人教版数学必修四三角函数复习讲义
必修四第一章三角函数 知识点及练习 讲义

高一数学下必修四第一章三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,那么称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k αα⋅+<<⋅+∈Z 第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,那么α原来是第几象限对应的标号即为nα终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是l rα=. 7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭. 8、假设扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,那么l r α=,2C r l =+,21122S lr r α==.9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r ,那么sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的根本关系:()221sin cos 1αα+=()2222sin1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα= sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.14、函数sin y x =的图象上所有点向左〔右〕平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长〔缩短〕到原来的1ω倍〔纵坐标不变〕,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长〔缩短〕到原来的A 倍〔横坐标不变〕,得到函数()sin y x ωϕ=A +的图象. 函数sin y x =的图象上所有点的横坐标伸长〔缩短〕到原来的1ω倍〔纵坐标不变〕,得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左〔右〕平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长〔缩短〕到原来的A 倍〔横坐标不变〕,得到函数()sin y x ωϕ=A +的图象.函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,那么()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.15、正弦函数、余弦函数和正切函数的图象与性质:sin y x = cos y x = tan y x =图象定义域R R ,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1- []1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=- ()k ∈Z 时,min 1y =-. 当()2x k k π=∈Z 时, max 1y =;当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值函 数 性质第一章?三角函数?综合练习一、选择题1.角α的终边经过点0p 〔-3,-4〕,那么)2cos(απ+的值为〔 〕A.54-B.53C.54D.53-2.半径为πcm ,圆心角为120︒所对的弧长为〔〕A .3πcmB .23πcmC .23πcmD .223πcm3.函数12sin[()]34y x π=+的周期、振幅、初相分别是〔〕A .3π,2-,4π B .3π,2,12π C .6π,2,12π D .6π,2,4π 4.sin y x =的图象上各点纵坐标不变,横坐标变为原来的12,然后把图象沿x 轴向右平移3π个单位,那么表达式为〔 〕A .1sin()26y x π=-B .2sin(2)3y x π=-C .sin(2)3y x π=-D .1sin()23y x π=-5.函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,那么该函数图像( ) A .关于直线x =π4对称B .关于点(π3,0)对称C .关于点(π4,0)对称D .关于直线x =π3对称6.如图,曲线对应的函数是 〔 〕 A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |7.函数y=cos 2x –3cosx+2的最小值是〔〕A .2B .0C .41D .68.函数y =3sin ⎝⎛⎭⎪⎫-2x -π6(x ∈[0,π])的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤0,5π12B.⎣⎢⎡⎦⎥⎤π6,2π3C.⎣⎢⎡⎦⎥⎤π6,11π12D.⎣⎢⎡⎦⎥⎤2π3,11π12 9.函数sin()y A x B ωϕ=++的一局部图象 如右图所示,如果0,0,||2A πωϕ>><,那么〔 〕A.4=AB.1ω=C.6πϕ=D.4=B10.1cos()63πα+=-,那么sin()3πα-的值为〔 〕A .13B .13-C.D.11.α、β是第二象限的角,且βαcos cos >,那么 〔 〕A.βα<;B.βαsin sin >;C.βαtan tan >;D.以上都不对12.设()f x 是定义域为R ,最小正周期为32π的函数,假设cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 那么15()4f π-等于( ) A. 1C. 0D.2-二、填空题13.函数x x f cos 21)(-=的定义域是______________ 14.假设sin α+cos αsin α-cos α =2,那么sin αcos α的值是_____________.15、函数])32,6[)(6cos(πππ∈+=x x y 的值域是 . 16.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,那么k 的取值范围是__________. 三、解答题17.α是第二象限角,sin()tan()()sin()cos(2)tan()f πααπαπαπαα---=+--.〔1〕化简()f α; 〔2〕假设31sin()23πα-=-,求()f α的值.18.tan 3α=,求以下各式的值: 〔1〕4sin cos 3sin 5cos αααα-+ ;〔2〕212sin cos cos ααα+.19.〔1〕画出函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 在一个周期的函数图像;〔2〕求出函数的对称中心和对称轴方程.20.y =a -b cos3x (b >0)的最大值为32,最小值为-12.(1)判断其奇偶性.(2)求函数y =-4a sin(3bx )的周期、最大值,并求取得最大值时的x ;21.函数45)62sin(21++=πx y (1)求函数的单调递增区间; (2)写出y=sinx 图象如何变换到15sin(2)264y x π=++的图象第一章?三角函数?综合练习答案一、选择题1-5 CDCBB 6-10 CBBCA 11-12 BB二、填空题13、5[2,2],33k k k Z ππππ++∈14、31015、1[]22-16、13k << 17. 解析:〔1〕sin (tan )1()sin cos (tan )cos f ααααααα-==---;〔2〕假设31sin()23πα-=-,那么有1cos 3α=-,所以()f α=3。
【高中数学必修四】复习讲义 专题1.5 函数y=Asin(ωx+φ)的图象

