结构化学知识点汇总.doc

合集下载

高中化学知识点总结( 物质与结构)

高中化学知识点总结( 物质与结构)

《物质结构基础》第一部分原子的结构和性质第一节原子的结构1、能层(1)原子核外的电子是分层排布的。

根据电子的能级差异,可将核外电子分成不同的能层。

(2)每一能层最多能容纳的电子数不同:最多容纳的电子数为2n2个。

(3)离核越近的能层具有的能量越低。

(4)能层的表示方法:能层一二三四五六七……符号K L M N O P Q ……最多电子数 2 8 18 32 50 ……离核远近由近————————————→远能量高低由低————————————→高2、能级在多电子的原子中,同一能层的电子,能量也可以不同。

不同能量的电子分成不同的能级。

【提示】①每个能层所包含的能级数等于该能层的序数n,且能级总是从s能级开始,如:第一能层只有1个能级1s,第二能层有2个能级2s和2p,第三能层有3个能级3s、3p、3d,第四能层有4个能级4s、4p、4d和4f,依此类推。

②不同能层上的符号相同的能级中最多所能容纳的电子数相同,即每个能级中最多所能容纳的电子数只与能级有关,而与能层无关。

如s能级上最多容纳2个电子,无论是1s还是2s;p能级上最多容纳6个电子,无论是2p还是3p、4p能级。

③在每一个能层(n)中,能级符号的排列顺序依次是ns、np、nd、nf……④按s、p、d、f……顺序排列的各能级最多可容纳的电子数分别是1、3、5、7……的两倍,即分别是2、6、10、14……3、基态原子与激发态原子(1)基态原子为能量最低的原子。

基态原子的电子吸收能量后,电子会跃迁到较高能级,变成激发态原子。

(2)基态原子与激发态原子相互转化与能量转化关系:4、构造原理与基态原子的核外排布随着原子核电荷数的递增,绝大多数元素的原子核外电子的排布将遵循如图的排布顺序,我们将这个顺序成为构造原理。

(1)它表示随着原子叙述的递增,基态原子的核外电子按照箭头的方向在各能级上依此排布:1s,2s,2p,3s,3p,4s,3d,4p,5s,4d,5p,6s……这是从实验得到的一般规律,适用于大多数基态原子的核外电子排布。

