高三数学专题复习13
(江苏专版)高考数学一轮复习 第十三章 立体几何 13.3 垂直的判定与性质讲义-人教版高三全册数学
§13.3 垂直的判定与性质考纲解读考点内容解读 要求五年高考统计常考题型 预测热度2013 2014 2015 2016 20171.线面垂直的判定与性质1.线面垂直的证明2.线面垂直的性质应用B16题14分解答题 ★★★2.面面垂直的判定与性质1.面面垂直的证明2.面面垂直的性质应用B15题14分 解答题 ★★★分析解读 空间垂直问题是某某高考的热点内容,主要考查线面垂直和面面垂直的判定与性质运用,复习时要认真掌握解决垂直问题常用的方法,识别一些基本图形如:锥体、柱体的特征.五年高考考点一 线面垂直的判定与性质1.(2016某某理,2,5分)已知互相垂直的平面α,β交于直线l.若直线m,n 满足m∥α,n⊥β,则以下说法正确的是.①m∥l;②m∥n;③n⊥l;④m⊥n. 答案 ③2.(2015某某,16,14分)如图,在直三棱柱ABC-A 1B 1C 1中,已知AC⊥BC,BC=CC 1,设AB 1的中点为D,B 1C∩BC 1=E. 求证:(1)DE∥平面AA 1C 1C; (2)BC 1⊥AB1.证明 (1)由题意知,E 为B 1C 的中点, 又D 为AB 1的中点,因此DE∥AC. 又因为DE ⊄平面AA 1C 1C,AC ⊂平面AA 1C 1C, 所以DE∥平面AA 1C 1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.3.(2015某某,19,13分)如图,三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥P-ABC的体积;(2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值.解析(1)由题设AB=1,AC=2,∠BAC=60°,可得S△ABC=·AB·AC·sin 60°=.由PA⊥平面ABC,可知PA是三棱锥P-ABC的高,又PA=1,所以三棱锥P-ABC的体积V=·S△ABC·PA=.(2)在平面ABC内,过点B作BN⊥AC,垂足为N.在平面PAC内,过点N作MN∥PA交PC于点M,连结BM.由PA⊥平面ABC知PA⊥AC,所以MN⊥AC.由于BN∩MN=N,故AC⊥平面MBN.又BM⊂平面MBN,所以AC⊥BM.在直角△BAN中,AN=AB·cos∠BAC=,从而NC=AC-AN=.由MN∥PA,得==.4.(2015某某,20,12分)如图,三棱锥P-ABC中,平面PAC⊥平面ABC,∠ABC=,点D,E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(1)证明:AB⊥平面PFE;(2)若四棱锥P-DFBC的体积为7,求线段BC的长.解析(1)证明:如图,由DE=EC,PD=PC知,E为等腰△PDC中DC边的中点,故PE⊥AC.又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE⊂平面PAC,PE⊥AC,所以PE⊥平面ABC,从而PE⊥AB.因∠ABC=,EF∥BC,故AB⊥EF.从而AB与平面PFE内两条相交直线PE,EF都垂直,所以AB⊥平面PFE.(2)设BC=x,则在直角△ABC中,AB==,从而S△ABC=AB·BC=x.由EF∥BC知,==,得△AFE∽△ABC,故==,即S△AFE=S△ABC.由AD=AE,S△AFD=S△AFE=·S△ABC=S△ABC=x,从而四边形DFBC的面积为S DFBC=S△ABC-S△AFD=x-x=x.由(1)知,PE⊥平面ABC,所以PE为四棱锥P-DFBC的高.在直角△PEC中,PE===2.体积V P-DFBC=·S DFBC·PE=·x·2=7,故得x4-36x2+243=0,解得x2=9或x2=27,由于x>0,可得x=3或x=3,所以,BC=3或BC=3.5.(2014某某,20,13分)如图,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点. 求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.证明(1)连结AD1,由ABCD-A1B1C1D1是正方体,知AD1∥B C1,因为F,P分别是AD,DD1的中点,所以FP∥AD1.从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图,连结AC,BD,则AC⊥BD.由CC1⊥平面ABCD,BD⊂平面ABCD,可得CC1⊥BD.又AC∩CC1=C,所以BD⊥平面ACC1.而AC1⊂平面ACC1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1.同理可证PN⊥AC1.又PN∩MN=N,所以直线AC1⊥平面PQMN.教师用书专用(6—8)6.(2014某某,19,12分)如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.(1)求证:EF⊥平面BCG;(2)求三棱锥D-BCG的体积.附:锥体的体积公式V=Sh,其中S为底面面积,h为高.解析(1)证明:由已知得△ABC≌△DBC.因此AC=DC.又G为AD的中点,所以CG⊥AD.同理BG⊥AD,因此AD⊥平面BGC.又EF∥AD,所以EF⊥平面BCG.(2)在平面ABC内,作AO⊥CB,交CB延长线于O,由平面ABC⊥平面BCD,知AO⊥平面BDC.又G为AD中点,因此G到平面BDC的距离h是AO长度的一半.在△AOB中,AO=AB·sin 60°=,所以V D-BCG=V G-BCD=·S△DBC·h=×BD·BC·sin 120°·=.7.(2014某某,20,12分)如图,四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=.(1)证明:BC⊥平面POM;(2)若MP⊥AP,求四棱锥P-ABMO的体积.解析(1)证明:如图,连结OB,因为ABCD为菱形,O为菱形的中心,所以AO⊥OB.因为∠BAD=,所以OB=AB·sin∠OAB=2sin=1,又因为BM=,且∠OBM=,所以在△OBM中,OM2=OB2+BM2-2OB·BM·cos∠OBM=12+-2×1××cos=.所以OB2=OM2+BM2,故OM⊥BM.又PO⊥底面ABCD,所以PO⊥BC.从而BC与平面POM内两条相交直线OM,PO都垂直,所以BC⊥平面POM.(2)由(1)可得,OA=AB·cos∠OAB=2·cos=.设PO=a,由PO⊥底面ABCD知,△POA为直角三角形,故PA2=PO2+OA2=a2+3.又△POM也是直角三角形,故PM2=PO2+OM2=a2+.连结AM,在△ABM中,AM2=AB2+BM2-2AB·BM·cos∠ABM=22+-2×2××cos=.由于MP⊥AP,故△APM为直角三角形,则PA2+PM2=AM2,即a2+3+a2+=,得a=或a=-(舍去),即PO=.此时S四边形ABMO=S△AOB+S△OMB=·AO·OB+·BM·OM=××1+××=.所以V P-ABMO=·S四边形ABMO·PO=××=.8.(2013某某,18,12分)如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°.已知PB=PD=2,PA=.(1)证明:PC⊥BD;(2)若E为PA的中点,求三棱锥P-BCE的体积.解析(1)证明:连结AC,交BD于O点,连结PO.因为底面ABCD是菱形,所以AC⊥BD,BO=DO.由PB=PD知,PO⊥BD.再由PO∩AC=O知,BD⊥面APC.因此BD⊥PC.(2)因为E是PA的中点,所以V P-BCE=V C-PEB=V C-PAB=V B-APC.由PB=PD=AB=AD=2知,△ABD≌△PBD.因为∠BAD=60°,所以PO=AO=,AC=2,BO=1.又PA=,PO2+AO2=PA2,即PO⊥AC,故S△APC=PO·AC=3.由(1)知,BO⊥面APC,因此V P-BCE=V B-APC=×·BO·S△APC=.考点二面面垂直的判定与性质1.(2017某某,15,14分)如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明(1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.2.(2017某某文,18,12分)由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD 为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.证明本题考查线面平行与面面垂直.(1)取B1D1的中点O1,连结CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1,又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM,又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.教师用书专用(3)3.(2016,18,14分)如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点.在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.解析(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.(2分)又因为DC⊥AC,AC∩PC=C,所以DC⊥平面PAC.(4分)(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.(6分)因为PC⊥平面ABCD,所以PC⊥AB.(7分)又AC∩PC=C,所以AB⊥平面PAC.又AB⊂平面PAB,所以平面PAB⊥平面PAC.(9分)(3)棱PB上存在点F,使得PA∥平面CEF.证明如下:(10分)取PB中点F,连结EF,CE,CF.又因为E为AB的中点,所以EF∥PA.(13分)又因为PA⊄平面CEF,所以PA∥平面CEF.(14分)三年模拟A组2016—2018年模拟·基础题组考点一线面垂直的判定与性质1.(苏教必2,一,2,变式)如图所示,已知矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥QD,则a的值等于.答案 22.(苏教必2,一,2,变式)如图,已知四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,则图中共有个直角三角形.答案 43.(2018某某海安高级中学高三阶段考试)如图,在斜三棱柱ABC-A1B1C1中,侧面A1ACC1是边长为2的菱形,∠A1AC=60°,在平面ABC中,AB=2,BC=4,M为BC的中点,过A1,B1,M三点的平面交AC于点N.(1)求证:N为AC的中点;(2)求证:AC⊥平面A1B1MN.证明(1)在三棱柱ABC-A1B1C1中,AB∥A1B1,平面ABC∥平面A1B1C1,∵平面A1B1M∩平面ABC=MN,平面A1B1M∩平面A1B1C1=A1B1,所以MN∥A1B1.因为AB∥A1B1,所以MN∥AB,所以=.因为M为BC的中点,所以N为AC的中点.(2)因为四边形A1ACC1是边长为2的菱形,∠A1AC=60°,所以在三角形A1AN中,AN=1,AA1=2,由余弦定理得A1N=,故A1A2=AN2+A1N2,所以∠A1NA=90°,即A1N⊥AC.在三角形ABC中,AC=2,AB=2,BC=4,所以BC2=AB2+AC2,所以∠BAC=90°,即AB⊥AC.又MN∥AB,所以AC⊥MN.因为MN∩A1N=N,MN⊂面A1B1MN,A1N⊂面A1B1MN,所以AC⊥平面A1B1MN.4.(2017某某某某期末调研,16)如图,在四棱锥E-ABCD中,平面EAB⊥平面ABCD,四边形ABCD为矩形,EA⊥EB,点M,N分别是AE,CD的中点.求证:(1)直线MN∥平面EBC;(2)直线EA⊥平面EBC.证明(1)取BE的中点F,连结CF,MF,因为M是AE的中点,所以MF∥AB,MF=AB,又N是矩形ABCD的边CD的中点,所以NC∥AB,NC=AB,所以MF NC,所以四边形MNCF是平行四边形,所以MN∥CF,又MN⊄平面EBC,CF⊂平面EBC,所以MN∥平面EBC.(2)在矩形ABCD中,BC⊥AB,因为平面EAB⊥平面ABCD,平面ABCD∩平面EAB=AB,BC⊂平面ABCD,所以BC⊥平面EAB,又EA⊂平面EAB,所以BC⊥EA,又EA⊥EB,BC∩EB=B,EB,BC⊂平面EBC,所以EA⊥平面EBC.5.(2017苏锡常镇四市教学情况调研(一),16)如图,在斜三棱柱ABC-A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1.(1)求证:E是AB的中点;(2)若AC1⊥A1B,求证:AC1⊥CB.证明(1)连结BC1,因为OE∥平面BCC1B1,且OE⊂平面ABC1,平面BCC1B1∩平面ABC1=BC1,所以OE∥BC1.因为侧面AA1C1C是菱形,AC1∩A1C=O,所以O是AC1的中点,所以E是AB的中点.(2)因为侧面AA1C1C是菱形,所以AC1⊥A1C,又AC1⊥A1B,A1C∩A1B=A1,A1C,A1B⊂面A1BC,所以AC1⊥面A1BC,因为BC⊂平面A1BC,所以AC1⊥BC.考点二面面垂直的判定与性质6.(2018某某某某中学高三阶段测试)如图,在几何体中,四边形ABCD为菱形,对角线AC与BD的交点为O,四边形DCEF为梯形,EF∥CD,FB=FD.(1)若CD=2EF,求证:OE∥平面ADF;(2)求证:平面ACF⊥平面ABCD.证明(1)取AD的中点G,连结OG,FG,∵对角线AC与BD的交点为O,∴OG∥CD,OG=CD.∵EF∥CD,CD=2EF,∴OG∥EF,OG=EF,∴四边形OGFE为平行四边形,∴OE∥FG.∵FG⊂平面ADF,OE⊄平面ADF,∴OE∥平面ADF.(2)连结OF.∵四边形ABCD为菱形,∴OC⊥BD,∵FB=FD,O是BD的中点,∴OF⊥BD.又∵OF∩OC=O,∴BD⊥平面ACF.∵BD⊂平面ABCD,∴平面ACF⊥平面ABCD.7.(2017某某某某辅仁中学质检,16)如图,在四棱锥P-ABCD中,AB∥CD,AC⊥BD,AC与BD交于点O,且平面PAC⊥平面ABCD,E为棱PA上一点.(1)求证:BD⊥OE;(2)若AB=2CD,AE=2EP,求证:EO∥平面PBC.证明(1)因为平面PAC⊥底面ABCD,平面PAC∩底面ABCD=AC,BD⊥AC,BD⊂平面ABCD,所以BD⊥平面PAC,又因为OE⊂平面PAC,所以BD⊥OE.(2)因为AB∥CD,AB=2CD,AC与BD交于O,所以CO∶OA=CD∶AB=1∶2,又因为AE=2EP,所以CO∶OA=PE∶EA,所以EO∥PC,又因为PC⊂平面PBC,EO⊄平面PBC,所以EO∥平面PBC.8.(2017某某某某,某某一模,15)如图,在直三棱柱ABC-A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.证明(1)因为D,E分别是AB,AC的中点,所以DE∥BC,又因为在三棱柱ABC-A1B1C1中,B1C1∥BC,所以B1C1∥DE.又B1C1⊄平面A1DE,DE⊂平面A1DE,所以B1C1∥平面A1DE.(2)在直三棱柱ABC-A1B1C1中,CC1⊥底面ABC,又DE⊂底面ABC,所以CC1⊥DE.又BC⊥AC,DE∥BC,所以DE⊥AC,又CC1,AC⊂平面ACC1A1,且CC1∩AC=C,所以DE⊥平面ACC1A1.又DE⊂平面A1DE,所以平面A1DE⊥平面ACC1A1.9.(苏教必2,一,2,变式)如图所示,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°.将△ABD沿对角线BD折起,记折起后A的位置为点P,且使平面PBD⊥平面BCD.求证:(1)CD⊥平面PBD.(2)平面PBC⊥平面PDC.证明(1)∵AD=AB,∠BAD=90°,∴∠ABD=∠ADB=45°,又∵AD∥BC,∴∠DBC=45°,又∠DCB=45°,∴∠BDC=90°,即BD⊥DC.∵平面PBD⊥平面BCD,平面PBD∩平面BCD=BD,∴CD⊥平面PBD.(2)由CD⊥平面PBD得CD⊥BP.又BP⊥PD,PD∩CD=D,∴BP⊥平面PDC.又BP⊂平面PBC,∴平面PBC⊥平面PDC.B组2016—2018年模拟·提升题组(满分:20分时间:10分钟)一、填空题(每小题5分,共5分)1.(苏教必2,一,2,变式)设m、n是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是.①若m⊥n,n∥α,则m⊥α;②若m∥β,β⊥α,则m⊥α;③若m⊥β,n⊥β,n⊥α,则m⊥α;④若m⊥n,n⊥β,β⊥α,则m⊥α.答案③二、解答题(共15分)2.(2017某某某某、某某、某某三模,16)如图,在四棱锥P-ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分别为棱PD,PC的中点.求证:(1)MN∥平面PAB;(2)AM⊥平面PCD.证明(1)因为M,N分别为棱PD,PC的中点,所以MN∥DC,又因为底面ABCD是矩形,所以AB∥DC,所以MN∥AB.又AB⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB.(2)因为AP=AD,M为PD的中点,所以AM⊥PD.因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊥AD,CD⊂平面ABCD,所以CD⊥平面PAD.又AM⊂平面PAD,所以CD⊥AM.因为CD,PD⊂平面PCD,CD∩PD=D,所以AM⊥平面PCD.C组2016—2018年模拟·方法题组方法1 证明线面垂直的方法1.(2017某某某某师X大学附属中学调研)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F.(1)求证:PA∥平面EBD;(2)求证:PB⊥平面EFD.证明(1)连结BE,BD,AC,设AC交BD于G,连结EG,则G为AC的中点,在△PAC中,E为PC的中点,G为AC的中点,故PA∥EG,又EG⊂面BED,PA⊄面BED,所以PA∥平面EBD.(2)∵PD⊥面ABCD,∴PD⊥BC.∵BC⊥CD,PD∩CD=D,PD,CD⊂面PCD,∴BC⊥面PCD,又DE⊂面PCD,∴BC⊥DE,∵PD=CD,E为PC的中点,∴DE⊥PC,又BC∩PC=C,BC,PC⊂面PBC,∴DE⊥面PBC,又PB⊂面PBC,∴DE⊥PB,又∵PB⊥EF,EF∩DE=E,EF,DE⊂面EFD,∴PB⊥平面EFD.方法2 证明面面垂直的方法2.(2017某某某某期中,17)如图,在正方体ABCD-A1B1C1D1中,E为棱DD1的中点,求证: (1)BD1∥平面EAC;(2)平面EAC⊥平面AB1C.证明(1)连结BD交AC于O,连结EO.易知O为BD的中点,因为E为DD1的中点,所以EO∥BD1. 又BD1⊄平面EAC,EO⊂平面EAC,所以BD1∥平面EAC.(2)易知AC⊥BD,DD1⊥平面ABCD,所以DD1⊥AC,因为BD∩DD1=D,所以AC⊥平面BDD1,所以AC⊥BD1,同理可证AB1⊥BD1,又AC∩AB1=A,所以BD1⊥平面AB1C,因为EO∥BD1,所以EO⊥平面AB1C,又EO⊂平面EAC,所以平面EAC⊥平面AB1C.。
2021届全国高考数学一轮复习知识巩固AB卷:专题13 统计、统计案例与概率(A卷)(含解析)
2021年全国高考数学一轮复习知识巩固AB卷(理科)专题13 统计、统计案例与概率(A卷)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.2019年夏季来临,某品牌饮料举行夏季促销活动,瓶盖内部分别印有标识“谢谢惠顾”、A B C标识的饮料数量之比标识B“再来一瓶”以及标识C“品牌纪念币一枚”,每箱中印有,,为3:1:2,若顾客购买了一箱(12瓶)该品牌饮料,则兑换“品牌纪念币”的数量为()A.2 B.4 C.6 D.82.一般来说,一个班级的学生学号是从1开始的连续正整数,在一次课上,老师随机叫起班上8名学生,记录下他们的学号是:3、21、17、19、36、8、32、24,则该班学生总数最可能为()A.39人B.49人C.59人D.超过59人3.某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编 从中抽取60个样本,如下提供随机数表的第4行到第6行:号分别为001,002,,599,60032 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号()A.522B.324C.535D.5784.新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为A、B、C、D、E五个等级.某试点高中2018年参加“选择考”总人数是2016年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2016年和2018年“选择考”成绩等级结果,得到如下图表:针对该校“选择考”情况,2018年与2016年比较,下列说法正确的是( ) A .获得A 等级的人数减少了 B .获得B 等级的人数增加了1.5倍 C .获得D 等级的人数减少了一半D .获得E 等级的人数相同5.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =<B .270,75x s =>C .270,75x s ><D .270,75x s <>6.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[)50,60的同学有30人,则n 的值为( )A .100B .1000C .90D .9007.某公司新发明了甲、乙两种不同型号的手机,公司统计了消费者对这两种型号手机的评分情况,作出如下的雷达图,则下列说法不正确的是( )A .甲型号手机在外观方面比较好B .甲、乙两型号的系统评分相同C .甲型号手机在性能方面比较好D .乙型号手机在拍照方面比较好8.某企业的一种商品的产量与单位成本数据如下表:产量x (万件) 14 16 182022单位成本y (元/件)12107a3若根据表中提供的数据,求出y 关于x 的线性回归方程为ˆ 1.1528.1yx =-+,则a 的值等于( ) A .4.5 B .5C .5.5D .69.相关变量的散点图如图所示,现对这两个变量进行线性相关分析,方案一:根据图中所有数据,得到线性回归方程,相关系数为;方案二:剔除点,根据剩下数据得到线性回归直线方程,相关系数为.则( )A .B .C .D .10.为了判断高中生选修理科是否与性别有关.现随机抽取50名学生,得到如下列联表:根据表中数据,得到的观测值()22501320107 4.84423272030K ⨯⨯-⨯=≈⨯⨯⨯,若已知,,则认为选修理科与性别有关系出错的可能性约为( ) A .B .C .D .11.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡都送给丁的概率为( ) A .12B .13C .14D .1512.函数()()22846f x x x x =-++-≤≤,在其定义域内任取一点0x ,使()00f x ≥的概率是( ) A .310B .23C .35D .45第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.某公司对2019年14月份的获利情况进行了数据统计,如下表所示:月份x 123 4利润y /万元5 6 6.58利用线性回归分析思想,预测出2019年8月份的利润为11.6万元,则y 关于x 的线性回归方程为__________.14.在西非肆虐的“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:参照附表,在犯错误的概率最多不超过______(填百分比)的前提下,可认为“该种疫苗有预防埃博拉病毒感染的效果”. 参考公式:()()()()()22n ad bc K a b c d a c b d -=++++15.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则直线不经过第三象限的概率为_____.16.如图,在边长为2的正方形中,以的中点为圆心,以为半径作圆弧,交边于点,从正方形中任取一点,则该点落在扇形中的概率为_____.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)本市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼.摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在[25,85]之间,根据统计结果,做出频率分布直方图如图:(1)根据频率分布直方图,求这100位摄影者年龄的样本平均数x和中位数m(同一组数据用该区间的中点值作代表);(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中评出20个最佳作品,并邀请作者参加“讲述照片背后的故事”座谈会.①在答题卡上的统计表中填出每组应抽取的人数;年龄[25,35)[35,45)[45,55)[55,65)[65,75)[75,85]人数②若从较年轻的前三组作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在[35,45)的概率.18.(12分)国家学生体质健康测试专家组到某学校进行测试抽查,在高三年级随机抽取100名男生参加实心球投掷测试,测得实心球投掷距离(均在5至15米之内)的频数分布表如下(单位:米):规定:实心球投掷距离在[)9,13之内时,测试成绩为“良好”,以各组数据的中间值代表这组数据的平均值ξ,将频率视为概率.(1)求ξ,并估算该校高三年级男生实心球投掷测试成绩为“良好”的百分比;(2)现在从实心球投掷距离在[)5,7,[)13,15之内的男生中用分层抽样的方法抽取5人,再从这5人中随机抽取3人参加提高体能的训练,求:在被抽取的3人中恰有两人的实心球投掷距离在[)5,7内的概率.19.(12分)已知某商品每件的生产成本x (元)与销售价格y (元)具有线性相关关系,对应数据如表所示:(1)求出y 关于x 的线性回归方程y bx a =+;(2)若该商品的月销售量z (千件)与生产成本x (元)的关系为221z x =-+,[2,10]x ∈, 根据(1)中求出的线性回归方程,预测当x 为何值时,该商品的月销售额最大.附:121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-.20.