第一章 三角函数1.5 函数()sin y A x ωϕ=+的图象一、,,A ϕω对函数()sin y A x ωϕ=+的图象的影响 1.(0)ϕϕ≠对函数sin()y x ϕ=+的图象的影响()sin y x ϕ=+(其中φ≠0)的图象,可以看作是把正弦曲线上所有的点向 (当φ<0时)或向 (当φ>0时)平行移动ϕ个单位长度而得到的. 2.(0)ωω>对函数sin()y x ωϕ=+的图象的影响函数sin()y x ωϕ=+(其中ω>0)的图象,可以看作是把函数sin()y x ϕ=+的图象上所有点的横坐标伸长(当0<ω<1时)或 (当ω>1时)到原来的1ω倍(纵坐标不变)而得到的.3.(0)A A >对函数sin()y A x ωϕ=+的图象的影响函数sin()y A x ωϕ=+(其中A >0)的图象,可以看作是把函数sin()y x ωϕ=+的图象上所有点的纵坐标伸长(当A >1时)或缩短(当0<A <1时)到原来的 倍(横坐标不变)而得到的. 4.函数sin y x =到函数sin()y A x ωϕ=+(其中0,0A ω>>)的图象变换将函数sin y x =的图象变换得到函数sin()y A x ωϕ=+(其中0,0A ω>>)的图象的过程为: (1)作出函数sin y x =在长度为2π的某闭区间上的简图;(2)将图象沿x 轴向左或向右平移ϕ个单位长度,得到函数sin()y x ϕ=+的简图; (3)把曲线上各点的横坐标伸长或缩短到原来的1ω倍,得到函数sin()y x ωϕ=+的简图;(4)把曲线上各点的纵坐标伸长或缩短到原来的A 倍,得到函数sin()y A x ωϕ=+的简图; (5)沿x 轴扩展得到函数sin()y A x ωϕ=+,x ∈R 的简图. 由y =sin x 变换得到y =A sin(ωx +φ)(A >0,ω>0)的方法:(1)先平移后伸缩:(2)先伸缩后平移:二、函数(),[)sin 0,y A x x ωϕ∈++∞=(其中0,0A ω>>)中各量的物理意义物理中,描述简谐运动的物理量,如振幅、周期和频率等都与函数sin()y A x ωϕ=+中的常数有关: A :它表示做简谐运动的物体离开平衡位置的最大距离,称为 (amplitude of vibration ). T :2πT ω=,它表示做简谐运动的物体往复运动一次所需要的时间,称为 (period).f :12πf T ω==,它表示做简谐运动的物体在单位时间内往复运动的次数,称为 (frequency). x ωϕ+:称为 (phase).ϕ:x =0时的相位,称为 (initial phase).简记图象变换名称及步骤(1)函数y =sin x 到y =sin(x +φ)的图象变换称为相位变换; (2)函数y =sin x 到y =sin ωx 的图象变换称为周期变换; (3)函数y =sin x 到y =A sin x 的图象变换称为振幅变换.(4)函数y =sin x 到y =A sin(ωx +φ)的图象的变换途径为相位变换→周期变化→振幅变换或周期变换→相位变化→振幅变换.K 知识参考答案:一、1.右 左2.缩短3.A二、振幅 周期 频率 相位 初相K —重点 函数图象的变换以及由图象确定函数解析式 K —难点 函数()sin y A x ωϕ=+的性质的应用 K —易错不能正确理解三角函数图象的变换规律致错1.函数图象的变换函数图象的平移变换解题策略:(1)对函数sin y x =,(n )si y A x ωϕ=+或y =A cos(ωx +φ)的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为ωx ±|φ|. (2)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.(3)确定函数sin y x =的图象经过变换后所得图象对应的函数的解析式,关键是明确左右平移的方向和横纵坐标伸缩的量,确定出,,A ωϕ的值.(4)由(n )si y A x ωϕ=+的图象得到sin y x =的图象,可采用逆向思维,将原变换反过来逆推得到. 【例1】要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象 A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位【答案】B【解析】因为y =sin(4x -π3)=sin[4(x -π12)],所以要得到y =sin[4(x -π12)]的图象,只需将函数y =sin 4x的图象向右平移π12个单位.故选B .【例2】将函数sin y x =的图象沿x 轴向右平移10π个单位长度,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),所得图象的函数解析式是A .sin(2)10y x π=- B .sin(2)5y x π=-C .1sin()210y x π=-D .1sin()220y x π=-【答案】C【解析】将函数sin y x =的图象沿x 轴向右平移10π个单位长度,得sin()10y x π=-的图象,再将图象上所有点的横坐标变为原来的2倍(纵坐标不变),得1sin()210y x π=-.故选C .【名师点睛】三角函数图象的平移变换要注意平移方向与φ的符号之间的对应,横坐标的变化与ω的关系,此类问题很容易混淆规律导致错误. 2.由函数图象确定函数解析式结合图象及性质求解析式y =A sin(ωx +φ)+B (A >0,ω>0)的方法: (1)求A ,B ,已知函数的最大值M 和最小值m ,则,22M m M mA B -+==. (2)求ω,已知函数的周期T ,则2πTω=. (3)求φ,常用方法有:【例3】如图是函数y =A sin(ωx +φ)A >0,ω>0,|φ|<π2的图象的一部分,求此函数的解析式.【解析】(逐一定参法)由图象知A =3,T =5π6-⎝⎛⎭⎫-π6=π,∴ω=2πT =2, ∴y =3sin(2x +φ).∵点⎝⎛⎭⎫-π6,0在函数图象上,∴0=3sin ⎝⎛⎭⎫-π6×2+φ, ∴-π6×2+φ=k π,得φ=π3+k π(k ∈Z).∵|φ|<π2,∴φ=π3,∴y =3sin ⎝⎛⎭⎫2x +π3. 【名师点睛】给出y =A sin(ωx +φ)的图象的一部分,确定A ,ω,φ的方法:(1)第一零点法:如果从图象可直接确定A 和ω,则选取“第一零点”(即“五点法”作图中的第一个点)的数据代入“ωx +φ=0”(要注意正确判断哪一点是“第一零点”)求得φ.(2)特殊值法:通过若干特殊点代入函数式,可以求得相关待定系数A ,ω,φ.这里需要注意的是,要认清所选择的点属于五个点中的哪一点,并能正确代入列式.(3)图象变换法:运用逆向思维的方法,先确定函数的基本解析式y =A sin ωx ,再根据图象平移规律确定相关的参数.【例4】已知函数f (x )=A sin(ωx +φ)(A 、ω、φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.【答案】62【解析】由图可知:A =2,T 4=7π12-π3=π4,所以T =π,ω=2πT =2.又函数图象经过点(π3,0),所以2×π3+φ=π,则φ=π3,故函数的解析式为f (x )=2sin(2x +π3),所以f (0)=2sin π3=62.【名师点睛】根据函数图象确定函数解析式,关键是准确把握解析式中的各个参数在图象中的特征体现. 确定φ一般采用函数图象上的最值点的坐标来处理,也可用五点作图法中的五点来解决,这样避免产生增解.3.函数()sin y A x ωϕ=+的性质的应用 函数sin()y A x ωϕ=+(A >0,ω>0)的性质:(1)奇偶性:=k ϕπ时,函数sin()y A x ωϕ=+为奇函数;=2k ϕππ+时,函数sin()y A x ωϕ=+为偶函数.(2)周期性:sin()y A x ωϕ=+存在周期性,其最小正周期为T =2ωπ.(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k ωϕππ-π≤+≤+π∈Z 得单调增区间;由+22,22k x k k ωϕπ3ππ≤+≤+π∈Z 得单调减区间. (4)对称性: ①对称轴与正弦曲线、余弦曲线一样,函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的图象的对称轴通过函数图象的最值点且垂直于x 轴.函数y =A sin(ωx +φ)对称轴方程的求法:令sin(ωx +φ)=±1,得ωx +φ=k π+π2(k ∈Z),则x =(2k +1)π-2φ2ω(k ∈Z ),所以函数y =A sin(ωx +φ)的图象的对称轴方程为x =(2k +1)π-2φ2ω(k ∈Z ).函数y =A cos(ωx +φ)对称轴方程的求法:令cos(ωx +φ)=±1,得ωx +φ=k π(k ∈Z ),则x =k π-φω(k ∈Z ),所以函数y =A cos(ωx +φ)的图象的对称轴方程为x =k π-φω(k ∈Z ).②对称中心与正弦曲线、余弦曲线一样,函数y =A sin(ωx +φ)和y =A cos(ωx +φ)图象的对称中心即函数图象与x 轴的交点.函数y =A sin(ωx +φ)对称中心的求法:令sin(ωx +φ)=0,得ωx +φ=k π(k ∈Z),则x =k π-φω(k ∈Z ),所以函数y =A sin(ωx +φ)的图象关于点⎝⎛⎭⎫k π-φω,0(k ∈Z )成中心对称.函数y =A cos(ωx +φ)对称中心的求法:令cos(ωx +φ)=0,得ωx +φ=k π+π2(k ∈Z ),则x =(2k +1)π-2φ2ω(k ∈Z ),所以函数y =A cos(ωx +φ)的图象关于点⎝⎛⎭⎫(2k +1)π-2φ2ω,0(k ∈Z )成中心对称.【例5】已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,图象关于直线x =π3对称.(1)求函数f (x )的解析式; (2)求函数f (x )的单调递增区间;(3)在给定的坐标系中画出函数y =f (x )在区间[0,π]上的图象.(2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得-π6+k π≤x ≤π3+k π,k ∈Z .∴函数f (x )的单调递增区间为[k π-π6,k π+π3],k ∈Z .(3)列表如下:x 0 π12 π3 7π12 5π6 π y-121-1-12描点、作图.【例6】已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π2]上是单调函数,求φ和ω的值.【解析】由f (x )是偶函数,得f (-x )=f (x ),即函数f (x )的图象关于y 轴对称, ∴当x =0时f (x )取得最值,即sin φ=1或-1. 依题设0≤φ≤π,解得φ=π2.由f (x )的图象关于点M 对称,可知sin(3π4ω+π2)=0,解得ω=4k 3-23,k ∈Z .又f (x )在[0,π2]上是单调函数,∴T ≥π,即2πω≥π,∴ω≤2.又ω>0,∴当k =1时,ω=23;当k =2时,ω=2.故φ=π2,ω=2或23.【名师点睛】此类题目是函数y =A sin(ωx +φ)的性质的综合应用,往往涉及单调性、奇偶性、对称性、最值等.求解时要充分结合函数的性质,把性质转化为参数的方程或不等式. 4.不能正确理解三角函数图象变换规律【例7】为得到函数y =cos(2x +π3)的图象,只需将函数y =sin2x 的图象 A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位【错解】选B .y =cos(2x +π3)=sin(2x +π3+π2)=sin2(x +5π12),因此向右平移5π12个长度单位,故选B .【错因分析】没有注意到变换方向导致了错解,目标是y =cos(2x +π3)的图象.【答案】A【试题解析】y =cos(2x +π3)=sin(2x +π3+π2)=sin(2x +5π6)=sin2(x +5π12),因此将函数y =sin2x 的图象向左平移5π12个长度单位即可.故选A .1.要得到y =sin2x 的图象,只需将y =cos2x 的图象A .向左平移π4个单位 B .向右平移π4个单位 C .向左平移π8个单位D .向右平移π8个单位 2.将函数y =2sin (ωx +π6)(ω>0)的图象向右移2π3个单位后,所得图象关于y 轴对称,则ω的最小值为 A .2B .1C .12D .143.已知函数f (x )=sin (2x +φ)(–π<φ<0),将函数f (x )图象向左平移π3个单位长度后所得的函数图象过点P (0,1),则函数f (x )=sin (2x +φ) A .在区间[–ππ63,]上单调递减B .在区间[–ππ63,]上单调递增C .在区间[ππ36-,]上单调递减D .在区间[ππ36-,]上单调递增4.已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π2)的图象如图所示,则函数f (x )的解析式是A .f (x )=2sin(1011x +π6)B .f (x )=2sin(1011x -π6)C .f (x )=2sin(2x +π6)D .f (x )=2sin(2x -π6)5.将函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π3个长度单位,所得函数图象的一个对称中心为 A .()0,0B .π,04⎛⎫⎪⎝⎭C .π,02⎛⎫⎪⎝⎭D .(π,0)6.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=________.7.已知函数f (x )=3sin(3x +π3)表示一个振动.(1)求这个振动的振幅、周期、初相;(2)说明函数y =sin x 的图象经过怎样的变换可得到函数f (x )的图象.8.若函数y =A sin(ωx +φ)+b (其中A >0,ω>0,|φ|<π2)在其一个周期内的图象上有一个最高点(π12,3)和一个最低点(7π12,-5),求这个函数的解析式.9.函数f (x )=3sin(2x +π6)的部分图象如图所示.(1)写出f (x )的最小正周期及图中x 0、y 0的值; (2)求f (x )在区间[-π2,-π12]上的最大值和最小值.10.要得到函数π2sin(2)4y x =+的图象,只需将函数2sin y x =的图象上所有点A .向左平移π8个单位长度,再把横坐标缩短为原来的12倍(纵坐标不变) B .向左平移π4个单位长度,再把横坐标缩短为原来的12倍(纵坐标不变)C .向左平移π8个单位长度,再把横坐标伸长为原来的2倍(纵坐标不变)D .向左平移π4个单位长度,再把横坐标伸长为原来的2倍(纵坐标不变)11.函数()f x 的图象如图所示,为了得到函数2sin y x =的图象,可以把函数()f x 的图象A .每个点的横坐标缩短到原来的12(纵坐标不变),再向左平移π3个单位长度 B .每个点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位长度C .先向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变)D .先向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12(纵坐标不变)12.先把函数()πsin 23f x x ⎛⎫=-⎪⎝⎭的图象上各点的横坐标变为原来的2倍(纵坐标不变),再把新得到的图象向左平移π6个单位长度,得到y =g (x )的图象,当π5π,66x ⎛⎫∈- ⎪⎝⎭时,函数g (x )的值域为A .3⎛⎤⎥ ⎝⎦B .1,12⎛⎤-⎥⎝⎦C .33⎛ ⎝⎭D .[)1,0-13.已知函数()()()sin 0,0πf x x ωϕωϕ=+>≤≤是R 上的偶函数,其图象关于点3π,04M ⎛⎫⎪⎝⎭对称,且在区间[]0,π上是单调函数,则ωϕ+=A .π223+ B .π22+ C .π322+D .π1023+14.已知函数()π2sin 26f x x ⎛⎫=+⎪⎝⎭的图象为M ,则下列结论中正确的是 A .图象M 关于直线π12x =-对称 B .将2sin2y x =的图象向左平移π6个单位长度得到MC .图象M 关于点π,012⎛⎫-⎪⎝⎭对称D .()f x 在区间π5π,1212⎛⎫-⎪⎝⎭上单调递增 15.已知函数()()sin f x A x ωϕ=+(0ω>,π2ϕ<)的部分图象如图所示,将函数()f x 的图象向右平移7π24个单位长度后得到函数()g x 的图象,若函数()g x 在区间π,3θ⎡⎤-⎢⎥⎣⎦(π3θ>-)上的值域为[]1,2-,则θ等于A .π6 B .π4 C .2π3D .7π1216.已知函数()()sin (0,0π)f x A x A ϕϕ=+><<的最大值是1,其图象经过点π1,32M ⎛⎫⎪⎝⎭,则3π4f ⎛⎫= ⎪⎝⎭__________. 17.已知把函数x x g 2sin 2)(=的图象向右平移π6个单位,再向上平移一个单位得到函数)(x f 的图象. (1)求)(x f 的最小值及取最小值时x 的集合; (2)求)(x f 在π[0,]2x ∈时的值域;(3)若)()(x f x -=ϕ,求)(x ϕ的单调增区间.18.某同学用“五点法”画函数()()πsin (0,0,)2f x A x A ωϕωϕ=+>><在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,函数()f x 的解析式为()f x = (直接写出结果即可); (2)求函数()f x 的单调递增区间;(3)求函数()f x192y =的两相邻交点之间的距离为π,且(1)求()y f x =的解析式;(2)先将函数()f x 2倍,得到函数()g x 的图象.求()g x 的单调递增区间以及()g x ≥x 的取值范围.20.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的一段图象如图所示. (1)求f (x )的解析式;(2)把f (x )的图象向左至少平移多少个单位长度,才能使得到的图象对应的函数为偶函数?21.已知函数y =2cos ⎝⎛⎭⎫2x +2π3. (1)在该函数的图象的对称轴中,求离y 轴距离最近的那条对称轴的方程;(2)将该函数的图象向右平移φ个单位长度后,图象关于原点对称,求φ的最小正值.22.已知曲线y =A sin(ωx +φ)(A >0,ω>0)上的一个最高点的坐标为⎝⎛⎭⎫π2, 2,由此点到相邻最低点间的曲线与x 轴交于点⎝⎛⎭⎫3π2,0,若φ∈⎝⎛⎭⎫-π2,π2.(1)试求这条曲线的函数解析式;(2)写出函数的单调区间.23.已知函数f(x)=A sin(ωx+φ),(A>0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f(x)的解析式及f(x)图象的对称轴方程;(2)把函数y=f(x)图象上点的横坐标扩大到原来的2倍(纵坐标不变),再向左平移π6个单位,得到函数y=g(x)的图象,求关于x的方程g(x)=m(0<m<2)在x∈[π11π33,]时所有的实数根之和.24.已知函数f(x)=sin(ωx+φ)–b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是π2,若将f(x)的图象先向右平移π63g(x)为奇函数.(1)求f(x)的解析式;(2)求f(x)的对称轴及单调增区间;(3)若对任意x∈[0,π3],f 2(x)–(2+m)f(x)+2+m≤0恒成立,求实数m的取值范围.25.(2018•新课标Ⅱ)若f(x)=cos x–sin x在[0,a]是减函数,则a的最大值是A.π4B.π2C.3π4D.π26.(2017•新课标Ⅰ)已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C227.(新课标Ⅰ)已知函数ππ()sin()(0),24f x x+x,ωϕωϕ=>≤=-为()f x的零点,π4x=为()y f x=图象的对称轴,且()f x 在π5π()1836,单调,则ω的最大值为 A .11 B .9 C .7D .528.(新课标Ⅰ)将函数y =2sin (2x +π6)的图象向右平移14个周期后,所得图象对应的函数为 A .y =2sin(2x +π4) B .y =2sin(2x +π3)C .y =2sin(2x –π4)D .y =2sin(2x –π3)29.(新课标Ⅱ)函数y =A sin(ωx +φ)的部分图象如图所示,则A .y =2sin(2x -π6)B .y =2sin(2x -π3)C .y =2sin(x +π6)D .y =2sin(x +π3)30.(新课标Ⅱ)若将函数y =2sin 2x 的图象向左平移12π个单位长度,则平移后图象的对称轴为 A .x =26k ππ-(k ∈Z ) B .x =26k ππ+(k ∈Z )C .x =212k ππ-(k ∈Z )D .x =212k ππ+(k ∈Z )31.(2018•江苏)已知函数y =sin (2x +φ)(–π2<φ<π2)的图象关于直线x =π3对称,则φ的值为______.32.(2018•北京)设函数f (x )=cos (ωx –π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,则ω的最小值为_____________.1 2 3 4 5 10 11 12 13 14 15 26 27 28 29 30 BBBCABCAACBDBDAB1.【答案】B【解析】y =cos2x =sin (2x +π2)=sin2(x +π4).所以将函数y =cos2x 的图象向右平移π4个单位,可得函数y =sin[2(x –π4)+π2]=sin2x 的图象,故选B . 2.【答案】B【解析】将函数y =2sin (ωx +π6)(ω>0)的图象向右移2π3个单位后,可得y =2sin (ωx –2π3ω+π6)的 图象,再根据所得图象关于y 轴对称,∴–2π3ω+π6=k π+π2,k ∈Z ,即ω=–31–22k ,∴当k =–1时,ω取得最小值为1,故选B .4.【答案】C【解析】∵f (0)=1,∴2sin φ=1,∴sin φ=12,又∵|φ|<π2,∴φ=π6,又ω×11π12+π6=2π,∴ω=2,∴f (x )=2sin(2x +π6).5.【答案】A【解析】将函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到1πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象,再向左平移π3个长度单位,得到1π1cos sin 222y x x ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭的图象.将选项代入验证可知A 选项符合.6.【答案】π4【解析】由题意可知,函数f (x )的最小周期T =2(5π4-π4)=2π,∴ω=1,∴f (x )=sin(x +φ).又∵x =π4是函数f (x )的图象的一条对称轴,∴π4+φ=k π+π2,k ∈Z ,∴φ=k π+π4,k ∈Z .∵0<φ<π,∴φ=π4.7.【解析】(1)振幅A =3,周期T =2π3,初相φ=π3.(2)先将函数y =sin x 的图象向左平移π3个单位,得到y =sin(x +π3)的图象;再将所得图象上所有点的横坐标缩短到原来的13倍(纵坐标不变),得到y =sin(3x +π3)的图象;最后将所得图象上所有点的纵坐标扩大到原来的3倍(横坐标不变),即可得到f (x )=3sin(3x +π3)的图象.8.【解析】由一个周期内的图象上有一个最高点(π12,3)和一个最低点(7π12,-5),得A =12(y max -y min )=12×(3+5)=4,b =12(y max +y min )=12×(3-5)=-1,T 2=7π12-π12=π2,即T =π.由T =2πω,得ω=2. ∴y =4sin(2x +φ)-1. ∴2×π12+φ=π2+2kπ,k ∈Z ,又|φ|<π2,∴φ=π3,故所求函数的解析式为y =4sin(2x +π3)-1.【思路点拨】函数y =A sin(ωx +φ)+b (其中A >0,ω>0)的图象可看作把y =A sin(ωx +φ)(其中A >0,ω>0)的图象向上(b >0)或向下(b <0)平移|b |个长度单位得到的.由图象可知,取最大值与最小值时相应的x 值之差的绝对值只是半个周期,由此可得出A 、b ,进而再求ω、φ. 9.【解析】(1)f (x )的最小正周期为2π2=π.∵(x 0,y 0)是最大值点,令2x +π6=π2+2k π,k ∈Z ,结合图象得x 0=7π6,y 0=3.(2)因为x ∈[-π2,-π12],所以2x +π6∈[-5π6,0].于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.10.【答案】B【解析】由题可知,正弦型为sin()y A x ωϕ=+,其中,A 代表振幅,ω用来控制函数的横坐标变化,ϕ用来控制函数的左右移动,本题是先平移再伸缩,先向左平移π4个单位长度,得到π2sin()4y x =+的图象,再把横坐标缩短为原来的12倍,得到π2sin(2)4y x =+,故选B .【名师点睛】(1)进行三角函数的图象变换时,要注意无论进行什么样的变换都是变换变量本身;要注意平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数;(2)在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向. 11.【答案】C【解析】根据函数(f 故可以把函数()f x 再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),即可得到2sin y x =函数的图象,故选C . 12.【答案】A【解析】依题意得()1πππsin 2sin 2636g x x x ⎡⎤⎛⎫⎛⎫=⨯+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,当π5π,66x ⎛⎫∈- ⎪⎝⎭时,x -π6∈π2π()33-,,所以πsin 6x ⎛⎫- ⎪⎝⎭∈⎛⎤ ⎥ ⎝⎦,即函数g (x )的值域是.⎛⎤ ⎥ ⎝⎦ 【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos ,cos sin 22αααα⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论平移还是伸缩变换,总是对变量x 而言. 13.【答案】A【解析】由于()f x 是R 上的偶函数,且0πϕ≤≤()f x 在区间[]0,π上是单调函数,且0ω>A . 【方法点睛】本题主要通过求三角函数的解析式考查三角函数的性质,属于中档题.利用三角函数性质求解析式的方法: (1)利用最值求出A ; (2)利用周期公式求出ω; (3)利用特殊点或对称性求出ϕ.在求解每一个参数时,一定根据题设条件,考虑参数的范围,这样才能保证解析式的唯一性. 14.【答案】C【解析】将2sin 2y x =的图象向左平移,故B 错;()f x D 错;π12f ⎛⎫- ⎪⎝⎭M A 错误,C 正确, 故选C . 15.【答案】B【解析】由图象可知,π2,π,2,4A T ωϕ=-===, 所以()()()π7πππ2sin 22sin 2,2sin 242443f x x g x x g x x ⎡⎤⎛⎫⎛⎫⎛⎫=-+=--+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,, 当π,3x θ⎡⎤∈-⎢⎥⎣⎦(π3θ>-)时,ππ2π,233x θ⎡⎤-∈--⎢⎥⎣⎦,因为值域里有12,所以ππ236θ-=,π4θ=,选B . 【名师点睛】本题学生容易经验性的认为2A =,但此时ϕ在π2ϕ<内无解,所以2A =-. 已知函数()sin (0,0)y A x B A ωϕω=++>>的图象求解析式:(1)max min maxmin,22y y y y A B -+==. (2)由函数的周期T 求2π,.T ωω=(3)利用“五点法”中相对应的特殊点求ϕ,一般用最高点或最低点求.16.【答案】2-【解析】由函数()()sin (0,0π)f x A x A ϕϕ=+><<,x ∈R 的最大值是1,得1A =; 又其图象经过点π1,32M ⎛⎫⎪⎝⎭,∴π1sin 32ϕ⎛⎫+= ⎪⎝⎭,∴ππ2π36k ϕ+=+或π5π2π36k ϕ+=+,k ∈Z ;∴π2π6k ϕ=-+或π2π2k ϕ=+,k ∈Z ,又0πϕ<<,∴π2ϕ=,∴()πsin cos 2f x x x ⎛⎫=+= ⎪⎝⎭.∴3π3πcos 442f ⎛⎫==-⎪⎝⎭.故答案为2-. 17.【解析】(1)由已知得π()2sin(2)13f x x =-+.当πsin(2)13x -=-时,()f x 取得最小值211-+=-,此时ππ22π,32x k k -=-+∈Z ,即ππ,12x k k =-∈Z , 故)(x f 取最小值时x 的集合为π{|π,}12x x k k =-∈Z .(2)当π[0,]2x ∈时,ππ2π2[,]333x -∈-,所以πsin(2)13x ≤-≤,从而π12sin(2)133x ≤-+≤,即)(x f 的值域为[1,3]. (3)()()ππ2sin 212sin 2133φxf x x x ⎛⎫=-=--+=-++ ⎪⎝⎭(),即求函数πy x =+2sin(2)3的单调递减区间. 令πππππk x k k +≤+≤+∈Z 3222,232,解得ππππk x k k +≤≤+∈Z 7,1212,故)(x ϕ的单调增区间为()ππππk k k ⎡⎤++∈⎢⎥⎣⎦Z 7,1212. 18.【解析】(1)故解析式为()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭. (2,k ∈Z , 所以函数()f x 的单调递增区间为πππ,π36k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .(3)因为π02x -≤≤, 所以5πππ2666x -≤+≤,所以π11sin 262x ⎛⎫-≤+≤ ⎪⎝⎭.所以当ππ262x +=-,即π3x =-时,()f x 2-.当ππ266x +=,即0x =时,()f x 1. 【名师点睛】本题主要考查由函数sin y A x ωϕ=+()的部分图象求解析式,并研究函数的性质,属于基础题.(1)由函数的最值求出A ,由周期求出ω,由五点法作图求出ϕ的值,可得函数的解析式. (2)利用正弦函数的单调性,求得函数()f x 的单调递增区间.(3)利用正弦函数的定义域、值域,求得函数()f x 在区间π,02⎡⎤-⎢⎥⎣⎦上的最大值和最小值.(2)由(1)可得()π2sin 26f x x ⎛⎫=-⎪⎝⎭, ∴()π2sin 6g x x ⎛⎫=+ ⎪⎝⎭, 由πππ2π2π262k x k -≤+≤+,得2ππ2π2π33k x k -≤≤+,k ∈Z , ∴()g x 的单调递增区间为2ππ2π,2π33k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z , ∵π2sin 36x ⎛⎫+≥ ⎪⎝⎭, ∴π3sin 62x ⎛⎫+≥ ⎪⎝⎭, ∴ππ2π2π2π363k x k +≤+≤+,k ∈Z , ∴x 的取值范围为ππ|2π2π, 62x k x k k ⎧⎫+≤≤+∈⎨⎬⎩⎭Z . 【名师点睛】本题考查了函数的基本性质的综合应用问题,解答中涉及正弦型函数的单调性、周期和对称性的综合应用,试题有一定的综合性,属于中档试题,着重考查了学生分析问题和解答问题的能力,以及推理、运算能力.其中熟记三角函数的图象与性质是解答的关键. (1)由已知可得πT =,进而求解ω值,再根据()f x 的图象关于π3x =对称,求解ϕ的值,即可求得函数()f x 的解析式;(2)由(1)可得()π2sin 6g x x ⎛⎫=+ ⎪⎝⎭,利用三角函数的图象与性质,即可求解()g x 的单调递增区间以及()3g x ≥时x 的取值范围.21.【解析】(1)由2x +2π3=k π,得函数的对称轴方程是x =-π3+k π2,k ∈Z .所以函数的图象离y 轴距离最近的那条对称轴方程为x =π6.(2)将函数y =2cos ⎝⎛⎭⎫2x +2π3的图象向右平移φ个单位长度后,得到函数图象的解析式是y =2cos ⎝⎛⎭⎫2x +2π3-2φ. 因为y =2cos ⎝⎛⎭⎫2x +2π3-2φ的图象关于原点对称,所以2π3-2φ=π2+k π.所以φ=π12-k π2,k ∈Z . 所以φ的最小正值是π12.22.【解析】(1)依题意,A =2,T =4×⎝⎛⎭⎫3π2-π2=4π, ∵T =2π|ω|=4π,ω>0,∴ω=12.∴y =2sin ⎝⎛⎭⎫12x +φ.∵曲线上的最高点为⎝⎛⎭⎫π2,2,∴sin ⎝⎛⎭⎫12×π2+φ=1. ∴φ+π4=2k π+π2,k ∈Z .∵-π2<φ<π2,∴φ=π4.∴y =2sin ⎝⎛⎭⎫12x +π4.(2)令2k π-π2≤12x +π4≤2k π+π2,k ∈Z ,∴4k π-3π2≤x ≤4k π+π2,k ∈Z .∴函数f (x )的单调递增区间为4k π-3π2,4k π+π2(k ∈Z ).令2k π+π2≤12x +π4≤3π2+2k π,k ∈Z ,∴4k π+π2≤x ≤4k π+5π2,k ∈Z .∴函数f (x )的单调递减区间为4k π+π2,4k π+5π2(k ∈Z ).23.【解析】(1)由图象知,周期T =11π12–(–π12)=π,∴ω=2πT=2.∵点(–π12,0)在函数图象上, ∴A sin (–2×π12+φ)=0,即sin (φ–π6)=0,又∵–π2<φ<π2,∴–2π3<φ–ππ63<,从而φ=π6. 又∵点(0,1)在函数图象上,∴1=A sinπ6,∴A =2. 故函数f (x )的解析式为f (x )=2sin (2x +π6). 令2x +π6=k π+π2,k ∈Z ,解得x =π2k +π6,k ∈Z . 即为函数f (x )图象的对称轴方程.(2)依题意,得g (x )=2sin (x +π3), ∵g (x )=2sin (x +π3)的周期T =2π, ∴g (x )=2sin (x +π3)在x ∈[–π3,11π3]内有2个周期. 令x +π3=k ππ2+(k ∈Z ),则x =π6+k π(k ∈Z ), 即函数g (x )=2sin (x +π3)的对称轴为x =π6+k π(k ∈Z ). 又x ∈[π11π33-,],则x +π3∈[0,4π],且0<m <2,所以g (x )=m ,(0<m <2)在x ∈[π11π33-,]内有4个实根,不妨从小到大依次设为x i (i =1,2,3,4), 则12π26x x +=,3413π26x x +=. ∴关于x 的方程g (x )=m (0<m <2)在x ∈[π11π33-,]时,所有的实数根之和为x 1+x 2+x 3+x 4=14π3. 24.【解析】(1)由2ππ22ω=⨯可得ω=2,则f (x )=sin (2x +φ)+b ,又()πsin 26g x x b ϕ⎡⎤⎛⎫=-+-+ ⎪⎢⎥⎝⎭⎣⎦0<φ<π,则π3b ϕ==,()πsin 23f x x ⎛⎫=+ ⎪⎝⎭.(2)结合(1)的结论可得对称轴满足ππ2π32x k k +=+∈Z ,, 据此可得对称轴方程为ππ122k x k =+∈Z ,, 函数的增区间满足()πππ22π2π322x k k k ⎡⎤+∈-+∈⎢⎥⎣⎦Z ,, 故增区间为()5ππππ1212k k k ⎡⎤-++∈⎢⎥⎣⎦Z ,.(3)因为π03x ⎡⎤∈⎢⎥⎣⎦,,所以()()111f x f x ≤--≤而f 2(x )–(2+m )f (x )+2+m ≤0恒成立,整理可得()()111m f x f x ≤+--,由()1313f x --≤-≤-,得()()13314311f x f x --≤+-≤--, 故133m --≤,即m 取值范围是133⎛⎫---∞ ⎪ ⎪⎝⎭,. 25.【答案】C【解析】f (x )=cos x –sin x =–(sin x –cos x )=–2sin (x –π4),由–π2+2k π≤x –π4≤π2+2k π,k ∈Z ,得–π4+2k π≤x ≤3π4+2k π,k ∈Z ,取k =0,得f (x )的一个减区间为[–π4,3π4],由f (x )在[0,a ]是减函数,得a ≤3π4.则a 的最大值是3π4.故选C .26.【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D .【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住ππsin cos(),cos sin()22αααα=-=+;另外,在进行图象变换时,提倡先平移后伸缩,而先伸缩后平移在考试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.【名师点睛】本题将三角函数的单调性与对称性结合在一起进行考查,题目新颖,是一道考查能力的好题.注意本题求解中用到的两个结论:①()()()sin 0,0f x A x A ωϕω=+≠≠的单调区间长度是最小正周期的一半;②若()()()sin 0,0f x A x A ωϕω=+≠≠的图象关于直线0x x =对称,则()0f x A =或()0f x A =-. 28.【答案】D【解析】函数2sin(2)6y x π=+的周期为π,将函数2sin(2)6y x π=+的图象向右平移14个周期即4π个单位,所得图象对应的函数为2sin[2())]2sin(2)463y x x πππ=-+=-,故选D.【名师点睛】函数图象的平移问题易错点有两个,一是平移方向,注意“左加右减”;二是平移多少个单位是对x 而言的,不要忘记乘以系数. 29.【答案】A【解析】由题图知,2A =,最小正周期ππ2[()]π36T =--=,所以2π2πω==,所以2sin(2)y x ϕ=+.因为图象过点π(,2)3,所以π22sin(2)3ϕ=⨯+,所以2πsin()13ϕ+=,所以2ππ2π()32k k ϕ+=+∈Z ,令0k =,得π6ϕ=-,所以π2sin(2)6y x =-,故选A. 【名师点睛】根据图象求解析式问题的一般方法是:先根据函数=sin()y A x h ωϕ++图象的最高点、最低点确定A ,h 的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值. 30.【答案】B【解析】由题意,将函数2sin 2y x =的图象向左平移π12个单位长度得函数ππ2sin 2()2sin(2)126y x x =+=+的图象,则平移后函数图象的对称轴为ππ2π,62x k k +=+∈Z ,即ππ,62k x k =+∈Z ,故选B. 【名师点睛】平移变换和伸缩变换都是针对x 而言,即x 本身加或减多少值,而不是依赖于ωx 加或减多少值. 31.【答案】D【解析】由图象可知,1π++2π42()53π++2π42m m m ωϕωϕ⎧=⎪⎪∈⎨⎪=⎪⎩Z ,解得=πω,π=+2π()4m m ϕ∈Z ,所以ππ()cos(π+2π)=cos(π)()44f x x m x m =++∈Z ,令π2ππ2ππ,4k x k k <+<+∈Z ,解得124k -<x <324k +,k ∈Z ,故函数()f x 的单调减区间为(124k -,324k +),k ∈Z ,故选D . 31.【答案】–π6【解析】∵y =sin (2x +φ)(–π2<φ<π2)的图象关于直线x =π3对称,∴2×π3+φ=k π+π2,k ∈Z ,即φ=k π–π6,∵–π2<φ<π2,∴当k =0时,φ=–π6,故答案为:–π6.32.【答案】23【解析】函数f (x )=cos (ωx –π6)(ω>0),若f (x )≤f (π4)对任意的实数x 都成立,可得:ππ2π46k ω⋅-=,k ∈Z ,解得ω=283k +,k ∈Z ,ω>0,则ω的最小值为:23.故答案为:23.。
必修四 三角函数复习(图像和性质)讲义

