ=,即56(72)a b a b λ-+=-,解得λ不存在,故该选项错误;选项D ,(2)(56)48a b a A b AB BC a b C ++=+=+-=-+,72CD a b =-,若A ,C ,D 三点共线,则AC CD λ=,即48(72)a b a b λ-+=-,解得λ不存在,故该选项错误;故选:A.例26.(2022·全国·高三专题练习)给出下列命题:①若||||a b =,则a b =;②若A B C D 、、、是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件;③若a b =,b c =,则a c =;④a b =的充要条件是||a ||b =且//a b ;⑤若//a b ,//b c ,则//a c .其中正确命题的序号是________ .【答案】②③##③②【解析】【分析】根据向量相等的概念及向量共线的概念即可判断.【详解】对于①,两个向量的长度相等,不能推出两个向量的方向的关系,故①错误;对于②,因为A ,B ,C ,D 是不共线的四点,且AB DC = 等价于//AB DC 且AB DC =,即等价于四边形ABCD 为平行四边形,故②正确;对于③,若a b =,b c =,则a c =,显然正确,故③正确;对于④,由a b =可以推出||||a b =且//a b ,但是由||||a b =且//a b 可能推出a b =-,故“||||a b =且//a b ”是“a b =”的必要不充分条件,故④不正确,对于⑤,当0b =时,//a b ,//b c ,但推不出//a c ,故⑤不正确.故答案为:②③例27.(2022·全国·高三专题练习)如图,在ABC 中,点P 满足2BP PC =,过点P 的直线与AB AC ,所在的直线分别交于点M N ,若AM AB λ=,,(0,0)AN AC μλμ=>>,则λμ+的最小值为__________.【答案】1+【解析】【分析】 先利用条件找到12133λμ+=,则12()33λμλμλμ⎛⎫+=+⋅+ ⎪⎝⎭,利用基本不等式求最小值即可. 【详解】 BP BA AP =+,PC PA AC =+,又2BP PC =, ∴()2AB AP AC AP -+=-, ∴12123333AP AB AC AM AN λμ=+=+, 又P 、M 、N 三点共线, ∴12133λμ+=,∴12122()113333333μλλμλμλμλμ⎛⎫⎛⎫⎛⎫+=+⋅+=+++≥+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当233μλλμ=,即λμ=∴λμ+的最小值为1故答案为:1例28.(2022·全国·高三专题练习)已知点G 为△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且AM =x AB ,AN =y AC ,求11x y+的值为________. 【答案】3【解析】【分析】以,AN AM 为基底,由G 是ABC ∆的重心和M ,G ,N 三点共线,可得11=133x y+,即求. 【详解】 根据条件:11,==AC AN AB AM y x,如图设D 为BC 的中点,则1122AD AB AC =+ 因为G 是ABC ∆的重心,211333AG AD AB AC ==+, 1133AG AM AN x y∴=+, 又M ,G ,N 三点共线,11=133x y ∴+,即113x y+=. 故答案为:3.例29.(2022·全国·高三专题练习)如图,ABC 中点,D E 是线段BC 上两个动点,且AD AE xAB y AC +=+,则9x yxy+的最小值为______.【答案】8 【解析】 【分析】设AD mAB nAC =+,AE AB AC λμ=+,由B ,D ,E ,C 共线可得2x y +=, 再利用乘“1”法求解最值. 【详解】设AD mAB nAC =+,AE AB AC λμ=+,B ,D ,E ,C 共线,1m n ∴+=,1λμ+=.AD AE xAB y AC +=+,则2x y +=,点D ,E 是线段BC 上两个动点,0x ∴>,0y >. ∴991191191()()(10)(10)8222x y y x y xx y xy x y x y x y x y+=+=++=+++= 则9x yxy+的最小值为8. 故答案为:8. 【点睛】由向量共线定理的推论得到2x y +=是解题关键,乘“1”法求解最值是基本不等式求最值的常用方法.. 例30.(2022·全国·高三专题练习)已知向量1223a e e =-,1223b e e =+,其中1e ,2e 不共线,向量1229c e e =-,问是否存在这样的实数λ,μ,使向量d a b λμ=+与c 共线?【答案】存在 【解析】 【分析】由已知得12(22)(33)d e e λμλμ=++-+,所以要使d 与c 共线,则应有实数k ,使d kc =,即()1212(22)(33)29e e k e e λμλμ++-+=-,从而得222339k k λμλμ+=⎧⎨-+=-⎩,进而可求得结果【详解】因为向量1223a e e =-,1223b e e =+, 所以1212(23)(23)d a b e e e e λμλμ=+=-++12(22)(33)e e λμλμ=++-+要使d 与c 共线,则应有实数k ,使d kc =, 即()1212(22)(33)29e e k e e λμλμ++-+=-,即222339kkλμλμ+=⎧⎨-+=-⎩得2λμ=-. 故存在这样的实数λ,μ,只要2λμ=-,就能使d 与c 共线.【方法技巧与总结】要证明A ,B ,C 三点共线,只需证明AB 与BC 共线,即证AB =λBC (R λ∈).若已知A ,B ,C 三点共线,则必有AB 与BC 共线,从而存在实数λ,使得AB =λBC .题型四:平面向量基本定理及应用例31.(2022·重庆八中模拟预测)如图,在平行四边形ABCD 中,E 是BC 的中点,2CF FD =,DE 与BF 相交于O .若2AD =,(32)7AO AD AB ⋅-=-,则AB 的长为( )A .2B .3C .4D .5【答案】C 【解析】 【分析】先以AB AD 、为基底表示AO ,再利用向量的数量积把(32)7AO AD AB ⋅-=-转化为关于AB 的方程,即可求得AB 的长【详解】在平行四边形ABCD 中,E 是BC 的中点,2CF FD =,DE 与BF 相交于O . 