(12分)随着教育信息化2.0时代的到来,依托网络进行线上培训越来越便捷,逐步成为实现全民终身学习的重要支撑.最近某高校继续教育学院采用线上和线下相结合的方式开展了一次300名学员参加的“国学经典诵读”专题培训.为了解参训学员对于线上培训、线下培训的满意程度,学院随机选取了50名学员,将他们分成两组,每组25人,分别对线上、线下两种培训进行满意度测评,根据学员的评分(满分100分)绘制了如下茎叶图:(1)根据茎叶图判断学员对于线上、线下哪种培训的满意度更高?并说明理由;(2)求50名学员满意度评分的中位数m,并将评分不超过m、超过m分别视为“基本满意”、“非常满意”两个等级.①利用样本估计总体的思想,估算本次培训共有多少学员对线上培训非常满意?②根据茎叶图填写下面的列联表:并根据列联表判断能否有99.5%的把握认为学员对两种培训方式的满意度有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,()20.0100.0050.0016.6357.87910.828P K kk≥.21.(12分)在边长为1的正六边形ABCDEF中,其中心为点O.(1)在正六边形ABCDEF的边上任取一点P,求满足OP在OE上的投影大于12的概率;(2)从A,B,C,D,E,F这六个点中随机选取两个点,记这两个点之间的距离为x,求x大于等于3的概率.22.(12分)某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数y(万人)与年份x的数据:第x年 1 2 3 4 5 6 7 8 9 10 旅游人数y(万人)300 283 321 345 372 435 486 527 622 800该景点为了预测2021年的旅游人数,建立了y与x的两个回归模型:模型①:由最小二乘法公式求得y 与x 的线性回归方程50.8169.7y x =+;模型②:由散点图的样本点分布,可以认为样本点集中在曲线bxy ae =的附近.(1)根据表中数据,求模型②的回归方程bx y ae =.(a 精确到个位,b 精确到0.01). (2)根据下列表中的数据,比较两种模型的相关指数2R ,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).回归方程①50.8169.7y x =+②bx y ae =1021()iii y y =-∑ 30407 14607参考公式、参考数据及说明: ①对于一组数据()()()1122,,,,,,n n v w v w v w ,其回归直线w v αβ=+的斜率和截距的最小二乘法估计分别为121()(),()niii nii w w v v w v v v βαβ==--==--∑∑.②刻画回归效果的相关指数22121()1()nii i n ii yy R yy ==-=--∑∑.③参考数据: 5.46235e ≈, 1.43 4.2e ≈.x y u1021()ii xx =-∑()()101iii x x y y =--∑ ()()101iii x x uu =--∑表中1011ln ,10i i i i u y u u ===∑.专题13 统计、统计案例与概率 答 案+解 析第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B【解析】根据题意,“品牌纪念币一枚”的瓶数占全部瓶数的三分之一,即11243⨯=. 2.【答案】A【解析】因为随机抽样中,每个个体被抽到的机会都是均等的,所以110,1120,2130,3140,…,每组抽取的人数,理论上应均等;又所抽取的学生的学号按从小到大顺序排列为3、8、17、19、21、24、32、36,恰好使110,1120,2130,3140四组中各有两个,因此该班学生总数应为40左右,故选A . 3.【答案】D【解析】第6行第6列的数开始的数为808,不合适,436,789不合适,535,577,348,994不合适,837不合适,522,535重复不合适,578合适,则满足条件的6个编号为436,535,577,348,522,578, 则第6个编号为578,故选D . 4.【答案】B【解析】设2016年参加考试x 人,则2018年参加考试2x 人,根据图表得出两年各个等级的人数如下图所示:由图可知A ,C ,D 选项错误,B 选项正确,故本小题选B . 5.【答案】A【解析】由题意,根据品滚石的计算公式,可得7050806070907050x ⨯+-+-==,设收集的48个准确数据分别记为1248,,,x x x ,则()()()()()2222212481757070706070907050x x x ⎡⎤=-+-++-+-+-⎣⎦()()()2221248170707050050x x x ⎡⎤=-+-++-+⎣⎦, ()()()()()222222124817070708070707050s x x x ⎡⎤=-+-++-+-+-⎣⎦ ()()()222124817070701007550x x x ⎡⎤=-+-++-+<⎣⎦, 故275s <.故选A . 6.【答案】A【解析】由频率分布直方图可知,支出在[)50,60的同学的频率为0.03100.3⨯=,301000.3n ∴==,本题正确选项A . 7.【答案】C【解析】从图中可得:甲型号手机在外观方面评分为90,乙型号手机在外观方面评分为85, 故A 正确;甲型号手机在系统方面评分为95,乙型号手机在系统方面评分也为95,故B 正确; 甲型号手机在性能方面评分为85,乙型号手机在外观方面评分为90,故C 错误; 甲型号手机在拍照方面评分为85,乙型号手机在拍照方面评分为90,故D 正确; 故选C . 8.【答案】B 【解析】1416182022901855x,1210733255a ay , x y ,在线性回归方程ˆ 1.1528.1yx =-+上, 1.151828.17.4y ,则32=7.45a,解得5a =,故选B . 9.【答案】D【解析】由散点图得负相关,所以,因为剔除点后,剩下点数据更具有线性相关性,更接近,所以.故选D .10.【答案】B【解析】由观测值,对照临界值得4.844>3.841,由于P (X 2≥3.841)≈0.05,∴认为选修理科与性别有关系出错的可能性为5%.故选B . 11.【答案】C【解析】(甲送给丙、乙送给丁)、(甲送给丁,乙送给丙)、(甲、乙都送给丙)、(甲、乙都送给丁)共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种,所以甲、乙将贺年卡送给同一人丁的情况一种, 概率是14,故选C . 12.【答案】C【解析】由题意,知()00f x ≥,即200280x x -++≥,解得{}0024x x -≤≤,所以由长度的几何概型可得概率为4(2)36(4)5P --==--,故选C .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.【答案】ˆ0.954yx =+ 【解析】设线性回归方程为ˆˆˆybx a =+,因为52x =,518y =, 由题意可得551ˆ288ˆ11.6ˆˆb a b a⎧+=⎪⎨⎪+=⎩,解得ˆ0.95b =,ˆ4a =,即ˆ0.954y x =+,故答案为ˆ0.954yx =+. 14.【答案】5%【解析】由题意,计算观测值()2210010302040 4.762 3.84150503070K ⨯⨯-⨯==>⨯⨯⨯,参照附表,可得:在犯错误的概率不超过5%的前提下,认为“小动物是否被感染与有没有服用疫苗有关”. 故答案为5%.15.【答案】29【解析】试验发生包含的事件(k ,b )的取值所有可能的结果有:(﹣1,﹣2);(﹣1,1);(﹣1,2);(1,﹣2);(1,1);(1,2);(2,﹣2);(2,1);(2,2)共9种结果.而当00k b <>⎧⎨⎩时,直线不经过第三象限,符合条件的(k ,b )有2种结果,∴直线不过第三象限的概率29P =,故答案为29.16.【答案】π8【解析】如图,正方形面积,因为,故,所以π4AOM ∠=, 同理π4NOB ∠=,所以π2MON ∠=, 又,∴()212222ππMONS =⨯⨯=扇形. ∴从正方形中任取一点,则该点落在扇形中的概率为8ππ24P ==.故答案为π8.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)平均数60,中位数4557;(2)①详见解析,②35. 【解析】(1)在频率分布直方图中,这100位参赛者年龄的样本平均数300.05400.1500.15x =⨯+⨯+⨯600.35700.2800.1560+⨯+⨯+⨯=.设中位数为m ,由0.050.10.15(55)0.350.5m +++-⨯=,解得4557m =(或答55.57). (2)①每组应各抽取人数如下表:②根据分层抽样的原理,年龄在前三组内分别有1人、2人、3人,设在第一组的是a ,在第二组的是1b ,2b ,在第三组的是1c ,2c ,3c ,列举选出2人的所有可能如下:1(,)a b ,2(,)a b ,1(,)a c ,2(,)a c ,3(,)a c ,12()b b ,,11(,)b c ,12(,)b c ,13(,)b c ,21(,)b c ,22(,)b c ,23(,)b c ,12(,)c c ,13(,)c c ,23(,)c c ,共15种情况.设“这2人至少有一人的年龄在区间[35,45]”为事件A , 则93()155P A ==. 18.【答案】(1)平均值9.77ξ=,百分比62%;(2)0.6. 【解析】(1)根据平均值的定义得92340226681012149.77100100100100100ξ=⨯+⨯+⨯+⨯+⨯=, 因为实心球投掷距离在[)9,13之内时,测试成绩为“良好”,所以40220.6262%100+==. (2)实心球投掷距离在[)5,7,[)13,15之内的男生分别有9,6人,用分层抽样的方法抽取5人,则分别抽取3,2人.从这5人中随机抽取3人参加提高体能的训练的总数为35C 10=,在被抽取的3人中恰有两人的实心球投掷距离在[)5,7的总数为2132C C 6=, 所以在被抽取的3人中恰有两人的实心球投掷距离在[)5,7内的概率为60.610p ==. 19.【答案】(1)ˆ46y x =-;(2)预计当6x =时,该商品的销售额最大为162元.【解析】(1)根据题意,5678 6.54x +++==,15172127204y +++==,41515617721827540i ix y=⨯+⨯+⨯+⨯=∑,42222215678174i x =+++=∑,所以414222145404 6.52041744 6.54i ii x y x yb x x--⨯⨯===-⨯-∑∑,所以204 6.56a y bx =-=-⨯=-, 所以y 关于x 的线性回归方程ˆ46yx =-. (2)依题意,销售额2()(221)(46)896126([2,10])f x x x x x x =-+-=-+-∈. 其对称轴为9662(8)x =-=⨯-,又因为()f x 为开口向下的抛物线,故当6x =时()f x 最大, 最大值()836966126162f x =-⨯+⨯-=. 答:预计当6x =时,该商品的销售额最大为162元.20.【答案】(1)对线下培训满意度更高;(2)①84人,②有把握. 【解析】(1)对线下培训满意度更高.理由如下:①由茎叶图可知:在线上培训中,有72%的学员满意度评分至多79分,在线下培训中,有72%的学员评分至少80分.因此学员对线下培训满意度更高.②由茎叶图可知:线上培训满意度评分的中位数为76分,线下评分的中位数为85分.因此学员对线下培训满意度更高.③由茎叶图可知:线上培训的满意度评分平均分高于80分;线下培训的平均分低于80分,因此学员对线下培训满意度更高.④由茎叶图可知:线上培训的满意度评分在茎7上的最多,关于茎7大致呈对称分布;线下培训的评分分布在茎8上的最多,关于茎8大致呈对称分布,又两种培训方式打分的分布区间相同,故可以认为线下培训评分比线上培训打分更高,因此线下培训的满意度更高. 以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知798079.52m +==. ①参加线上培训满意度调查的25名学员中共有7名对线上培训非常满意,频率为725, 又本次培训共300名学员,所以对线上培训满意的学员约为73008425⨯=人. ②列联表如下:于是2250(181877)9.6825252525k ⨯-⨯==⨯⨯⨯,因为9.687.879>,所以有99.5%的把握认为学员对两种培训方式的满意度有差异. 21.【答案】(1)13;(2)35. 【解析】(1)OD ,OF 在OE 上的投影为cos cos OD OD OE OF OF OE 〈〉=〈〉,,11cos602=⨯︒=, ∴当P 在线段FE (除点F )和线段ED (除点D )上运动时,OP 在OE 上的投影大于12,∴OP 在OE 上的投影大于12的概率2163p ==.(2, 选出的两个点不相邻有9种,(A ,C ),(A ,D ),(A ,E ),(B ,D ),(B ,E ),(B ,F ),(C ,E ), (D ,F ),(C ,F );六个点中随机选取两个点,总共有15种:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F );(93155P x ∴≥==. 22.【答案】(1)0.11235x y e =;(2)见解析. 【解析】(1)对bxy ae =取对数,得ln ln y bx a =+, 设ln u y =,ln c a =,先建立u 关于x 的线性回归方程,()()()10110219.000.10883iii i i x x u u b x x==--==≈-∑∑, 6.050.108 5.5 5.456 5.46c u bx =-≈-⨯=≈,5.46235c a e e =≈≈,∴模型②的回归方程为0.11235x y e =.(2)由表格中的数据,有30407>14607,即101022113040714607()()i i i i y y y y ==>--∑∑,即10102211304071460711()()iii i y y y y ==-<---∑∑,2212R R <,模型①的相关指数21R 小于模型②的22R ,说明回归模型②的拟合效果更好.2021年时,13x =,预测旅游人数为0.1113 1.43235235235 4.2987y e e ⨯==≈⨯=(万人).。
【精品】2019届高三数学年复习专题--立体几何专题训练附参考答案
1 【精品】2019届高三数学年复习专题--立体几何专题训练附参考答案一、解答题 1.如图所示,在四棱锥P-ABCD 中,底面ABCD 是棱长为2的正方形,侧面PAD 为正三角形,且面PAD ⊥面ABCD ,E 、F 分别为棱AB 、PC 的中点. (1)求证:EF ∥平面PAD ; (2)求三棱锥B-EFC 的体积; (3)求二面角P-EC-D 的正切值.2.如图,三棱柱ABF-DCE 中,∠ABC=120°,BC=2CD ,AD=AF ,AF ⊥平面ABCD .(Ⅰ)求证:BD ⊥EC ;(Ⅱ)若AB=1,求四棱锥B-ADEF 的体积.3.正方体ABCD-A 1B 1C 1D 1,AA 1=2,E 为棱CC 1的中点. (1)求证:B 1D 1⊥AE ;(2)求三棱锥A-BDE 的体积.4.如图,四棱锥P-ABCD 中,底面ABCD 是矩形,平面PAD ⊥底面ABCD ,且△PAD 是边长为2的等边三角形,PC= ,M 在PC 上,且PA ∥面MBD . (1)求证:M 是PC 的中点; (2)求多面体PABMD 的体积.25.已知四棱锥P-ABCD ,底面ABCD 为菱形,∠ABC=60°,△PAB 是等边三角形,AB=2,PC= ,AB 的中点为E.(1)证明:PE ⊥平面ABCD ; (2)求三棱锥D-PBC 的体积.6.一块边长为10cm 的正方形铁块按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器.(1)试把容器的容积V 表示为x 的函数.(2)若x =6,求图2的主视图的面积.7.如图,矩形ABCD 中,BC=2,AB=1,PA ⊥平面ABCD ,BE ∥PA ,BE=PA ,F 为PA 的中点.(1)求证:PC ∥平面BDF .(2)记四棱锥C-PABE 的体积为V 1,三棱锥P-ACD 的体积为V 2,求的值.8.如图,直三棱柱ABC-A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC=CB=2,AB=2 .(Ⅰ)证明:BC 1∥平面A 1CD ;(Ⅱ)求锐二面角D-A 1C-E 的余弦值.9.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E、F分别为AB和PC的中点,连接EF、BF.(1)求证:直线EF∥平面PAD;(2)求三棱锥F-PBE的体积.10.如图,梯形FDCG,DC∥FG,过点D,C作DA⊥FG,CB⊥FG,垂足分别为A,B,且DA=AB=2.现将△DAF沿DA,△CBG沿CB翻折,使得点F,G重合,记为E,且点B在面AEC的射影在线段EC上.(Ⅰ)求证:AE⊥EB;(Ⅱ)设=λ,是否存在λ,使二面角B-AC-E的余弦值为?若存在,求λ的值;若不存在,说明理由.11.在四边形ABCD中,对角线AC,BD垂直相交于点O,且OA=OB=OD=4,OC=3.将△BCD沿BD折到△BED的位置,使得二面角E-BD-A的大小为90°(如图).已知Q为EO的中点,点P在线段AB 上,且.(Ⅰ)证明:直线PQ∥平面ADE;(Ⅱ)求直线BD与平面ADE所成角θ的正弦值.12.如图,四棱锥P-ABCD是底面边长为1的正方形,PD⊥BC,PD=1,PC=.(Ⅰ)求证:PD⊥面ABCD;(Ⅱ)求二面角A-PB-D的大小.3413.如图在三棱锥A-BCD 中,侧面ABD 、ACD 是全等的直角三角形,AD 是公共的斜边,且AD= ,BD=CD=1,另一个侧面是正三角形. (1)求证:AD ⊥BC ;(2)求二面角B-AC-D 的余弦值; (3)点E 在直线AC 上,当直线ED 与平面BCD 成30°角若时,求点C 到平面BDE 的距离.14.如图所示,在边长为 的正方形ABCD 中,以A 为圆心画一个扇形,以O 为圆心画一个圆,M ,N ,K 为切点,以扇形为圆锥的侧面,以圆O 为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.15.如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M 为PC 的中点,点N 在线段AD 上.(I )点N 为线段AD 的中点时,求证:直线PA ∥BMN ; (II )若直线MN 与平面PBC 所成角的正弦值为,求平面PBC 与平面BMN 所成角θ的余弦值.16.如图,在正方体ABCD-A 1B 1C 1D 1中,E 是CC 1的中点,求证: (1)AC 1⊥BD ;(2)AC 1∥平面BDE .17.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中, (1)求证:AC ⊥平面B 1D 1DB ; (2)求三棱锥B-CD 1B 1的体积.18.在四棱锥P-ABCD中,平面PAD⊥平面ABCD,∠APD=90°,PA=PD=AB=a,ABCD是矩形,E是PD的中点.(1)求证:PB∥平面AEC(2)求证:PB⊥AC.19.如图,已知平面ADC∥平面A1B1C1,B为线段AD的中点,△ABC≈△A1B1C1,四边形ABB1A1为正方形,平面AA1C1C丄平面ADB1A1,A1C1=A1A,∠C1A1A=,M为棱A1C1的中点.(I)若N为线段DC1上的点,且直线MN∥平面ADB1A1,试确定点N的位置;(Ⅱ)求平面MAD与平面CC1D所成的锐二面角的余弦值.20.如图,三棱柱ABC-A1B1C1中,D为AA1的中点,E为BC的中点.(1)求证:直线AE∥平面BDC1;(2)若三棱柱 ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求平面BDC1与平面ABC所成二面角的正弦值.21.如图所示,已知长方体ABCD中,AB=4,AD=2,M为DC的中点.将△ADM沿AM折起,使得AD⊥BM.(1)求证:平面ADM⊥平面ABCM;(2)若点E为线段DB的中点,求点E到平面DMC的距离.5622.如图所示,在正方体ABCD-A 1B 1C 1D 1中,E 是棱DD 1的中点. (1)若正方体的棱长为1,求三棱锥B 1-A 1BE 的体积;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥面A 1BE ?若存在,试确定点F 的位置,并证明你的结论.23.如图,三棱柱ABC-A 1B 1C 1中,BC ⊥平面AA 1C 1C ,BC=CA=AA 1=2,∠CAA 1=60°.(1)求证:AC 1⊥A 1B ;(2)求直线A 1B 与平面BAC 1所成角的正弦值.24.在图所示的几何体中,底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD=AD=2EC=2,N 为线段PB 的中点. (1)证明:NE ⊥平面PBD ; (2)求四棱锥B-CEPD 的体积.25.已知梯形ABCD 中AD ∥BC ,∠ABC=∠BAD=,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF ∥BC ,AE=x .沿EF 将梯形AEFD 翻折,使平面AEFD ⊥平面EBCF (如图).G 是BC 的中点.(1)当x =2时,求证:BD ⊥EG ;(2)当x 变化时,求三棱锥D-BCF 体积的最大值.26.如图,长方体ABCD-A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E=D 1F=4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值.727.在如图所示的多面体ABCDEF 中,四边形ABCD 为正方形,底面ABFE 为直角梯形,∠ABF 为直角, ,,平面ABCD ⊥平面ABFE . (1)求证:DB ⊥EC ;(2)若AE=AB ,求二面角C-EF-B 的余弦值.28.如图,四棱锥P-ABCD 中,AD ⊥平面PAB ,AP ⊥AB . (1)求证:CD ⊥AP ; (2)若CD ⊥PD ,求证:CD ∥平面PAB .29.如图所示,四棱锥P-ABCD 的侧面PAD 是边长为2的正三角形,底面ABCD 是∠ABC=60°的菱形,M 为PC 的中点,PC= .(Ⅰ)求证:PC ⊥AD ;(Ⅱ)求三棱锥M-PAB 的体积.30.如图,在四棱锥P-ABCD 中,底面ABCD 是平行四边形,∠ADC=45°,AD=AC=2,O 为AC 的中点,PO ⊥平面ABCD 且PO=6,M 为BD的中点.(1)证明:AD ⊥平面PAC ; (2)求直线AM 与平面ABCD 所成角的正切值.31.如图,多面体EF-ABCD 中,ABCD 是正方形,AC 、BD 相交于O ,EF ∥AC ,点E 在AC 上的射影恰好是线段AO 的中点. (Ⅰ)求证:BD ⊥平面ACF ;(Ⅱ)若直线AE 与平面ABCD 所成的角为60°,求平面DEF 与平面ABCD 所成角的正弦值.32.如图,三棱锥P-ABC 中,平面PAC ⊥平面ABC ,∠BCA=90°,且BC=CA=2,PC=PA .(1)求证:PA ⊥BC ;8 (2)当PC 的值为多少时,满足PA ⊥平面PBC ?并求出此时该三棱锥P-ABC 的体积.33.如图,直三棱柱ABC-A 1B 1C 1中,AA 1=AB ,AB ⊥BC ,且N 是A 1B 的中点.(1)求证:直线AN ⊥平面A 1BC ;(2)若M 在线段BC 1上,且MN ∥平面A 1B 1C 1,求证:M 是BC 1的中点.34..如图所示,在长方体ABCD-A 1B 1C 1D 1中,AB=AD=1,AA 1=2,点P 为DD 1的中点. (1)求证:直线BD 1∥平面PAC (2)求证:平面PAC ⊥平面BDD 1B 1.35.如图,在四棱锥P-ABCD 中,底面ABCD 为直角梯形,AD ∥BC ,∠ADC=90°,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,PA=PD=2,BC=AD=1,CD= . (1)求证:平面MQB ⊥平面PAD ; (2)若二面角M-BQ-C 大小的为60°,求QM 的长.36.如 图,正方体ABCD-A 1B 1C 1D 1的棱长为2,E 、F 、G 分别为 AB 、BB 1、B 1C 1 的中点. (1)求证:A 1D ⊥FG ;(2)求二面角 A 1-DE-A 的正切值.37.四棱锥P-ABCD 的直观图与三视图如图,PC ⊥面ABCD(1)画出四棱锥P-ABCD 的侧视图(标注长度) (2)求三棱锥A-PBD的9 体积.38.如图,长方体ABCD-A 1B 1C 1D 1中,AB=AD=1,AA 1=2,点P 为棱DD 1上一点.(1)求证:平面PAC ⊥平面BDD 1B 1;(2)若P 是棱DD 1的中点,求CP 与平面BDD 1B 1所成的角大小.39.如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,AB ∥CD ,AD=CD=1,∠BAD=120°,PA= ,∠ACB=90°,M 是线段PD 上的一点(不包括端点).(Ⅰ)求证:BC ⊥平面PAC ; (Ⅱ)求二面角D-PC-A 的正切值; (Ⅲ)试确定点M 的位置,使直线MA 与平面PCD 所成角θ的正弦值为.40.已知四棱锥P-ABCD 中,AD=2BC ,且AD ∥BC ,点M ,N 分别是PB ,PD 中点,平面MNC 交PA 于Q . (1)证明:NC ∥平面PAB(2)试确定Q 点的位置,并证明你的结论.41.一个正三棱柱的三视图如图所示,求这个三棱柱的表面积和体10 积.42.如图,四棱锥P-ABCD 的底面是正方形,侧棱PA ⊥底面ABCD ,E 是PA 的中点. (Ⅰ)求证:PC ∥平面BDE ; (Ⅱ)证明:BD ⊥CE .43.如图所示,在正方体ABCD-A 1B 1C 1D 1中,E 、G 、H 分别是BC 、C 1D 1、AA 1、的中点.(Ⅰ)求异面直线D 1H 与A 1B 所成角的余弦值(Ⅱ)求证:EG ∥平面BB 1D 1D .44.如图所示,在四棱锥P-ABCD 中,AB ∥CD ,AB ⊥AD ,AB=AD=AP=2CD=2,M 是棱PB 上一点. (Ⅰ)若BM=2MP ,求证:PD ∥平面MAC ; (Ⅱ)若平面PAB ⊥平面ABCD ,平面PAD ⊥平面ABCD ,求证:PA ⊥平面ABCD ;(Ⅲ)在(Ⅱ)的条件下,若二面角B-AC-M 的余弦值为,求 的值.45.如图,已知在侧棱垂直于底面的三棱柱ABC-A 1B 1C 1中,AC=3,AB=5,BC=4,AA 1=4点D 是AB 的中点. (1)求证:AC 1∥平面B 1DC ;11 (2)求三棱锥A 1-B 1CD 的体积.46.