化学结构知识点总结归纳

化学结构知识点总结归纳

化学结构知识点总结归纳结构化学是化学中非常重要的一个分支,它涉及到分子和原子之间的结构、键合情况和空间构型等方面。

结构化学的研究对于理解化学反应、理论计算和新材料设计等方面都具有重要的意义。

在这篇文章中,我将对结构化学的一些重要知识点进行总结归纳,希望能够对读者有所帮助。

1. 分子结构分子是由原子通过共价键连接而成的化合物,它们具有固定的结构和空间构型。

分子的结构包括分子式、键长、键角、二面角和立体构型等方面。

分子式是用来表示分子中原子种类和数量的化学式,例如H2O表示水分子,CH4表示甲烷分子。

而键长和键角则是描述分子内原子之间的相对位置关系,它们对分子的性质和反应活性都有很大影响。

此外,二面角和立体构型也是分子结构中重要的参数,它们描述了分子中的空间构型及其对分子性质和反应活性的影响。

2. 共价键共价键是原子之间通过共享电子而形成的化学键,它是最常见的一种化学键类型。

共价键的形成和特性对于分子结构和化学性质有着重要影响。

共价键可以分为σ键和π键两种类型,其中σ键是由原子轴向的轨道重叠形成的键,而π键则是由平行轨道的重叠形成的键。

另外,共价键的长度和强度也与原子的电负性和分子的结构有很大关系。

共价键的性质和特性是结构化学研究的一个重要内容。

3. 杂化轨道杂化轨道是描述分子中原子轨道混成现象的概念,它对于分子结构的解释和分析具有重要意义。

杂化轨道的形成是由于原子在形成共价键时,其原子轨道发生重叠和混合的现象。

根据杂化轨道理论,sp、sp2、sp3和sp3d等不同种类的杂化轨道可以解释分子中的不同键型和分子构型。

杂化轨道对于理解分子的稳定性、反应活性和构型优劣有着重要的帮助。

4. 共振结构共振结构是由于某些分子存在多种等价的共振式结构而导致的一种描述方式。

通过引入共振结构,可以更好地解释分子中原子位置和键型的不确定性。

共振结构对于分子结构和稳定性的理解非常重要,它可以直观地反映分子中的电子分布情况和电荷分布情况,有助于预测分子的性质和反应活性。

分子结构知识点总结化学

分子结构知识点总结化学

分子结构知识点总结化学一、分子的构成分子是物质的最小单元,由一个或多个原子通过共价键相互连接而成。

在分子中,原子的排列和连接方式决定了分子的性质。

分子的构成主要由原子的种类和数量决定。

不同种类的原子组合形成不同的分子,而相同种类的原子通过不同的连接方式也可以形成多种不同的分子。

例如,氧气分子由两个氧原子通过双键相连而成,水分子由一个氧原子和两个氢原子通过两个共价键相连而成。

二、分子的形状分子的形状是由原子间的排列和连接方式决定的,原子间的排列和连接方式受到原子之间的吸引力和排斥力的影响。

根据VSEPR理论(分子的价层电子对云模型),分子的形状是由分子中心原子周围的电子对的排布方式决定的。

根据VSEPR理论,分子的形状可以分为线性分子、三角平面分子、四面体分子、五面体分子等多种形状。

分子的形状直接影响着分子的性质,如分子的极性、电荷分布等。

三、共价键的理论与结构共价键是由原子之间的价电子对相互共享而形成的一种化学键。

共价键的理论通过描述共价键的生成原理和性质对化学反应的机理和过程进行了深入的研究。

根据共价键的理论,分子中的原子通过共价键连接在一起,形成了分子的稳定结构。

根据共价键的结构,可以将分子的形状、极性等性质进行详细的分析和预测。

四、分子结构的测定方法目前,研究人员通过多种方法来测定和研究分子的结构特性,主要包括X射线衍射、核磁共振、红外光谱等多种方法。

其中,X射线衍射是一种能够直接测定分子结构的方法,通过测定分子中原子之间的距离和角度等参数来确定分子的空间结构。

核磁共振可以通过测定分子中原子的核磁共振信号来分析分子中原子的排列和连接方式。

红外光谱可以通过分子吸收、散射不同波长的红外辐射来分析分子的化学键和结构。

总之,分子结构是化学领域中一个重要的研究课题,分子的构成、形状、共价键的理论和结构以及分子结构的测定方法都是理解和研究分子结构的重要知识点。

通过对这些知识点的深入研究,可以更好地理解化学反应的机理,并且为设计新的材料和药物提供理论基础。

结构化学知识点归纳

结构化学知识点归纳

结构化学知识点归纳结构化学是研究分子及其化学性质的一门学科,旨在理解和预测化学反应、反应机理和分子结构与性质之间的关系。

下面是对结构化学常见的知识点进行的归纳。

1.分子结构与键-原子和分子的电子排布决定了它们的分子结构。

共价键形成时,原子通过共用电子对来相互结合,并形成分子的骨架。

-单、双、三键分别由1、2、3个电子对共享而成。

-极性键是由两个不同电负性的原子之间形成的键,其中一个原子更具电负性,吸引电子密度,形成部分正电荷;而另一个原子带有部分负电荷。

-非极性键是由两个电负性接近的原子相互作用形成的键。

2.分子构象-分子构象是分子在空间中可采取的不同形状和结构。

分子可以通过旋转化学键和自由旋转的化学键来改变其构象。

-分子内部的官能团之间的键角、键长和孤对电子的位置是决定分子构象的重要因素。

3.同分异构体-同分异构体是化学物质的两个或多个形式,它们有相同的分子式但具有不同的结构和化学性质。

-构造异构体是同分异构体的一种类型,它们在分子结构中的连接方式不同。

-空间异构体是同分异构体的另一种类型,它们的分子结构在空间中三维排列不同。

4.分子间力- Van der Waals力是分子间相互作用的一种类型。

它包括范德华力、氢键和离子-离子相互作用。

-范德华力是分子间由于电子的瞬时分布而产生的吸引力。

-氢键是分子间弱的相互作用力,它包括一个原子的氢原子与另一个原子上的具有独立电子对的原子之间的相互作用。

-离子-离子相互作用是由带正电荷的离子与带负电荷的离子之间的相互作用引起的。

5.分子轨道理论-分子轨道理论描述了分子中电子的行为。

它是通过将原子轨道线性组合来形成分子轨道。

-通过具有不同形状和能量的分子轨道,可以解释分子的化学性质,例如化学键的形成和分子的反应性。

-前线分子轨道是分子中电子占据的能量最低的、决定反应性的分子轨道。

以上是结构化学的一些常见知识点的归纳。

结构化学的学习可以更好地理解化学反应和物质的性质,进而应用于有机合成、药物研发和材料科学等领域。

结构化学知识点汇总

结构化学知识点汇总

结构化学知识点汇总关键信息项:1、原子结构原子轨道电子排布原子光谱2、分子结构化学键类型分子几何构型分子的极性3、晶体结构晶体类型晶格结构晶体的性质11 原子结构111 原子轨道原子轨道是描述原子中电子运动状态的数学函数。