设(01)DO DE λλ=<<, (01)BO BF μμ=<<则11++122AD DO AD DE AD AB AD AD AB λλλλ⎛⎫⎛⎫+==-=-+ ⎪ ⎪⎝⎭⎝⎭22(1)33AB BO AB BF AB AD AB AB AD μμμμ⎛⎫+=+=+-=-+ ⎪⎝⎭由AO AD DO AB BO =+=+,可得2(1)3AB AD μμ-+112AD AB λλ⎛⎫=-+ ⎪⎝⎭则112213λμμλ⎧-=⎪⎪⎨⎪-=⎪⎩,解之得1234λμ⎧=⎪⎪⎨⎪=⎪⎩,则3142AO AD DO AD AB =+=+则22(32)(33194242)7AO AD AB AD AB AD A AD AB B ⎛⎫+⋅-= ⎪⎝⋅-=⎭-=-又2AD =,则279AB -=-,解之得4AB ,即AB 的长为4故选:C例32.(2022·全国·高三专题练习)在等边ABC 中,O 为重心,D 是OB 的中点,则AD =( ) A .AB AC + B.2132AB AC +C .1124AB AC +D .2136AB AC +【答案】D 【解析】 【分析】根据给定条件,利用平面向量的线性运算计算作答. 【详解】O 为ABC 的重心,延长AO 交BC 于E ,如图,E 为BC 中点,则有2211()()3323AO AE AB AC AB AC ==⋅+=+,而D 是OB 的中点, 所以111121()222636AD AB AO AB AB AC AB AC =+=++=+. 故选:D例33.(2022·河南郑州·三模(理))在ABC 中,D 是BC 上一点,2BD DC =,M 是线段AD 上一点,14BM tBA BC =+,则t =( )A .12 B .23C .34 D .58【答案】D 【解析】 【分析】 求得1233AD AB AC =+,设1233AM AD AB AC λλλ==+,其中01λ≤≤,利用平面向量的线性运算可得出3144AM AB BM t AB AC ⎛⎫=+=-+ ⎪⎝⎭,根据平面向量的基本定理可得出关于λ、t 的方程组,即可解得t 的值.【详解】因为2BD DC =,则()2AD AB AC AD -=-,所以,1233AD AB AC =+, ()131444AM AB BM AB t AB AC AB t AB AC ⎛⎫=+=-+-=-+ ⎪⎝⎭, 因为M 是线段AD 上一点,设1233AM AD AB AC λλλ==+,其中01λ≤≤,所以,13342134t λλ⎧=-⎪⎪⎨⎪=⎪⎩,解得3858t λ⎧=⎪⎪⎨⎪=⎪⎩. 故选:D.例34.(2022·河南·模拟预测(理))如图,在ABCD 中,M 为BC 的中点,AC mAM nBD =+,则m +n =( )A .1B .43 C .53D .2【答案】C 【解析】 【分析】利用向量的线性运算可求,m n 的值. 【详解】1122AM AB BC AB AD =+=+,而BD AD AB =-,故()12AC m AB AD n AD AB ⎛⎫=++- ⎪⎝⎭()2m m n AB n AD ⎛⎫=-++ ⎪⎝⎭,而AC AB AD =+且,AB AD 不共线,故4153{13123m n m m n m n n ⎧-==⎪⎪⇒⇒+=⎨+=⎪=⎪⎩, 故选:C.例35.(2022·河南商丘·三模(理))如图,在ABC 中,点D ,E 分别在边AB ,BC 上,且均为靠近B 的四等分点,CD 与AE 交于点F ,若BF xAB yAC =+,则3x y +=( )A .1-B .34-C .12-D .14-【答案】A 【解析】 【分析】由题意推出DE AC ∥,可得14DF DE FC AC ==,推出15DF DC =,根据向量的加减运算,用基底,AB AC 表示出BF ,和BF xAB yAC =+比较,可得,x y ,即得答案.【详解】 连结DE ,由题意可知,14BD BE BA BC ==, 所以DE AC ∥,则14DE BD AC BA ==, 所以14DF DE FC AC ==,所以14BD AB =-,34DC AC AD AC AB =-=-, 则1135520DF DC AC AB ==-, 故11321452055BF BD DF AB AC AB AB AC =+=-+-=-+, 又BF xAB yAC =+,所以25x =-,15y =,则31x y +=-,故选:A例36.(2022·山东济宁·三模)在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP =________.【解析】 【分析】根据题意得34AP mAC AD =+,求出14m =,所以1142AP AC AB =+,即21142AP AC AB ⎛⎫=+ ⎪,求解即可.【详解】 因为23AD AB =,所以32AB AD =,又12AP mAC AB =+,即1324AP mAC AB mAC AD =+=+,因为点P 在线段CD 上, 所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形, 所以222211111cos60421644AP AC AB AC AC AB AB ⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故7AP =例37.(2022·湖南·模拟预测)在三角形ABC 中,点D 在边BC 上,若2BD DC =,AD AB ACλμ=+(),λμ∈R ,则λμ-=______.【答案】13-【解析】 【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD DC =,得()2233BD BC AC AB ==-, 所以()212333A A C AB D AB BD AB A A BC -+===++, 因为(),AD AB AC λμλμ=+∈R ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-【方法技巧与总结】应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加法、减法或数乘运算,基本方法有两种:(1)运用向量的线性运算法则对待求向量不断进行化简,直至用基底表示为止.(2)将向量用含参数的基底表示,然后列方程或方程组,利用基底表示向量的唯一性求解.(3)三点共线定理: A ,B ,P 三点共线的充要条件是:存在实数,λμ,使OP OA OB λμ=+,其中1λμ+=,O 为AB 外一点.题型五:平面向量的直角坐标运算例38.(2022·江苏·高三专题练习)在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+。