如图,以正四棱锥V-ABCD 的底面中心O 为坐标原点建立空间直角坐标系O-xyz ,其中O x ∥BC ,O y ∥AB ,E 为VC 中点,正四棱锥的底面边长为2a ,高为h ,且有cos <, >=-. (1)求的值;(2)求二面角B-VC-D 的余弦值.47.如图1,四边形ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=1,BC=2,E 为CD 上一点,F 为BE 的中点,且DE=1,EC=2,现将梯形沿BE 折叠(如图2),使平面BCE ⊥ABED .(1)求证:平面ACE ⊥平面BCE ;(2)能否在边AB 上找到一点P (端点除外)使平面ACE 与平面PCF 所成角的余弦值为?若存在,试确定点P 的位置,若不存在,请说明理由.48.如图,三棱柱ABC-A 1B 1C 1中,侧面ACC 1A 1⊥侧面ABB 1A 1,∠B 1A 1A=∠C 1A 1A=60°,AA 1=AC=4,AB=1. (Ⅰ)求证:A 1B 1⊥B 1C 1;(Ⅱ)求三棱锥ABC-A 1B 1C 1的侧面积.49.在四棱锥中P-ABCD ,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且PA=PD=AD 、E 、F ,分别为PC 、BD 的中点. (1)求证:EF ∥平面PAD ;(2)若AB=2,求三棱锥E-DFC 的体积.1250.如图,四棱锥P-ABCD 中,△PAD 为正三角形,AB ∥CD ,AB=2CD ,∠BAD=90°,PA ⊥CD ,E 为棱PB 的中点 (Ⅰ)求证:平面PAB ⊥平面CDE ;(Ⅱ)若直线PC 与平面PAD 所成角为45°,求二面角A-DE-C 的余弦值.51.如图,在边长为2的正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,将△AED ,△DCF 分别沿DE ,DF 折起,使A ,C 两点重合于P .(Ⅰ)求证:平面PBD ⊥平面BFDE ; (Ⅱ)求四棱锥P-BFDE 的体积.【答案】1.(1)证明:取PD 中点G ,连结GF 、AG ,∵GF 为△PDC 的中位线,∴GF ∥CD 且, 又AE ∥CD 且,∴GF ∥AE 且GF=AE ,13 ∴EFGA 是平行四边形,则EF ∥AG , 又EF ⊄面PAD ,AG ⊂面PAD , ∴EF ∥面PAD ;(2)解:取AD 中点O ,连结PO ,∵面PAD ⊥面ABCD ,△PAD 为正三角形,∴PO ⊥面ABCD ,且 , 又PC 为面ABCD 斜线,F 为PC 中点,∴F 到面ABCD 距离,故;(3)解:连OB 交CE 于M ,可得R t △EBC ≌R t △OAB , ∴∠MEB=∠AOB ,则∠MEB+∠MBE=90°,即OM ⊥EC .连PM ,又由(2)知PO ⊥EC ,可得EC ⊥平面POM ,则PM ⊥EC , 即∠PMO 是二面角P-EC-D 的平面角,在R t △EBC 中,,∴, ∴,即二面角P-EC-D的正切值为.2.(Ⅰ)证明:三棱柱ABF-DCE 中,AF ⊥平面ABCD .∴DE ∥AF ,ED ⊥平面ABCD ,∵BD ⊂平面ABCD ,∴ED ⊥BD , 又ABCD 是平行四边形,∠ABC=120°,故∠BCD=60°. ∵BC=2CD ,故∠BDC=90°.故BD ⊥CD . ∵ED∩CD=D ,∴BD ⊥平面ECD . ∵EC ⊂平面ECD , ∴BD ⊥EC ;(Ⅱ)解:由BC=2CD ,可得AD=2AB ,∵AB=1,∴AD=2,作BH ⊥AD于H ,∵AF ⊥平面ABCD ,∴BH ⊥平面ADEF ,又∠ABC=120°, ∴BH=,∴.3.解:(1)证明:连接BD ,则BD ∥B 1D 1, ∵ABCD 是正方形,∴AC ⊥BD . ∵CE ⊥面ABCD , ∴CE ⊥BD . 又AC∩CE=C , ∴BD ⊥面ACE . ∵AE ⊂面ACE , ∴BD ⊥AE ,∴B 1D 1⊥AE .-----------(6分)(2)S △ABD =2 △.-----------(12分) 4.证明:(1)连AC 交BD 于E ,连ME .14∵ABCD 是矩形,∴E 是AC 中点.又PA ∥面MBD ,且ME 是面PAC 与面MDB 的交线, ∴PA ∥ME ,∴M 是PC 的中点. 解:(2)取AD 中点O ,连OC .则PO ⊥AD , 由平面PAD ⊥底面ABCD ,得PO ⊥面ABCD ,∴ , ,∴ , ∴ , ,∴.5.证明:(1)由题可知PE ⊥AB ,CE ⊥AB . ∵AB=2,∴PE=CE= .又∵PC= ,∴PE 2+EC 2=PC 2, ∴∠PEC=90°,即PE ⊥CE . 又∵AB ,CE ⊂平面ABCD , ∴PE ⊥平面ABCD ;解:(2)S △BCD =×22×sin 120°= ,PE= . 由(1)知:PE ⊥平面ABCD ,V P-BCD =•S △BCD •PE=1.∵V D-PBC =V P-BCD ,∴三棱锥D-PBC 的体积为1. 6.解:(1)设所截等腰三角形的底边边长为x cm . 在R t △EOF 中,EF=5cm ,OF=x cm ,所以EO=. 于是V=x 2(cm 3).依题意函数的定义域为{x |0<x <10}.(2)主视图为等腰三角形,腰长为斜高,底边长=AB=6,底边上的高为四棱锥的高=EO==4,S==12(cm 2)7.(1)证明:连结BF ,连接BD 交AC 与点O ,连OF , 依题得O 为AC 中点,又F 为PA 的中点, 所以OF 为△PAC 中位线,所以OF ∥PC因为OF ⊂平面BDF ,PC ⊄平面BDF 所以PC ∥平面BDF . ∴V 1=梯形 =(2)解:设BE=a ,则PA=2BE=2a , V 2=△ =(a +2a )×1×2=a . =. ∴.8.解:(Ⅰ)连结AC 1,交A 1C 于点O ,连结DO ,则O 为AC 1的中点,因为D 为AB 的中点,所以OD ∥BC 1,又因为OD ⊂平面A 1CD ,BC 1⊄平面A 1CD ,∴BC 1∥平面A 1CD…(4分) (Ⅱ)由 , ,可知AC ⊥BC ,以C 为坐标原点,方向为x 轴正方向, 方向为y轴正。
专题13 结构不良题(三角函数与解三角形)-高考数学微专题复习(新高考地区专用)
专题13 结构不良题(三角函数与解三角形)结构不良题型是新课改地区新增加的题型,所谓结构不良题型就是给出一些条件,另外的条件题目中给出三个,学生可以从中选择1个或者2个作为条件,进行解题。
一、题型选讲题型一 、研究三角形是否存在的问题例1、【2020年新高考全国Ⅰ卷】在①ac =sin 3c A =,③c =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角,,A B C 的对边分别为,,a b c ,且sin A B =,6C π=,________? 注:如果选择多个条件分别解答,按第一个解答计分. 【解析】方案一:选条件①.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =.由①ac =1a b c ==.因此,选条件①时问题中的三角形存在,此时1c =. 方案二:选条件②.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =,6B C π==,23A π=.由②sin 3c A =,所以6c b a ===.因此,选条件②时问题中的三角形存在,此时c = 方案三:选条件③.由6C π=和余弦定理得2222a b c ab +-=.由sin A B =及正弦定理得a .222=b c =.由③c =,与b c =矛盾.因此,选条件③时问题中的三角形不存在.例2、(2021年徐州联考)在①cos cos 2c B b C +=,②πcos()cos 2b Cc B -=,③sin cos B B +条件中任选一个,补充在下面问题中,若问题中的三角形存在,求ABC △的面积;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角A ,B ,C 的对边分别为a ,b ,c ,且π6A =,______________,4b =?注:如果选择多个条件分别解答,按第一个解答计分. 【解析】选择①:由余弦定理可知,222222cos cos 222a c b a b c c B b B c b a ac ab+-+-+=⋅+⋅==,……4分由正弦定理得,sin sin 1b A B a ==,又(0,π)B ∈,所以π2B =,…………………6分所以ABC △是直角三角形,则c =ABC △的面积12S ac ==…10分 选择②:由正弦定理得,πsin cos()sin cos 2B C C B -=,即sin sin sin cos B C C B =, 又(0,π)C ∈,所以sin 0C ≠,所以sin cos B B =,即tan 1B =, 又(0,π)B ∈,所以π4B =.……………………………………………………………4分由正弦定理得,sin sin b Aa B==,…………………………………………………6分所以ABC △的面积1ππsin )sin()2246S ab C A B ==+=+=+.…10分 选择③:因为πsin cos )4B B B ++=πsin()14B +=, 又(0,π)B ∈,所以ππ5π(,)444B +∈,所以ππ42B +=,即π4B =.…………………4分由正弦定理得,sin sin b Aa B==,…………………………………………………6分所以ABC △的面积1ππsin )sin()2246S ab C A B ==+=+=+.…10分 题型二、运用正余弦定理研究边、角及面积例3、【2020年高考北京】在ABC 中,11a b +=,再从条件①、条件②这两个条件中选择一个作为己知,求: (Ⅰ)a 的值:(Ⅱ)sin C 和ABC 的面积.条件①:17,cos 7c A ==-; 条件②:19cos ,cos 816A B ==.注:如果选择条件①和条件②分别解答,按第一个解答计分. 【解析】选择条件①(Ⅰ)17,cos 7c A ==-,11a b +=22222212cos (11)72(11)7()7a b c bc A a a a =+-∴=-+--⋅⋅-8a ∴=(Ⅱ)1cos (0,)sin 77A A A π=-∈∴==,由正弦定理得:7sin sin sin sin 7a c C A C C ==∴=11sin (118)8222S ba C ==-⨯⨯=选择条件②(Ⅰ)19cos ,cos ,(0,)816A B A B π==∈,sin 816A B ∴====由正弦定理得:6sin sin a b a A B === (Ⅱ)91sin sin()sin cos sin cos 8161684C A B A B B A =+=+=+⨯=11sin (116)622S ba C ==-⨯=例4、(2020届山东省日照市高三上期末联考)在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC . 如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .【解析】 选择①:113sin 2sin 2224ABC S AB BC ABC BC π∆=⋅⋅⋅∠=⋅⋅⋅=所以BC = 由余弦定理可得2222cos AC AB BC AB BC ABC =+-⋅⋅∠482220⎛=+-⨯⨯= ⎝⎭所以AC ==选择②设BAC CAD θ∠=∠=,则04πθ<<,4BCA πθ∠=-,在ABC ∆中sin sin AC ABABC BCA =∠∠,即23sin sin 44AC ππθ=⎛⎫- ⎪⎝⎭所以sin 4AC πθ=⎛⎫- ⎪⎝⎭在ACD ∆中,sin sin AC CD ADC CAD=∠∠,即4sin sin 6AC πθ=所以2sin AC θ=.所以2sin sin 4πθθ=⎛⎫- ⎪⎝⎭,解得2sin cos θθ=, 又04πθ<<,所以sin 5θ=,所以2sin AC θ==例5、(湖北黄冈高三联考)在①,②,③这三个条件中任选一个,补充在下面的横线上,并加以解答.已知的内角,,所对的边分别是,,,若______.(1)求角;(2)若,求周长的最小值,并求出此时的面积.【解析】(1)选①,由正弦定理得,∵,即,∵,∴,∴,∴. ··········································5分选②,∵,,由正弦定理可得,∵,∴,∵,∴. ·················································5分 选③,∵,由已知结合正弦定理可得, ∴,∴,∵,∴. ·················································5分 (2)∵,即,∴,解得,当且仅当时取等号,b a =2sin tan b A a B =()()sin sin sin ac A c A B b B -++=ABC A B C a b c B 4a c +=ABC ABC sin sin B A =sin 0A ≠cos 1B B -=π1sin 62B ⎛⎫-= ⎪⎝⎭0πB <<ππ5π666B -<-<ππ66B -=π3B =2sin tan b A a B =sin 2sin cos a Bb A B =sin 2sin sin sin cos BB A A B=⋅sin 0A ≠1cos 2B =()0,πB ∈π3B =()()sin sin πsin A BC C +=-=()22a c a cb -+=222a cb ac +-=2221cos 222a cb ac B ac ac +-===()0,πB ∈π3B =()22222cos 3163ba c ac B a c ac ac =+-=+-=-2316acb =-221632a c b +⎛⎫-≤ ⎪⎝⎭2b ≥2a c ==∴,周长的最小值为6,此时的面积. ··········10分 例6、(2021年南京金陵中学联考)现给出两个条件:①2c -3b =2a cos B ,②(2b -3c )cos A =3a cos C ,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,________. (1)求A ;(2)若a =3-1,求△ABC 周长的最大值.【解析】若选择条件①2c -3b =2a cos B .(1)由余弦定理可得2c -3b =2a cos B =2a ·a 2+c 2-b 22ac ,整理得c 2+b 2-a 2=3bc ,………2分可得cos A =b 2+c 2-a 22bc =3bc 2bc =32.…………………………………………………3分 因为A ∈(0,π),所以A =π6. …………………………………………………………5分 (2)由余弦定理a 2=b 2+c 2-2bc cos A ,得(3-1)2=b 2+c 2-2bc ·32,………6分即4-23=b 2+c 2-3bc =(b +c )2-(2+3)bc ,亦即(2+3)bc =(b +c )2-(4-23), 因为bc ≤(b +c )24,当且仅当b =c 时取等号, 所以(b +c )2-(4-23)≤(2+3)×(b +c )24,解得b +c ≤22,…………………………………………………………8分 当且仅当b =c =2时取等号. 所以a +b +c ≤22+3-1,即△ABC周长的最大值为22+3-1.…………………………………………………10分 若选择条件②(2b -3c )cos A =3a cos C . (1)由条件得2b cos A =3a cos C +3c cos A ,由正弦定理得2sin B cos A =3(sin A cos C +sin C cos A )=3sin(A +C )=3sin B .………2分 因为sin B ≠0,所以cos A =32,…………………………………………………3分 因为A ∈(0,π),所以A =π6. (2)同上例7、(2020·全国高三专题练习(文))在ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小; (2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC 的面积.min 2b =ABCABC 1sin 2S ac B ==【答案】(1)6A π=;(2)见解析【解析】(1)因为()(sin sin )sin )b a B A c B C -+=-, 又由正弦定理sin sin sin a b cA B C==,得()())b a b a c c -+=-,即222b c a +-=,所以222cos 222b c A bc bc a +===-, 因为0A π<<, 所以6A π=.(2)方案一:选条件①和②.由正弦定理sin sin a b A B=,得sin sin ab B A ==由余弦定理2222cos b a c ac B =+-,得222222cos4c c π=+-⨯,解得c =所以ABC 的面积11sin 2122S ac B ==⨯⨯=. 方案二:选条件①和③.由余弦定理2222cos a b c bc A =+-,得222433b b b =+-,则24b =,所以2b =.所以c =,所以ABC 的面积111sin 2222S bc A ==⨯⨯=题型三、考查三角函数的图像与性质例8、(2020届山东省泰安市高三上期末)在①函数()()1sin 20,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移12π个单位长度得到()g x 的图象,()g x 图象关于原点对称;②向量()3sin ,cos 2m x x ωω=,()11cos ,,0,24n x f x m n ωω⎛⎫=>=⋅ ⎪⎝⎭;③函数()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭()0ω>这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数()f x 的图象相邻两条对称轴之间的距离为2π.(1)若02πθ<<,且sin 2θ=,求()f θ的值; (2)求函数()f x 在[]0,2π上的单调递减区间. 【解析】解:方案一:选条件① 由题意可知,22T ππω==,1ω∴= ()()1sin 22f x x ϕ∴=+,()1sin 226g x x πϕ⎛⎫∴=+- ⎪⎝⎭,又函数()g x 图象关于原点对称,,6k k Z πϕπ∴=+∈,2πϕ<,6πϕ∴=,()1sin 226f x x π⎛⎫∴=+ ⎪⎝⎭,(1)0,sin 2πθθ<<=,4πθ∴=,()4f f πθ⎛⎫∴= ⎪⎝⎭12sin 23π=4=; (2)由3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈,令0k =,得263x ππ≤≤,令1k =,得7563x ππ≤≤,∴函数()f x 在[]0,2π上的单调递减区间为275,,,6363ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.方案二:选条件②()113sin ,cos 2,cos ,24m x x n x ωωω⎛⎫== ⎪⎝⎭,()f x m n ∴=⋅1cos cos 24x x x ωωω=+112cos 222x x ωω⎫=+⎪⎪⎝⎭1sin 226x πω⎛⎫=+ ⎪⎝⎭, 又22T ππω==,1ω∴=,()1sin 226f x x π⎛⎫∴=+ ⎪⎝⎭,(1)0,sin 2πθθ<<=,4πθ∴=,()4f f πθ⎛⎫∴= ⎪⎝⎭12sin 23π=4=; (2)由3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈,令0k =,得263x ππ≤≤,令1k =,得7563x ππ≤≤,∴函数()f x 在[]0,2π上的单调递减区间为275,,,6363ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.方案三:选条件③()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭1cos sin cos cos sin 664x x x ππωωω⎛⎫=+- ⎪⎝⎭211cos cos 24x x x ωω=+-12cos 24x x ωω=+112cos 2222x x ωω⎛⎫=+ ⎪ ⎪⎝⎭1sin 226x πω⎛⎫=+ ⎪⎝⎭, 又22T ππω==,1ω∴=,()1sin 226f x x π⎛⎫∴=+ ⎪⎝⎭,(1)0,sin 22πθθ<<=,4πθ∴=,()4f f πθ⎛⎫∴= ⎪⎝⎭12sin 23π==; (2)由3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈,令0k =,得263x ππ≤≤,令1k =,得7563x ππ≤≤.∴函数()f x 在[]0,2π上的单调递减区间为275,,,6363ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦.二、达标训练1、(2021年江苏连云港联考)已知有条件①(2)cos cos b c A a C -=, 条件②45cos 2cos 2=+⎪⎭⎫⎝⎛+A A π;请在上述两个条件中任选一个,补充在下面题目中,然后解答补充完整的题目.在锐角△ABC 中,内角 A , B , C 所对的边分别为a , b,c , a =7, b +c =5, 且满足.(1) 求角A 的大小; (2) 求△ABC 的面积.(注:如果选择多个条件分别解答,按第一个解答计分.)【解析】(1)选择条件①()2cos cos b c A a C -=,…………………………………1分 法1:由正弦定理得()2sin sin cos sin cos B C A A C -=, ………2分所以()2sin cos sin sin B A A C B =+=,………………………3分 因为sin 0B ≠, 所以1cos 2A =………………………………4分 又π0,2A ⎛⎫∈ ⎪⎝⎭,…………………5分 所以3A π=. ………………………………………………………6分法2:由余弦定理得()222222222b c a a b c b c abc ab+-+--=,……2分 化简得222b c a bc +-=………………………………………3分则2221cos 22b c a A bc +-==, ………………………………4分又π0,2A ⎛⎫∈ ⎪⎝⎭,……………………5分 所以3A π=. ………………………………………………6分(1)选择条件②25cos cos 24A A π⎛⎫++= ⎪⎝⎭………………………………………1分 法3:因为cos sin 2A A π⎛⎫+=-⎪⎝⎭,所以25sin cos 4A A += ……………2分因为22sin cos 1A A +=,所以251cos cos 4A A -+=…………3分化简得21cos 02A ⎛⎫-= ⎪⎝⎭,解得1cos 2A =, ………………………4分 又()0,A π∈,………………………5分 所以3A π=. ……………………………………………………6分 (2)由余弦定理2222cos3a b c bc π=+-, ……………………………7分 得()273b c bc =+-,…………………………………………………8分所以()2763b c bc bc +-=⇒=, ……………………………10分于是ABC ∆的面积11sin 62222S bc A ==⨯⨯=.………12分 2、(2021年泰州高三期中)在①a=√2,②S=C 2 cosB , ③C=π3这三个条件中任选-一个,补充在下面问题中,并对其进行求解.问题:在∆A BC 中,内角A, B,C 的对边分别为a,b,c,面积为S ,√3bcosA=acosC+ccosA ,b=1,____________,求 c 的值.注:如果选择多个条件分别解答,按第一个解答计分。
高考数学专题复习:独立性检验