主要包括s 轨道、p 轨道、d 轨道和 f 轨道。

s 轨道呈球形对称,p 轨道呈哑铃形,d 轨道和 f 轨道形状更为复杂。

112 电子排布遵循泡利不相容原理、能量最低原理和洪特规则。

电子按照一定的顺序填充在不同的原子轨道上,形成原子的电子构型。

113 原子光谱原子在不同能级间跃迁时吸收或发射的光子所形成的光谱。

包括发射光谱和吸收光谱,可用于分析原子的结构和成分。

12 分子结构121 化学键类型共价键:通过共用电子对形成,分为σ键和π键。

离子键:由正负离子之间的静电引力形成。

金属键:存在于金属晶体中,由自由电子和金属离子之间的相互作用形成。

氢键:一种特殊的分子间作用力,比一般的范德华力强。

122 分子几何构型通过价层电子对互斥理论(VSEPR)和杂化轨道理论来解释和预测。

常见的分子构型有直线型、平面三角形、四面体型、三角双锥型和八面体型等。

123 分子的极性取决于分子中正负电荷中心是否重合。

极性分子具有偶极矩,非极性分子则没有。

13 晶体结构131 晶体类型离子晶体:由离子键结合而成,具有较高的熔点和硬度。

原子晶体:通过共价键形成,硬度大、熔点高。

分子晶体:分子间以范德华力或氢键结合,熔点和硬度较低。

金属晶体:由金属键维系,具有良好的导电性和导热性。

132 晶格结构晶体中原子、离子或分子的排列方式。

常见的晶格有简单立方、体心立方、面心立方等。

133 晶体的性质各向异性:晶体在不同方向上的物理性质不同。

自范性:能够自发地呈现出多面体外形。

固定的熔点:在一定压力下,晶体具有固定的熔点。

21 量子力学基础211 薛定谔方程是描述微观粒子运动状态的基本方程,通过求解该方程可以得到粒子的能量和波函数。

物质的结构必考知识点归纳

物质的结构必考知识点归纳

物质的结构必考知识点归纳物质的结构是化学和物理学中的基础概念,它涉及到原子、分子、晶体等微观粒子的组成和排列方式。

以下是物质结构的必考知识点归纳:1. 原子结构:原子是物质的基本单位,由原子核和电子组成。

原子核包含质子和中子,而电子在原子核周围以特定的轨道运动。

2. 元素周期表:元素周期表是按照原子序数排列的元素列表,它展示了元素的周期性和族性。

元素的化学性质主要由其原子序数决定。

3. 化学键:化学键是原子之间通过共享、转移或吸引电子而形成的连接。

主要类型有共价键、离子键和金属键。

4. 分子结构:分子是由两个或更多原子通过化学键连接而成的稳定结构。

分子的几何形状和化学性质受其原子排列和化学键类型的直接影响。

5. 晶体结构:晶体是由原子、离子或分子按照一定规律排列形成的固体。

晶体结构的类型包括立方晶系、四方晶系、六方晶系等。

6. 晶格缺陷:晶格缺陷是晶体中原子排列的不规则性,包括点缺陷、线缺陷和面缺陷。

这些缺陷会影响晶体的物理性质。

7. 非晶体与准晶体:与晶体相比,非晶体没有长程有序的原子排列,而准晶体则具有长程有序但不具备传统晶体的周期性。

8. 纳米材料:纳米材料是指具有纳米尺度(1-100纳米)的材料,它们展现出独特的物理化学性质,如量子效应、表面效应等。

9. 超分子化学:超分子化学研究分子之间通过非共价键(如氢键、π-π堆叠等)形成的复杂结构和功能。

10. 材料的宏观性质与微观结构的关系:材料的宏观性质,如硬度、弹性、导电性等,与其微观结构紧密相关。

例如,金属的导电性与其自由电子的分布有关。

11. X射线晶体学:X射线晶体学是一种用于确定晶体结构的技术,通过测量X射线在晶体中的衍射模式来解析原子的位置。

12. 扫描隧道显微镜:扫描隧道显微镜(STM)是一种能够观察到原子尺度表面结构的仪器,它利用量子隧道效应来探测样品表面的电子态。

这些知识点是物质结构领域的基础,对于理解物质的组成、性质和反应机制至关重要。

结构化学讲义

结构化学讲义

第一章 量子力学基础和原子结构第1节 量子力学建立的实验和理论背景㈠ 黑体辐射问题和普朗克的量子假说 1. 黑体辐射问题黑体可以吸收全部的外来辐射,同时黑体在所有温度下不断地向外辐射电磁波。

在试图对黑体辐射的能量分布曲线进行理论解释时,人们发现,在经典物理的范畴内无法解决这个问题。

2. 普朗克的量子假说为解释黑体辐射问题,普朗克假设:能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。

而经典物理则认为:一切自然的过程都是连续不断的。

①把黑体看作是由不同频率的谐振子组成。

(谐振子是进行简谐运动的振子,其运动可用正弦或余弦函数描述)②谐振子的能量具有最小单位ε0,称为能量子(后称为量子),00νεh =其中,h =6.626×10-34 J ⋅s 称为普朗克常数;ν0是谐振子的振动频率。

③谐振子的能量E 只能是最小单位ε 0的整数倍,而不能是其它值,...,,n n E 3210==ε④谐振子吸收或发射能量时,能量的变化为()()01201212νε∆h n n n n E E E --=-==即,能量的吸收和发射不是连续的,必须以量子的整数倍一份一份的进行。

所谓量子化是指物理量不连续变化。

㈡ 光电效应和爱因斯坦的光量子论 1. 光电效应光电效应是指,光照在金属表面上时,金属中的电子从光获得足够的能量而逸出金属表面的现象。

从金属表面逸出的电子称为光电子,由光电子形成的电流称为光电流。

2. 光电效应的实验事实①对于特定的金属,入射光的频率ν必须大于某个特定值ν0,电子才能逸出,ν0称为临阈频率。

即,电子是否逸出决定于光的频率,与强度无关。

②对于ν>ν0的入射光,一经照射,电子立即逸出,没有时间上的延迟。

即,没有能量的积累过程。

③逸出电子的动能随光的频率而增加,与光的强度无关。

④光的强度越大,逸出的电子越多。

即,逸出电子的数量,决定于光的强度,与频率无关。

3. 经典电磁理论的困难按照经典电磁理论:⑴光是电磁波,其能量由波的强度决定,光的强度越大,光电子的动能应该越大;⑵电子吸收光的能量是一个连续积累的过程,低强度的光长时间照射应该能使光电子逸出;⑶频率越高,振动就越频繁,应该使更多的电子逸出。

结构化学知识点归纳

结构化学知识点归纳

结构化学知识点归纳结构化学知识点归纳根据北京大学出版社周公度编写的“结构化学”总结第一章量子力学基础知识一、微观粒子的运动特征h1. 波粒二象性:E =h ν, p =λ2. 测不准原理:∆x ∆p x ≥h , ∆y ∆p y ≥h , ∆z ∆p z ≥h , ∆t , ∆E ≥h 二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x , y , z , t ) 来描述,它包括体系的全部信息。

这一函数称为波函数或态函数,简称态。

不含时间的波函数ψ(x , y , z ) 称为定态波函数。

在本课程中主要讨论定态波函数。

由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。

在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψd τ为空间某点附近体积元d τ中电子出现的几率。

对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。

波函数ψ可以是复函数,2=ψ*⋅ψ合格(品优)波函数:单值、连续、平方可积。

2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。

算符:作用对象是函数,作用后函数变为新的函数。

线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算符。

ˆ(c ψ+c ψ) =c A ˆˆψ A 11221ψ1+c 2A 2*ˆˆψ) *d τ的算符。

(A ψ1)d τ=∫ψ2(A 自厄算符:满足∫ψ21自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正交。

ˆ作用于某一状态函数ψ,等于某一常数a 乘3. 假设3:若某一物理量A 的算符Aˆψ=a ψ,那么对ψ所描述的这个微观体系的状态,物理量A 具有确以ψ,即:Aˆ的本证值,ψ称为A ˆ的本证函数。

知识点总结化学物质结构

知识点总结化学物质结构

第一章物质结构元素周期律一、原子结构1、原子A ZX中,质子有Z 个,中子有A-Z 个,核外电子有Z 个。

2、质量数(A)= 质子数(Z)+ 中子数(N)(质量数在数值上等于其相对原子质量)原子中:原子序数= 核电荷数= 质子数= 核外电子数阳离子中:质子数=核电荷数=离子核外电子数+ 离子电荷数阴离子中:质子数=核电荷数=离子核外电子数- 离子电荷数3、电子层划分电子层数 1 2 3 4 5 6 7符号K L M N O P Q离核距离近远能量高低低高4、核外电子排布规律(一低四不超)(1)核外电子总是尽先排布在能量低的电子层,然后由里向外从能量低的电子层逐步向能量高的电子层摆布(即排满K层再排L层,排满L层再排M层)。