三角函数的图象及性质复习考纲要求三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来本节主要帮助考生掌握图象和性质并会灵活运用重难点归纳1考查三角函数的图象和性质的基础题目,此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用2三角函数与其他知识相结合的综合题目,此类题目要求考生具有较强的分析能力和逻辑思维能力在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强3三角函数与实际问题的综合应用此类题目要求考生具有较强的知识迁移能力和数学建模能力,要注意数形结合思想在解题中的应用♦ ()k x ASin y Sinx y ++==ϕω变化为怎样由 ?振幅变化:Sinx y = ASinx y = 左右伸缩变化:x ASin y ω= 左右平移变化 )(ϕω+=x ASin y 上下平移变化 k x ASin y ++=)(ϕω 周期问题◆ ()()()(), 0 , 0A , T , 0 , 0A , 2T , 0 , 0A , 2T , 0 , 0A , >>+==>>+==>>+==>>+=ωϕωωπωϕωωπωϕωωπωϕωx ACos y x ASin y x ACos y x ASin y❖()()ωπωϕωωπωϕω=>>+==>>+=T , 0 , 0A , tan T , 0 , 0A , tan x A y x A y 典型题例示范讲解(一)对三角函数性质的考查:题型一:最值问题 例1.(全国理15)已知函数()4cos sin()16f x x x π=+-。
(Ⅰ)求()f x 的最小正周期:(Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值。
练习:1(2011汕头模拟)设a R ∈,()()2cos sin cos cos 2f x x a x x x π⎛⎫=-+- ⎪⎝⎭满足()03f f π⎛⎫-= ⎪⎝⎭,求函数()f x 在11[,]424ππ上的最大值和最小值.2(2011佛一模).函数cos ()sin ()y x x ππ22=+-+44的最小正周期为A .4πB .2π C .πD .2π3.(本小题满分12分)(2011广一模)已知函数()2sin cos cos2f x x x x =+(x ∈R ). (1) 当x 取什么值时,函数()f x 取得最大值,并求其最大值; (2) 若θ为锐角,且83f πθ⎛⎫+= ⎪⎝⎭,求tan θ的值.题型二:对称性问题 例1.(本小题满分12分)(2010广一模)已知函数()sin cos cos sin f x x x ϕϕ=+(其中x ∈R ,0ϕπ<<). (1)求函数()f x 的最小正周期; (2)若函数24y f x π⎛⎫=+ ⎪⎝⎭的图像关于直线6x π=对称,求ϕ的值.2.(2011佛一模)定义运算a bc d,ad bc =-则函数()f x =2sin 12cos x x -图像的一条对称轴方程是( )A .2x π=B .4x π=C .x π=D .0x =练习1.(2010深圳)已知函数f(x)=3sin(x-)(>0)6πωω和g(x)=2cos(2x+)+1ϕ的图象的对称轴完全相同。
(完整版)必修4三角函数知识点归纳总结材料