高考数学专题复习:独立性检验一、单选题1.某学校食堂对高三学生偏爱蔬菜还是肉类与性别的关系进行了一次调查,根据独立性检验原理,处理所得数据之后发现,有97.5%的把握但没有99%的把握认为偏爱蔬菜还是肉类与性别有关,则2K 的观测值可能为( ) k 2.706 A .2 3.206K =B .2 6.625K =C .27.869K =D .211.208K =2.某校为了解学生“玩手机游戏”和“学习成绩”是否有关,随机抽取了100名学生,运用2×2列联表进行独立性检验,经计算得到2 3.936K =,所以判定玩手机游戏与学习成绩有关系,那么这种判断出错的可能性为( )A .1%B .5%C .95%D .99%3.某校为了调查喜欢语文与性别的关系,随机调查了一些学生,数据如下表,由此判断喜欢语文与性别有关系,那么这种判断出错的可能性为( )()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .99.5%B .5%C .0.5%D .95%4.以下四个命题,其中正确的个数有( )①在独立性检验中,随机变量2K 的观测值越大,“认为两个分类变量有关”,这种判断犯错误的概率越小.②在线性回归方程ˆ0.80.35yx =-时,变量x 与y 具有负的线性相关关系; ③随机变量X 服从正态分布2(3,)N σ,若(4)0.64P X ≤=,则(23)0.07P X ≤≤=; ④两个随机变量相关性越强,则相关系数r 的值越接近于1. A .1个B .2个C .3个D .4个5.两个分类变量X 和Y ,它们的取值分别为{}12,x x 和{}12,y y ,其样本频数列联表如下表所示:则下列四组数据中,分类变量X 和Y 之间关系最强的是( ) A .4a =,2b =,3c =,6d = B .2a =,1b =,3c =,5d = C .4a =,5b =,6c =,8d =D .2a =,3b =,4c =,6d =6.为了丰富教职工业余文化生活,某校计划在假期组织70名老师外出旅游,并给出了两种方案(方案一和方案二),每位老师均选择且只选择一种方案,其中有50%的男老师选择方案一,有75%的女老师选择方案二,且选择方案一的老师中女老师占40%,则参照附表,得到的正确结论是( )附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.A .在犯错误的概率不超过2.5%的前提下,认为“选择方案与性别有关”B .在犯错误的概率不超过2.5%的前提下,认为“选择方案与性别无关”C .有95%以上的把握认为“选择方案与性别有关”D .有95%以上的把握认为“选择方案与性别无关”7.利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用22⨯列联表,由计算可得27.236K =,参照下表:得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别无关”B .有99%以上的把握认为“爱好该项运动与性别有关”C .在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关"D .在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”8.如果根据性别与是否爱好运动的列联表得到2 3.852 3.841x ≈>,所以判断性别与运动有关,那么这种判断犯错的可能性不超过( ) A .2.5%B .0.5%C .1%D .5%9.某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用22⨯列联表进行独立性检验.经计算2 6.058K =,则所得到的统计学结论是:有( )的把握认为“学生性别与支持该活动有关系”A .0.025%B .97.5%C .99%D .99.9%10.根据分类变量x 与y 的观测数据,计算得到2 2.974χ=.依据0.05α=的独立性检验,结论为( )A .变量x 与y 不独立B.变量x与y不独立,这个结论犯错误的概率不超过0.05C.变量x与y独立D.变量x与y独立,这个结论犯错误的概率不超过0.05二、填空题11.为了调查高中学生参加课外兴趣活动选篮球和舞蹈是否与性别有关,现随机调查了30名学生,得到如下22⨯列联表:根据表中的数据,及观测值2K(其中22()()()()()n ad bcKa b c d a c b d-=++++),参考数据:则在犯错误的概率不超过__________前提下,认为选择舞蹈与性别有关.12.某工厂为了调查工人文化程度与月收入的关系,随机抽取了部分工人,得到如下列联表:(单位:人)由上表中数据计算得2K的观测值22105(10302045)6.10955503075K⨯⨯-⨯=≈⨯⨯⨯,请估计在犯错误的概率不超过__________的前提下认为“文化程度与月收入有关系”.13.利用独立性检验的方法调查高中性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用22⨯列联表,由计算可得27.245K≈,参照下表2.706 至少有__________以上的把握认为“爱好该项运动与性别有关”.14.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P (K 2≥3.841)≈0.05,P (K 2≥5.024)≈0.025.根据表中数据,得到K 2的观测值k =250(1320107)23272030⨯⨯-⨯⨯⨯⨯≈4.844.则认为选修文科与性别有关系出错的可能性为__________.三、解答题15.为了解某市市民对政府出台楼市限购令的态度,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频率分布直方图如下:(1)求该市市民平均月收入的估计值(每组数据以区间中点值为代表).(2)将月收入不低于7500元称为“高收入”,否则称为“非高收入”,根据已知条件完成下面的22⨯列联表,并判断能否有99%的把握认为市民对楼市限购令的态度与收入有关.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.16.为了调查某大学学生在某天上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查,得到了如下的统计结果: 表1:男生上网时间与频数分布表表2:女生上网时间与频数分布表(1)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数; (2)完成联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”.附:()()()()22()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++为样本容量.0.45517.某大学为鼓励学生进行体育锻炼,购买了一批健身器材供学生使用,并从该校大一学生中随机抽取了100名学生调查使用健身器材的情况,得到数据如表所示:(1)设每周使用健身器材的次数不低于3次为“爱好健身”,根据上表数据,填写22⨯列联表,并判断能否在犯错误的概率不超过0.10的前提下认为“男生和女生在使用健身器材的爱好方面有差异”;(2)从上述每周使用健身器材3次的学生中,利用分层抽样的方法抽取5名学生,再从抽取的5名学生中随机抽取3人,求3人中至多有一名女生的概率.18.在对人们休闲方式的一次调查中,仅就看电视与运动这两种休闲方式比较喜欢哪一种进行了调查.调查结果:接受调查总人数110人,其中男、女各55人;受调查者中,女性有30人比较喜欢看电视,男性有35人比较喜欢运动.(1)请根据题目所提供的调查结果填写下列22⨯列联表:(2)能否在犯错误的概率不超过0.05的前提下认为“性别与休闲方式有关系”?注:22()()()()()n ad bcKa b c d a c b d-=++++,(其中n a b c d=+++为样本容量)参考答案1.B【分析】根据把握率确定2K的观测值区间范围即可选择.【详解】∵有97.5%的把握但没有99%的把握,∴2K的观测值区间范围为[5.024,6.635),结合选项可知,2K的观测值可能为6.625.故选:B2.B【分析】根据2K的值,对照附表即可得解.【详解】由题得2 3.936 3.841K=>,所以判定玩手机游戏与学习成绩有关系,这种判断出错的可能性为5%. 故选:B3.C【分析】计算出2K的值可得答案.【详解】因为()22501520510258.33320307.89225753K⨯⨯-⨯==≈>⨯⨯⨯,所有这种判断出错的可能性0.5%.故选:C.4.A【分析】利用随机变量2K的观测值越大,说明两个变量有关系的可能性越大判断①;根据回归方程一次项系数的正负判断②;根据正态分布的性质判断③; 利用线性相关的概念判断④. 【详解】①:在独立性检验中,因为随机变量2K 的观测值越大,说明两个变量有关系的可能性越大,即犯错误的概率越大,故①错误;②:回归方程ˆ0.80.35yx =-的一次项系数为-0.35<0,故变量x 与y 具有负的线性相关关系,故②正确;③:随机变量X 服从正态分布2(3)N σ,,则(34)(4)(3)0.640.50.14P X P X P X <≤=≤-<=-=, 由对称性可知,(23)0.14P X ≤≤=,故③错误;④:两个随机变量的线性相关关系越强,则相关系数r 的绝对值越接近于1,故④错误. 正确的选项有1个. 故选:A 5.A 【分析】逐项求出ad bc -的值并加以对比,最大值对应的分类变量之间关系最强. 【详解】我们可以用ad bc -的大小近似的判断两个分类变量之间关系的强弱,ad bc -的值越小,关系越弱,越大,关系越强.这四组数据中ad bc -的值分别为18、7、2、0, 所以A 组数据的ad bc -的值最大,相比较而言这组数据反应的X 和Y 的关系最强. 故选:A. 6.C 【分析】设该校男老师的人数为x ,女老师的人数为y ,根据条件,得到22⨯列联表,求出x ,y 的值,利用公式计算2K 的值,再与表中临界值比较可得结果. 【详解】设该校男老师的人数为x ,女老师的人数为y ,则可得如下表格:由题意0.40.50.25x y =+,可得43y x =,可得30x =,40y =,则()227015301510 4.667 3.84125453040K ⨯-⨯=≈>⨯⨯⨯, 但4.667 5.024<,所以无97.5%以上有95%以上的把握认为“选择方案与性别有关”. 故选:C. 7.B 【分析】由已知的27.236K =,对比临界值表可得答案 【详解】解:因为27.236 6.635K =>,所以有99%以上的把握认为“爱好该项运动与性别有关”. 故选:B. 8.D 【分析】根据临界值附表比较,即得结论. 【详解】根据以下临界值附表可知这种判断犯错的可能性不超过5%. 故选:D 9.B【分析】将2K 的值与表中数据比较大小可知5.024 6.058 6.635<<,由此确定出相应的把握有多少.【详解】因为2 6.058K =,对照表格:5.024 6.058 6.635<<,所以有10.0250.97597.5%-==的把握认为“学生性别与是否支持该活动有关系”. 故选:B.10.C【分析】由表中数据以及独立性检验的思想即可得出结果.【详解】0.05α=时,2 3.841 2.974χ=>,所以在犯错概率不超过0.1时变量x 与y 有关.故选:C11.0.025【分析】由列联表中的数据,根据公式计算出2K 的值,再对照临界表即可得答案.【详解】 解:由列联表中的数据可得,2230(13827)27 5.4 5.024*********K ⨯⨯-⨯===>⨯⨯⨯, 所以在犯错误的概率不超过0.025的前提下,认为选择舞蹈与性别有关.故答案为:0.025.12.0.025【分析】根据2K ,对比临界值即可得出结论.【详解】∵6.109 5.024>,故能在犯错误的概率不超过0.025的前提下认为“文化程度与月收入有关系”.故答案为:0.025.13.99%【分析】根据卡方的值与参考数据比较即可判断;【详解】解:因为27.245K ≈,6.6357.2457.879<<,所以10.0199%-=故至少有99%以上的把握认为“爱好该项运动与性别有关”,故答案为:99%14.5%【分析】根据观测值k ≈4.844以及独立性检验的基本思想即可得出结果.【详解】K 2的观测值k ≈4.844,这表明小概率事件发生.根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.故答案为:5%15.(1)63;(2)表格见解析,有.【分析】(1)每组数据区间中点值乘以该组的频率求和可得答案;(2)根据每组频率乘以50可得每组的人数可完成列联表,计算2K 可得答案.【详解】(1)该市市民平均月收入的估计值为400.1500.2600.3700.2800.1900.163⨯+⨯+⨯+⨯+⨯+⨯=.(2)根据频率分布直方图知每组的人数分别为5,10,15,10,5,5.可得22⨯列联表如下:所以()22502882128.33340103020K ⨯⨯-⨯=≈⨯⨯⨯,因为8.333 6.635>,所以有99%的把握认为市民对楼市限购令的态度与收入有关.16.(1)225;(2)列联表答案见解析,没有90%的把握认为“大学生上网时间与性别有关”.【分析】(1)设上网时间不少于60分钟的人数为x ,依题意有30750100x =,计算即可; (2)填写列联表,计算2K ,对照临界值得出结论.【详解】(1)设上网时间不少于60分钟的人数为x ,依题意有30750100x =,解得225x =,所以估计其中上网时间不少于60分钟的人数是225.(2)塻22⨯列联表如下:由表中数据可得到22200(60304070) 2.20 2.70610010013070K ⨯-⨯=≈<⨯⨯⨯, 故没有90%的把握认为“大学生上网时间与性别有关”.17.(1)表格见解析,不能;(2)710. 【分析】(1)根据已知数据统计列联表中的各项的人数,填写列联表,进而计算2K 并与0.1的临界值进行比较,得到论断;(2)利用分层抽样的等比例原则求得抽取的5人中男女生的人数,利用符号表示每个学生,利用列举法计数,得到所求概率.【详解】解:(1)填写的列联表如下所示:()2210222422320.506 2.70644565446K ⨯⨯-⨯=≈<⨯⨯⨯.所以不能在犯错误的概率不超过0.1的前提下认为“男生和女生在使用健身器材的爱好方面有差异”.(2)从每周使用健身器材3次的学生中,利用分层抽样的方法抽取5名学生,则抽取男生3名,抽取女生2名.将抽取的3名男生分别记为a ,b ,c ,2名女生分别记为m ,n ,则从5人中随机抽取3人的不同情况有abc ,abm ,abn ,acm ,acn ,amn ,bcm ,bcn ,bmn ,cmn ,共10种, 其中至多有一名女生的情况有abc ,abm ,abn ,acm ,acn ,bcm ,bcn ,共7种. 所以从抽取的5名学生中随机抽取3人,至多有一名女生的概率为710. 18.(1)答案见解析;(2)不能.【分析】(1)由题意填写列联表即可;(2)代入数据计算2K 的观测值,比较观测值与3.841的大小,判断能否在犯错误的概率不超过0.05的前提下认为“性别与休闲方式有关系” .【详解】解.(1)根据题目所提供的调查结果,可得下列22⨯列联表:(2)根据列联表中的数据,可计算()2211030352025 3.66750605555K ⨯⨯-⨯=≈⨯⨯⨯,因为03.667 3.841k k ≈<=,所以不能在犯错误的概率不超过0.05的前提下认为“性别与休闲方式有关系”.。
高三数学应用题专题复习含参考答案.docx
⾼三数学应⽤题专题复习含参考答案.docx ⾼三数学应⽤题专题复习含参考答案⼀.选择题1..⼀种专门占据内存的计算机病毒开始时占据内存2KB,⼯作时3 分钟⾃⾝复制⼀次,(即复制后所占内存是原来的 2 倍),那么,开机后()分钟,该病毒占据64MB(。
A. 45B. 48C. 51D. 422..观察新⽣婴⼉的体重,其频率分布直⽅图如图所⽰,则新⽣婴⼉的体重在[2700, 3000]的频率为()A. 0.001B. 0.003C. 0.01D. 0.33..两位同学去某⼤学参加⾃主招⽣考试,根据右图学校负责⼈与他们两⼈的对话,可推断出参加考试的⼈数为( )A. 19B. 20C. 21D.224..有两排座位,前排 11 个座位,后排 12 个座位,现安排 2 ⼈就座,规定前排中间的 3 个座位不能坐,并且这 2 ⼈不左右相邻,那么不同排法的种数是( )A.234B. 346C. 350D. 3635..福州某中学的研究性学习⼩组为考察闽江⼝的⼀个⼩岛的湿地开发情况,从某码头乘汽艇出发,沿直线⽅向匀速开往该岛,靠近岛时,绕⼩岛环⾏两周后,把汽艇停靠岸边上岸考察,然后⼜乘汽艇沿原航线提速返回。
设t 为出发后的某⼀时刻,S 为汽艇与码头在时刻t 的距离,下列图象中能⼤致表⽰S=f (x) 的函数关系的为( )y y y y6. .某⾦店⽤⼀杆不准确的天平(两边臂不等长)称黄⾦,某顾客要购买10g 黄⾦,售货员先将 5g 的砝码放在左盘,将黄⾦放于右盘使之平衡后给顾客;然后⼜将5g的砝码放⼊右盘,将另⼀黄⾦放于左盘使之平衡后⼜给顾客,则顾客实际所得黄⾦()A.⼤于10 g B.⼩于10g C.⼤于等于10 g D.⼩于等于10g7. . 13 年前⼀笔扶贫助学资⾦,每年的存款利息(年利率11.34%,不纳税)可以资助100⼈上学,平均每⼈每⽉94.50 元,现在(存款利率 1.98%,并且扣20%的税)⽤同样⼀笔资⾦每年的存款利息最多可以资助多少⼈上学(平均每⼈每⽉100 元) ()A、10B、 13C、15D、208. .如图, B 地在 A 地的正东⽅向 4km处, C 地在 B 地的北偏东 30o ⽅向 2km处,现要在曲线 PQ上任意选⼀处 M建⼀座码头,向B、 C两地转运货物,经测算,从M到 B、C 两地修建公路的费⽤都是 a 万元/km、那么修建这两条公路的总费⽤最低是()A . (7 +1)a万元B . (2 7- 2) a万元C. 27 a万元 D . (7 -1)a万元9. .设y f (t ) 是某港⼝⽔的深度y(⽶)关于时间t (时)的函数,其中0t24 .下表是该港⼝某⼀天从0 时⾄ 24 时记录的时间t与⽔深 y 的关系:t03691215182124 y1215.112.19.111.914.911.98.912.1经长期观观察,函数y f (t ) 的图象可以近似地看成函数y k Asin(t) 的图象 . 在下⾯的函数中,最能近似表⽰表中数据间对应关系的函数是()A.y123sin t, t[ 0,24]B.y123sin(t), t[ 0,24]66C.y123sin t, t[ 0,24]D.y123sin(t), t[ 0,24]1212210..椭圆有这样的光学性质:从椭圆的⼀个焦点出发的光线,经椭圆壁反射后,反射光线经过椭圆的另⼀个焦点. 今有⼀个⽔平放置的椭圆形台球盘,点 A 、 B 是它的焦点,长轴A 沿直线出发,经椭长为 2a ,焦距为 2c ,静放在点 A 的⼩球(⼩球的半径不计),从点圆壁反弹后第⼀次回到点 A 时,⼩球经过的路程是( )( A)4a(B)2(a c)(C)2(a c)(D)以上答案均有可能11..某新区新建有 5 个住宅⼩区(A、B、C、D、E),现要铺设连通各⼩区的⾃来⽔管道,离(km)A B C D E名地名A5785B352C54D4E请问:最短的管线长为()A .13B.14C. 15D. 1712. .某地2004 年第⼀季度应聘和招聘⼈数排⾏榜前 5 个⾏业的情况列表如下⾏业名称计算机机械营销物流贸易应聘⼈数2158302002501546767457065280⾏名称算机机械建筑化⼯招聘⼈数124620102935891157651670436A.若⽤同⼀⾏中聘⼈数与招聘⼈数⽐的⼤⼩来衡量⾏的就情况数据 , 就形⼀定是( )算机⾏好于化⼯⾏. B.建筑⾏好于物流⾏.C. 机械⾏最.D.⾏⽐易⾏., 根据表中⼆.填空13..⽑在《送瘟神》中写到:“坐地⽇⾏⼋万⾥” 。
2019年高考数学二轮复习解题思维提升专题13概率小题部分训练手册(附答案)
专题13 概率小题部分【训练目标】1、理解概率的定义,能正确区分概率与频率;2、理解互斥事件和相互独立事件的定义及运算公式;3、掌握古典概型的概念及计算;4、掌握几何概型的概念及计算;5、掌握两个计数原理及简单的排列组合,及列举法求概率。
6、理解随机变量的概念,掌握随机变量分布列的性质;7、掌握随机变量分布列的求法,及期望计算公式。
8、掌握条件概率的计算公式,掌握正态分布,二项分布的期望和方差公式。
【温馨小提示】概率在高考中有一道小题一道大题,17分左右,对于理科生来讲,只要掌握了基本的概念及公式,这是属于送分题,因此在练习时要注意总结方法。
【名校试题荟萃】1、袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为( )A.①B.②C.③D.④【答案】B【解析】至少有1个白球和全是黑球不同时发生,且一定有一个发生.∴②中两事件是对立事件.2、张卡片上分别写有数字,从这张卡片中随机抽取2张,则取出张卡片上数字之和为偶数的概率为( )A. B. C. D.【答案】B【解析】由题知基本事件总数为,如果2张卡片上数字之和为奇数,需1奇1偶,共有种,∴取出2张卡片上数字之和为奇数的概率为,因此取出2张卡片上数字之和为偶数的概率为.3、从5张100元,3张200元,2张300元的奥运会决赛门票中任取3张,则所取3张中于至少有2张价格相同的概率为()A. B. C. D.【答案】B【解析】先求三张价格均不相同的概率所求概率为。
4、国庆期间,甲去某地的概率为,乙和丙二人去此地的概率为、,假定他们三人的行动相互不受影响,这段时间至少有人去此地旅游的概率为()A. B. C. D.【答案】B5、已知3件次品和2件正品混在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,则在第一次取出次品的条件下,第二次取出的也是次品的概率是()A. B. C. D.【答案】C【解析】记“第一次取出次品”为事件,“第二次取出次品”为事件,则,,所以.6、设随机变量服从正态分布,若,则函数没有极值点的概率是()A. B. C. D.【答案】C【解析】由无相异实根得,因此函数没有极值点的概率是,选C.7、将本不同的书全发给名同学,每名同学至少有一本书的概率是( )A. B. C. D.【答案】A8、已知是球面上的五个点,其中在同一圆周上,若不在所在的圆周上,则从这五个点的任意两点的连线中取出条,这两条直线是异面直线的概率是()A. B. C. D.【答案】D【解析】由题意,得是四棱锥的五个顶点,任取两点,共有条直线,从条直线中任取两条直线,共有对,其中异面直线对是一条侧棱与地面上三条相等(如侧棱与)共有对异面直线,由古典概型的概率公式,得这两条直线是异面直线的概率是.9、某车间共有6名工人,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.从该车间6名工人中,任取2人,则至少有1名优秀工人的概率为()A. B. C. D.【答案】C10、一个射箭运动员在练习时只记射中环和环的成绩,未击中环或环就以环记.该运动员在练习时击中环的概率为,击中环的概率为,既未击中环也未击中环的概率为(,,),如果已知该运动员一次射箭击中环数的期望为环,则当取最小值时,的值为()A. B. C. D.【答案】A【解析】由运动员一次射箭击中环数的期望为环,可知,即,则,当,即时取等号,此时,则.11、在区间内随机取两个实数,,则满足的概率是( )A. B. C. D.【答案】D【解析】由题意知表示的区域为边长为2的正方形,面积为4,满足的区域即为图中阴影部分,面积为,所以所求概率为,.12、若是从区间中任取的一个实数,是从区间中任取的一个实数,则的概率是( )A. B. C. D.【答案】A【解析】试验的全部结果构成的区域(如图)为边长分别为2和3的矩形,面积为.其中满足的结果构成的区域为图中阴影部分,其面积为.则所求概率为.13、如图,将半径为的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为( )A. B. C. D.【答案】A14、在如图所示的正方形中随机投掷个点,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为()附:若,则,A. B. C. D.【答案】C【解析】根据题意得,设落入阴影部分点的个数为,则,则.15、有一批产品,其中有件正品和件次品,有放回地任取件,若表示取到次品的件数,则_________.【答案】【解析】由题意知取到次品的概率为,∴,∴.16、已知随机变量,若,则_________.【答案】【解析】,所以,所以,解得,所以.17、设随机变量的分布列为,其中为常数,则_________.【答案】18、设随机变量的概率分布律如下表所示:其中成等差数列,若随机变量的的均值为,则的方差为________.【答案】【解析】由题意有,,,解得,则其方差为.19、有一种游戏规则如下:口袋里共装有个红球和个黄球,一次摸出个,若颜色都相同,则得分;若有个球颜色相同,另一个不同,则得分,其他情况不得分. 小张摸一次得分的期望是________.【答案】20、设随机变量,且,则实数的值为_________.【答案】3【解析】∵随机变量,∴正态曲线关于对称,∵,∴与关于对称,所以∴.21、某校高三一模理科参加数学考试学生共有1016人,分数服从,则估计分数高于105分的人数为________.【答案】508【解析】因为分数服从,所以由正态分布的性质可知,估计分数高于105分的人数为故,答案为508.22、如图,是以为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用表示事件“豆子落在正方形内”,表示事件“豆子落在扇形(阴影部分)内”,则______.【答案】【解析】故答案为.23、袋中有大小质地完全相同的2个红球和3个黑球,不放回地摸出黑球,设“第一次摸得红球”为事件,“摸得的两球同色”为事件,则概率_________.【答案】【解析】由, ,根据条件概率可知.24、设集合,,分别从集合和中随机取一个数和,确定平面上一个点,设“点落在直线上”为事件,若事件的概率最大,则的值为________.【答案】2【解析】由题意知,点的坐标的所有情况为,,,,,,,,,共种.当时,落在直线上的点的坐标为,共种;当时,落在直线上的点的坐标为和,共种;当时,落在直线上的点的坐标为,,,共种;当时,落在直线上的点的坐标为,,共种;当时,落在直线上的点的坐标为,共种.因此,当的概率最大时,.25、个男生,个女生排成一排,其中有且只有两个女生相邻排在一起的排法总数有________.【答案】288026、将名新的同学分配到、、三个班级中,每个班级至少安排名学生,其中甲同学不能分配到班,那么不同的分配方案数为_________.(请用数字作答)【答案】24【解析】将甲同学分配到班或班,有种;剩下的名同学分配方案为种,所以不同的分配方案为种.27、某班组织文艺晚会,准备从等个节目中选出个节目演出,要求:两个节目至少有一个选中,且同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为_________.【答案】1140【解析】分两类:第一类,只有一个选中,则不同演出顺序有种;第二类,同时选中,则不同演出顺序有种,共有.故答案应填:.28、甲、乙两位高一学生进行新高考“七选三”选科(即在物、化、生、政、史、地、技术等七门科中任选择三门学科),已知学生甲必选政治,学生乙必不选物理,则甲、乙两位学生恰好有两门选课相同的选法有________种.(用数字作答)【答案】110【解析】(1)甲选物理:;(2)甲不选物理:;共有种.29、为了调查观众对央视某节目的关注度,现从某社区随机抽取名青年人进行调查,再从中挑选名做进一步调查,则这名青年人中的小张、小李至少有人被选中,而小汤没有被选中做进一步调查的不同选法有________种. 【答案】149630、有个大学报送名额,计划分别到个班级,每班至少一个名额,则不同的分法种数为种.【答案】6【解析】一共有个保送名额,分到个班级,每个班级至少一个保送名额,即将名额分成份,每份至少个(定行数).将个名额排成一列产生个空,中间有个空(定空位).即只需在中间个空中插入个隔板,隔板不同的方法共有种.(插隔板)专题13 概率(小题部分)(文)【训练目标】1、理解概率的定义,能正确区分概率与频率;2、理解互斥事件和相互独立事件的定义及运算公式;3、掌握古典概型的概念及计算;4、掌握几何概型的概念及计算;5、掌握两个计数原理,及列举法求概率。
高考数学 概率专题复习题目
概率专题复习1.某临时车站,每天有3辆开往上海的分为上、中、下等级的客车,一天赵先生准备在该临时车站乘车前往上海办事,但他不知道客车的车况,也不知道发车顺序,为了尽可能乘上上等车,他采取如下策略:先放弃第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆,那么他乘上上等车的概率为多少?2.某种电路开关闭合后,会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和出现绿灯的概率都是21。
从开关第二次闭合起,若前次出现红灯,则下一次出现红灯的概率是31,出现绿灯的概率是32;若前次出现绿灯,则下一次出现红灯的概率是53,出现绿灯的概率是52。
问: (1) 第二次闭合后出现红灯的概率是多少?(2) 三次发光中,出现一次红灯,两次绿灯的概率是多少?3.有一批食品出厂前,要进行五项指标抽检,如果有两项指标不合格,则这批食品不能出厂。
已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2。