(2)各电子层再多容纳的电子数是2n2 个(n表示电子层)(3)最外层电子数不超过8个(K层是最外层时,最多不超过2 个);次外层电子数不超过18 个;倒数第三层不超过32 个。

5、概念元素:具有相同核电荷数的同一类原子的总称核电荷数决定元素种类核素:具有一定数目质子和一定数目中子的一种原子。

同位素:质子数相同而中子数不同的同一元素的不同原子之间的互称。

例:氕(1 1H)、氘(2 1D )、氚(3 1T )同素异形体:同种元素原子组成结构不同的不同单质之间的互称。

例:O2与O3,白磷与红磷,石墨与金刚石等6、粒子半径大小的比较(1)同周期元素的原子或最高价阳离子的半径随着核电荷数的增大而逐渐减小(除稀有气体外)。

例:Na>Mg>Al>Si, Na+>Mg2+>Al3+(2)同主族元素的原子或离子随核电荷数增大而逐渐增大。

例:Li<Na<K, Li+<Na+<K+ (3)电子层结构相同(核外电子排布相同)的离子半径(包括阴阳离子)随核电荷数的增加而减小。

例:O2->F->Na+>Mg2+>Al3+(上一周期元素形成的阴离子与下一周期元素形成的阳离子有此规律)(4)同种元素原子形成的粒子半径大小为:阳离子<中性原子<阴离子;价态越高的粒子半径越小。