《三角函数》【知识网络】一、任意角的概念与弧度制1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为{}()360k k Z ααβ︒=+∈gx 轴上角:{}()180k k Z αα=∈o gy 轴上角:{}()90180k k Z αα=+∈o o g3、第一象限角:{}()036090360k k k Z αα︒︒+<<+∈o g g第二象限角:{}()90360180360k k k Z αα︒︒+<<+∈o o g g第三象限角:{}()180360270360k k k Z αα︒︒+<<+∈oo g g第四象限角:{}()270360360360k k k Z αα︒︒+<<+∈oo g g4、区分第一象限角、锐角以及小于90o的角 第一象限角:{}()036090360k k k Z αα︒︒+<<+∈o g g锐角:{}090αα<<o小于90o的角:{}90αα<o5、若α为第二象限角,那么2α为第几象限角? ππαππk k 222+≤≤+ππαππk k +≤≤+224,24,0παπ≤≤=k ,2345,1παπ≤≤=k所以2α在第一、三象限6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad .7、角度与弧度的转化:01745.01801≈=︒π 815730.571801'︒=︒≈︒=π9、弧长与面积计算公式 弧长:l R α=⨯;面积:21122S l R R α=⨯=⨯,注意:这里的α均为弧度制.二、任意角的三角函数1、正弦:sin y r α=;余弦cos x r α=;正切tan yxα=其中(),x y 为角α终边上任意点坐标,r =2、三角函数值对应表:3、三角函数在各象限中的符号口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)sin α tan α cos α 第一象限:0,0.>>y x sin α>0,cos α>0,tan α>0, 第二象限:0,0.><y x sin α>0,cos α<0,tan α<0, 第三象限:0,0.<<y x sin α<0,cos α<0,tan α>0, 第四象限:0,0.<>y x sin α<0,cos α>0,tan α<0,4、三角函数线设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与P (,)x y , 过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向 延长线交于点T.由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====, cos 1x xx OM r α====, tan y MP ATAT x OM OAα====.我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
高一数学必修4三角函数的定义讲义

三角函数的定义知识梳理1、任意角三角函数的定义(1)单位圆:在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为单位圆. (2)单位圆中任意角的三角函数的定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么y 叫做α的正弦,记作sin α,即sin α=y ;x 叫做α的余弦,记作cos α,即cos α=x ;y x 叫做α的正切,记作tan α,即tan α=yx (x ≠0).2、三角函数正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,它们统称为三角函数.3、三角函数的定义域三角函数 定义域 sin α R cos α Rtan α⎩⎨⎧⎭⎬⎫α⎪⎪α≠π2+k π,k ∈Z 4、三角函数值的符号5、终边相同的角的同一三角函数的值(1)终边相同的角的同一三角函数的值相等.(2)公式:sin(α+k ·2π)=sin_α,cos(α+k ·2π)=cos_α,tan(α+k ·2π)=tan_α,其中k ∈Z .例题精讲题型一、三角函数的定义及应用例1、(1)若角α的终边经过点P (5,-12),则sin α=________,cos α=________,tan α=________. (2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值.利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:法一:先利用直线与单位圆相交,求出交点坐标,然后利用三角函数的定义求出相应的三角函数值. 法二:注意到角的终边为射线,所以应分两种情况来处理,取射线上任一点坐标(a ,b ),则对应角的正弦值sinα=b a 2+b 2,余弦值cos α=a a 2+b 2,正切值tan α=ba .(2)当角的终边上的点的坐标以参数的形式给出时,要根据问题的实际情况对参数进行分类讨论.变式训练已知角α的终边过点P (12,a ),且tan α=512,求sin α+cos α的值.题型二、三角函数值符号的运用例2、(1)若sin αtan α<0,且cos αtan α<0,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角(2)判断下列各式的符号:①sin 105°·cos 230°; ②cos 3·tan ⎝⎛⎭⎫-2π3.三角函数值的符号规律(1)当角θ为第一象限角时,sin θ>0,cos θ>0或sin θ>0,tan θ>0或cos θ>0,tan θ>0,反之也成立; (2)当角θ为第二象限角时,sin θ>0,cos θ<0或sin θ>0,tan θ<0或cos θ<0,tan θ<0,反之也成立; (3)当角θ为第三象限角时,sin θ<0,cos θ<0或sin θ<0,tan θ>0或cos θ<0,tan θ>0,反之也成立; (4)当角θ为第四象限角时,sin θ<0,cos θ>0或sin θ<0,tan θ<0或cos θ>0,tan θ<0,反之也成立.变式训练若sin 2α>0,且cos α<0,试确定α终边所在的象限.题型三、诱导公式一的应用例3、计算下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°; (2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan 4π.变式训练求下列各式的值:(1)sin 25π3+tan ⎝⎛⎭⎫-15π4; (2)sin 810°+cos 360°-tan 1 125°.课堂小测1、若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能2、若角α的终边过点(2sin 30°,-2cos 30°),则sin α的值等于( )A.12 B .-12 C .-32 D .-33 3、sin ⎝⎛⎭⎫-196π=________. 4、已知角θ的顶点为坐标原点,始边为x 轴的非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.5、化简下列各式:(1)a cos 180°+b sin 90°+c tan 0°; (2)p 2cos 360°+q 2sin 450°-2pq cos 0°; (3)a 2sin π2-b 2cos π+ab sin 2π-ab cos 3π2.同步练习1、25πsin6等于( )A .12 B .2 C .12- D .2-2、若角α的终边经过点34,55P ⎛⎫- ⎪⎝⎭,则sin tan αα⋅=( )A .1615 B .1615- C .1516D .1516- 3、利用余弦线比较cos1,πcos 3,cos 1.5的大小关系是( ) A .πcos1cos cos1.53<< B .πcos1cos1.5cos 3<< C .πcos1coscos1.53>> D .πcos1.5cos1cos 3>> 4、如图,在单位圆中角α的正弦线、正切线完全正确的是( ) A .正弦线PM ,正切线A T '' B .正弦线MP ,正切线A T '' C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT5、角α的终边经过点(),4P b -且3cos 5α=-,则b 的值为( ) A .3 B .3- C .3± D .5 6、已知x 为终边不在坐标轴上的角,则函数()|sin |cos |tan |sin |cos |tan x x x x f x x x=++的值域是( ) A .{}3,1,1,3-- B .{}3,1-- C .{}1,3 D .{}1,3- 7、在[]0,2π上,满足3sin 2x ≥的x 的取值范围为( ) A .π0,3⎡⎤⎢⎥⎣⎦B .π2π,33⎡⎤⎢⎥⎣⎦ C .π2π,63⎡⎤⎢⎥⎣⎦ D .5π,π6⎡⎤⎢⎥⎣⎦8、若θ为第一象限角,则能确定为正值的是 ( ) A .sin2θB .cos2θC .tan2θD .cos 2θ9、已知α的终边经过点()36,2a a -+,且sin 0,cos 0,αα>≤则α的取值范围为________.10、若角α的终边与直线3y x =重合且sin 0α<,又(),P m n 是α终边上一点,且10OP =,则m n -=_____. 11、已知点()sin cos ,tan P ααα-在第一象限,则在[]0,2π内α的取值范围为__________. 12、(1)23π17πcos tan 34⎛⎫-+ ⎪⎝⎭; (2)sin 630tan 1 125tan 765cos 540︒+︒+︒+︒.13、当π0,2α⎛⎫∈ ⎪⎝⎭时,求证:sin tan ααα<<.14、已知角α的终边落在直线2y x =上,求sin α,cos α,tan α的值.。
必修四第一章(三角函数总结)学生讲义

金牌数学高一(必修四)专题系列之 三角函数总结类型一 三角函数的概念、诱导公式1.角α终边上任一点P (x ,y ),则P 到原点O 的距离为r =x 2+y 2,故sin α=y r ,cos α=xr ,tan α=yx. 2.诱导公式:“奇变偶不变、符号看象限”. 3.同角三角函数基本关系式: sin 2α+cos 2α=1,tan α=sin αcos α.类型二 三角函数性质1.函数y =A sin (ωx +φ),当φ=k π(k ∈Z)时为奇函数,当φ=k π+π2(k ∈Z)时为偶函数.2.函数y =A sin (ωx +φ),令ωx +φ=k π+π2,可求得对称轴方程.令ωx +φ=k π(k ∈Z),可求得对称中心的横坐标.3.将ωx +φ看作整体,可求得y =A sin (ωx +φ)的单调区间,注意ω的符号. 类型三 函数sin()y A x ωϕ=+的图象及变换 函数y =A sin (ωx +φ)的图象 (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应y 的值,描点、连线可得.(2)图象变换:【戴氏总结】1. x y sin =与x y cos =的周期是π。
2. )sin(ϕω+=x y 或)cos(ϕω+=x y (0≠ω)的周期为ωπ2=T 。
3.)sin(ϕω+=x y 的对称轴方程是2ππ+=k x (Z k ∈),对称中心为(0,πk );)cos(ϕω+=x y 的对称轴方程是πk x =(Z k ∈),对称中心为(0,21ππ+k );)tan(ϕω+=x y 的对称中心为(0,2πk )。
题型一:解析式例1.已知函数sin()y A x B ωϕ=++的一部分图象如右图所示,如果0,0,||2A πωϕ>><,则函数解析式______________.拓展变式练习1.(三明市普通高中高三上学期联考)右图是函数)sin(ϕω+=x A y 在一个周期内的图象,此函数的解析式为______________.2.已知函数)sin(φϖ+=x A y 在同一周期内,当3π=x 时有最大值2,当x=0时有最小值-2,那么函数的解析式为______________. 3.把函数)32sin(π+=x y 先向右平移2π个单位,然后向下平移2个单位后所得的函数解析式为_______________.题型二:最值问题例2.求函数f (x )=xx xx cos sin 1cos sin ++的最大、最小值。
必修4数学第一章三角函数讲解课件