(1) 求这批食品不能出厂的概率;(保留三位有效数字)(2) 求直至五项指标全部检验完毕,才能确定这批食品是否出厂的概率。
(保留三位有效数字)4.甲乙两足球队苦战90分钟踢成平局,加时30分钟仍成平局,现决定各派5名队员,每人射一个点球决定胜负,设甲乙两足球队每个队员的点球命中率都为0.5。
(1) 不考虑乙队,求甲队仅有3名队员点球命中,且其中恰有2名队员连续命中的概率;(2) 求甲乙两队各射5个点球后,再次出现平局的概率。
5.高三(1)班、高三(2)班已各选出3名学生组成代表队,进行羽毛球比赛,比赛规则是:① 按“单打、双打、单打”顺序进行三局比赛;② 代表队中每名队员至少参加一局比赛,不得参加两局单打比赛; ③ 先胜两局的队获胜,比赛结束。
已知每局比赛双方胜出的概率均为21。
(1) 根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?(2) 高三(1)班代表队连胜两局的概率是多少?(3) 高三(1)班代表队至少胜一局的概率是多少?6.某省羽毛球队与市羽毛球队举行单打对抗比赛,省队获胜的概率为0.6,现在双方商量对抗赛的方式,提出了两种方案:①双方各出3人;②双方各出5人。
高三数学(理)总复习--金版教程《高效作业》带详解答案13-1
选考内容 第13章 第1节一、填空题1.设函数f (x )=|2x -1|+x +3,则f (-2)=________;若f (x )≤5,则x 的取值范围是________.解析:f (-2)=|2×(-2)-1|+(-2)+3=6,|2x -1|+x +3≤5,即|2x -1|≤2-x ,x -2≤2x -1≤2-x ,解得-1≤x ≤1.答案:6 [-1,1]2.解关于x 的不等式:|2x -1x|<3的解集是________. 答案:{x |x <-1或x >15} 解析:方法一:|2x -1x |<3⇔|2x -1||x |<3, 将之视为多个绝对值问题,将数轴按0,12分成三段: ⎩⎪⎨⎪⎧ x <0,-(2x -1)-x <3或⎩⎪⎨⎪⎧ 0<x ≤12,-(2x -1)x <3或⎩⎪⎨⎪⎧ x >12,2x -1x <3.∴x <-1或15<x ≤12或x >12. ∴所求不等式的解集为{x |x <-1或x >15}. 方法二:|2x -1x |<3⇔|2x -1||x |<3, ∵x ≠0,∴|x |>0,不等式两边同乘|x |,得|2x -1|<3|x |,两边再平方,得(2x -1)2<(3x )2,即(x +1)(x -15)>0. ∴该一元二次不等式的解集即原不等式的解集为{x |x <-1或x >15}. 3.若不等式|x +1|+|x -2|<a 无实数解,则a 的取值范围是________.答案:a ≤3解析:由绝对值的几何意义知|x +1|+|x -2|的最小值为3,而|x +1|+|x -2|<a 无解,知a ≤3.4.若不等式|x +1x|>|a -2|+1对于一切非零实数x 均成立,则实数a 的取值范围是________.答案:(1,3)解析:∵|x +1x|≥2,∴|a -2|+1<2, 即|a -2|<1,解得1<a <3.5.不等式|x -x 2-2|>x 2-3x -4的解集是________.答案:(-3,+∞)解析:∵|x -x 2-2|=|x 2-x +2|,而x 2-x +2>0恒成立,∴原不等式等价于x 2-x +2>x 2-3x -4,即2x >-6,x >-3.∴原不等式的解集为(-3,+∞).6.设函数f (x )=|2x -m |-x ,若不等式f (x )<0的解集为(13,1),则m 的值为________. 答案:1解析:由f (x )<0得,|2x -m |<x ,即m -x <2x <x +m ,解得m 3<x <m ,由已知得m =1. 7.已知集合A ={x ||x -a |<2},B ={x ||x |+|x +1|≥5},若A ⊆B ,则实数a 的取值范围是________.答案:(-∞,-5]∪[4,+∞)解析:由|x -a |<2得a -2<x <a +2,|x |+|x +1|=|x -0|+|x -(-1)|表示数轴上的动点x 到0与-1的距离之和.令|x |+|x +1|=5,则x =-3或x =2,所以B ={x |x ≤-3或x ≥2}.因为A ⊆B ,所以a +2≤-3或a -2≥2,解得a ≤-5或a ≥4.8.(2010·江西联考)已知适合不等式(x 2-4x +a )+|x -3|≤5的x 的最大值为3,则a =________.答案:8解析:不等式(x 2-4x +a )+|x -3|≤5等价于⎩⎨⎧x ≤3(x 2-4x +a )+(3-x )≤5,即⎩⎨⎧ x ≤3x 2-5x +a -2≤0①,或⎩⎨⎧ x >3(x 2-4x +a )+(x -3)≤5, 即⎩⎨⎧ x >3x 2-3x +a -8≤0 ②.依题意得不等式组①的解集中必含有3且不等式组②的解集必是空集,因此有⎩⎪⎨⎪⎧32-5×3+a -2≤032-3×3+a -8≥0,由此解得a =8. 9.(2010·深圳调研)若不等式|x +1|+|x -3|≥a +4a对任意的实数x 恒成立,则实数a 的取值范围是________.答案:(-∞,0)∪{2}解析:设函数f (x )=|x +1|+|x -3|,则f (x )=|x +1|+|3-x |≥|(x +1)+(3-x )|=4,即函数f (x )的最小值为4.不等式|x +1|+|x -3|≥a +4a 对任意的实数x 恒成立,即a +4a≤4恒成立,令f (a )=a +4a ,当a >0时,f (a )=a +4a ≥2a ·4a =4,当且仅当a =2时等号成立,即要使a +4a≤4恒成立,则a =2;当a <0时,f (a )=a +4a 为负数,那么a +4a≤4必定恒成立.故a 的取值范围是(-∞,0)∪{2}.二、解答题10.解不等式|2x -1|<|x |+1.解:本小题主要考查绝对值不等式等基础知识,考查运算求解能力.当x <0时,原不等式可化为-2x +1<-x +1,解得x >0,又∵x <0,∴x 不存在;当0≤x <12时,原不等式可化为-2x +1<x +1,解得x >0, 又∵0≤x <12,∴0<x <12;当x ≥12时,原不等式可化为 2x -1<x +1,解得x <2.又∵x ≥12,∴12≤x <2. 综上,原不等式的解集为{x |0<x <2}.11.已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围. 解析:解法一:(1)由f (x )≤3得|x -a |≤3,解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧ a -3=-1a +3=5解得a =2. (2)当a =2时,f (x )=|x -2|.设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧ -2x -1,x <-35,-3≤x ≤22x +1,x >2,所以当x <-3时,g (x )>5;当-3≤x ≤2时,g (x )=5;当x >2时,g (x )>5.综上可得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m 即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].解法二:(1)同解法一.(2)当a =2时,f (x )=|x -2|,设g(x)=f(x)+f(x+5),由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立)得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].12.已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时,|f(x)|≤1.(1)证明|c|≤1;(2)证明当-1≤x≤1时,|g(x)|≤2;(3)设a>0,当-1≤x≤1时,g(x)的最大值为2,求f(x).(1)证明:∵当-1≤x≤1时,|f(x)|≤1,∴取x=0有|c|=|f(0)|≤1,即|c|≤1.(2)证明:∵g(x)=ax+b的图象是一条直线,∴只需证明|g(-1)|≤2,且|g(1)|≤2.由已知|f(-1)|≤1,|f(1)|≤1,又由(1)知|c|≤1,∴|g(-1)|=|-a+b|=|-f(-1)+c|≤|f(-1)|+|c|≤1+1=2.∴|g(-1)|≤2,且|g(1)|≤2.∴当-1≤x≤1时,|g(x)|≤2.(3)解:∵a>0,∴g(x)在(-1,1)上是增函数.又∵当-1≤x≤1时,g(x)的最大值为2,∴g(1)=2.∴a+b=f(1)-c=2.∵-1≤c=f(1)-2≤1-2=-1,∴c=f(0)=-1.∵当-1≤x≤1时,f(x)≥-1,即f(x)≥f(0),∴由二次函数的性质得直线x=0为二次函数f(x)的图象的对称轴.∴-b2a=0,即b=0.∴a=2.∴f(x)=2x2-1.。
2023届新高考数学复习:专项(等高线问题)经典题提分练习(附答案)
2023届新高考数学复习:专项(等高线问题)经典题提分练习一、单选题1.(2023ꞏ全国ꞏ高三专题练习)设函数()22,0ln ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩①若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是()0,1②若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是()0,∞+③若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭④方程()()2110f x a f x a ⎛⎫-++= ⎪⎝⎭的不同实根的个数只能是1,2,3,6四个结论中,正确的结论个数为( )A .1B .2C .3D .42.(2023ꞏ全国ꞏ高三专题练习)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解1234,,,,x x x x 且1234x x x x <<<,则()3122341x x x x x ⋅++⋅的取值范围是( )A .(]1,1-B .[]1,1-C .[)1,1-D .()1,1-3.(2023秋ꞏ四川泸州ꞏ高一四川省泸县第四中学校考阶段练习)已知函数()32log ,031108,333x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1x ,2x ,3x ,4x ,满足1234x x x x <<<,则()()341233x x x x --的取值范围是( )A .()0,3B .(]0,4C .(]3,4D .()1,34.(2023ꞏ全国ꞏ高三专题练习)已知函数f (x )=11,1211,12xx x x ⎧⎛⎫-⎪ ⎪⎪⎝⎭⎨⎪-+>⎪⎩…,若互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),则123111222x x x⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝的取值范围是( )A .(95,42)B .(1,4)C .4)D .(4,6)5.(2023ꞏ全国ꞏ高三专题练习)已知定义域为()0,6的函数()y f x =的图象关于3x =对称,当(]0,3x ∈时,()ln f x x =,若方程()f x t =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<时,都有()223412190k x x x x -++-≥成立,则实数k 的最小值为( )A .724 B .13C .12D .1136.(2023ꞏ全国ꞏ高三专题练习)已知函数()22,0,()2,0xx x f x g x x x e x >⎧==-+⎨≤⎩(其中e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有三个不等实根123,,x x x ,且123x x x <<,则21322x x x --的最小值为( ) A .ln 33-B .3ln 22-C .ln 23-D .1-7.(2023ꞏ吉林长春ꞏ东北师大附中校考模拟预测)已知函数3e ,0()3,0x x f x x x ⎧≤=⎨>⎩,()22g x x x=-+(其中e 是自然对数的底数),若关于x 的方程()(())F x g f x m =-恰有三个不同的零点123,,x x x ,且123x x x <<,则12333x x x -+的最大值为( )A .31ln 4+B .41ln 3+C .3ln 3-D .3ln 3+8.(2023ꞏ全国ꞏ高三专题练习)已知函数()22322,,log ,,x mx m x m f x x x m ⎧-++≤⎪=⎨>⎪⎩,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( ) A .1,14⎛⎫⎪⎝⎭B .1,19⎛⎫ ⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .10,9⎛⎫ ⎪⎝⎭9.(2023ꞏ全国ꞏ高三专题练习)已知函数lg ,0()lg(),0x x g x x x ⎧>⎪=⎨--<⎪⎩,若关于x 的方程()()5222g x g x -+=有四个不等根1234,,,x x x x ,则()()()()12341234x x x x g x g x g x g x +++++++的值是( )A .0B .2C .4D .810.(2023秋ꞏ宁夏ꞏ高三宁夏大学附属中学校考阶段练习)已知函数22,0(){|log |,0x x f x x x +≤=>,若关于x 的方程()()f x a a R =∈有四个不同实数解1234,,,x x x x ,且1234x x x x <<<,则1234x x x x +++的取值范围为 ( ) A .1(2,4-B .1[2,]4-C .[2,)-+∞D .(2,)-+∞11.(2023秋ꞏ湖北武汉ꞏ高一期末)已知函数()()2242,1,log 1,1,x x x f x x x ⎧++≤⎪=⎨->⎪⎩,若关于x 的方程()f x t =有四个不同的实数解1x ,2x ,3x ,4x ,且1234x x x x <<<,则)1234122x x x x ++的最小值为( ) A .72B .8C .92D .1212.(2023秋ꞏ河南郑州ꞏ高一新密市第一高级中学校考阶段练习)已知函数()()22log 1,131255,322x x f x x x x ⎧+-<≤⎪=⎨-+>⎪⎩,若关于x 的方程()f x m =有四个不同的实数解1234,,,x x x x ,且满足1234x x x x <<<,则下列结论正确的是( )A .121x x =-B .[]3421,25x x ∈C .3422x x +=D .12111x x +=- 13.(2023秋ꞏ江西上饶ꞏ高一统考期末)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的实数解1x ,2x ,3x ,4x 且1234x x x x <<<,则()3122342x x x x x -+的取值范围是( ) A .()4,5 B .(]4,5C .()4,+∞D .[)4,+∞14.(2023春ꞏ全国ꞏ高三校联考专题练习)已知函数11()||||f x x a x b xa x=++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为( )A .1B .3C .5D .7二、多选题15.(2023秋ꞏ云南昆明ꞏ高一统考期末)已知函数ln(2),(2,0]()(2),(0,2]x x f x f x x ⎧+∈-=⎨-∈⎩,函数()y f x m =-有四个不同的零点,且从小到大依次为1x ,2x ,3x ,4x ,则下列结论正确的是( )A .121=x xB .1201≤<x xC .341x x =D .2410-<≤x x16.(2023ꞏ全国ꞏ高三专题练习)已知函数()e ,0,lg ,010,11,10,x x x f x x x x x ⎧⋅≤⎪=<<⎨⎪-+≥⎩,若22()3()()2g x f x mf x m =--有6个不同的零点分别为123456,,,,,x x x x x x ,且()()()123456345,x x x x x x f x f x f x <<<<<==,则下列说法正确的是( )A .当0x ≤时,()10ef x -≤≤B .34x x +的取值范围为1012,10⎛⎫⎪⎝⎭C .当0m <时,()()()()1234563f x f x f x x x f x +++的取值范围为1,0e ⎛⎫- ⎪⎝⎭D .当0m >时,()()()()1234563f x f x f x x x f x +++的取值范围为20,3e ⎛⎫⎪⎝⎭17.(2023ꞏ全国ꞏ高三专题练习)设函数22,0()ln ,0x x x f x x x ⎧--⎪=⎨>⎪⎩…,则下列命题中正确的是( )A .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是(0,1)B .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是(0,)+∞C .若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭D .方程21()()()10f x a f x a-++=的不同实根的个数只能是1,2,3,618.(2023秋ꞏ辽宁大连ꞏ高一育明高中校考期末)已知函数()()22log 2,241617,42x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1234,,,x x x x ,满足1234x x x x <<<,则下列说法正确的是( )A .()121242x x x x +=+B .3412x x +=C .()3432,34x x ∈D .函数()()()()21g x f x m f x m =+--的零点为12346,,,,x x x x19.(2023秋ꞏ山西太原ꞏ高一古交市第一中学校校考阶段练习)已知函数22log ,02()813,2x x f x x x x ⎧<<=⎨-+≥⎩,若f (x )=a 有四个不同的实数解x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则下列命题正确的是( ) A .0<a <1B.12922x x ⎡⎫+∈⎪⎢⎣⎭C .12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭D.)122x x ⎡+∈⎣20.(2023秋ꞏ重庆铜梁ꞏ高一校考期中)已知奇函数()f x 的定义域为R ,()3f x +为偶函数,且()f x 在[]0,3上单调递减.若关于x 的方程()f x a =在区间[]12,12-上有4个不同的根1234,,,x x x x ,则( ) A .()()6f x f x =+B .()f x 的图象关于直线3x =对称C .1234x x x x +++的值可能为12-D .1234x x x x +++的值可能为1221.(2023ꞏ全国ꞏ高三专题练习)设函数()2101,0lg ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,若关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<,则()()1234x x x x +-的值可能是( ) A .0B .1C .99D .100三、填空题22.(2023秋ꞏ石河子一中校考阶段练习)已知函数()2e ,0ln ,>0x x x f x x x ⎧-≤⎪=⎨⎪⎩,若函数()y f x b=-有四个不同的零点1x 、2x 、3x 、4x ,且1234x x x x <<<,则以下结论正确的是_____.①22342x x +>;②20eb <<; ③122x x +=-; ④()13422x x x x +<-.23.(2023ꞏ贵州贵阳ꞏ校联考模拟预测)已知函数()()22log 1,13,1910,3,22x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩若方程()f x m =有四个不同的实根1234,,,x x x x ,满足1234x x x x <<<,则()()()()34121111x x x x ----的取值范围是______.24.(2023秋ꞏ河南郑州ꞏ高一郑州市第七中学校考期末)已知函数()()2121xx f x f x x ⎧≤⎪=⎨->⎪⎩,,,若方程()f x a =有四个不相等的实数根1x ,2x ,3x ,4x ,则22222341x x x x +++的取值范围为__________.25.(2023春ꞏ广东揭阳ꞏ高一校考阶段练习)已知函数()()ln ,036,36x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩,若当方程()f x m =有四个不等实根()12341234,,,x x x x x x x x <<<时,不等式22341230kx x x x k ++≤+恒成立,则实数k 的最大值为____________.26.(2023秋ꞏ江西宜春ꞏ高一江西省丰城中学校考阶段练习)设()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩若方程()f x m =有四个不相等的实根()1,2,3,4i x i =,且1234x x x x <<<,则()2221234x x x x +++的取值范围为___________.27.(2023秋ꞏ湖北ꞏ高一赤壁一中校联考阶段练习)()22log ,0269,2x x f x x x x ⎧<<=⎨-+≥⎩,若关于x 的方程()()()()222100f x t f x t t t -+++=≤有且仅有四个不相等的实数根1x 、2x 、3x 、()41234x x x x x <<<,则1234x x x x t +++的取值范围为__________.28.(2023ꞏ江苏ꞏ高一期末)已知函数22122,0()2log ,0x x x f x x x ⎧++≤⎪=⎨⎪>⎩,若关于x 的方程 f (x ) =a 有四个不同的解1234,,,x x x x ,且1234x x x x <<<,则212344x x x x x ++的取值范围是 _________ 29.(2023秋ꞏ河南濮阳ꞏ高三濮阳南乐一高校考阶段练习)已知函数()()()333322f x x a x b x a x =++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为______.30.(2023秋ꞏ福建福州ꞏ高一福州四中校考期末)已知函数22sin (10)()44(01)log (1)x x f x x x x x x π-<⎧⎪=-<⎨⎪-⎩………,若()()h x f x a =-有5个零点,则这五个零点之和的取值范围是____________. 四、双空题31.(2023秋ꞏ江西抚州ꞏ高二校联考阶段练习)已知函数ln ,02()(4),24x x f x f x x ⎧<≤=⎨-<<⎩,若当方程()f x m =有四个不等实根1x 、2x 、3x 、4x ,(1x <2x <3x <4x ) 时,不等式22341211kx x x x k ⋅++≥+恒成立,则x 1ꞏx 2=________,实数k 的最小值为___________.32.(2023秋ꞏ天津和平ꞏ高三耀华中学校考阶段练习)设()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩,若方程() f x m =恰有三个不相等的实根,则这三个根之和为________;若方程() f x m =有四个不相等的实根()1,2,3,4i x i =,则()2221234x x x x +++的取值范围为______. 33.(2023ꞏ全国ꞏ高三专题练习)已知函数()12,011,04x e x f x x x x -⎧>⎪=⎨--+≤⎪⎩ ,若函数3()()2g x f x =-有4个零点1x ,2x ,3x ,4x ,则1234x x x x +++=____________;若关于x 的方程25()()02f x f x a -+= ()a R ∈有8个不相等的实数根,则a 的取值范围是____________. 34.(2023秋ꞏ广东汕头ꞏ高一统考期末)设函数()22122,02log ,0x x x f x x x ⎧++≤⎪=⎨⎪>⎩,若关于x 的方程()f x m =有四个不同的解,1x ,2x ,3x ,4x ,且1234x x x x <<<,则m 的取值范围是_____,1234244x x x x x ++的取值范围是__________.参考答案一、单选题1.