结构化学知识点汇总

结构化学知识点汇总

结构化学知识点汇总结构化学是一门研究原子、分子和晶体结构以及它们与性质之间关系的学科。

这门学科对于理解物质的本质、化学反应的机制以及材料的性能等方面都具有重要意义。

以下是对结构化学一些重要知识点的汇总。

一、原子结构1、波粒二象性物质具有波粒二象性,即既表现出粒子的特性,又表现出波的特性。

对于微观粒子,如电子,其运动不能用经典力学来描述,而需要用量子力学。

2、薛定谔方程薛定谔方程是描述微观粒子运动状态的基本方程。

通过求解薛定谔方程,可以得到原子中电子的可能状态和能量。

3、原子轨道原子中的电子处于不同的原子轨道上。

原子轨道具有不同的形状和能量,常见的有 s、p、d、f 轨道。

4、电子排布根据能量最低原理、泡利不相容原理和洪特规则,电子在原子轨道上进行排布。

这决定了原子的电子构型和化学性质。

二、分子结构1、化学键化学键包括离子键、共价键和金属键。

共价键又分为σ键和π键。

离子键是通过正负离子之间的静电作用形成的;共价键是原子之间通过共用电子对形成的;金属键则是金属原子之间的自由电子和金属阳离子之间的相互作用。

2、杂化轨道理论原子在形成分子时,其原子轨道会发生杂化,形成杂化轨道。

常见的杂化轨道类型有 sp、sp²、sp³等,杂化轨道的类型决定了分子的空间构型。

3、分子的几何构型通过价层电子对互斥理论(VSEPR)可以预测分子的几何构型。

该理论认为,分子中中心原子的价层电子对相互排斥,从而使分子具有特定的空间构型。

4、分子的极性分子的极性取决于分子的构型和键的极性。

如果分子的正电荷中心和负电荷中心重合,则分子为非极性分子;否则为极性分子。

三、晶体结构1、晶体的类型晶体分为离子晶体、原子晶体、分子晶体和金属晶体。

不同类型的晶体具有不同的物理性质,如熔点、硬度、导电性等。

2、晶格和晶胞晶体中的原子、离子或分子在空间有规则地排列,形成晶格。

晶胞是晶格的最小重复单元,通过晶胞可以描述整个晶体的结构。

高考结构化学知识点

高考结构化学知识点

高考结构化学知识点在高中化学教学中,结构化学是一个非常重要的内容。

它既是学生学习化学的基础,也是后续学习有机化学、无机化学和生物化学等领域的前提知识。

本文将重点介绍高考结构化学的知识点,帮助学生更好地复习和备考。

一、化学键化学键是物质中形成化合物的力量,可以分为离子键、共价键和金属键等。

离子键是由阳离子和阴离子之间的强烈电荷吸引形成的。

离子键的特点是固定方向性、高熔点和良好的导电性。

共价键是由共享电子对形成的,可以分为单共价键、双共价键和三共价键。

共价键的特点是共享电子对、共价长度和共价极性。

金属键是金属元素中原子与周围原子之间的电子云形成的强大吸引力。

金属键的特点是良好的导电性和变形性。

二、分子和离子分子是由两个或多个原子通过化学键结合而成的粒子。

在化学反应中,分子往往作为物质的最小单位参与。

比如水分子H2O是由氢原子和氧原子组成。

离子是具有电荷的原子或原子团,可以是带正电荷的阳离子或带负电荷的阴离子。

离子之间通常通过离子键结合形成离子晶体。

比如Na+和Cl-形成的离子晶体就是盐。

三、分子式和分子式分子式是用元素符号和下标表示化合物所含元素的种类和数量。

比如H2O表示水分子中有两个氢原子和一个氧原子。

分子式可以通过比例关系进行简化,例如NaCl表示氯化钠。

分子式有助于我们快速了解化合物的组成,也方便我们进行化学计算和反应方程式的编写。

四、同分异构体同分异构体是指分子式相同、结构式不同的化合物。

由于它们的分子组成完全相同,但结构不同,所以它们的化学特性也会有所不同。

同分异构体是现代有机化学的一个重要概念,对于理解有机物的性质和反应机理非常重要。

五、官能团官能团是有机化合物分子中具有一定特定性质和反应性的部分。

常见的官能团包括羟基、羰基、羧基、胺基、卤原子等。

官能团可以决定有机化合物的性质和反应性,为我们研究和分类有机物提供了重要的依据。

六、立体化学立体化学研究的是有机化合物中原子或基团的立体排布和空间结构。

结构化学知识点汇总

结构化学知识点汇总

结构化学知识点汇总一、原子结构1、波粒二象性德布罗意波长公式:λ = h / p ,其中λ为波长,h 为普朗克常量,p 为动量。

海森堡不确定原理:ΔxΔp ≥ h /4π ,表明不能同时精确测定粒子的位置和动量。

2、原子轨道薛定谔方程:用于描述原子中电子的运动状态。

原子轨道的形状:s 轨道为球形,p 轨道为哑铃形。

原子轨道的能量:能层和能级的概念,以及能级交错现象。

3、电子自旋电子自旋量子数:取值为+1/2 和-1/2 。

泡利不相容原理:一个原子轨道最多只能容纳两个自旋相反的电子。

二、分子结构1、化学键离子键:由正负离子之间的静电引力形成。

共价键价键理论:包括原子轨道重叠、共价键的方向性和饱和性。

杂化轨道理论:解释分子的几何构型。

价层电子对互斥理论:预测分子的空间构型。

金属键:金属原子之间通过自由电子形成的化学键。

氢键:一种特殊的分子间作用力,具有方向性和饱和性。

2、分子的极性极性分子和非极性分子的判断依据:分子的正负电荷重心是否重合。

分子极性对物质性质的影响:如溶解性、熔沸点等。

3、分子间作用力范德华力:包括色散力、诱导力和取向力。

范德华力对物质物理性质的影响。

三、晶体结构1、晶体的特征有固定的熔点和规则的几何外形。

内部质点在三维空间呈周期性有序排列。

2、晶体的分类离子晶体:具有较高的熔点和硬度,如 NaCl 。

原子晶体:熔点和硬度很高,如金刚石。

分子晶体:熔点和硬度较低,如干冰。

金属晶体:具有良好的导电性和导热性,如铜。

3、晶胞晶胞的概念:晶体结构的基本重复单元。

晶胞中原子的占有率计算。

四、光谱学1、原子光谱发射光谱和吸收光谱。

原子光谱的应用:元素分析、测定原子结构。

2、分子光谱红外光谱:用于研究分子的化学键和官能团。

紫外可见光谱:反映分子中电子的跃迁。

五、量子化学计算方法1、从头算方法基于薛定谔方程的精确求解。

计算量较大,但结果较为准确。

2、半经验方法引入一些经验参数简化计算。

计算速度较快,但精度相对较低。

分子和结构知识点总结

分子和结构知识点总结

分子和结构知识点总结一、分子和分子结构的概念1. 分子的概念分子是物质的最小单位,由原子组成,是具有一定稳定性和特定化学性质的微粒。

分子是原子通过共价键或离子键结合而成的。

每种物质都具有其特定的分子结构。

2. 分子结构的概念分子结构是指分子中各原子之间的相对位置和运动方式。

分子结构决定了事物的化学性质和物理性质。

二、分子模型1. 杨氏模型杨氏模型是用查特雷尔斯的图形分子构造理论来加以解释的,这是以“简单立方体”如稠密固体分子构造七普林排列更为合理。

这一模型在实验尚未确凿的情况下已通过推理来论证了分子的构造。

2. 平面六边形模型平面六边形模型是分子运动新用查特雷尔斯的图形分子构造理论为主的分子结构模型的简化记载,这种模型在理论预测结果尚未得到实验证实,实体没有确定以后就得已推证确立。

不过这一模型的基础概念是来自物理学中分子运动的图说文献。

3. 三角形分子模型三角形分子构造模型又从图说法中附加了以生成图论为基础的分子结构正面三角形模型更适用的构造分子理论来和辐射系议而较理想的融合型再得以进一步发展。

三、共价键和离子键1. 共价键共价键是由原子间的电子对相互共享而形成的化学键。

共价键又分为单共价键、双共价键和三共价键。

2. 离子键离子键是原子之间的电子迁移而形成的化学键。

在这种键中,金属原子失去电子为阳离子,非金属原子得到电子为阴离子。

四、分子结构的影响因素1. 电子构型原子的电子构型决定了分子的构造,包括了分子是由共价键还是离子键而成。

2. 氧化数氧化数是元素的化合价。

氧化数越高,化合物的共价性越大。

3. 原子大小原子大小对分子结构也有影响。

原子大小决定了分子的空间构型。

4. 分子间力分子间力是决定物质态的重要因素。

分子间力包括范德华力、氢键等。

五、共价分子结构1. 单原子分子单原子分子是由一种元素组成的分子。

例如,氢气、氮气、氧气。

2. 双原子分子双原子分子是由两种元素组成的分子。

例如,氧气(O2)、氮气(N2)。

结构化学基础知识点总结[参考]

结构化学基础知识点总结[参考]

结构化学基础知识点总结[参考]一、原子结构与原子能1、原子结构:原子是最小的具有化学性质的物质单位,原子结构由原子核和电子组成。

原子核由正电荷和非常小的负电荷组成,其质量约为原子的七十分之一。

电子的电荷为负,小,它的质量约为原子的三万分之一。

2、原子层次:电子位级是决定原子性质的内部结构,它将电子分成分子、原子层、最低能量状态等不同的层次,每一层的电子能量和每层的电子数在这一层上都是一定的。

3、原子能:原子的特征主要基于原子能。

原子能是原子核里的质子和中子相互反作用时所产生的能量,其势能和机械能在原子内部形成了重要的离散能级,其能级的高低决定着原子的性质。

二、原子结合1、杂原子结合:杂原子结合是指由不同元素构成的分子,例如水分子、由氢、氧组成的有机分子等,它们的特性与它们构成分子的元素,强度以及键数有关,从这些特性可以分辨出不同的化合物的性质。