必修4数学 第一章 三角函数 知识点总结复习一、基础知识点总结⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z 第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z 终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z 4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. 6、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭.7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 9第三象限正切为正,第四象限余弦为正.10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、角三角函数的基本关系:()221sin cos 1αα+=()2222sin1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.12、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-= ⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正弦与余弦互换,符号看象限.二 、三角函数伸缩平移变换函数 sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象.先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象.14、函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ; ②周期:2πωT =; ③频率:12f ωπ==T ; ④相位:x ωϕ+; ⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.15、正弦函数、余弦函数和正切函数的图象与性质:,x x k k ππ⎧⎫≠+∈Z补充知识点:三角恒等变换24、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).25、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=-高考试题1、把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是2、将函数()sin (0)f x x ωω=>的图像向右平移4π个单位长度,所得图像经过点3(,0)4π,则ω的最小值是( )A .13B .1C .53D .23、函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为( )A .2B .0C .-1D .1-4、已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=( )A .π4B .π3C .π2D .3π45、函数()sin()4f x x π=-的图像的一条对称轴是( )A .4x π= B .2x π=C .4x π=-D .2x π=-6、若函数[]()sin(0,2)3x f x ϕϕπ+=∈是偶函数,则ϕ=( ) A .2π B .23π C .32π D .53π7、要得到函数cos(21)y x =+的图象,只要将函数cos 2y x =的图象 ( )A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位 D .向右平移12个单位 8、已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是 ( )A .15[,]24B .13[,]24C .1(0,]2D .(0,2]9、设函数()sin()f x A x ωϕ=+(其中0,0,A ωπϕπ>>-<< )在6x π=处取得最大值2,其图象与轴的相邻两个交点的距离为2π(I)求()f x 的解析式; (II)求函数426cos sin 1()()6x x g x f x π--=+的值域.10、函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式;(2)设(0,)2πα∈,则()22f α=,求α的值.。
高中数学必修4第一章三角函数课件 章末复习

二、知识要点:
1. 角的概念的推广: ① 象限角的集合:
第一象限角集合为:
第二象限角集合为:
第三象限角集合为: 第四象限角集合为:
;
;
; ;
9
2019/8/11
二、知识要点:
1. 角的概念的推广: ② 轴线角的集合:
10
2019/8/11
二、知识要点:
1. 角的概念的推广: ② 轴线角的集合:
二、知识要点:
1. 角的概念的推广: (1) 正角、负角、零角的概念: (2) 终边相同的角:
所有与角 终边相同的角,连同角 在内,可构成一个集合:
S { | k 360 , k Z}
7
2019/8/11
二、知识要点:
1. 角的概念的推广: ① 象限角的集合:
8
2019/8/11
.
sin[( k 1) ]cos[(k 1) ]
57
2019/8/11
课堂小结
1. 任意角的三角函数; 2. 同角三角函数的关系; 3. 诱导公式.
58
2019/8/11
课后作业
1. 阅读教材P.67-P.68; 2. 《习案》作业十六中1至6题.
59
2019/8/11
二、知识要点:
4. 同角三角函数基本关系式: (1) 平方关系:
sin2 cos2 1
(2) 商数关系:
37
2019/8/11
二、知识要点:
4. 同角三角函数基本关系式: (1) 平方关系:
sin2 cos2 1
(2) 商数关系:
tan sin
cos
38
52
必修四三角函数知识点经典总结

必修四三角函数知识点经典总结高一必修四:三角函数一任意角的概念与弧度制(一)角的概念的推广 1、角概念的推广:在平面,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角算是多少度角。
按别同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角。
适应上将平面直角坐标系x 轴正半轴作为角的起始边,叫做角的始边。
射线旋转停止时对应的边叫角的终边。
2、特别命名的角的定义:(1)正角,负角,零角:见上文。
(2)象限角:角的终边降在象限的角,依照角终边所在的象限把象限角分为:第一象限角、第二象限角等(3)轴线角:角的终边降在坐标轴上的角终边在x 轴上的角的集合: {}Z k k ∈?=,180| ββ 终边在y 轴上的角的集合: {}Z k k ∈+?=,90180| ββ 终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ (4)终边相同的角:与α终边相同的角2x k απ=+ (5)与α终边反向的角:(21)x k απ=++终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ 终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ(6)若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 (7)成特别关系的两角若角α与角β的终边对于x 轴对称,则角α与角β的关系:βα-=k 360 若角α与角β的终边对于y 轴对称,则角α与角β的关系:βα-+= 180360k 若角α与角β的终边互相垂直,则角α与角β的关系:90360±+=βαk 注:(1)角的集合表示形式别唯一.(2)终边相同的角别一定相等,相等的角终边一定相同. 3、本节要紧题型: 1.表示终边位于指定区间的角.例1:写出在720-?到720?之间与1050-?的终边相同的角. 例2:若α是第二象限的角,则2,2αα是第几象限的角?写出它们的普通表达形式.例3:①写出终边在y 轴上的集合.②写出终边和函数y x =-的图像重合,试写出角α 的集合. ③α在第二象限角,试确定2,,23ααα所在的象限.④θ角终边与168?角终边相同,求在[0,360)??与3θ终边相同的角.(二)弧度制1、弧度制的定义:l Rα=2、角度与弧度的换算公式:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.一具式子中别能角度,弧度混用. 3、题型(1)角度与弧度的互化例:74315,330,,63ππ?? (2)L R α=,211,22l r s lr r αα===的应用咨询题例1:已知扇形周长10cm ,面积24cm ,求中心角.例2:已知扇形弧度数为72?,半径等于20cm ,求扇形的面积.例3:已知扇形周长40cm ,半径和圆心角取多大时,面积最大. 例4:12123 7570,750,,53ααβπβπ=-?=?==- a.求出12,αα弧度,象限.b.12,ββ用角度表示出,并在720~0-??之间找出,他们有相同终边的所有角. 二任意角三角函数(一)三角函数的定义 1、任意角的三角函数定义正弦r y =αsin ,余弦r x=αcos ,正切xy =αtan 2(二)单位圆与三角函数线1、单位圆的三角函数线定义如图(1)PM表示α角的正弦值,叫做正弦线。
人教版高中数学必修4三角函数

任意角一、知识概述1、角的分类:正角、负角、零角.2、象限角:〔1〕象限角.〔2〕非象限角〔也称象限间角、轴线角〕.3、终边一样的角的集合:所有与角终边一样的角,连同α角自身在,都可以写成α+k·360°(k∈Z)的形式;反之,所有形如α+k·360°(k∈Z)的角都与α角的终边一样.4、准确区分几种角锐角:0°<α<90°;0°~90°:0°≤α<90°;第一象限角:.5、弧度角:弧长等于半径的弧所对应的角称为1弧度角〔1 rad〕.1 rad=,1°=rad.6、弧长公式:l=αR.7、扇形面积公式:.二、例题讲解例1、写出以下终边一样的角的集合S,并把S中适合不等式的元素写出来:〔1〕60°;〔2〕-21°;〔3〕363°14′.解:〔1〕,S中满足的元素是〔2〕,S中满足的元素是〔3〕,S中满足的元素是例2、写出终边在y轴上的角的集合.解析:∴.注:终边在x轴非负半轴:.终边在x轴上:.终边在y=x上:.终边在坐标轴上:.变式:角α与β的终边关于x轴对称,那么β=_______.答案:.角α与β的终边关于y轴对称,那么β=_______.答案:任意角的三角函数一、知识概述1、定义:在直角坐标系中,设α是一个任意角,α的终边与圆心在坐标原点的单位圆交于点P〔x,y〕,那么sinα=y,cosα=x,tanα=.注:①对于确定的角α,其终边上取点,令,那么.②α的终边没有说明α一定是正角或负角,以及α的大小,只说明与α的终边一样的角所在的位置.2、公式一:,,,其中.3、三角函数线角α的终边与单位圆交于P点,过P作PM⊥x轴于M,那么sinα=MP(正弦线),cosα=OM 〔余弦线〕.过A作单位圆的切线,那么α的终边或其反向延长线交此切线于点T,那么tanα=AT〔正切线〕.注:假设,那么.二、例题讲解例1、角α的终边上一点,且,求的值.解:,∴,.当时,,∴;当时,,∴;当时,,∴.例2、化简以下各式〔1〕;〔2〕.解:〔1〕〔2〕同角三角函数的根本关系一、知识概述1、平方关系:.2、商数关系:.二、例题讲解例1、tanα为非零实数,用tanα表示sinα,cosα.解:∵,,∴.∴,即有,又∵为非零实数,∴为象限角.当在第一、四象限时,即有,从而,;当在第二、三象限时,即有,从而,.例2、,试确定使等式成立的角α的集合.例3、,求sinx,cosx的值.解:由等式两边平方:.∴,即,∴为一元二次方程的两个根,解得.又∵,∴.因此.例4、化简:.解法一:原式=.解法二:原式=. 解法三:原式=. 例5、,那么〔1〕____________________.(2)____________________.(3)____________________.解:〔1〕;〔2〕;三角函数的诱导公式一、知识概述诱导公式一:.诱导公式二:.诱导公式三:,,.诱导公式四:,,.诱导公式五:,.诱导公式六:,.引申:诱导公式七:,.诱导公式八:,.记忆公式的口诀“奇变偶不变,符号看象限〞.二、例题讲解例1、化简:〔1〕;〔2〕〔3〕.〔4〕〔5〕.解:〔1〕原式.〔2〕原式=.〔5〕例2、求的值.解:由得,所以例3、那么________..正弦函数、余弦函数的图象与性质〔一〕一、知识概述1、正弦函数、余弦函数的图象2、性质:①定义域:x∈R②值域:[-1,1]③周期性:都是周期函数,且最小正周期为.二、例题讲解例1、作函数的简图.〔2〕描点连线〔图象见视频〕.例2、求以下函数的周期〔1〕;〔2〕;〔3〕;〔4〕.〔1〕令,那么.∵f(x+T)=f(x)恒成立,.∴周期为4.注:.〔2〕.注:.〔3〕T=π.〔4〕T=.假设,使令x=0,得,,与时矛盾.∴T=.例3、求以下函数的定义域:〔1〕;(2) y=lg(2sinx+1)+.解:〔1〕,∴,∴.(2) ,∴.∴其定义域为.正弦函数与余弦函数的图象与性质〔二〕一、知识概述1、图象〔见视频〕2、性质:〔1〕定义域:都为R.〔2〕值域:都为[-1,1].〔3〕周期性:都是周期函数,且T=2π.〔4〕奇偶性:y=sinx是奇函数,y=cosx是偶函数.〔5〕对称性:y=sinx的对称中心为(kπ,0)〔k∈Z〕,对称轴为.y=cosx的对称中心为,对称轴为.〔6〕单调性:y=sinx在上单调递增;在上单调递减.y=cosx在上单调递减;在上单调递增.二、例题讲解例1、在中,,假设函数y=f(x)在[0,1]上为单调递减函数,那么以下命题正确的选项是〔〕A.B.C.D.解:∵,∴,.所以.答案:C例2、求以下函数的单调递增区间:〔1〕;〔2〕;〔3〕;〔4〕y=-|sin〔x+〕|解:〔1〕法一:图象法〔图象见视频〕.法二:令,∴.所以,函数单调递增区间为.〔2〕令,∴,所以,函数单调递增区间是.〔3〕令.所以,函数单调递增区间是.法二:∵,令,,所以,函数的递增区间是.〔4〕函数的递增区间为[kπ+,kπ+]〔k∈Z〕.〔图象见视频〕法二:令.解得.∴函数的递增区间为[kπ+,kπ+]〔k∈Z〕.正切函数的图象与性质一、知识概述1、图象:2、性质:〔1〕定义域:;〔2〕值域:R;〔3〕周期性:;〔4〕奇偶性:奇函数;〔5〕对称性:y=tanx的对称中心为.〔6〕单调性:在单调递增.二、例题讲解例1、求以下函数的定义域:〔1〕;〔2〕;〔3〕.解:〔1〕由,得,∴.∴的定义域为.〔2〕令,∵sinx∈[-1,1]且,∴定义域为R.〔3〕由,得,∴,∴原函数的定义域为〔备注:视频中区间书写有误,后面一个应该是半开半闭区间〕.例2、求函数的定义域,周期和单调区间.函数y=Asin〔ωx+φ〕的图象一、知识概述的图象可由y=sinx的图象经过以下的变换得到:①将y=sinx的图象向左〔右〕平移个单位得到的图象;②将的图象保持纵坐标不变,横坐标伸长〔缩短〕到原来的倍,得到的图象;③将的图象保持横坐标不变,纵坐标伸长〔缩短〕到原来的A倍,得到的图象.A表示振幅,为周期,为频率,为初相,为相位.二、例题讲解例1、函数的图象是由y=sinx的图象经过怎样的变换得到.解:①将的图象向左平移个单位,得到的图象;②将的图象保持纵坐标不变,横坐标缩短到原来的,得到的图象;③将的图象保持横坐标不变,纵坐标伸长到原来的3倍,得到的图象.变式1:y=sinx的图象由的图象经过怎样的变换得到.解:横坐标不变,纵坐标缩短到原来的,得到的图象;再将的图象向右平移个单位,得到y=sin2x的图象;再将y=sin2x的图象纵坐标不变,横坐标伸长到原来的2倍,得到y=sinx的图象.变式2:函数y=f(x)的图象先向右平移个单位,再保持纵坐标不变,横坐标缩短到原来的,得到的图象,求f(x)的解析式.答案:.例2、函数〔,〕一个周期的函数图象,如以下图所示,求函数的一个解析式.解:由图知:函数最大值为,最小值为,又∵,∴,由图知,∴,∴,法一:∴,∴,∴.,代入上面两式检验,得满足条件. ∴.法二:..法三:令,.三角函数模型的简单应用例1、电流在一个周期的图象如图:〔1〕根据图中数据求的解析式.〔2〕如果t在任意一段秒的时间,电流都能取得最大值和最小值,那么ω的最小正整数值是多少?例2、某港口水的深度y〔米〕是时间,单位:时〕的函数,记作,下面是某日水深的数据:t时0 3 6 9 12 15 18 21 24y米10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0 经长期观察,的曲线可以近似地看成函数的图象.〔1〕试根据以上数据,求出函数的近似表达式;〔2〕一般情况下船舶航行时,船底离海底的距离为5米或5米以上时认为是平安的〔船舶停靠时,船底只需不碰海底即可〕.某船吃水深度〔船底离水面的距离〕为6.5米,如果该船希望在同一天平安进出港,请问,它至多能在港停留多长时间〔忽略进出港所需时间〕?解:〔1〕由数据,易知函数的周期T=12,振幅A=3,b=10,〔视频板书中应为f(t)〕.〔2〕由题意,该船进出港时,水深应不小于5+6.5=11.5米,,解得:,在同一天,取.∴该船可在当日凌晨1时进港,17时出港,在港口最多停留16个小时.例3、如下图,一个摩天轮半径为10米,轮子的底部在地面上2米处,如果此摩天轮按逆时针方向每20秒转一圈,且当摩天轮上某人经过点P处〔点P与摩天轮中心O高度一样〕时开场计时:〔1〕求此人相对于地面的高度关于时间的函数关系式;〔2〕在摩天轮转动的一圈,有多长时间此人相对于地面的高度不超过10米.解:〔1〕以O为坐标原点,以OP所在直线为x轴建立直角坐标系,在t秒摩天轮转过的角为,∴此人相对于地面的高度为〔米〕.〔2〕令,那么,,,故约有8.72秒此人相对于地面的高度不超过10米.例4、某商品一年出厂价格在6元的根底上按月份随正弦曲线波动,3月份到达最高价格8元,7月份价格最低为4元.该商品在商店的销售价格在8元根底上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元.〔1〕试建立出厂价格、销售价格的模型,并求出函数解析式;〔2〕假设商店每月购进这种商品m件,且当月销完,试写出该商品的月利润函数.三角函数的综合应用例1、求以下函数的值域:〔1〕;〔2〕;〔3〕;〔4〕;〔5〕.解:〔1〕∵,∴,∴,所以,值域为.〔2〕..另解:,∴,∴,解得,.〔3〕,,.〔4〕由题意,∴,∵,∴时,,但,∴,∴原函数的值域为.〔5〕∵,又∵,∴,∴,∴函数的值域为.例2、是否存在α、β,α∈〔-,〕,β∈〔0,π〕,使等式sin〔3π-α〕=cos〔-β〕,cos〔-α〕=-cos〔π+β〕同时成立"假设存在,求出α、β的值;假设不存在,请说明理由.解:由条件得①2+②2得sin2α+3cos2α=2,∴cos2α=,∴.∵α∈〔-,〕,∴,α=或-.由②得cosβ=.又β∈〔0,π〕,∴β=,又.∴存在α=,β=满足条件.例3、函数上的偶函数,其图象关于点对称,且在区间上是单调函数,求的值.解:由是偶函数,得,即,或对任意x∈R恒成立.,,.又f(x)图象关于对称,.,那么k=1时,,满足条件.当k=2时,,此时,满足条件.当k≥3时,不合要求.综上.。
高中数学必修四第一章三角函数章末复习课