(2023·全国·高三专题练习)设函数()22,0ln ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩①若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是()0,1②若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是()0,∞+ ③若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭④方程()()2110f x a f x a ⎛⎫-++= ⎪⎝⎭的不同实根的个数只能是1,2,3,6四个结论中,正确的结论个数为( ) A .1 B .2C .3D .4【答案】B【过程解析】对于①:作出()f x 的图像如下:若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则01a <<,不妨设1234x x x x <<<, 则1x ,2x 是方程220x x a ---=的两个不等的实数根,3x ,4x 是方程|ln |x a =的两个不等的实数根,所以12x x a =,34ln ln x x -=,所以43ln ln 0x x +=,所以341x x =, 所以1234(0,1)x x x x a =∈,故①正确;对于②:由上可知,122x x +=-,34ln ln x x a -==,且01a <<, 所以341x x =,所以31,1ex ⎛⎫∈ ⎪⎝⎭,4e (1,)x ∈,所以344411(2,e ex x x x +=+∈+, 所以12341(0,e e2)x x x x +++∈+-,故②错误;对于③:方程()f x ax =的实数根的个数,即为函数()y f x =与y ax =的交点个数,因为y ax =恒过坐标原点,当0a =时,有3个交点,当a<0时最多2个交点,所以0a >, 当y ax =与ln (1)y x x =>相切时,设切点为()00,ln x x , 即1y x '=,所以0000ln 1|x x x y x x ='==,解得0e x =,所以0e 1|x x y ='=,所以1ea =,所以当y ax =与ln (1)y x x =>相切时, 即1ea =时,此时有4个交点,若()f x ax =有4个实数根,即有4个交点,当1e>a 时由图可知只有3个交点,当10e a <<时,令()ln g x x ax =-,()1,x ∈+∞,则()11ax g x a x x-'=-=,则当11x a <<时()0g x '>,即()g x 单调递增,当1x a>时()0g x '<,即()g x 单调递减, 所以当1x a =时,函数取得极大值即最大值,()max 1ln 10g x g a a ⎛⎫==--> ⎪⎝⎭, 又()10g a =-<及对数函数与一次函数的增长趋势可知,当x 无限大时()0g x <,即()g x 在11,a ⎛⎫ ⎪⎝⎭和1,a ⎛⎫+∞ ⎪⎝⎭内各有一个零点,即()f x ax =有5个实数根,故③错误; 对于④:21()(()10f x a f x a -++=,所以1[()][()]0f x a f x a--=, 所以()f x a =或1()f x a =, 由图可知,当1m >时,()f x m =的交点个数为2, 当1m =,0时,()f x m =的交点个数为3, 当01m <<时,()f x m =的交点个数为4, 当0m <时,()f x m =的交点个数为1,所以若1a >时,则1(0,1)a∈,交点的个数为246+=个, 若1a =时,则11a=,交点的个数为3个,若01a <<,则11a>,交点有426+=个, 若a<0且1a ≠-时,则10a<且1a a ≠,交点有112+=个,若11a a=-=,交点有1个,综上所述,交点可能有1,2,3,6个,即方程不同实数根1,2,3,6,故④正确; 故选:B .2.(2023·全国·高三专题练习)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解1234,,,,x x x x 且1234x x x x <<<,则()3122341x x x x x ⋅++⋅的取值范围是( ) A .(]1,1- B .[]1,1-C .[)1,1-D .()1,1-【答案】A【过程解析】21log 12x x =-⇒=. 先作()f x 图象,由图象可得12343121,1.2x x x x x ⎡⎫+=-=∈⎪⎢⎣⎭,,因此()31232343112x x x x x x x ⋅++=-+⋅为1,12⎡⎫⎪⎢⎣⎭单调递减函数, 11121,2111212-⨯+=-⨯+=-, 从而()(]31223411,1x x x x x ⋅++∈-⋅. 故选:A3.(2023秋·四川泸州·高一四川省泸县第四中学校考阶段练习)已知函数()32log ,031108,333x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1x ,2x ,3x ,4x ,满足1234x x x x <<<,则()()341233x x x x --的取值范围是( )A .()0,3B .(]0,4C .(]3,4D .()1,3【答案】A【过程解析】作出函数()32log ,031108,333x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩的图象,如图所示:方程()f x m =有四个不同的实根1x ,2x ,3x ,4x ,满足1234x x x x <<<, 则01m <<,()33,4x ∈3log x m =即:3231log ,log x m x m ==-,所以3231log log 0x x +=, 321log 0x x =,所以211x x =,根据二次函数的对称性可得:3410x x +=,()()()()341212343423333391*********x x x x x x xx x x x x x x --==-+--=-+-+,()33,4x ∈考虑函数()21021,3,4y x x x =-+-∈单调递增,3,0x y ==,4,3x y ==所以()33,4x ∈时2331021x x -+-的取值范围为()0,3.故选:A4.(2023·全国·高三专题练习)已知函数f (x )=11,1211,12xx x x ⎧⎛⎫-⎪ ⎪⎪⎝⎭⎨⎪-+>⎪⎩…,若互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),则123111222x x x⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝的取值范围是( )A .(95,42)B .(1,4)C .4)D .(4,6)【答案】A【过程解析】画出分段函数f (x )=11,1211,12xx x x ⎧⎛⎫-⎪ ⎪⎪⎝⎭⎨⎪-+>⎪⎩…的图像如图:令互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3)=t ,t ∈(0,12), 则x 1∈22(log ,0)3,x 2∈(0,1),x 3∈(1,2), 则123111222xxx⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝=1+t +1﹣t +22t ﹣2=2+22t ﹣2, 又t ∈(0,12),∴123111222x x x⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝∈(95,42).故选:A .5.(2023·全国·高三专题练习)已知定义域为()0,6的函数()y f x =的图象关于3x =对称,当(]0,3x ∈时,()ln f x x =,若方程()f x t =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<时,都有()223412190k x x x x -++-≥成立,则实数k 的最小值为( )A .724 B .13C .12D .113【答案】A【过程解析】作出函数()f x 的图象,如图,作直线y t =,它与()f x 图象的四个交点的横坐标依次为1x ,2x ,3x ,()41234x x x x x <<<,因为函数()y f x =的图象关于3x =对称,所以32416,6x x x x =-=-,12ln ln x x -=,即121=x x ,且213x <<,显然341x x >,不等式()223412190k x x x x -++-≥变形为2212349()1x x k x x -+≥-,3421121212(6)(6)366()376()x x x x x x x x x x =--=-++=-+,222212121212()2()2x x x x x x x x +=+-=+-,所以222121234129()11()1366()x x x x x x x x -+-+=--+,由勾形函数性质知12221x x x x +=+在2(1,3)x ∈时是增函数,所以12221102,3x x x x ⎛⎫+=+∈ ⎪⎝⎭, 令12t x x =+,则102,3t ⎛⎫∈ ⎪⎝⎭,211()6(6)t g t t -=-2116(6)t t -=-,22(6)25()6(6)t g t t --'=-,当102,3t ⎛⎫∈ ⎪⎝⎭时,()0g t '<,()g t 单调递减,所以7()(2)24g t g <=,所以724k ≥,即k 的最小值是724. 故选:A .6.(2023·全国·高三专题练习)已知函数()22,0,()2,0xx x f x g x x x e x >⎧==-+⎨≤⎩(其中e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有三个不等实根123,,x x x ,且123x x x <<,则21322x x x --的最小值为( )A .ln 33-B .3ln 22-C .ln 23-D .1-【答案】A【过程解析】由题意设()f x t =,根据方程(())0g f x m -=恰有三个不等实根, 即2()20g t t t m =-+-=必有两个不相等的实根12,t t ,不妨设12t t <122t t ∴+=,则212t t =-,作出()f x 的图象,函数y t =与()f x 三个不等实根123,,x x x ,且123x x x <<,那么1221xx e t ==,可得312x t =-,101t <≤,所以21311223ln 4x x x t t --=--,构造新函数1()3ln 4(01),()3h t t t t h t t'=--<≤=-当()0h t '<时,10,,()3t h t ⎛⎫∈∴ ⎪⎝⎭在10,3⎛⎫⎪⎝⎭单调递减;当()0h t '>时,1,1,()3t h t ⎛⎫∈∴ ⎪⎝⎭在1,13⎛⎫ ⎪⎝⎭单调递增;∴当13t =时,(t)h 取得最小值为ln 33-,即21322x x x --的最小值为ln 33-; 故选:A7.(2023·吉林长春·东北师大附中校考模拟预测)已知函数3e ,0()3,0x x f x x x ⎧≤=⎨>⎩,()22g x x x =-+(其中e 是自然对数的底数),若关于x 的方程()(())F x g f x m =-恰有三个不同的零点123,,x x x ,且123x x x <<,则12333x x x -+的最大值为( )A .31ln 4+B .41ln 3+C .3ln 3-D .3ln 3+【答案】A【过程解析】由()f x 过程解析式,在(,0]-∞上()f x 单调递增且值域为(0,1],在(0,)+∞上()f x 单调递增且值域为(0,)+∞, 函数()f x 图象如下:所以,()f x 的值域在(0,1]上任意函数值都有两个x 值与之对应,值域在(1,)+∞上任意函数值都有一个x 值与之对应,要使()(())F x g f x m =-恰有三个不同的零点123,,x x x ,则()g x 与y m =的交点横坐标一个在(0,1]上,另一个在(1,)+∞上,由2()2g x x x =-+开口向下且对称轴为1x =,由上图知:01m <<,此时12()()g t g t m ==且12012t t <<<<,122t t +=,结合()f x 图象及123x x x <<有1321e 3xx t ==,323x t =,则112123ln ,,333t t tx x x ===, 所以11123121433ln ln 233t tx x x t t t -+=-+=-+,且101t <<, 令4()ln 23h x x x =-+且01x <<,则1434()33xh x x x -=='-,当3(0,4x ∈时()0h x '>,()h x 递增;当3(,1)4x ∈时()0h x '<,()h x 递减;所以max 33()()ln 144h x h ==+,故12333x x x -+最大值为3ln 14+.故选:A8.(2023·全国·高三专题练习)已知函数()22322,,log ,,x mx m x m f x x x m ⎧-++≤⎪=⎨>⎪⎩,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( ) A .1,14⎛⎫⎪⎝⎭B .1,19⎛⎫ ⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .10,9⎛⎫ ⎪⎝⎭【答案】D【过程解析】因为01m <<, 所以()f x 的大致图象,如图所示:当x m ≤时,()()222f x x m =-+≥,因为存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解, 所以3log 2m >,又01m <<, 解得109m <<, 故选:D9.(2023·全国·高三专题练习)已知函数lg ,0()lg(),0x x g x x x ⎧>⎪=⎨--<⎪⎩,若关于x 的方程()()5222g x g x -+=有四个不等根1234,,,x x x x ,则()()()()12341234x x x x g x g x g x g x +++++++的值是( )A .0B .2C .4D .8【答案】A【过程解析】由方程()()5222g x g x -+=可得()1g x =±, 因为函数lg ,0()lg(),0x x g x x x ⎧>⎪=⎨--<⎪⎩, 设0x >,则0x -<,则()()|lg |(|lg ()|)|lg ||lg |0g x g x x x x x +-=+---=-=, 所以()g x 为奇函数且1x ,2x ,3x ,4x 是()1g x =±的根, 所以12340x x x x +++=,不妨有12()()1g x g x ==-,34()()1g x g x ==, 所以1234()()()()0g x g x g x g x +++=.故12341234()()()()x x x x g x g x g x g x +++++++的值是0. 故选:A .10.(2023秋·宁夏·高三宁夏大学附属中学校考阶段练习)已知函数22,0(){|log |,0x x f x x x +≤=>,若关于x 的方程()()f x a a R =∈有四个不同实数解1234,,,x x x x ,且1234x x x x <<<,则1234x x x x +++的取值范围为 ( ) A .1(2,4-B .1[2,]4-C .[2,)-+∞D .(2,)-+∞【答案】A【过程解析】作出函数()f x 的图象,如图,作直线y a =,当02a <≤时,直线y a =与函数()f x 图象有四个交点,由图象知124x x +=-,2324log log x x -=,即341x x =,(0)2f =, 2log 2x -=,14x =,所以3114x ≤<, 所以12343314x x x x x x +++=-++,由对勾函数性质知函数3314y x x =-++在31,14x ⎡⎫∈⎪⎢⎣⎭上是减函数,所以31,14x ⎡⎫∈⎪⎢⎣⎭时,331142,4y x x ⎛⎤=-++∈- ⎥⎝⎦.故选:A .11.(2023秋·湖北武汉·高一期末)已知函数()()2242,1,log 1,1,x x x f x x x ⎧++≤⎪=⎨->⎪⎩,若关于x 的方程()f x t =有四个不同的实数解1x ,2x ,3x ,4x ,且1234x x x x <<<,则)1234122x x x x ++的最小值为( ) A .72B .8C .92D .12【答案】D【过程解析】函数图像如图所示,()17f =,(]0,7t ∈,1234212x x x x <-<≤<<<,124x x +=-,由()()()()()()333433434log 1log 1log 110111x x x x x x --=-⇒--=⇒--=,∴()()34342112122251x x x x =-+++-5922≥=, 当且仅当343,32x x ==时,等号成立,此时1t =;)()2212121212422x x x x x x x x ⎛⎫+⎛⎫-=-≥-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当1222x x =-=-+1t =.所以)1234122x x x x ++的最小值为91422-=. 故选:D12.(2023秋·河南郑州·高一新密市第一高级中学校考阶段练习)已知函数()()22log 1,131255,322x x f x x x x ⎧+-<≤⎪=⎨-+>⎪⎩,若关于x 的方程()f x m =有四个不同的实数解1234,,,x x x x ,且满足1234x x x x <<<,则下列结论正确的是( )A .121x x =-B .[]3421,25x x ∈C .3422x x +=D .12111x x +=- 【答案】D【过程解析】作函数()y f x =和y m =的图象,如图所示:当1m =时,()()2122log 1log 1x x +=+,即()()2122log 11,log 11x x +=-+=,解得121,12x x =-=,此时1212x x =-,故A 错误;结合图象知,02m <<,当3x >时,可知34,x x 是方程()2125522f x x x m =-+=,即2102520x x m -+-=的二根,故3410x x +=,()3425221,25x x m =-∈,端点取不到,故BC错误;当13x -<≤时,()()2122log 1log 1x x +=+,即()()2122log 1log 1x x -+=+, 故()2221log log 111x x =++,即21111x x =++,所以()()21111x x ++=, 故1212x x x x +=-,即12121x x x x +=-,所以12111x x +=-,故D 正确. 故选:D.13.(2023秋·江西上饶·高一统考期末)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a=有四个不同的实数解1x ,2x ,3x ,4x 且1234x x x x <<<,则()3122342x x x x x -+的取值范围是( )A .()4,5B .(]4,5C .()4,+∞D .[)4,+∞【答案】B【过程解析】作出函数()221,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩的图象如下:因为方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<, 所以有122x x +=-,341x x =, 故3123234322()2x x x x x x x -+=+, 再由2log 1x =可得2x =或12x =,即3112x <≤, 令2()2g x x x =+,(112x ≤<), 任取12112x x ≤<<,则120x x -<,12110x x ->, 所以()12121212122211()()2222g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()12121210x x x x ⎛⎫=--< ⎪⎝⎭,即12()()<g x g x , 所以函数2()2g x x x =+在1,12⎡⎫⎪⎢⎣⎭上单调递减, 又152g ⎛⎫= ⎪⎝⎭,4(1)g =,所以()(4,5]g x ∈.即3122342()x x x x x -+的取值范围是(4,5]. 故选:B.14.(2023春·全国·高三校联考专题练习)已知函数11()||||f x x a x b x a x=++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为( ) A .1 B .3 C .5 D .7【答案】C【过程解析】因为11()||||f x x a x b x a x =++-+--,11()||||()f a x a x x b f x a x x-=-+++-=-,所以函数()f x 的图象关于直线2ax =对称, 设五个零点分别为12345,,,,x x x x x ,且12345x x x x x <<<<, 则15243,,2a x x a x x a x +=+==, 所以1234555222a a x x x x x a a ++++=++==,所以1a =, 则312x =,由3333311()|||1|01f x x x b x x =++-+-=-,可得11|2||12|22b ++-+=,则5b =.故选:C. 二、多选题15.(2023秋·云南昆明·高一统考期末)已知函数ln(2),(2,0]()(2),(0,2]x x f x f x x ⎧+∈-=⎨-∈⎩,函数()y f x m =-有四个不同的零点,且从小到大依次为1x ,2x ,3x ,4x ,则下列结论正确的是( )A .121=x xB .1201≤<x xC .341x x =D .2410-<≤x x【答案】BCD【过程解析】因为ln(2),(2,0]()(2),(0,2]x x f x f x x ⎧+∈-=⎨-∈⎩,所以当(2,0]x ∈-时,()ln(2)f x x =+, 当2(]0,x ∈时,()(2)f x f x =-,所以2(2,0]x -∈-时,(2)ln(22)ln f x x x -=-+=, 所以ln(2),(2,0]()ln ,(0,2]x x f x x x ⎧+∈-⎪=⎨∈⎪⎩, 作出()f x 的图象如图所示,若()f x m =有4个解,则()y f x =与y m =的图象有4个交点,如图(0,ln 2]m ∈,所以1113,1,()ln(2)2x f x x ⎡⎫∈--=-+⎪⎢⎣⎭,(]2221,0,()ln(2)x f x x ∈-=+,由12()()f x f x =,得12ln(2)ln(2)x x -+=+, 即12ln(2)ln(2)0x x +++=,所以12ln[(2)(2)]0x x ++=,所以12(2)(2)1x x ++=, 所以12122()30x x x x +++=,当20x =时,120x x =; 当20x <时,由基本不等式可得12x x +<-所以1230x x ->,解得01<<3>(舍); 所以12[0,1)x x ∈, 所以A 错误,B 正确,对于C ,3331,1,()ln 2x f x x ⎡⎫∈=-⎪⎢⎣⎭,(]4441,2,()ln x f x x ∈=,因为34()()f x f x =,所以34ln ln x x -=,所以34ln ln 0x x +=,即()34ln 0x x =, 所以341x x =,所以C 正确,对于D ,因为2424(1,0],(1,2],2x x x x ∈-∈+=,所以()()224222211(1,0]x x x x x =+=+-∈-,所以D 正确. 故选:BCD16.(2023·全国·高三专题练习)已知函数()e ,0,lg ,010,11,10,x x x f x x x x x ⎧⋅≤⎪=<<⎨⎪-+≥⎩,若22()3()()2g x f x mf x m =--有6个不同的零点分别为123456,,,,,x x x x x x ,且()()()123456345,x x x x x x f x f x f x <<<<<==,则下列说法正确的是( )A .当0x ≤时,()10ef x -≤≤B .34x x +的取值范围为1012,10⎛⎫⎪⎝⎭C .当0m <时,()()()()1234563f x f x f x x x f x +++的取值范围为1,0e ⎛⎫- ⎪⎝⎭D .当0m >时,()()()()1234563f x f x f x x x f x +++的取值范围为20,3e ⎛⎫⎪⎝⎭【答案】AC【过程解析】当0x ≤时,()e x f x x =⋅,此时()(1)e x f x x '=+⋅,令()0f x '>,解得10-<≤x ,令()0f x '<,解得1x <-,可得()f x 在(,1)-∞-上单调递减,在(1,0)-上单调递增,且1(1),(0)0ef f -=-=,∴当0x ≤时,1()0ef x -≤≤,故A 正确; 作出如图所示图像:由22()3()()2g x f x mf x m =--有6个不同的零点, 等价于223()()20f x mf x m --=有6个不同的实数根, 解得()f x m =或2()3m f x =-, ∵341x x ⋅=,∴若343311012,10x x x x ⎛⎫+=+∈ ⎪⎝⎭,可得31110x <<,而当0m >时,120e 3m -<-<,可得302e m <<,而3112e 10f ⎛⎫<= ⎪⎝⎭;当0m <时,10e m -<<,可得22033e m <-<而2113e 10f ⎛⎫<= ⎪⎝⎭, 故3x 的范围为1,110⎛⎫ ⎪⎝⎭的子集,34x x +的取值范围不可能为1012,10⎛⎫⎪⎝⎭,故B 选项错误;该方程有6个根,且()()()345f x f x f x ==,知341x x ⋅=且()()()126f x f x f x ==,当0m <时,()()()1261,0e f x f x f x m ⎛⎫===∈- ⎪⎝⎭,()()()3452(0,1)3m f x f x f x ===-∈,联立解得1,0e m ⎛⎫∈- ⎪⎝⎭, ()()()()()()12345615133332,0e f x f x f x x x f x f x f x m m m ⎛⎫+++=+=-=∈- ⎪⎝⎭,故C 正确;当0m >时,()()()12621,03e m f x f x f x ⎛⎫===-∈- ⎪⎝⎭, ()()()345(0,1)f x f x f x m ===∈,联立解得30,2e m ⎛⎫∈ ⎪⎝⎭,()()()()()()123456153333230,2e f x f x f x x x f x f x f x m m m ⎛⎫+++=+=-+=∈ ⎪⎝⎭.故D 错误.故选:AC.17.(2023·全国·高三专题练习)设函数22,0()ln ,0x x x f x x x ⎧--⎪=⎨>⎪⎩…,则下列命题中正确的是( )A .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是(0,1)B .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是(0,)+∞C .若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭D .方程21()()()10f x a f x a -++=的不同实根的个数只能是1,2,3,6【答案】AD【过程解析】对于A :作出()f x 的图像如下:若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则01a <<,不妨设1234x x x x <<<, 则1x ,2x 是方程220x x a ---=的两个不等的实数根,3x ,4x 是方程|ln |x a =的两个不等的实数根,所以12x x a =,34ln ln x x -=,所以43ln ln 0x x +=,所以341x x =, 所以1234(0,1)x x x x a =∈,故A 正确;对于B :由上可知,122x x +=-,34ln ln x x a -==,且01a <<, 所以341x x =,所以31,1ex ⎛⎫∈ ⎪⎝⎭,4e (1,)x ∈,所以344411(2,1)e x x x x +=+∈+,所以12341(0,1)ex x x x +++∈+,故B 错误;对于C :方程()f x ax =的实数根的个数,即可函数()y f x =与y ax =的交点个数,因为y ax =恒过坐标原点,当0a =时,有3个交点,当a<0时最多2个交点,所以0a >, 当y ax =与ln (1)y x x =>相切时,设切点为()00,ln x x , 即1y x '=,所以0000ln 1|x x x y x x ='==,解得0e x =,所以0e 1|x x y ='=,所以1ea =,所以当y ax =与ln (1)y x x =>相切时, 即1ea =时,此时有4个交点,若()f x ax =有4个实数根,即有4个交点,当1e>a 时由图可知只有3个交点,当10e a <<时,令()ln g x x ax =-,()1,x ∈+∞,则()11ax g x a x x-'=-=,则当11x a <<时()0g x '>,即()g x 单调递增,当1x a >时()0g x '<,即()g x 单调递减,所以当1x a =时,函数取得极大值即最大值,()max 1ln 10g x g a a ⎛⎫==--> ⎪⎝⎭,又()10g a =-<及对数函数与一次函数的增长趋势可知,当x 无限大时()0g x <,即()g x 在11,a ⎛⎫ ⎪⎝⎭和1,a ⎛⎫+∞ ⎪⎝⎭内各有一个零点,即()f x ax =有5个实数根,故C 错误; 对于D :21()()()10f x a f x a -++=,所以1[()][()]0f x a f x a--=,所以()f x a =或1()f x a=, 由图可知,当1m >时,()f x m =的交点个数为2, 当1m =,0时,()f x m =的交点个数为3, 当01m <<时,()f x m =的交点个数为4, 当0m <时,()f x m =的交点个数为1,所以若1a >时,则1(0,1)a∈,交点的个数为246+=个, 若1a =时,则11a=,交点的个数为3个, 若01a <<,则11a>,交点有426+=个, 若a<0且1a ≠-时,则10a<且1a a ≠,交点有112+=个,若11a a=-=,交点有1个,综上所述,交点可能由1,2,3,6个,即方程不同实数根1,2,3,6,故D 正确; 故选:AD .18.(2023秋·辽宁大连·高一育明高中校考期末)已知函数()()22log 2,241617,42x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1234,,,x x x x ,满足1234x x x x <<<,则下列说法正确的是( )A .()121242x x x x +=+B .3412x x +=C .()3432,34x x ∈D .函数()()()()21g x f x m f x m =+--的零点为12346,,,,x x x x【答案】BCD【过程解析】由过程解析式可得()f x 图象如下图所示:若()f x m =有四个不同的实数根,则()f x 与y m =有四个不同的交点, 由图象可知:123423468x x x x <<<<<<<<,01m <<; 对于A ,()()12f x f x = ,即()()2122log 2log 2x x -=-,()()2122log 2log 2x x ∴--=-,()22211log log 22x x ∴=--,()()12221x x ∴--=, 整理可得:()1212412x x x x +=++,A 错误;对于B ,()()34f x f x = ,3x ∴与4x 关于直线6x =对称,3412x x ∴+=,B 正确; 对于C ,3x 与4x 是方程()2161702x m f m x x -+-==-的两根, ()34217342x x m m ∴=-=-,又01m <<,()3432,34x x ∴∈,C 正确;对于D ,()()()()()()211g x f x m f x m f x m f x =+--=-+⎡⎤⎡⎤⎣⎦⎣⎦,由()0g x =得:()f x m =或()1f x =-,()f x m =的根为1234,,,x x x x ;()1f x =-的根为6,()g x ∴的零点为12346,,,,x x x x ,D 正确.故选:BCD.19.(2023秋·山西太原·高一古交市第一中学校校考阶段练习)已知函数22log ,02()813,2x x f x x x x ⎧<<=⎨-+≥⎩,若f (x )=a 有四个不同的实数解x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则下列命题正确的是( )A .0<a <1B.12922x x ⎡⎫+∈⎪⎢⎣⎭C .12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭D.)122x x ⎡+∈⎣【答案】ACD 【过程解析】函数()f x 的图象如上所示,方程()f x a =的解可以转化为函数()f x 与y a =图象交点的横坐标,由图可知01a <<,故A 正确;由题意可知2122log log x x -=,即212log 0x x =,解得121=x x ,由图可知212x <<,所以1222122x x x x +=+,令2212=+y x x ,则函数2212=+y x x 在()1,2上单调递增,当21x =时,3y =,22x =时,92y =,所以122xx +的范围为93,2⎛⎫⎪⎝⎭,故B 错;函数2813y x x =-+的对称轴为4x =,所以348x x +=,又121=x x ,所以12342218x x x x x x +++=++,函数()22218g x x x =++在()1,2上单调递增,()110g =,()2122g =,所以12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭,故C 正确;122222x x x x +=+,函数()2222h x x x =+在(上单调递减,)2上单调递增,h=,()13h =,()23h =,所以)122x x ⎡+∈⎣,故D 正确.故选:ACD.20.(2023秋·重庆铜梁·高一校考期中)已知奇函数()f x 的定义域为R ,()3f x +为偶函数,且()f x 在[]0,3上单调递减.若关于x 的方程()f x a =在区间[]12,12-上有4个不同的根1234,,,x x x x ,则( )A .()()6f x f x =+B .()f x 的图象关于直线3x =对称C .1234x x x x +++的值可能为12-D .1234x x x x +++的值可能为12【答案】BCD【过程解析】()()()()()12939366f x f x f x f x f x +=++=--+=--=-+()()()()3333f x f x f x f x =-++=---+=--=.所以()()12f x f x =+,A 错误.因为()()33f x f x +=-+,所以()f x 的图象关于直线3x =对称,B 正确. 画出()f x 的一种可能图象,如图所示,不妨假设1234x x x x <<<.根据对称性有: 当()03a f <<-时,126x x +=-,3418x x +=,123412x x x x +++=,C 正确. 当()30f a <<时,1218x x +=-,346x x +=,123412x x x x +++=-,D 正确. 故选:BCD21.(2023·全国·高三专题练习)设函数()2101,0lg ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,若关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<,则()()1234x x x x +-的值可能是( )A .0B .1C .99D .100【答案】BC【过程解析】如图所示:因为关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<,所以01a <≤.2101y x x =++的对称轴为5x =-,所以1210x x +=-. 因为34lg lg x x =,所以34lg lg 0x x +=,即341x x =,431x x =. 因为3lg 1x ≤,所以31110x ≤<. 所以()()123433110x x x x x x ⎛⎫+-=-- ⎪⎝⎭, 因为110y x x ⎛⎫=-- ⎪⎝⎭,1110x ≤<为减函数,所以()()(]1234330110,99x x x x x x ⎛⎫∈ ⎪⎭-⎝+-=-.故选:BC 三、填空题22.(2023秋·石河子一中校考阶段练习)已知函数()2e ,0ln ,>0xx x f x x x ⎧-≤⎪=⎨⎪⎩,若函数()y f x b=-有四个不同的零点1x 、2x 、3x 、4x ,且1234x x x x <<<,则以下结论正确的是_____.①22342x x +>;②20eb <<; ③122x x +=-; ④()13422x x x x +<-. 【答案】①②④【过程解析】设()2e xg x x =-,其中x ∈R ,则()()21e xg x x '=-+,当1x <-时,()0g x ¢>,此时函数()g x 单调递增, 当1x >-时,()0g x ¢<,此时函数()g x 单调递减, 所以,函数()g x 的极大值为()21eg -=,且当0x <时,()0g x >, 作出函数()f x 、y b =的图象如下图所示:。
高考数学二轮复习 核心考点特色突破 专题13 立体几何中的计算问题(含解析)-人教版高三全册数学试题
专题13 立体几何中的计算问题【自主热身,归纳总结】1、若正三棱锥的底面边长为2,侧棱长为1,则此三棱锥的体积为 . 【答案】:61【解析】:设此正三棱锥的高为h ,则,所以312=h ,33=h , 故此三棱锥的体积.2、 如图,在长方体ABCDA 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则三棱锥AB 1D 1D 的体积为________cm 3.【答案】 3【解析】VAB 1D 1D =VB 1AD 1D =13S △ADD 1×A 1B 1=13×12×AD ×D 1D ×A 1B 1=13×12×3×2×3=3.3、将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27π cm 3,则该圆柱的侧面积为________cm 2. 【答案】:18π【解析】:设正方形的边长为x cm ,则圆柱的体积为πx 2·x =27π,解得x =3,所以该圆柱的侧面积为2π×3×3=18π(cm 2).4、如图,正四棱锥PABCD 的底面一边AB 的长为2 3 cm ,侧面积为8 3 cm 2,则它的体积为________cm 3.【答案】 4【解析】:如图,过点P 作PO 垂直于底面ABCD ,且垂足为O ,在平面ABCD 中,过点O 作直线AB 的垂线,垂足为E ,连结PE.由正四棱锥的性质知,PE ⊥AB ,所以S 侧=(12×23×PE )×4=83,解得PE =2,在Rt △POE 中,PO =PE 2-EO 2=22-3=1,所以正四棱锥的体积为13×(23)2×1=4.5、已知正四棱柱的底面边长为3 cm ,侧面的对角线长是35cm ,则这个正四棱柱的体积是________cm 3. 【答案】54【解析】:设该正四棱柱的侧棱长为h cm ,则(35)2=32+h 2,解得h =6(负值舍去),从而这个正四棱柱的体积是V =32×6=54(cm 3).6、若圆锥的侧面展开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为________.【答案】 223π7、现有一正四棱柱形铁块,底面边长为高的8倍,将其熔化锻造成一个底面积不变的正四棱锥形铁件(不计材料损耗).设正四棱柱与正四棱锥的侧面积分别为1S ,2S ,则12S S 的值为 . 【答案】25【解析】设正四棱柱得高为a ,所以底面边长为8a ,根据体积相等,且高相等,所以正四棱锥的高为3a ,则正棱锥侧面的高为,所以.8、以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为________. 【答案】22【解析】:如图,由题意可得圆柱的侧面积为S 1=2πrh =2πr 2.圆锥的母线l =h 2+r 2=2r ,故圆锥的侧面积为S 2=12×2πr ×l =2πr 2,所以S 2∶S 1=2∶2.9、如图,正三棱柱ABCA 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥AA 1EF 的体积是________.【答案】:23【解法1】过B 点作BE AC ⊥,垂足为E ,平面ABC ⊥平面11ACC A ,且平面ABC ⋂平面11ACC A =AC ,所以BE ⊥平面11ACC A ,又因为梯形1ACC D 的面积为=6,所以.【解法2】,而=1323⨯⨯,所以四棱锥1B ACC D -的体积为23.【关联1】、如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4 cm ,圆柱的底面积为9 3 cm 2.若将该螺帽熔化后铸成一个高为6 cm 的正三棱柱零件,则该正三棱柱的底面边长为________cm (不计损耗).【答案】. 210 由题意知,熔化前后的体积相等,熔化前的体积为6×34×42×4-93×4=603,设所求正三棱柱的底面边长为x cm ,则有34x 2·6=603,解得x =210,所以所求边长为210cm .【关联2】、在棱长为2的正四面体P ABC -中,M ,N 分别为PA ,BC 的中点,点D 是线段PN 上一点,且2PD DN =,则三棱锥D MBC -的体积为 . 【答案】:29思路分析:解决空间几何体的体积计算问题常常有两个途径:一是直接利用体积公式求解,另一种是利用等体积转化的思想进行计算.解题过程:连结MB ,MC ,MN ,过点D 作MN DH ⊥于H ,因为BP BA =,M 为PA 的中点,所以BM PA ⊥,同理CM PA ⊥,又因为,所以,又因为,所以MN PA ⊥,又因为MN DH ⊥,所以PA DH //,从而,故DH 为点D 到平面MBC 的高.在MBC ∆中,MC MB =,N 为BC 的中点,则,MBC ∆的面积,在NPM ∆中,因为PM DH //,2PD DN =,所以,从而三棱锥D MBC -的体积.【关联3】、如图,在正三棱柱中,已知,点P 在棱1CC 上,则三棱锥1P ABA -的体积为 .【答案】.439 【解析】: 因为正三棱柱中,11//CC AA ,因为,,所以,因为点P 在棱1CC 上,所以点C 到平面B B AA 11的距离就是点P 到平面B B AA 11的距离.作AB CD ⊥,垂直为点D ,因为正三棱柱中,⊥1AA 面ABC ,⊂CD 面ABC ,所以1AA CD ⊥,而,,,所以.因为正三棱柱中,,所以233=CD ,1ABA ∆的面积,所以三棱锥1ABA P -的体积.例2、已知矩形ABCD 的边AB =4,BC =3,若沿对角线AC 折叠,使平面DAC ⊥平面BAC ,则三棱锥DABC 的体积为________. 【答案】. 245【解析】:在平面DAC 内作DO ⊥AC ,垂足为点O ,因为平面DAC ⊥平面BAC ,且平面DAC ∩平面BAC =AC ,所以DO ⊥平面BAC ,因为AB =4,BC =3,所以DO =125,S △ABC =12×3×4=6,所以三棱锥DABC 的体积为V =13×6×125=245.【变式1】、.已知一个空间几何体的所有棱长均为1 cm ,其表面展开图如图所示,则该空 间几何体的体积V= cm 3.【答案】216+【解析】空间几何体为一正方体和一正四棱锥的组合体,显然,正方体的体 积为1,正四棱锥的底面边长为1,侧棱长为1,所以,棱锥的高为22,所以,正四棱锥的体积为26,即组合体的体积为216+【变式2】、已知△ABC 为等腰直角三角形,斜边BC 上的中线AD = 2,将△ABC 沿AD 折成60°的二面角,连结BC ,则三棱锥CABD 的体积为 .【答案】:233易错警示 由于二面角平面角的概念在必做部分考查较少形成了复习中的知识盲点在边长为4的正方形ABCD 内剪去四个全等的等腰三角形(如图1中阴影部分),【关联1】、折叠成底面边长为2的正四棱锥SEFGH(如图2),则正四棱锥SEFGH 的体积为________.(图1)(图2)【答案】:. 43【解析】:连结EG ,HF ,交点为O ,正方形EFGH 的对角线EG =2,EO =1,则点E 到线段AB 的距离为1,EB =12+22= 5.SO =SE 2-OE 2=5-1=2,故正四棱锥SEFGH 的体积为13×(2)2×2=43.【关联2】、已知圆锥的底面半径和高相等,侧面积为42 ,过圆锥的两条母线作截面,截面为等边三角形,则圆锥底面中心到截面的距离为【答案】233【解析】设底面半径为r ,由题意可得:母线长为2r .又侧面展开图面积为,所以2r =.又截面三角形ABD 为等边三角形,故,又,故BOD 为等角直角三角形.设圆锥底面中心到截面的距离为d ,又,所以.又,2OBDS=,2AO r ==,故.【关联3】、 如图,在圆锥VO 中,O 为底面圆心,半径OA ⊥OB ,且OA =VO =1,则O 到平面VAB 的距离为________.【答案】:33思路分析 在立体几何求点到平面的距离问题中,往往有两种途径:(1) 利用等体积法,这种方法一般不需要作出高线;(2) 利用面面垂直的性质作出高线,再进行计算.解法1 因为VO ⊥平面AOB ,OA ⊂平面AOB ,所以VO ⊥OA ,同理VO ⊥OB ,又因为OA ⊥OB ,OA =VO =OB =1,所以VA =VB =AB =2,所以S △VAB =12VA ×AB sin60°=32.设O 到平面VAB 的距离为h ,由V VAOB =V OVAB ,得13S△AOB×VO =13S △VAB ×h ,得12OA ×OB ×VO =32h ,解得h =33.解法2 取AB 中点M ,连结VM ,过点O 作OH ⊥VM 于H .因为OA =OB ,M 是AB 中点,所以OM ⊥AB ,因为VO ⊥平面AOB ,AB ⊂平面AOB ,所以VO ⊥AB ,又因为OM ⊥AB ,VO ∩OM =O ,所以AB ⊥平面VOM ,又因为AB ⊂平面VAB ,所以面VAB ⊥平面VOM ,又因为OH ⊥VM ,OH ⊂平面VOM ,平面VAB ∩平面VOM =VH ,所以OH ⊥平面VAB ,所以OH 为点O 到平面VAB 的距离,且OH =VO ×OM VM =33.例3、如图,在直三棱柱A 1B 1C 1ABC 中,AB ⊥BC ,E ,F 分别是A 1B ,AC 1的中点. (1) 求证:EF ∥平面ABC ; (2) 求证:平面AEF ⊥平面AA 1B 1B ;(3) 若A 1A =2AB =2BC =2a ,求三棱锥FABC 的体积.)【解析】 (1) 连结A 1C .因为直三棱柱A 1B 1C 1ABC 中,四边形AA 1C 1C 是矩形,所以点F 在A 1C 上,且为A 1C 的中点.在△A 1BC 中,因为E ,F 分别是A 1B ,A 1C 的中点,所以EF ∥BC .(2分) 又因为BC ⊂平面ABC ,EF ⊄平面ABC ,所以EF ∥平面ABC .(4分) (2) 因为在直三棱柱A 1B 1C 1ABC 中,B 1B ⊥平面ABC ,所以B 1B ⊥BC . 因为EF ∥BC ,AB ⊥BC ,所以AB ⊥EF ,B 1B ⊥EF .(6分) 因为B 1B ∩AB =B ,所以EF ⊥平面ABB 1A 1.(8分) 因为EF ⊂平面AEF ,所以平面AEF ⊥平面ABB 1A 1.(10分) (3) V FABC =12VA 1ABC =12×13×S △ABC ×AA 1(12分)=12×13×12a 2×2a =a36.(14分)【变式1】、如图,在五面体ABCDEF 中,已知DE ⊥平面ABCD ,//AD BC ,o 60BAD ∠=,2AB =,1DE EF ==.(1)求证://BC EF ; (2)求三棱锥B DEF -的体积.【解析】(1)因为//AD BC ,AD ⊂平面ADEF ,BC ⊄平面ADEF , 所以//BC 平面ADEF , (3分) 又BC ⊂平面BCEF ,平面BCEF平面ADEF EF =,所以//BC EF . (6分) (2)如图,在平面ABCD 内过点B 作BH AD ⊥于点H .因为DE ⊥平面ABCD ,BH ⊂平面ABCD ,所以DE BH ⊥.又AD ,DE ⊂平面ADEF ,,所以BH ⊥平面ADEF ,所以BH 是三棱锥B DEF -的高. (9分) 在直角三角形ABH 中,o 60BAD ∠=,2AB =,所以3BH =. 因为DE ⊥平面ABCD ,AD ⊂平面ABCD ,所以DE AD ⊥.又由(1)知,//BC EF ,且//AD BC ,所以//AD EF ,所以DE EF ⊥, (12分) 所以三棱锥B DEF -的体积. (14分)易错警示 在证明线线、线面、面面的位置关系时,一定要注意条件的完备性,不能少写条件.另外,在求几何体的体积时, 一定要证明某条线为高的原因,即证明它与某个平面垂直,否则将导致丢分. 【变式2】、如图,在矩形ABCD 中,AD =2,AB =4,E ,F 分别为边AB ,AD 的中点.现将△ADE 沿DE 折起,得四棱锥ABCDE. (1)求证:EF ∥平面ABC ;(2)若平面ADE ⊥平面BCDE ,求四面体FDCE 的体积.【解析】 (1) 证法1 如图1,取线段AC 的中点M ,连结MF ,MB. 因为F ,M 为AD ,AC 的中点, 所以MF ∥CD ,且MF =12CD.图1在折叠前,四边形ABCD 为矩形,E 为AB 的中点,所以BE ∥CD ,且BE =12CD.所以MF ∥BE ,且MF =BE.所以四边形BEFM 为平行四边形,故EF ∥BM. 又EF ⊄平面ABC ,BM ⊂平面ABC , 所以EF ∥平面ABC.证法2 如图2,延长DE 交CB 的延长线于点N ,连结AN.在折叠前,四边形ABCD 为矩形,E 为AB 的中点,所以BE ∥CD ,且BE =12CD.图2所以∠NBE =∠NCD ,∠NEB =∠NDC. 所以△NEB ∽△NDC.所以NE ND =BE CD =12,即E 为DN 的中点.又F 为AD 的中点,所以EF ∥NA. 又EF ⊄平面ABC ,NA ⊂平面ABC , 所以EF ∥平面ABC.证法3 如图3,取CD 的中点O ,连结OE ,OF.图3(2) 解法1 在折叠前,四边形ABCD 为矩形,AD =2,AB =4,E 为AB 的中点,所以△ADE ,△CBE 都是等腰直角三角形,且AD =AE =EB =BC =2. 所以∠DEA =∠CEB =45°,且DE =EC =2 2.又∠DEA +∠DEC +∠CEB =180°,所以∠DEC =90°,即DE ⊥CE.又平面ADE ⊥平面BCDE ,平面ADE∩平面BCDE =DE ,CE ⊂平面BCDE ,所以CE ⊥平面ADE ,即CE 为三棱锥CEFD 的高.因为F 为AD 的中点,所以 S △EFD =12×12×AD×AE=14×2×2=1.所以四面体FDCE 的体积V =13×S △EFD ×CE=13×1×22=223. 解法2 如图4,过F 作FH ⊥DE ,H 为垂足.图4因为平面ADE ⊥平面BCDE ,平面ADE∩平面BCDE =DE ,FH ⊂平面ADE ,所以FH ⊥平面BCDE ,即FH 为三棱锥FECD 的高.在折叠前,四边形ABCD 为矩形,且AD =2,AB =4,E 为AB 的中点,所以△ADE 是等腰直角三角形. 又F 为AD 的中点,所以DF =1. 所以FH =DF·sin45°=22. 又S △EDC =12×CD×BC=12×4×2=4,所以四面体FDCE 的体积V =13×S △EDC ×FH=13×4×22=223. 解法3 如图5,过A 作AG ⊥DE ,G 为垂足.图5因为平面ADE ⊥平面BCDE ,平面ADE∩平面BCDE =DE ,AG ⊂平面ADE ,所以AG ⊥平面BCDE ,即AG 为三棱锥AECD 的高.在折叠前,四边形ABCD 为矩形,且AD =2,AB =4,E 为AB 的中点, 所以△ADE 是等腰直角三角形. 所以AG =AD·sin45°= 2. 又S △EDC =12×DC×BC=12×4×2=4,所以三棱锥AECD 的体积V AECD =13×S △EDC ×AG=13×4×2=423.因为F 为AD 的中点,所以S △EFD =12S △EAD .所以V CEFD =12V CEAD =12V AECD =223.即四面体FDCE 的体积为223.【关联】、如图,直四棱柱ABCD-A 1B 1C 1D 1的底面ABCD 是菱形,∠ADC =120°,AA 1=AB =1,点O 1,O 分别是上、下底面菱形的对角线的交点.(1)求证:A 1O ∥平面CB 1D 1; (2)求点O 到平面CB 1D 1的距离.【解析】 (1) 因为AA 1∥C C 1且AA 1=C C 1,所以四边形A 1ACC 1是平行四边形,所以AC∥A1C1且AC=A1C1.因为O1,O分别是A1C1,AC的中点,故O C∥A1O1且O C=A1O1. 所以四边形A1O1C O为平行四边形,所以A1O∥O1C.又A1O⊄平面CB1D1,O1C⊂平面CB1D1,所以A1O∥平面CB1D1.(2)解法1 等体积法.设点O到平面CB1D1的距离为h.因为D1D⊥平面ABCD,所以D1D⊥C O.因为AC,BD为菱形ABCD的对角线,所以C O⊥BD.因为D1D∩BD=D,所以C O⊥平面BB1D1D.在菱形ABCD中,BC=1,∠BCD=60°,C O=3 2.解法2 作垂线.因为AA 1⊥平面A 1B 1C 1D 1,所以AA 1⊥B 1D 1.因为A 1C 1,B 1D 1为菱形A 1B 1C 1D 1的对角线,所以B 1D 1⊥A 1C 1. 因为AA 1∩A 1C 1=A 1,所以B 1D 1⊥平面AA 1C 1C. 因为B 1D 1⊂平面CB 1D 1,所以平面CB 1D 1⊥平面AA 1C 1C.在平面AA 1C 1C 内,作OH ⊥C O 1,H 为垂足,而平面CB 1D 1∩平面AA 1C 1C =CO 1, 所以OH ⊥平面CB 1D 1,即线段OH 的长为点O 到平面CB 1D 1的距离. 在矩形AA 1C 1C 中,∠O CH =∠C O 1C 1,sin ∠CO 1C 1=C C 1C O 1=172=27,sin ∠OCH =OH O C =OH 32=2OH 3,所以27=2OH 3,故OH =217.因此,点O 到平面CB 1D 1的距离为217.。
高三数学应用题专题复习(含答案)