2、非离子结合:非离子结合是指两个有共同亲和力的原子形成结合的一种结合方式,它们之间的结合是由相互分子对激发的吸引力维持的,例如氢键等,它不仅能定义分子的构型,而且还能定义分子的易燃性、电离性等一系列特性。

3、离子结合:离子结合是指一种具有一定形状的离子由于它们之间及其外围有机分子的电荷分布而形成的一种极性结合,它的调整能有来控制原子结合能从而控制它的性质。

三、离子化1、离子化反应:离子化反应是指有机分子或其它物质被离子(带电离子)分解而形成离子络合物的一类物质反应。

如水解反应等。

2、离子网络:离子网络是指各种结构不同的离子团簇相互联结而成的网络结构。

它由共有电子对或共有质子对不断构成,结构十分坚固,可以改变热,紫外等波长的电磁辐射的传播状态,也具有非常重要的作用。

3、离子热:离子热是指原子以及离子的极性的能量的转变,它与常温下无机物质之间的反应有较大的区别,一般表现为高温下才会形成有机反应,因此,离子热是一个相对比较高热的反应系统。

化学结构知识点

化学结构知识点

化学结构知识点化学结构是化学领域中非常重要的一个概念,它涉及了许多化合物、分子和化学反应。

在有机化学、无机化学、生物化学等各个领域中,化学结构都有着至关重要的作用。

本文将介绍一些基本的化学结构知识点。

一、原子结构原子是构成物质的基本单位之一,它由原子核和电子组成。

原子核由质子和中子组成,而电子则围绕原子核旋转。

原子的质量和化学性质都取决于其中的质子和电子数量。

在化学结构中,原子常常用元素符号表示。

元素符号是由拉丁文名称中的第一个或前两个字母构成,如氢元素的符号为H,氧元素的符号为O。

二、分子结构分子是由两个或更多原子通过共价键紧密结合而形成的基本单位,分子中的原子数可以是相同的也可以不同。

分子结构是分子中各个原子之间的相对位置和排列方式,它直接决定了分子的物理和化学性质。

分子结构的表示通常采用分子式和结构式。

分子式是用元素符号和阿拉伯数字表示分子中各个原子的数量和种类,如H2O表示水分子。

结构式则是用线或点代表化学键或原子,在图形上表示分子结构。

常用的结构式有平面式、空间式和投影式等。

三、化学键化学键是分子中原子之间的结合力,它是分子稳定存在的基础。

化学键的种类有共价键、离子键、金属键和范德华力等。

共价键是有机物和无机物中最基本的一种化学键,它涉及了原子与原子之间电子的共享。

共价键的长度、角度和强度都取决于原子种类、电子数和结构。

离子键是由阳离子和阴离子间的静电作用力形成的吸引力,通常存在于离子晶体和离子化合物中。

金属键是金属原子间的电子共享力和金属离子间的库伦静电作用力的相互作用。

金属键常常体现为金属分子中固有的可变形性、延展性和导电性等特点。

范德华力是分子之间短程作用力,它是分子中非极性原子或分子间电子云的瞬时偏移引起的。

四、功能基团功能基团是一类特定的原子或原子团,它们在化学反应中起到了特殊的作用。

有机化合物中最常见的功能基团有羟基、酯基、酮基、酰胺基、醛基、氨基、硫醇基等。

在有机化学中,学生需要识别和理解不同功能基团的化学反应对应,使得他们能够正确命名和预测化合物的物理和化学性质。

结构化学基础知识点总结

结构化学基础知识点总结

结构化学基础第一章量子力学基础:经典物理学是由Newton(牛顿)的力学,Maxwell(麦克斯韦)的电磁场理论,Gibbs(吉布斯)的热力学和Boltzmann(玻耳兹曼)的统计物理学等组成,而经典物理学却无法解释黑体辐射,光电效应,电子波性等微观的现象。

黑体:是一种可以全部吸收照射到它上面的各种波长辐射的物体,带一个微孔的空心金属球,非常接近黑体,进入金属球小孔的辐射,经多次吸收,反射使射入的辐射实际全被吸收,当空腔受热,空腔壁会发出辐射,极少数从小孔逸出,它是理想的吸收体也是理想的放射体,若把几种金属物体加热到同一温度,黑体放热最多,用棱镜把黑体发出的辐射分开就可测出指定狭窄的频率范围的黑体的能量。

规律:频率相同下黑体的能量随温度的升高而增大,温度相同下黑体的能量呈峰型,峰植大致出现在频率范围是0.6-1.0/10-14S-1。

且随着温度的升高,能量最大值向高频移动.加热金属块时,开始发红光,后依次为橙,白,蓝白。

黑体辐射频率为v的能量是hv的整数倍.光电效应和光子学说:Planck能量量子化提出标志量子理论的诞生。

光电效应是光照在金属表面上使金属放出电子的现象,实验证实:1.只有当照射光的频率超过金属最小频率(临阈频率)时,金属才能发出电子,不同金属的最小频率不同,大多金属的最小频率位于紫外区。

2.增强光照而不改变照射光频率,则只能使发射的光电子数增多,不影响动能。

3.照射光的频率增强,逸出电子动能增强。

光是一束光子流,每一种频率的光的能量都有一个最小单位光子,其能量和光子的频率成正比,即E=hv光子还有质量,但是光子的静止质量是0,按相对论质能定律光子的质量是m=hv/c2光子的动量:p=mc=hv/c=h/波长光的强度取决于单位体积内光子的数目,即光子密度。

光电效应方程:hv(照射光频率)=W(逸出功)+E(逸出电子动能)实物微粒的波粒二象性:由de Broglie(德布罗意)提出:p=h/波长电子具有粒性,在化合物中可以作为带电的微粒独立存在(电子自身独立存在,不是依附在其他原子或分子上的电子)M.Born(玻恩)认为在空间任何一点上波的强度(即振幅绝对值平方)和粒子出现的概率成正比,电子的波性是和微粒的统计联系在一起,对大量的粒子而言衍射强度(波强)大的地方粒子出现的数目就多概率就大,反之则相反。