三角函数章末复习课[整合·网络构建][警示·易错提醒]1.关注角的概念的推广(1)由于角的概念的推广,有些术语的含义也发生了变化.如小于90°的角可能是零角、锐角或负角.(2)注意象限角、锐角、钝角等概念的区别和联系,如锐角是第一象限角,但第一象限角不一定是锐角.2.确定角所在象限的关注点由三角函数值符号确定角α的象限时,不要忽视α的终边可能落在坐标轴上,如sin α<0时,α终边在第三、四象限或y 轴负半轴上.3.关注正切函数的定义域(1)正切函数y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π+π2,k ∈Z ,不可写为{x |x ≠k ·360°+90°,k ∈Z}.(2)有关正切的公式(同角三角函数商关系,诱导公式)应用时有限制条件.4.平方关系应用的关注点由平方关系sin 2α+cos 2α=1,开方后求另一个三角函数值,易错的地方是未对角所在象限进行讨论.5.正确应用诱导公式(1)明确诱导公式的基本功能:将k ·π2±α(k ∈Z)的三角函数值化为α的三角函数值,实现变名、变号或变角等作用.(2)熟悉应用口诀解题,一方面注意函数名称,另一方面注意符号的变化.6.关注三角函数的定义域、值域(1)解正弦、余弦函数值问题时,应注意正弦、余弦函数的有界性,即-1≤sin x ≤1,-1≤cos x ≤1.(2)解正切函数问题时,应注意正切函数的定义域,即⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z .7.正确掌握含三角函数的复合函数的单调性(1)要求y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间,先研究正弦函数y =sin x 和余弦函数y =cos x 的相应单调区间,再把其中的“x ”用“ωx +φ”代替,解关于x 的不等式即可求出所求的单调区间,但要特别关注A 的正负.(2)正切函数只有单调递增区间无单调递减区间.专题一 三角函数的概念三角函数的概念所涉及的内容主要有以下两方面:理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算;掌握任意角的正弦、余弦、正切的定义及三角函数线,能够利用三角函数线判断三角函数的符号,借助三角函数线求三角函数的定义域.[例1] (1)设角α属于第二象限,⎪⎪⎪⎪⎪⎪cos α2=-cos α2,试判定α2角属于第几象限.(2)求函数y =3tan x +3的定义域.解:(1)依题意得2k π+π2<α<2k π+π(k ∈Z),所以k π+π4<α2<k π+π2(k ∈Z). 当k =2n (n ∈Z)时,α2为第一象限角; 当k =2n +1(n ∈Z)时,α2为第三象限角. 又⎪⎪⎪⎪⎪⎪cos α2=-cos α2≥0,所以cos α2≤0. 所以α2应为第二、三象限角或终边落在x 非正半轴上或y 轴上.综上所述,α2是第三象限角.(2)3tan x +3≥0,即tan x ≥-33. 所以k π-π6≤x <k π+π2,所以函数y =3tan x +3的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪k π-π6≤x <k π+π2,k ∈Z . 归纳升华1.由α所在象限,判断α2角所在象限时,一般有两种方法:一种是利用终边相同角的集合的几何意义,用数形结合的方法确定α2的所属象限;另一种方法就是将k 进行分类讨论.2.求函数的定义域注意数形结合,应用单位圆中三角函数线或函数图象解题;求与正切函数有关问题时,不要忽视正切函数自身的定义域.[变式训练] (1)若θ为第四象限的角,试判断sin(cos θ)·cos(sin θ)的符号;(2)已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,求α的正切值. 解:(1)因为θ为第四象限角,所以0<cos θ<1<π2,-π2<-1<sin θ<0,所以sin(cos θ)>0,cos(sin θ)>0,所以sin(cos θ)·cos(sin θ)>0.(2)因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos θ<0, 所以r =x 2+y 2=9cos 2θ+16cos 2θ=-5cos θ,故sin α=y r =-45, cos α=x r =35,tan α=y x =-43. 专题二 同角三角函数的基本关系与诱导公式在知道一个角的三角函数值求这个角的其他的三角函数值时,要注意题中的角的范围,必要时按象限进行讨论,尽量少用平方关系,注意切化弦、“1”的妙用、方程思想等数学思想方法的运用,在利用诱导公式进行三角式的化简,求值时,要注意正负号的选取.[例2] 已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)·(cos θ-sin θ)的值.解:法一:由已知2+tan θ1-tan θ=-4, 所以2+tan θ=-4(1-tan θ),解得tan θ=2,所以(sin θ-3cos θ)(cos θ-sin θ)=4sin θcos θ-sin 2θ-3cos 2θ=4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan 2θ-3tan 2θ+1= 8-4-34+1=15. 法二:由已知2+tan θ1-tan θ=-4, 解得tan θ=2,即sin θcos θ=2, 所以sin θ=2cos θ,所以(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos 2θ=cos 2θsin 2θ+cos 2θ=1tan 2θ+1=15.归纳升华三角函数式的化简,求值与证明问题的依据主要是同角三角函数的关系式及诱导公式.解题中的常用技巧有:(1)弦切互化,减少或统一函数名称;(2)“1”的代换,如:1=sin 2α+cos 2α(常用于解决有关正、余弦齐次式的化简求值问题中),1=tanπ4等;(3)若式子中有角k π2,k ∈Z ,则先利用诱导公式化简. [变式训练] (2015·福建卷)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125B .-125 C.512 D .-512解析:法一:因为α为第四象限的角,故cos α=1-sin 2α= 1-⎝ ⎛⎭⎪⎫-5132=1213,所以tan α=sin αcos α=-5131213=-512.法二:因为α是第四象限角,且sin α=-513, 所以可在α的终边上取一点P (12,-5),则tan α=y x =-512. 答案:D专题三 三角函数的图象及变换三角函数的图象是研究三角函数性质的基础,又是三角函数性质的具体体现.在平时的考查中,主要体现在三角函数图象的变换和解析式的确定,以及通过对图象的描绘、观察来讨论函数的有关性质.[例3] 函数y =A sin(w x +φ)的部分图象如图所示,则( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π6 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π3 C .y =2sin ⎝ ⎛⎭⎪⎫x +π6 D .y =2sin ⎝ ⎛⎭⎪⎫x +π3 解析:由图象知T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,故T =π,因此ω=2ππ=2.又图象的一个最高点坐标为⎝ ⎛⎭⎪⎫π3,2,所以A =2,且2×π3+φ=2k π+π2(k ∈Z),故φ=2k π-π6(k ∈Z),结合选项可知y =2sin ⎝ ⎛⎭⎪⎫2x -π6.故选A.答案:A归纳升华1.求解析式的方法:A =y max -y min 2,k =y max +y min 2,ω=2πT ,由“五点作图法”中方法令ωx +φ=0,π2,π,32π或2π求φ. 2.图象变换中应注意方向变化与解析式加减符号变化相对应.[变式训练] 函数y =sin x 2的图象沿x 轴向左平移π个单位长度后得到函数的图象的一个对称中心是( )A .(0,0)B .(π,0) C.⎝ ⎛⎭⎪⎫π2,0 D.⎝ ⎛⎭⎪⎫-π2,0 解析:函数y =sin x 2的图象沿x 轴向左平移π个单位长度后得到函数y =sin ⎣⎢⎡⎦⎥⎤12(x +π)=sin ⎝ ⎛⎭⎪⎫12x +π2=cos 12x 的图象,它的一个对称中心是(π,0). 答案:B专题四 三角函数的性质三角函数的性质,重点应掌握y =sin x ,y =cos x ,y =tan x 的定义域、值域、单调性、奇偶性、对称性等有关性质,在此基础上掌握函数y =A sin(ωx +φ),y =A cos(ωx +φ)及y =A tan(ωx +φ)的相关性质.在研究其相关性质时,将ωx +φ看成一个整体,利用整体代换思想解题是常见的技巧.[例4] 已知函数f (x )=2sin ⎝⎛⎭⎪⎫2x +π6+a +1(其中a 为常数). (1)求f (x )的单调区间;(2)若x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最大值为4,求a 的值; (3)求f (x )取最大值时x 的取值集合.解:(1)由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,解得-π3+k π≤x ≤π6+k π,k ∈Z ,所以函数f (x )的单调增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π(k ∈Z),由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,解得π6+k π≤x ≤2π3+k π,k ∈Z , 所以函数f (x )的单调减区间为⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π (k ∈Z).(2)因为0≤x ≤π2,所以π6≤2x +π6≤7π6,所以-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1, 所以f (x )的最大值为2+a +1=4,所以a =1,(3)当f (x )取最大值时,2x +π6=π2+2k π, 所以2x =π3+2k π,所以x =π6+k π,k ∈Z. 所以当f (x )取最大值时,x 的取值集合是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =π6+k π,k ∈Z . 归纳升华1.形如y =A sin(ωx +φ)+k 单调区间求法策略:可把“ωx +φ”看作一个整体,代入正弦函数的相应区间求解.2.求形如y =A sin(ωx +φ)+k 的值域和最值时,先求复合角“ωx +φ”的范围,再利用y =sin x 的性质来求解.[变式训练] (2014·安徽卷)设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x ,当0≤x ≤π时,f (x )=0,则f ⎝ ⎛⎭⎪⎫23π6=( ) A.12 B.32 C .0 D .-12解析:因为f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),所以f (x )的周期T =2π,又因为当0≤x <π时,f (x )=0,所以f ⎝ ⎛⎭⎪⎫5π6=0, 即f ⎝ ⎛⎭⎪⎫-π6+π=f ⎝ ⎛⎭⎪⎫-π6+sin ⎝ ⎛⎭⎪⎫-π6=0, 所以f ⎝ ⎛⎭⎪⎫-π6=12, 所以f ⎝ ⎛⎭⎪⎫23π6=f ⎝⎛⎭⎪⎫4π-π6=f ⎝ ⎛⎭⎪⎫-π6=12. 答案:A专题五 转化与化归思想化归思想贯穿本章的始终,在三角函数的恒等变形中,同角关系式和诱导公式常化繁为简,化异为同,弦切互化;在研究三角函数的图象与性质时,常把函数y =A sin(ωx +φ)化归为简单的y =sin x 来研究.这些均体现三角函数中的转化与化归的思想方法.[例5] 求函数y =12sin ⎝ ⎛⎭⎪⎫π4-23x 的单调区间. 解:将原函数化为y =-12sin ⎝ ⎛⎭⎪⎫23x -π4. 由2k π-π2≤23x -π4≤2k π+π2(k ∈Z), 得3k π-38π≤x ≤3k π+98π(k ∈Z),此时函数单调递减. 由2k π+π2≤23x -π4≤2k π+32π(k ∈Z),得3k π+98π≤x ≤3k π+218π(k ∈Z),此时函数单调递增. 故原函数的单调递减区间为⎣⎢⎡⎦⎥⎤3k π-38π,3k π+98π(k ∈Z),单调递增区间为⎣⎢⎡⎦⎥⎤3k π+98π,3k π+218π(k ∈Z). 归纳升华1.求形如函数y =A sin(ωx +φ),(ω<0)的单调区间时:先把此函数化为y =-A sin(-ωx -φ)的形式后,再利用函数y =sin x 的单调区间来求解是常用策略,其目的是使x 的系数为正数是关键.2.在求形如y =A sin 2x +B sin x +C 的值域或最值时,常令t =sin x 转化为一元二次函数来求解.[变式训练] 已知|x |≤π4,求函数f (x )=cos 2x +sin x 的最小值. 解:y =f (x )=cos 2x +sin x =-sin 2x +sin x +1.令t =sin x ,因为|x |≤π4,所以-22≤t ≤22. 则y =-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54⎝ ⎛⎭⎪⎫-22≤t ≤22, 所以当t =-22时,即x =-π4时,f (x )有最小值,且最小值为-⎝⎛⎭⎪⎫-22-122+54=1-22.。
(完整版)人教高中数学必修四第一章三角函数知识点归纳.doc