高三数学应用题专题复习(含答案)1. 提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x ≤200时,车流速度v 与车流密度x 满足.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0xk x v --=25040)(千米/小时.(Ⅰ)当0<x ≤200时,求函数v (x )的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到个位,参考数据)236.25≈2.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r .1. 提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x ≤200时,车流速度v 与车流密度x 满足.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0xk x v --=25040)(千米/小时.(Ⅰ)当0<x ≤200时,求函数v (x )的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到个位,参考数据)236.25≈1.解:(1) 由题意:当0<x ≤50时,v (x )=30;当50≤x ≤200时,由于,kk x v --=25040)(再由已知可知,当x =200时,v (0)=0,代入解得k =2000.故函数v (x )的表达式为.………………6⎪⎩⎪⎨⎧≤<--≤<=20050,250200040500,30)(x x x x v 分(2) 依题意并由(1)可得, ⎪⎩⎪⎨⎧≤<--≤<=20050,250200040500,30)(x x x x x x x f 当0≤x ≤50时,f (x )=30x ,当x =50时取最大值1500. 当50<x ≤200时,20002000(250)20002504040(250)4025025025050000012000[40(250)1200025012000120004000 2.2363056()xx x x x x x x f x --⨯-=--+⨯+--=--+≤--=-≈-⨯==取等号当且仅当,即250138x =-≈时,f (x )取最大值.xx -=-250500000)250(40(这里也可利用求导来求最大值)综上,当车流密度为138 辆/千米时,车流量可以达到最大,最大值约为3056辆/小时. ………………14分2.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >千元.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r .2. (Ⅰ)因为容器的体积为803π立方米, 所以3243r r l ππ+=803π,解得280433r l r =-, 由于2l r ≥,因此02r <≤.所以圆柱的侧面积为2rl π=28042(33r r r π-=2160833r r ππ-, 两端两个半球的表面积之和为24r π,所以建造费用y =21608r rππ-+24cr π,定义域为(0,2]. (Ⅱ)因为'y =216016r r ππ--+8cr π=328[(2)20]c r r π--,02r <≤ 由于c>3,所以c-2>0,所以令'0y >得:r >令'0y <得:0r <<(1)当932c <≤时,2≥时,函数y 在(0,2)上是单调递减的,故建造费最小时r=2.(2)当92c >时,即02<<时,函数y 在(0,2)上是先减后增的,故建造费最小时r =.。
2013高三数学总复习 12-3不等式选讲练习 新人教B版
12-3不等式选讲基础巩固强化1.(2012·安徽“江南十校”联考)已知集合M ={x ||2x -1|<2},N ={x |x -2x -1<1},则M ∩N 等于( )A .{x |1<x <32}B .{x |12<x <1}C .{x |-12<x <32}D .{x |-12<x <32,且x ≠1}[答案] A[解析] 由|2x -1|<2得-2<2x -1<2,则-12<x <32;由x -2x -1<1得x -2-x -1x -1<0,即-1x -1<0,则x >1.因此M ∩N ={x |1<x <32},选A. 2.(2012·潍坊模拟)不等式|x -2|-|x -1|>0的解集为( ) A .(-∞,32)B .(-∞,-32)C .(32,+∞)D .(-32,+∞)[答案] A[解析] 原不等式等价于|x -2|>|x -1|,则(x -2)2>(x -1)2,解得x <32.3.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R }.若A ⊆B ,则实数a 、b 必满足( )A .|a +b |≤3B .|a +b |≥3C .|a -b |≤3D .|a -b |≥3 [答案] D[解析] 由题意可得集合A ={x |a -1<x <a +1},集合B ={x |x <b -2或x >b +2},又因为A ⊆B ,所以有a +1≤b -2或b +2≤a -1,即a -b ≤-3或a -b ≥3.因此选D.4.函数y =x 2+5x +15x +2(x ≥0)的最小值为( )A .6B .7 C.7 D .9[答案] B[解析] 原式变形为y =x +22+x +2+9x +2=x +2+9x +2+1, 因为x ≥0,所以x +2>0,所以x +2+9x +2≥6, 所以y ≥7,当且仅当x =1时取等号, 所以y min =7(当且仅当x =1时)5.(2012·济南二模)对于实数x 、y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为( )A .5B .4C .8D .7 [答案] A[解析] 由题易得,|x -2y +1|=|(x -1)-2(y -2)-2|≤|x -1|+|2(y -2)|+2≤5,即|x -2y +1|的最大值为5.6.(2011·皖南八校联考)不等式|x +3|+|x -1|≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .[-1,4]B .(-∞,-2]∪[5,+∞)C .[-2,5]D .(-∞,-1]∪[4,+∞)[答案] A[解析] 由绝对值的几何意义易知:|x +3|+|x -1|的最小值为4,所以不等式|x +3|+|x -1|≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.7.(2012·江西)在实数范围内,不等式|2x -1|+|2x +1|≤6的解集为________. [答案] {x |-32≤x ≤32}[解析] 原不等式可化为⎩⎪⎨⎪⎧x <-12,1-2x -2x -1≤6,或⎩⎪⎨⎪⎧-12≤x ≤12,1-2x +2x +1≤6,或⎩⎪⎨⎪⎧x >12,2x -1+2x +1≤6.解得-32≤x ≤32,即原不等式的解集为{x |32≤x ≤32}.8.(2012·陕西)若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________.[答案] -2≤a ≤4[解析] |x -a |+|x -1|≥|a -1|,则只需要|a -1|≤3,解得-2≤a ≤4.9.若a >0,b >0,则p =(ab )a +b2,q =a b ·b a的大小关系是________.[答案] p ≥q[解析] ∵a >0,b >0,∴p =(ab )a +b2>0,q =a b ·b a>0,p q=ab a +b2a b ba=aa -b2·bb -a 2=⎝ ⎛⎭⎪⎫a b a -b2. 若a >b ,则ab>1,a -b2>0,∴⎝ ⎛⎭⎪⎫a b a -b 2>1; 若a <b ,则0<ab<1,a -b2<0,∴⎝ ⎛⎭⎪⎫a b a -b 2>1; 若a =b ,则a b=1,a -b2=0,∴⎝ ⎛⎭⎪⎫a b a -b 2=1. ∴⎝ ⎛⎭⎪⎫a ba -b 2≥1,即p q ≥1.∵q >0,∴p ≥q .[点评] 可运用特值法,令a =1,b =1,则p =1,q =1,有p =q ; 令a =2,b =4,有p =83=512,q =24×42=256,∴p >q ,故填p ≥q . 10.(文)(2011·开封市模拟)已知函数f (x )=|x -7|-|x -3|. (1)作出函数f (x )的图象;(2)当x <5时,不等式|x -8|-|x -a |>2恒成立,求a 的取值范围. [解析] (1)∵f (x )=⎩⎪⎨⎪⎧4,x ≤3,10-2x ,3<x <7,-4x ≥7,图象如图所示:(2)∵x <5,∴|x -8|-|x -a |>2,即8-x -|x -a |>2, 即|x -a |<6-x ,对x <5恒成立. 即x -6<x -a <6-x 对x <5恒成立,∴⎩⎪⎨⎪⎧a <6,a >2x -6.对x <5恒成立.又∵x <5时,2x -6<4,∴4≤a <6. ∴a 的取值范围为[4,6).(理)(2012·山西大同调研)已知函数f (x )=|x +1|+|x -3|. (1)作出函数y =f (x )的图象;(2)若对任意x ∈R ,f (x )≥a 2-3a 恒成立,求实数a 的取值范围. [解析] (1)①当x ≤-1时,f (x )=-x -1-x +3=-2x +2; ②当-1<x <3时,f (x )=x +1+3-x =4; ③当x ≥3时,f (x )=x +1+x -3=2x -2. ∴f (x )=⎩⎪⎨⎪⎧-2x +2,x ≤-1,4,-1<x <3,2x -2,x ≥3.∴y =f (x )的图象如图所示.(2)由(1)知f (x )的最小值为4,由题意可知a 2-3a ≤4,即a 2-3a -4≤0, 解得-1≤a ≤4.故实数a 的取值范围为[-1,4].能力拓展提升11.(2011·豫南九校联考)若a 、b 是正常数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥a +b2x +y,当且仅当a x =b y 时上式取等号.利用以上结论,可以得到函数f (x )=2x +91-2x (x ∈(0,12))的最小值为________.[答案] 25[解析] 依据给出的结论可知f (x )=42x +91-2x ≥2+322x +1-2x =25等号在22x =31-2x ,即x =15时成立.12.不等式|x +log 3x |<|x |+|log 3x |的解集为________. [答案] {x |0<x <1}[解析] 由对数函数定义得x >0,又由绝对值不等式的性质知,|x +log 3x |≤|x |+|log 3x |,当且仅当x 与log 3x 同号时等号成立,∵x >0,∴log 3x >0,∴x >1,故原不等式的解集为{x |0<x <1}.13.(2012·乌鲁木齐地区二诊)已知函数f (x )=|x +1|. (1)求不等式f (x )≤2的解集;(2)若f (x )+f (-x )≥a ,求a 的最大值.[解析] (1)不等式可化为:|x +1|≤2,解得:-3≤x ≤1. 故不等式f (x )≤2的解集为{x |-3≤x ≤1}; (2)f (x )+f (-x )=⎩⎪⎨⎪⎧2x , x ≥1,2, -1<x <1,-2x , x ≤-1.当x ≥1时,f (x )+f (-x )=2x ≥2, 当-1<x <1时,f (x )+f (-x )=2, 当x ≤-1时,f (x )+f (-x )=-2x ≥2,故f (x )+f (-x )≥2(“=”在-1≤x ≤1时成立). ∴a ≤2,即a 的最大值为2.14.(文)设a 、b 、c 、d 都是正数,且x =a 2+b 2,y =c 2+d 2. 求证:xy ≥ac +bdad +bc .[证明] ∵(a 2+b 2)(c 2+d 2)-(ac +bd )2=(ad -bc )2≥0,∴(a 2+b 2)(c 2+d 2)≥(ac +bd )2, 又a 、b 、c 、d 均为正数, ∴a 2+b 2·c 2+d 2≥ac +bd >0① 同理a 2+b 2·c 2+d 2≥ad +bc >0② ①×②得:(a 2+b 2)(c 2+d 2)≥(ac +bd )(ad +bc )>0, ∴a 2+b 2c 2+d 2≥ac +bd ad +bc ,即xy ≥ac +bd ad +bc .(理)(2012·包头市一模)设不等式|2x -1|<1的解集是M ,a 、b ∈M . (1)试比较ab +1与a +b 的大小;(2)设max 表示数集A 中的最大数.h =max{2a ,a 2+b 2ab ,2b},求证:h ≥2.[解析] 由|2x -1|<1得-1<2x -1<1,解得0<x <1. 所以M ={x |0<x <1}.(1)由a 、b ∈M ,得0<a <1,0<b <1, 所以(ab +1)-(a +b )=(a -1)(b -1)>0. 故ab +1>a +b .(2)由h =max{2a ,a 2+b 2ab ,2b},得h ≥2a ,h ≥a 2+b 2ab ,h ≥2b,所以h 3≥2a ·a 2+b 2ab ·2b=4a 2+b 2ab ≥8,故h ≥2.15.若a >0,b >0,求证:⎝ ⎛⎭⎪⎫a 2b12 +⎝ ⎛⎭⎪⎫b 2a 12≥a 12 +b 12 .[证明] 左边-右边=a b +ba-(a +b ) =a -b b +b -a a =(a -b )·a -bab=a +ba -b2ab≥0,∴左边≥右边.即原不等式成立.16.(2011·福建质检)已知a 、b 为正实数.(1)求证:a 2b +b 2a≥a +b ;(2)利用(1)的结论求函数y =1-x2x+x 21-x(0<x <1)的最小值. [解析] (1)证法一:∵a >0,b >0,∴(a +b )(a 2b +b 2a )=a 2+b 2+a 3b +b 3a≥a 2+b 2+2ab =(a +b )2.∴a 2b +b 2a ≥a +b ,当且仅当a =b 时等号成立. 证法二:∵a 2b +b 2a -(a +b )=a 3+b 3-a 2b -ab 2ab=a 3-a 2b -ab 2-b 3ab =a 2a -b -b 2a -bab=a -b2a +bab.又∵a >0,b >0,∴a -b2a +bab≥0,当且仅当a =b 时等号成立.∴a 2b +b 2a≥a +b .(2)解:∵0<x <1,∴1-x >0, 由(1)的结论,函数y =1-x2x+x 21-x≥(1-x )+x =1. 当且仅当1-x =x 即x =12时等号成立.∴函数y =1-x2x+x 21-x(0<x <1)的最小值为1.1.若不等式|ax +2|<4的解集为(-1,3),则实数a 等于( ) A .8 B .2 C .-4 D .-2 [答案] D[解析] 由-4<ax +2<4,得-6<ax <2.∴(ax -2)(ax +6)<0,其解集为(-1,3),∴a =-2. [点评] 可用方程的根与不等式解集的关系求解.2.(2011·山东理,4)不等式|x -5|+|x +3|≥10的解集是( ) A .[-5,7]B .[-4,6]C .(-∞,-5]∪[7,+∞)D .(-∞,-4]∪[6,+∞)[答案] D[解析] 当x ≤-3时,|x -5|+|x +3|=5-x -x -3=2-2x ≥10,即x ≤-4,∴x ≤-4.当-3<x <5时,|x -5|+|x +3|=5-x +x +3=8≥10,不成立,∴无解. 当x ≥5时,|x -5|+|x +3|=x -5+x +3=2x -2≥10,即x ≥6,∴x ≥6. 综上可知,不等式的解集为(-∞,-4]∪[6,+∞),故选D.[点评] 可用特值检验法,首先x =0不是不等式的解,排除A 、B ;x =6是不等式的解,排除C ,故选D.3.设a 、b 、c 为正数,且a +2b +3c =13,则3a +2b +c 的最大值为( ) A.1693 B.133C.1333D.13[答案] C[解析] (a +2b +3c )[(3)2+12+(13)2] ≥(3a +2b +c )2,∵a +2b +2c =13,∴(3a +2b +c )2≤1693,∴3a +2b +c ≤1333,当且仅当a3=2b 1=3c 13取等号, 又∵a +2b +3c =13,∴a =9,b =32,c =13时,3a +2b +c 取最大值1333.4.设a 、b 、c ∈R ,且a 2+2b 2+3c 2=6,则a +b +c 的最小值为( ) A.11 B .-11 C .336 D .11[答案] B[解析] (a +b +c )2=(a ×1+2b ·22+3c ·33)2≤(a 2+2b 2+3c 2)⎝ ⎛⎭⎪⎫1+12+13=11,∴-11≤a +b +c ≤11等号成立时,a1=2b 22=3c 33,即a =2b =3c ,∴⎩⎪⎨⎪⎧ a =611b =311c =211或⎩⎪⎨⎪⎧a =-611b =-311c =-211.5.(2011·陕西文,15)若不等式|x +1|+|x -2|≥a 对任意x ∈R 恒成立,则a 的取值范围是________.[答案] (-∞,3][分析] 欲使a ≤f (x )恒成立,应有a ≤f (x )的最小值.[解析] 令y =|x +1|+|x -2|,由绝对值不等式|a |-|b |≤|a +b |≤|a |+|b |知y =|x +1|+|x -2|=|x +1|+|2-x |≥|x +1+2-x |=3.所以a ≤3.6.已知x 、y 、z ∈R ,x 2+y 2+z 2=1,则x +2y +2z 的最大值为________. [答案] 3[解析] 由柯西不等式,x +2y +2z ≤12+22+22x 2+y 2+z 2=3,等号在x 1=y 2=z2,即x =13,y =z =23时成立.7.已知a 、b ∈R +,且a +b =1,则4a +1+4b +1的最大值是________. [答案] 2 3[解析] ∵a 、b ∈R +,a +b =1, ∴4a +1+4b +1 ≤2[4a +12+4b +12]=2 3.当且仅当a =b =12时取等号.8.设a 、b 为非负实数,求证:a 3+b 3≥ab (a 2+b 2). [解析] ∵a 、b 是非负实数, ∴a 3+b 3-ab (a 2+b 2)=a2a (a -b )+b 2b (b -a )=(a -b )((a )5-(b )5).当a ≥b 时,a ≥b ,从而(a )5≥(b )5, ∴(a -b )((a )5-(b )5)≥0; 当a <b 时,a <b ,从而(a )5<(b )5,∴(a -b )((a )5-(b )5)>0. ∴a 3+b 3≥ab (a 2+b 2).9.设a 、b 、c 都是正数,求证:bc a +ca b +abc≥a +b +c .[分析] 三个正数a 、b 、c 可排序,不妨设a ≥b ≥c >0,则0<1a ≤1b ≤1c,ab ≥ac ≥bc ,再由排序原理证之.[证明] 不妨设a ≥b ≥c >0, ∴ab ≥ac ≥bc ,1c ≥1b ≥1a.由排序原理,知ab ×1c+ac ×1b +bc ×1a ≥ab ×1b +ac ×1a +bc ×1c ,即ab c +ac b +bca≥a +b +c .10.(2011·忻州市高三联考) (1)解关于x 的不等式x +|x -1|≤3;(2)若关于x 的不等式x +|x -1|≤a 有解,求实数a 的取值范围.[解析] 设f (x )=x +|x -1|,则f (x )=⎩⎪⎨⎪⎧2x -1x ≥1,1x <1.(1)当x ≥1时,2x -1≤3,∴1≤x ≤2, 又x <1时,不等式显然成立, ∴原不等式的解集为{x |x ≤2}.(2)由于x ≥1时,函数y =2x -1是增函数,其最小值为f (1)=1; 当x <1时,f (x )=1,∴f (x )的最小值为1.因为x +|x -1|≤a 有解,即f (x )≤a 有解,所以a ≥1. 11.(2012·乌鲁木齐地区诊断)已知函数f (x )=|x |. (1)解不等式f (x -1)≤2x ;(2)若不等式f (x +1)+f (2x )≤1a +11-a 对任意a ∈(0,1)恒成立,求x 的取值范围.[解析] (1)不等式可化为:|x -1|≤2x ,解得:x ≥13.故不等式|x -1|≤2x 的解集为{x |x ≥13};(2)由f (x +1)+f (2x )≤1a +11-a 得:|x +1|+|2x |≤1a +11-a.- 11 - ∵0<a <1,∴0<1-a <1, ∴1a +11-a =1a 1-a ≥1[a +1-a 2]2=4. 当且仅当a =1-a ,即a =12时取“=”. ∴原问题等价于|x +1|+|2x |≤4, ∴⎩⎪⎨⎪⎧ x ≤-1,-3x -1≤4.或⎩⎪⎨⎪⎧ -1≤x <0,1-x ≤4.或⎩⎪⎨⎪⎧ x >0,3x +1≤4. ∴-53≤x ≤1.∴x 的取值范围是{x |-53≤x ≤1}.。
高三数学二轮复习 专题13概率及其应用教案(理) 苏教版 教案
专题13 概率及其应用(2)【高考趋势】两点分布、超几何分布、二项分布等是概率中最重要的几种分布,在实际应用和理论分析中都有重要的地位。
高考对这部分概率知识的考查以运用概率的有关知识分析和解决实际问题主,考题的立意比较鲜明,综合性较强,复习时应将事件关系的理解放在重要位置,只有理清事件的关系,才能使用相应的公式解题。
本章含有分类讨论的思想、数形结合的思想、转化与化归的思想,用到模型化方法,验证法的数学方法,正难则反的思想。
【考点展示】1、 将一骰子连续抛掷三次,它落地时向上的点数之和等于5的概率为2、甲射击命中目标的概率是21,乙命中目标的概率是31,丙命中目标的概率是41,现在三人同时射击目标,则目标被击中的概率为3、口袋里放有大小相等的2个红球和1个白球,有放回地每次摸取一个球,定义数列{a n };⎩⎨⎧-。
n ,,n 次摸取白球第次摸取红球第1,1如果S n 为数列{a n }的前n 项和,那么S n =1的概率为4、接种某疫苗后,出现发热反应的概率是0.80。
现有5人接种该疫苗,至少有3人出现发热反应的概率为 。
(精确到0.01)5、甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球。
现分别从甲、乙两袋中各随机抽取1个球,则取出的两球都是红球的概率为 (答案用分数表示)。
【样题剖析】例1 一批玉米种子,共发芽率是0.8。
(1)问每穴至少种几粒种子,才能保证每穴至少有一粒发芽的概率大于98%? (2)若每穴种3粒,求恰好两粒发芽的概率(lg2=0.3010)。
例2 实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛)。
(1)试分别求甲打完3局、4局、5局才能取胜的概率; (2)按比赛规则甲获胜的概率。
例3、在一段线路中并联着3个自动控制的开关,只要其中有1个并能够闭合,线路就能正常工作。
【走向高考】高三数学一轮总复习 133不等式选讲课件 北师大
[解析] (1)当 a=-1 时,f(x)=|x-1|+|x+1|, 由 f(x)≥3 得|x-1|+|x+1|≥3, (解法 1)由绝对值的几何意义知不等式的解集为{x|x≤-32 或 x≥32}. (解法 2)不等式可化为x-≤2-x≥13 或-2≥1<3x≤1, 或x2>x≥1,3. 所以不等式的解集为{x|x≤-32或 x≥32}.
基础自测
1.(2012·绵阳模拟)已知 p:|2x-5|≤1,q:(x+2)(x-3)≤0,
则 p 是 q 的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
[答案] A
[解析] 依题意,p:|2x-5|≤1,解得 2≤x≤3, q:(x+2)(x-3)≤0,解得-2≤x≤3, 所以 p 是 q 的充分不必要条件.
3 . (2012·山 东 理 , 13) 若 不 等 式 |kx - 4|≤2 的 解 集 为 {x|1≤x≤3},则实数 k=________.
[答案] 2
[解析] 本题考查了绝对值不等式的解法.由|kx-4|≤2
可得-2≤kx-4≤2,即 2≤kx≤6,而 1≤x≤3,所以 k=2.掌
握好绝对值不等式的常见解法.也可把不等式转化为方程来解
(2)若 a=1,f(x)=2|x-1|,不满足题设条件;
-2x+a+1,x≤a, 若 a<1,f(x)=1-a,a<x<1,
2x-a+1,x≥1,
f(x)的最小值为 1-a;
-2x+a+1,x≤1, 若 a>1,f(x)=a-1,1<x<a,
2x-a+1,x≥a.
f(x)的最小值为 a-1.
决,如由题意可知 x=1,x=3 是|kx-4|=2 的两根,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学专题复习----- 函数不等式综合
一 基础知识
函数不等式综合:函数性质综合,函数思想方法综合,不等式证明方法综合,解法综合 函数问题下的不等式问题,不等式中的函数思想。
二 例题
1、 已知函数f (x)=x 3+x ,x ∈R
(I)指出f (x)在定义域R 上的奇偶性与单调性(只写结论,无须证明);
(II)若a ,b ,c ∈R ,且a+b>0,b +c>0,c +a>0,试证明:f (a)+f (b)+f (c)>0。
2、 已知函数f (x)= 2)1
+x 1-x ( (x ≥1) (I)求函数f (x)的反函数f –1 (x)和f –1 (x)的定义域;
(II)用定义证明f –1 (x)的单调性;
(III)设g (x)= 2+x +)
x (f 11-, 求g (x)的最小值。
3、 函数f (x)=x
+1x -1lg +21 (I)求此函数的定义域,并判断该函数的单调性;
(II)解不等式2
1<)]21-x (x [f 。
4、 已知函数f (x)= x
1+x 的图像为C 1,C 1关于点(2,1)对称的图像为C 2,C 2,对应的函数为g (x)。
(I)求g (x)的解析式;
(II) 解不等式2
9log <)x (g log a a (a>0,且a ≠1)。
5、 已知a ,b ,c ∈R ,f (x)=ax 2+bx+c
(I)若a+c=0,f (x)在[-1,1]上最大值为2,最小值为-2.5,证明:a ≠0且2<a b ; (II)若a >0,p,q 是满足p+q=1的实数,且对任意的实数x,y 均有pf(x)+qf(X) ≥f(px+qy),证明0≤x ≤1
6、 已知二次函数f (x)=ax 2+bx+c ,(a ,b ,c ∈R ,a>0),设方程f (x)=x 的两个实数根为x 1,x 2
(I)如果x 1<2< x 2<4,设f (x)的图像的对称轴为x=x 0,求证:x 0> -1
(II)如果0< x 1<2,且|x 2-x 1|=2,求b 的取值范围
7、 已知函数f (x)= 2-x +x
(I)a ≤2,b ≤2,试判断f(a)-f(b)与a-b 的大小,并证明你的结论;
(II)试判断f (x)在(-∞,
47)上的单调性,并证明你的结论。
8、 设-1<p<1,f (x)= p
-x 2x 2-1log +x 2-1x 2+1log a a
(a>0,且a ≠1) (I)求f (x)的定义域;
(II)求证f (x)的图像与x 轴无公共点。
9、 已知二次函数f (x)=ax 2+bx+c ,(a ,b ,c ∈R )
2、
3、
4、
5、
6、
7
8、
9、
10、
11、
12、
13、
14、
15、
16、
17、
18、
19、
20、。