高一数学平面向量的概念及线性运算PPT优秀课件

高一数学平面向量的概念及线性运算PPT优秀课件

a+b=λLeabharlann a-b),即(λ-1)a=(1+λ)b,
∴ λ-1=0 1+λ=0
,λ 无解,故假设不成立,即 a+b 与 a-b 不平行,故选 D.
错源二:向量有关概念理解不当
【例2】 如图,由一个正方体的12条棱构成的向量组成了一个集合M,则集合M的元 素个数为________.
错解:正方体共有12条棱,每条棱可以表示两个向量,一共有24个向量.答案是24. 错解分析:方向相同长度相等的向量是相等向量,故AA1―→=BB1―→=CC1―→ = DD1―→ , AB―→ = DC―→ = D1C1―→ = A1B1―→ , AD―→ = BC―→ = B1C1―→=A1D1―→.错解的原因是把相等的向量都当成不同的向量了. 正解:12条棱可以分为三组,共可组成6个不同的向量,答案是6. 答案:6
错解分析:错解一,忽视了 a≠0 这一条件.错解二,忽视了 0 与 0 的区别,AB―→+
BC―→+CA―→=0;错解三,忽视了零向量的特殊性,当 a=0 或 b=0 时,两个等号同时
成立.
正解:∵向量 a 与 b 不共线,
∴a,b,a+b 与 a-b 均不为零向量.
若 a+b 与 a-b 平行,则存在实数 λ,使
∴|AM―→|=12|AD―→|=12|BC―→|=2.故选 C.
【例2】 (2010年安徽师大附中二模)设O在△ABC的内部,且OA―→+OB―→+ 2OC―→=0,则△ABC的面积与△AOC的面积之比为( ) (A)3 (B)4 (C)5 (D)6
解析:由 OC―→=-12(OA―→+OB―→),设 D 为 AB 的中点, 则 OD―→=12(OA―→+OB―→), ∴OD―→=-OC―→,∴O 为 CD 的中点, ∴S△AOC=12S△ADC=14S△ABC,∴SS△△AAOBCC=4.故选 B.