三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角任意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边位置不同分为象限角和轴线角.角 的顶点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的集合为 k 360ok 360o 90o , k第二象限角的集合为 k 360o 90o k 360o 180o , k第三象限角的集合为 k 360o 180o k 360o 270o , k第四象限角的集合为k 360o 270ok 360o360o , k终边在 x 轴上的角的集合为 k 180o , k终边在 y 轴上的角的集合为 k 180o 90o , k终边在坐标轴上的角的集合为k 90o ,k(2)终边与角 α相同的角可写成 α+ k ·360 °(k ∈ Z).终边与角 相同的角的集合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角 的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 l r,C 2r l ,S 1 lr1 r2 .2 22 .任意角的三角函数定义设 α是一个任意角,角 α的终边上任意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx (三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)角度0 30 45 60 90 120 135 150 180 270 360函数角 a 的弧度0 π /6 π/4 π /3 π /2 2π /3 3π /4 5π/6 π3π /2 2πsina 0 1/2 √ 2/2 √ 3/2 1 √ 3/2 √ 2/2 1/2 0 -1 0 cosa 1 √ 3/2 √ 2/2 1/2 0 -1/2 -√ 2/2 -√ 3/2 -1 0 1 tana 0 √ 3/3 1 √ 3 -√ 3 -1 -√ 3/3 0 0二、同角三角函数的基本关系与诱导公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.诱导公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan其中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan .公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos -α= sin α.2 2ππ公式六: sin 2+α= cos_α, cos 2+α=- sin_α.π口诀:奇变偶不变,符号看象限.其中的奇、偶是指π诱导公式可概括为 k· ±α的各三角函数值的化简公式.的奇数2 2倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;若是偶数倍,则函数名称不变,符号看象限是指:把πα看成锐角时,根据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结.... 2 ...果符号.B. 方法与要点一个口诀1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积转换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转化.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
高中数学必修4三角函数知识归纳

《三角函数》第一讲:诱导公式及同角的三角函数关系知识要点:一、三角函数的定义:()22,,P x y r OP x y α==+设点是角终边上异于原点的任一点,则()sin ;cos tan 0.y x yx r r xααα===≠; sin cos tan ααα“一、二象限为正,三、四象限为负”“一、四象限为正,二、三象限为负”“一、三象限为正,二、四象限为负”二、诱导公式:十字决:“奇变偶不变,符号看象限”说明:⑴将“α”始终视为锐角;⑵“奇,偶”指的是除α外的角是902π⎛⎫⎪⎝⎭或的奇数倍或偶数倍; ⑶“变,不变”指的是函数名的变或不变;⑷ “符号”指的是原函数的正负号,看象限指的是“() ”内整体角所在的象限。
三、同角的三角函数关系:平方关系:22sin cos 1αα+=;商数关系:sin tan ,cos 2k k Z απααπα⎛⎫=≠+∈ ⎪⎝⎭倒数关系:1tan ,cot 2k k Z πααα⎛⎫=≠∈ ⎪⎝⎭变形应用: ()2sin cos 12sin cos x x x x ±=±、()()22sin cos sin cos 2.x x x x ++-=典型例题:题型一:(诱导公式)【例1】tan 300sin 450+=【例2】已知sin (-α)=,则)2cos(απ+= .【例3】已知sin()4πα+=3sin()4πα-值为( )A.21 B. 12- C. 23 D. 题型二:(同角的三角函数关系)【例4】已知()3sin 5πα+=,且α是第四象限的角,则()cos 2απ-= . 【例5】已知:1cos tan 0,sin _______.5ααα=<=且则 【例6】已知tan100,sin80k =则的值等于_______. 【例7】已知:1tan 3α=-,求下列各式的值. ()()()24sin 2cos 11;2sin 3sin cos 1;3.5cos 3sin 1sin cos ααααααααα--++-【例8】已知()()sin cos ,32ππαπαθπ⎫--+=<<⎪⎝⎭求值:(1)sin cos αα-; (2)()()33sin2cos 2παπα-+-强化训练:1. 化简:)23sin()2sin(++-ππ= 。
1.2 任意角的三角函数-人教A版高中数学必修四讲义(解析版)

知识点一任意角的三角函数使锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,作PM⊥x轴于M,设P(x,y),|OP|=r.思考1角α的正弦、余弦、正切分别等于什么?答案sin α=yr,cos α=xr,tan α=yx.思考2对确定的锐角α,sin α,cos α,tan α的值是否随P点在终边上的位置的改变而改变?答案不会.因为三角函数值是比值,其大小与点P(x,y)在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关.思考3在思考1中,当取|OP|=1时,sin α,cos α,tan α的值怎样表示?答案sin α=y,cos α=x,tan α=yx.梳理(1)单位圆在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆.(2)定义在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:教材要点学科素养学考高考考法指津高考考向1.三角函数的定义数学抽象水平1 水平11.以锐角三角函数的定义来推广记忆任意角的三角函数的定义。
2.充分理解同角三角函数的基本关系式,掌握公式成立的条件及公式的变形。
3.理解并记忆求值、化简及证明的模型,领会解题常用的方法技巧。
【考查内容】根据三角函数的定义求值,三角函数平方关系的应用。
【考查题型】选择题、填空题【分值情况】5分2.终边相同的角的同一三角函数值的关系数学运算水平1 水平23.单位圆数学直观水平1 水平24.同角三角函数的两个基本关系式数学运算水平1 水平2第二讲任意角的三角函数知识通关①y 叫做α的正弦,记作sin_α, 即sin α=y ;②x 叫做α的余弦,记作cos_α,即cos α=x ; ③y x 叫做α的正切,记作tan_α,即tan α=yx(x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.知识点二 正弦、余弦、正切函数值在各象限的符号思考 根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗?答案 由三角函数定义可知,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx (x ≠0).当α为第一象限角时,y >0, x >0,故sin α>0,cos α>0,tan α>0,同理可得当α在其他象限时三角函数值的符号,如图所示.梳理 记忆口诀:“一全正,二正弦,三正切,四余弦”.知识点三 诱导公式一思考 当角α分别为30°,390°,-330°时,它们的终边有什么特点?它们的三角函数值呢? 答案 它们的终边重合.由三角函数的定义知,它们的三角函数值相等. 梳理 诱导公式一知识点四 三角函数的定义域思考 正切函数y =tan x 为什么规定x ∈R 且x ≠k π+π2,k ∈Z?答案 当x =k π+π2,k ∈Z 时,角x 的终边在y 轴上,此时任取终边上一点P (0,y P ),因为y P0无意义,因而x 的正切值不存在.所以对正切函数y =tan x ,必须要求x ∈R 且x ≠k π+π2,k ∈Z .梳理 正弦函数y =sin x 的定义域是R ;余弦函数y =cos x 的定义域是R ;正切函数y =tan x 的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R 且x ≠k π+π2,k ∈Z .知识点五 三角函数线思考1 在平面直角坐标系中,任意角α的终边与单位圆交于点P ,过点P 作PM ⊥x 轴,过点A (1,0)作单位圆的切线,交α的终边或其反向延长线于点T ,如图所示,结合三角函数的定义,你能得到sin α,cos α,tan α与MP ,OM ,AT 的关系吗?答案 sin α=MP ,cos α=OM ,tan α=AT . 思考2 三角函数线的方向是如何规定的?答案 方向与x 轴或y 轴的正方向一致的为正值,反之,为负值. 思考3 三角函数线的长度和方向各表示什么?答案 长度等于三角函数值的绝对值,方向表示三角函数值的正负. 梳理角α的终边与单位圆交于点P ,过点P 作PM 垂直于x 轴,有向线知识点六 同角三角函数的基本关系式 思考1 计算下列式子的值: (1)sin 230°+cos 230°; (2)sin 245°+cos 245°; (3)sin 290°+cos 290°.由此你能得出什么结论?尝试证明它. 答案 3个式子的值均为1.由此可猜想:对于任意角α,有sin 2α+cos 2α=1,下面用三角函数的定义证明:设角α的终边与单位圆的交点为P (x ,y ),则由三角函数的定义,得sin α=y ,cos α=x . ∴sin 2α+cos 2α=x 2+y 2=|OP |2=1.思考2 由三角函数的定义知,tan α与sin α和cos α间具有怎样的等量关系? 答案 ∵tan α=y x (x ≠0),∴tan α=sin αcos α(α≠π2+k π,k ∈Z ).梳理 (1)同角三角函数的基本关系式 ①平方关系:sin 2α+cos 2α=1.②商数关系:tan α=sin αcos α ⎝⎛⎭⎫α≠k π+π2,k ∈Z . (2)同角三角函数基本关系式的变形 ①sin 2α+cos 2α=1的变形公式 sin 2α=1-cos 2α;cos 2α=1-sin 2α. ②tan α=sin αcos α的变形公式=sin αtan α.此时sin θ=312+32=31010,tan θ=31=3.当x=-1时,P(-1,3),此时sin θ=3(-1)2+32=31010,tan θ=3-1=-3.命题角度2已知角α终边所在直线求三角函数值规律方法例1-2已知角α的终边在直线y=3x上,则sin α,cos α,tan α的值分别为________.解析:因为角α的终边在直线y=3x上,所以可设P(a,3a)(a≠0)为角α终边上任意一点,则r=a2+(3a)2=2|a|(a≠0).若a>0,则α为第一象限角,r=2a,所以sin α=3a2a=32,cos α=a2a=12,tan α=3aa= 3.若a<0,则α为第三象限角,r=-2a,所以sin α=3a-2a=-32,cos α=-a2a=-12,tan α=3aa= 3.答案32,12,3或-32,-12, 3变式训练1-2在平面直角坐标系中,角α的终边在直线3x+4y=0上,求sin α-3cos α+tan α的值.解析:当角α的终边在射线y=-34x(x>0)上时,取终边上一点P(4,-3),所以点P到坐标原点的距离r=|OP|=5,所以sin α=yr=-35=-35,cos α=xr=45,tan α=yx=-34.所以sin α-3cos α+tan α=-35-125-34=-154.当角α的终边在射线y=-34x(x<0)上时,取终边上一点P′(-4,3),所以点P′到坐标原点的距离r=|OP′|=5,所以sin α=yr=35,cos α=xr=-45,tan α=yx=3-4=-34.所以sin α-3cos α+tan α=35-3×⎝⎛⎭⎫-45-34=35+125-34=94.综上,sin α-3cos α+tan α的值为-154或94.题型二 三角函数值符号的判断 规律方法例2、 判断下列各式的符号:(1)sin 145°cos(-210°);(2)sin 3·cos 4·tan 5. 解析: (1)∵145°是第二象限角,∴sin 145°>0. ∵-210°=-360°+150°,∴-210°是第二象限角, ∴cos (-210°)<0,∴sin 145°cos(-210°)<0. (2)∵π2<3<π<4<3π2<5<2π,∴sin 3>0,cos 4<0,tan 5<0, ∴sin 3·cos 4·tan 5>0.变式训练2 sin1cos3tan5的值( ) A .小于0 B .大于0 C .等于0 D .不存在解析: π3π013π52π22<<<<<<,, ∴sin10cos30tan50><<,,.答案 B题型三 诱导公式一的应用 规律方法(1)sin390°+cos(-660°)+3tan405°-cos540°;变式训练3tan 405°-sin 450°+cos 750°=________. 解析: tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°) =tan 45°-sin 90°+cos 30°=1-1+32=32. 答案32题型四 三角函数线 规律方法sin ⎝⎛⎭⎫-5π8=MP ,cos ⎝⎛⎭⎫-5π8=OM , tan ⎝⎛⎭⎫-5π8=AT . 变式训练4、 在单位圆中画出满足sin α=12的角α的终边,并求角α的取值集合.解析: 已知角α的正弦值,可知P 点纵坐标为12.所以在y 轴上取点⎝⎛⎭⎫0,12,过这点作x 轴的平行线,交单位圆于P 1,P 2两点,则OP 1,OP 2是角α的终边,因而角α的取值集合为⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+π6或α=2k π+5π6,k ∈Z .题型五 利用同角三角函数的关系式求值 命题角度1 已知角α的某一三角函数值及α所在象限,求角α的其余三角函数值则tan α的值为( )A.125 B .-125 C.512 D .-512 解析: ∵sin α=-513,且α为第四象限角,∴cos α=1213,∴tan α=sin αcos α=-512,故选D.答案 D(2) 已知-π2<α<0,sin α+cos α=15,则tan α的值为( ) A .-43 B .-34 C.34 D.43解析: ∵sin α+cos α=15,等号两边同时平方得1+2sin αcos α=125,即sin αcos α=-1225,∴sin α,cos α是方程x 2-15x -1225=0的两根,又∵-π2<α<0,∴sin α=-35,cos α=45,∴tan α=sin αcos α=-34.答案 B变式训练5-1 已知tan α=43,且α是第三象限角,求sin α,cos α的值.解析: 由tan α=sin αcos α=43,得sin α=43cos α.①又sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1,即cos 2α=925.又α是第三象限角,∴cos α=-35,sin α=43cos α=-45.命题角度2 已知角α的某一三角函数值,未给出α所在象限,求角α的其余三角函数值 规律方法:例5-2已知cos α=-817,求sin α,tan α的值.解析: ∵cos α=-817<0,且cos α≠-1,∴α是第二或第三象限角. (1)当α是第二象限角时,则 sin α=1-cos 2α=1-⎝⎛⎭⎫-8172=1517, tan α=sin αcos α=1517-817=-158.(2)当α是第三象限角时,则 sin α=-1-cos 2α=-1517,tan α=158.变式训练5-2 已知cos α=1213,求sin α,tan α的值.解析: ∵cos α=1213>0且cos α≠1,∴α是第一或第四象限角. (1)当α是第一象限角时,则 sin α=1-cos 2α=1-⎝⎛⎭⎫12132=513,tan α=sin αcos α=5131213=512.(2)当α是第四象限角时,则sin α=-1-cos 2α=-513,tan α=-512.题型六 齐次式求值问题 规律方法:例6 已知tan α=2,求下列代数式的值. (1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α.解析: (1)原式=4tan α-25+3tan α=611.(2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330.变式训练6 已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值. (1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.解析: 由已知4sin θ-2cos θ3sin θ+5cos θ=611,∴4tan θ-23tan θ+5=611,解得tan θ=2.(1)原式=5tan2θ+2tan θ-3=55=1.(2)原式=sin2θ-4sin θcos θ+3cos2θ=sin2θ-4sin θcos θ+3cos2θsin2θ+cos2θ=tan2θ-4tan θ+31+tan2θ=-15.例8-1 ∴在单位圆中,利用三角函数线求出满足1sin 2α>的角α的范围.∴在单位圆中,利用三角函数线求出满足1sin 2≤α的角α的范围.解析:∴如图所示,π5π2π2π66k k k αα⎧⎫+<<+∈⎨⎬⎩⎭Z ,. ∴如图所示,5π132ππ2π66k k k αα⎧⎫++∈⎨⎬⎩⎭Z ≤≤,.(1)(2)变式训练8-1 已知-12≤cos θ<32,利用单位圆中的三角函数线,确定角θ的取值范围.解析: 图中阴影部分就是满足条件的角θ的范围, 即⎩⎨⎧⎭⎬⎫θ⎪⎪2k π-23π≤θ<2k π-π6或2k π+π6<θ≤2k π+23π,k ∈Z .命题角度2 利用三角函数线求三角函数的定义域 规律方法例8-2 求函数y =lg ⎝⎛⎭⎫sin x -22+1-2cos x 的定义域.解析: 由题意知,自变量x 应满足不等式组⎩⎪⎨⎪⎧1-2cos x ≥0,sin x -22>0,即⎩⎨⎧cos x ≤12,sin x >22.12(1)化简:sin 2αtan α+cos 2αtan α+2sin αcos α. 原式=sin 2α·sin αcos α+cos 2α·cos αsin α+2sin αcos α=sin 4α+cos 4α+2sin 2αcos 2αsin αcos α=(sin 2α+cos 2α)2sin αcos α=1sin αcos α.求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.∵右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α =tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α =tan αsin αtan α-sin α=左边,∴原等式成立.一、选择题1.已知角α的终边过点(-2,1),则cos α的值为()A.55 B.255C.-55D.-255答案 D2.如果角α的终边过点P(2sin 30°,-2cos 30°),则sin α等于()A.12B.-12C.-32D.-33解析:由题意得P(1,-3),它与原点的距离r=12+(-3)2=2,∴sin α=-32. 答案 C3.如图在单位圆中,角α的正弦线、正切线完全正确的是()A.正弦线为PM,正切线为A′T′B.正弦线为MP,正切线为A′T′C.正弦线为MP,正切线为ATD.正弦线为PM,正切线为AT答案 C4.函数y=tan⎝⎛⎭⎫x-π3的定义域为()A.⎩⎨⎧⎭⎬⎫x⎪⎪x≠π3,x∈R B.⎩⎨⎧⎭⎬⎫x⎪⎪x≠kπ+π6,k∈ZC.⎩⎨⎧⎭⎬⎫x⎪⎪x≠kπ+5π6,k∈Z D.⎩⎨⎧⎭⎬⎫x⎪⎪x≠kπ-5π6,k∈Z解析:∵x-π3≠kπ+π2,k∈Z,∴x≠kπ+5π6,k∈Z.答案 CA组基础演练5.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A.⎝⎛⎭⎫-π3,π3 B.⎝⎛⎭⎫0,π3 C.⎝⎛⎭⎫5π3,2πD.⎝⎛⎭⎫0,π3∪⎝⎛⎭⎫5π3,2π 解析: 角α的取值范围为图中阴影部分, 即⎝⎛⎭⎫0,π3∪⎝⎛⎭⎫5π3,2π.答案 D7.已知tan θ=2,则1sin 2θ+sin θcos θ-2cos 2θ等于( )A .-43 B.54 C .-34 D.45答案 B 8.1-2sin 10°cos 10°sin 10°-1-sin 210°的值为( ) A .1 B .-1 C .sin 10°D .cos 10°解析: 1-2sin 10°cos 10°sin 10°-1-sin 210°=(cos 10°-sin 10°)2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1.答案 B9.若α是第四象限角,5tan 12α=-,则sin α等于( ) A .15B .15-C .513D .513-解析:因为5tan 12α=-,所以sin 5cos 12αα=-,即12cos sin 5αα=-,因为22sin cos 1αα+=, 所以22144sin sin 125αα+=,即225sin 169α=,因为α是第四象限角,所以5sin 13α=-。
必修4第一章三角函数知识点详解