高考化学结构化学知识点

高考化学结构化学知识点

高考化学结构化学知识点化学是一门科学,研究物质组成、性质和变化规律的科学。

而在高考中,结构化学是化学中的重要知识点之一。

结构化学研究物质的空间结构、分子的构成及其之间的相互作用。

接下来,我们将深入探讨高考中的结构化学知识点。

一、原子结构结构化学的起点是原子结构,它是构成物质的基本单元。

元素周期表是化学家们长期研究得出的重要成果。

元素周期表以其规律性和统一性而获得广大化学家的认可。

根据元素周期表,我们可以了解到不同元素的原子组成和结构特征,例如原子序数、原子量等。

二、分子结构分子是元素或化合物的最小化学单位,是由原子通过化学键结合而成。

在结构化学中,我们需要了解分子中原子的排列方式以及化学键的性质。

其中,共价键是最常见的化学键,两个或更多原子通过共用电子对结合在一起。

离子键是由带电离子之间的相互吸引所形成的。

金属键则是由金属原子之间的电子云相互作用所形成的。

三、键长和键能键长和键能是结构化学中的重要概念。

键长指的是两个相邻原子核之间的距离,键能则是化学键形成时释放或吸收的能量。

键长和键能与化学键的强度相关,例如,较短的键长和较大的键能表示较强的化学键。

四、分子构象分子构象是指分子在空间中的排列方式。

由于化学键的旋转和振动,许多分子具有不同的构象。

分子构象对于研究分子的性质和反应机制非常重要。

例如,立体异构体是指具有相同分子式但空间结构不同的分子,它们可能具有不同的物理和化学性质。

五、化学反应化学反应是物质之间发生的变化过程,是结构化学研究的核心内容之一。

在高考中,我们需要了解不同化学反应的机理和分类。

化学反应的速率、平衡和能量变化等也是结构化学的重要方面。

六、配位化学配位化学研究的是金属离子和其他原子或分子之间的相互作用。

通常,金属离子由配位体与之配对形成配合物。

在高考中,配位化学是一个重要的考点,我们需要了解金属配合物中金属离子的电子结构以及配位体对其形成稳定配合物的影响。

七、分子轨道理论分子轨道理论是研究分子的电子结构的关键理论之一。

高三化学结构部分知识点

高三化学结构部分知识点

高三化学结构部分知识点化学结构是高中化学中的重要考点之一,它主要涉及物质的组成、形态和性质等方面的知识。

掌握好化学结构的知识点对于高三化学的学习和备考具有重要意义。

下面,我们将详细介绍高三化学结构部分的知识点。

一、物质的构成1. 原子:物质的最小单位是原子,它由质子、中子和电子组成。

质子和中子位于原子核中,电子绕核运动。

2. 元素:由具有相同原子序数的原子组成,例如氢、氧、金等。

元素通过化学符号表示,如H代表氢,O代表氧。

3. 分子:相同或不同原子通过共价键连接而成,是物质的基本单位。

如H2代表氢气,O2代表氧气。

4. 离子:指具有电荷的原子或原子团,可分为阳离子和阴离子。

阳离子带正电,阴离子带负电。

如Na+代表钠离子,Cl-代表氯离子。

二、化学键1. 离子键:由正负电荷的离子通过电荷吸引力结合而成,常见于金属与非金属的化合物中,如NaCl。

2. 共价键:由两个或多个原子通过电子的共用来相互连接,常见于非金属之间的化合物中,如H2O。

3. 金属键:金属元素中的原子通过电子云共享而连接,形成一种金属结构,如Fe, Cu。

三、分子结构1. 线性分子:分子中的原子排列在一条直线上,如二氧化碳(CO2)。

2. 非线性分子:分子中的原子排列不在一条直线上,如水分子(H2O)。

3. 极性分子:分子中的原子间存在电荷不均匀分布,导致分子具有正负极性,如水分子(H2O)。

四、等电子体与共价键等电子体指具有相同电子数或相同电子排布的物质,由于它们具有相同的电子结构,因此它们在化学性质上通常具有相似性。

共价键是通过共享电子实现的,当原子之间共享的电子对数目相等时,它们的价电子层就变成等电子体。

五、分子与晶体分子和晶体是物质存在的两种基本形式。

1. 分子:由非金属元素或非金属化合物构成,分子间通过相互作用力连接。

分子可以是单质,如氢气(H2),也可以是化合物,如水(H2O)。

2. 晶体:由金属或离子化合物构成,晶体结构呈规则排列。

(完整版)物质结构与性质知识点总结

(完整版)物质结构与性质知识点总结

高中化学物质结构与性质知识点总结一.原子结构与性质.一.认识原子核外电子运动状态,了解电子云、电子层(能层)、原子轨道(能级)的含义.1.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会太,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.(构造原理)了解多电子原子中核外电子分层排布遵循的原理,能用电子排布式表示1〜36号元素原子核外电子的排布.(1).原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.在含有多个核外电子的原子中,不存在运动状态完全相同的两个电子.(2).原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占丕同的轨道,且自旋状态相同. 洪特规则的特例:在等价轨道的全充满(p6、d i0、f i4)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s i、29Cu [Ar]3d io4s i.(3).掌握能级交错图和1-36号元素的核外电子排布式.ns (n-2)f (n-l)d. up①根据构造原理,基态原子核外电子的排布遵循图⑴箭头所示的顺序。

②根据构造原理,可以将各能级按能量的差异分成能级组如图⑵所示,由下而上表示七个能级组,其能量依次升高;在同一能级组内,从左到右能量依次升高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:原子结构
1. S能级有个原子轨道,P能级有个原子轨道,d能级有个原子轨道,同一能级的原子轨道能量,每个原子轨道最多可以排个自旋方向相反的电子。