高三数学一轮复习第五章 平面向量5.2 平面向量的基本定理及向量坐标运算课件

高三数学一轮复习第五章 平面向量5.2 平面向量的基本定理及向量坐标运算课件

【解析】由题意得
uur P1P
=
1 3
uuur P1P2

uur P1P
=
2 uuur 3 P1P2
,
uuur P1P2
=(3,-3).
设P(x,y),则
uur P1P
=(x-1,y-3),

uur P1P
=
1 uuur 3 P1P2时,(x-1,ຫໍສະໝຸດ -3)=1 (3,-3),
3
所以x=2,y=2,即P(2,2).
【解析】因为a∥b,所以4×3-2x=0,所以x=6. 答案:6
2.(必修4P79练习T7改编)已知三个力F1=(-2,-1),F2= (-3,2),F3=(4,-3)同时作用于某物体上一点,为使物体 保持平衡,现加上一个力F4,则F4=________.
【解析】根据力的平衡原理有F1+F2+F3+F4=0,所以F4= -(F1+F2+F3)=(1,2). 答案:(1,2)
(2)基底:不共线的向量e1,e2叫做表示这一平面内所有 向量的一组基底. (3)平面向量的正交分解. 向量正交分解是把一个向量分解为两个_互__相__垂__直__的向 量.
2.平面向量的坐标表示 (1)平面向量的坐标表示: 在平面直角坐标系中,分别取与x轴、y轴方向相同的两 个单位向量i,j作为基底,由平面向量基本定理知,该平 面内的任一向量a可表示成a=x i+y j,由于a与有序数 对(x,y)是一一对应的,因此向量a的坐标是(x,y),记作 _a_=_(_x_,_y_)_.
2
2
于是得
1 2


1 2

1, 解得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Байду номын сангаас
也是那段时光,让我对网络编辑有了最真实的体验与理解。网络编辑,在很多属于个人的时间里,默默无闻地为别人做着嫁衣。整篇文章,从头到尾读完,还要修改文中的标
点与别字,以及文中的病句,有时甚至会为给文章中寻找到一个恰当用词,思考半天,然后才能写出点评或者编者按,完成稿件的审核、发表。。 奇米电影

做过五年的原创文学频道编辑,也来到江山做过某社团的编辑,我真正地体会到:其实网络编辑,真的不容易,而坚守多年,不仅仅凭着对文字的热爱,还应该有对好文章的 期待,对网络文学纯净平台的维护。网络编辑,不只是一种称呼,更是一种责任。
写下这些文字,只为记录那一段文字里的花开时光,也记录下关于网络编辑的感受,还有那些一起写过文字、一起编辑过文字,一起关心问候、共同进步的朋友的怀念。 时光不语,最是深情。那时花开,馨香一直在岁月里流淌…… 至今,不能忘记45年前,那一个微型“芦苇荡”;那一顿猪头肉。 那年我15岁,正读初中,放年假以后要继续搂草。农历腊月二十八九日下午,吃了晌饭,我又带着镰刀、竹筢,撅上网包去田野了。 我在山里到处溜跶,寻找草源,半个下午过去了,几乎没看见一棵像样的野草。一个人慢腾腾地满山游荡,像个没有思想的幽灵。不知应该去哪里,不知道哪儿有草,还担心 一棵草也搂不回家怎么办?果真如此,大人肯定会严肃批评。你傍晚回家,把个空空如也的破网包烂竹筢,往院子里一放,说没有搂到一棵草、一根树枝,谁信?反正,山里有没 有野草,你都得搂到柴草带回家。这才是王道。
相关文档
最新文档