当2P能级有2个未成对电子时,该原子可能是或者,当3d能级有2个未成对电子时,该原子可能是或者。

2. S轨道图形为,P轨道图形为沿三维坐标轴x y z 对称分布的纺锤形。

3. 主族元素的价电子就是电子,副族元素的价电子为与之和(Cu和Zn除外)。

4. 19∼36号元素符号是:
它们的核外电子排布是:
5. 元素周期表分,,,,五大区。

同周期元素原子半径从左到右
逐渐,原子核对外层电子吸引力逐渐,电负性及第一电离能逐渐,(ⅡA,ⅤA 特殊);同主族元素原子半径从上到下逐渐,电负性及第一电离能逐渐。

6. 依照洪特规则,由于ⅡA族,ⅤA族元素原子价电子处于稳定状态,故其第一电离能比相邻同周期元素
原子,如:N>O>C ; Mg>Al>Na ,但是电负性无此特殊情况。

7. 电负性最强的元素是,其电负值为4.0 ,其次是,电负值为3.5
第二章化学键与分子间作用力
1.根据共价键重叠方式的不同,可以分为键和键,一个N2分子中有个σ键个П
键,电子式为。

根据共价键中共用电子对的偏移大小,可将共价键分为键和键,同种非金属原子之间是,不同原子之间形成。

2.共价键的稳定性与否主要看三个参数中的,越大,分子越稳定。

其次是看键长,键长
越短,分子越(键长与原子半径有正比例关系)。

键角与分子的空间构型有关,CO2,C2H2分子为直线型,键角是1800;CH4和CCl4为正四面体型,键角为;NH3分子构型为, H2O分子构型为,它们的键角均小于。

3.美国科学家鲍林提出的杂化轨道理论认为:CH4是杂化;苯和乙烯分子为杂化;
乙炔分子为杂化。

其他有机物分子中,全单键碳原子为杂化,双键碳原子为杂化,三键碳原子为杂化。

4. 价电子对互斥理论认为ABn型分子计算价电子对公式为,其中H 卤素原
子做配位原子时,价电子为个;O,S做配位原子时,不提供电子;如果带有电荷,做相应加减;
出现点五,四舍五入。

5. 价电子对数目与杂化方式及理想几何构型:
补充:如果配位原子不够,则无法构成理想结构。

6.等电子原理:。

如:CO2与CS2,N2O / N2与CO,CN-,NO+ / CH4与SiH4,NH4+, / NH3与H3O+ / SO42-与PO43-,ClO4- 7.如果分子中正负电荷重心重合,则该分子为非极性分子,否则为极性分子。

含有极性共价键的非极性分
子有CO2 CS2 CH4 SiH4 SO3 BeCl2 BF3 CCl4 SiCl4 PCl5 SF6。

含有非极性键的极性分子:
H2O2, N2H4 C2H2Cl2。

含有非极性键的离子化合物:Na2O2 CaO2
8. 金属原子与非金属原子化合时,往往形成离子键,但是也有例外:AlCl3 BeCl2。

阴阳离子所带电荷越多,离子半径越小,则形成的离子键越稳定,形成的离子晶体能越大,熔沸点及硬度越高。

如:MgO>NaCl CaCl2<MgCl2。

10. 配位键的形成要求一方原子有,另一方有。

常见的含有配位
键的物质有:NH4+[Al(OH)4]-[Ag(NH3)2]OH [Cu(NH3)4]SO4[Cu(H2O)4]SO4. H2O 胆矾
11. 强相互作用,叫做金属键。

金属导电是由
于金属内部的在电场中定向移动造成的;金属导热是由于高温处的电子通过与金属阳离子间的碰撞,把能量带到低温区;金属不透明而且具有光泽是因为。

12. 分子晶体类物质具有一定的熔沸点,硬度是因为分子间存在,结构相似的分子
,分子量越大,熔沸点越高。

结构和极性相似的分子之间可以互溶,如:非极性分子Br2 I2难溶于水,却易溶于苯,汽油,四氯化碳等有机溶剂。

13. 氢键易出现在,,三种分子之间和含有-OH; -COOH; -NH2的有机物
分子之间。

分子之间一旦形成氢键,往往导致沸点,溶解度升高;分子内部氢键一旦形成,往往导致沸点,溶解度降低。

第三章物质的聚集状态与性质
1. 晶体分为,,,四类。

晶体中最小的结构重复单元称为,晶胞都是大小,形状完全一样的平行六面体。

2.一个晶胞所包含的原子数常用分摊法计算,顶点占,棱边占,面心占,体
心占。

金属铜的晶胞为面心立方,一个这样的晶胞实际上含有个铜原子。

3. 金属晶体常见的三种堆积方式是,,。

4. NaCl的一个晶胞中实际上含有个Na+ 个Cl- ,晶体密度为g.cm-3,(假设:
晶胞边长为a nm)ZnS的晶胞中实际含有个Zn2+个S2-。

离子晶体熔点的高低常用的大小来衡量,晶格能与阴阳离子所带电荷乘积成比,与阴阳离子之间的距离成。

(阴阳离子之间的距离一般认为就是离子半径之和)
5. 配位数:晶体中,与一个原子或离子最近且接触的原子或离子数目。

NaCl晶胞的配位数是,
体心立方晶胞配位数是,面心立方和六方紧密堆积配位数为。

6.金刚石,水晶为晶体,金刚石晶体晶胞与ZnS的相似,一个晶胞中含有8个原子,相邻最近
的两个原子之间的距离为晶胞体对角线的四分之一。

金刚石晶体的密度为g.cm-3(假设:晶胞边长为a pm)
7. 石墨晶体中的碳原子采用杂化,构成层状结构,是,,
三种晶体的混合态。

硫磺分子是由个S原子构成的折皱环,S原子之间均以单键相连,据此推测S 原子采用杂化。

白磷分子是由个P原子构成的中空正四面体,相互之间夹角为。

8. 1pm=10-12m =10-10cm 1nm=10-9m 对角线长=√2边长体对角线=√3边长
余弦定理:a2=b2+c2-2bccosA 金刚石晶胞中最近两个碳原子之间的距离为其体对角线的¼
Cos109028’= --⅓。

相关文档
最新文档