(2)公式变形使用( 。
(3)三角函数次数的降升(降幂公式: , 与升幂公式: , )。
(4)常值变换主要指“1”的变换
(5)正余弦“三兄妹— ”的存联系――“知一求二”,如
注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.
、弧度与角度互换公式:1rad= °≈57.30°=57°18ˊ. 1°= ≈0.01745(rad)
五: 弧长公式:
,扇形面积公式: ,1弧度(1rad) .
1.2任意角的三角函数
一: 任意角的三角函数的定义:
设 是任意一个角,P 是 的终边上的任意一点(异于原点),它与原点的距离是 ,那么 , , , , 。三角函数值只与角的大小有关,而与终边上点P的位置无关。
正角:按逆时针方向旋转所形成的角.
负角:按顺时针方向旋转所形成的角.
零角:如果一条射线没有做任何旋转,我们称它形成了一个零角.
角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.
二: 象限角的概念:
在直角坐标系中,使角的顶点与原点重合,角的始边与 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。
0°
90°
180°
270°
15°
75°
0
1
0
-1
1
0
-1
0
1
0
0
2-
2+
1
0
0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 任意角与三角函数诱导公式1. 知识要点 角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限。
终边相同的角的表示:α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z 。
注意:相等的角的终边一定相同,终边相同的角不一定相等.α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈. 角度与弧度的互换关系:360°=2π 180°=π 1°= 1=°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.α与2α的终边关系:任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos yx r rαα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec rxα=()0x ≠,()csc 0r y y α=≠。
三角函数值只与角的大小有关,而与终边上点P 的位置无关。
三角函数线的特征:正弦线MP“站在x 轴上(起点在x 轴上)”、余弦线OM“躺在x 轴上(起点是原点)”、正切线AT“站在点(1,0)A 处(起点是A )”同角三角函数的基本关系式:1. 平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+=2. 倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1,3. 商数关系:sin cos tan ,cot cos sin αααααα== 注意:1.角α的任意性。
2.同角才可使用。
3.熟悉公式的变形形式。
三角函数诱导公式:“ (2k πα+)”记忆口诀: “奇变偶不变,符号看象限”典型例题例1.求下列三角函数值: (1)cos210º; (2)sin 45π例2.求下列各式的值: (1)sin(-34π); (2)cos(-60º)-sin(-210º)例3.化简)180sin()180cos()1080cos()1440sin(︒--⋅-︒-︒-⋅+︒αααα例4.已知cos(π+α)=-21,23π<α<2π,则sin(2π-α)的值是( ).(A)23(B) 21 (C)-23 (D)±23 例5、求证: )2cos()5cos()2sin()4sin()cot()2tan()23cos()2sin(απαπαπαπαπαπαπαπ+-+--=+-+---+k k k例6 的值。
求)4(cos )4(cos 22α+π+α-π例7 )(sin ,17cos )(cos x f x x f 求若=课后练习1.在直角坐标系中,若角α与β终边互为反向延长线,α与β之间的关系是( )A .αβ=B .()2k k Z απβ=+∈C .απβ=+D .()()21k k Z απβ=++∈2.圆内一条弦的长等于半径,这条弦所对的圆心角是( )A .等于1弧度B .大于1弧度C .小于1弧度D .无法判断3. 角α的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin α的值是( ) A .22 B .-22 C .±22 D .14. α是第二象限角,其终边上一点P (x ,5),且cos α=42x ,则sin α的值为( )A .410 B .46 C .42 D .-4105.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 6. 已知45cos sin -=-αα,则ααcos sin •等于( )A .47B .-169C .-329D .3297. 函数x x x x y sin cos 1cos sin 122-+-=的值域是( )A .{0,2}B .{-2,0}C .{-2,0,2}D .{-2,2}8. 化简4cos 4sin 21-的结果是( )A 、4cos 4sin +B 、4cos 4sin -C 、4sin 4cos -D 、4cos 4sin -- 9. 若2cos sin =+αα,则ααcot tan +等于( ) A 、1 B 、2 C 、-1 D 、-210. 若A 、B 、C 为△ABC 的三个内角,则下列等式成立的是( ) A 、A C B sin )sin(=+ B 、A C B cos )cos(=+ C 、A C B tan )tan(=+ D 、A C B cot )cot(=+11. 若101)sin(=+απ,则)270cos()540csc()90sin()sec(︒︒︒------+-αααα的值是( ) A 、31- B 、271±C 、31D 、33-12. 若θsin 、θcos 是关于x 的方程0242=++m mx x 的两个实根,则m 值为( )A 、⎪⎭⎫⎢⎣⎡-∈0,34m B 、51-=m C 、51±=m D 、51+=m13. .定义在R 上的函数f (x )既是偶函数又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,2π]时,f (x )=sin x ,则f(3π5)的值为( )A.-21 B.21 C.-23D.2314. 函数lg(2cos y x =-的单调递增区间为 ( ) .A .(2,22)()k k k Z ππππ++∈B .11(2,2)()6k k k Z ππππ++∈ C .(2,2)()6k k k Z πππ-∈ D .(2,2)()6k k k Z πππ+∈15. 下列说法只不正确的是 ( )A .正弦函数、余弦函数的定义域是R ,值域是[-1,1];B .余弦函数当且仅当x =2kπ( k ∈Z) 时,取得最大值1;C .余弦函数在[2kπ+2π,2kπ+32π]( k ∈Z)上都是减函数;D .余弦函数在[2kπ-π,2kπ]( k ∈Z)上都是减函数16. 若a =sin 460,b =cos 460,c =tan360,则a 、b 、c 的大小关系是( ) A . c > a > b B. a > b > c C. a >c > b D. b > c > a18. 若α是第四象限角,则απ-是 ( )A . 第一象限 B.第二象限 C. 第三象限期 D.第四象限19.若0cos 3sin =+αα,则ααααsin 3cos 2sin 2cos -+的值为 .49π37π= _________21.若α是第二象限的角,则2α是第 象限的角。
22.若θ角的终边与85π角的终边相同,则在[]0,2π上终边与4θ的角终边相同的角为 ;23.终边在x 轴上的角的集合为 ,终边在y 轴上的角的集合为 ,终边在坐标轴上的角的集合为 。
24. 已知x xx f +-=11)(,若⎪⎭⎫ ⎝⎛∈ππα,2,求)cos ()(cos αα-+f f 的值。
25. 已知21)sin(=+απ,求απααπcos )cot()2sin(⋅---的值.26. 已知:21cos sin =+αα,求θθ33cos sin +和θθ44cos sin +的值。
27. 若cos α=23,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值第二讲 三角函数的图像与性质1.函数B x A y ++=)sin(ϕω),(其中00>>ωA 最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。
2.由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
函数sin y x =cos y x =tan y x =图象定义域 RR{|,}2x x k k Z ππ≠+∈值域 [1,1]-[1,1]-R 奇偶性 奇函数偶函数奇函数最小正周期 22T ππω;=22T ππω;=T ππω;=对称轴 ,2x k k Z ππ=+∈,x k k Z π=∈无对称 中心 (,0),k k Z π∈(,0),2k k Z ππ+∈(,0),2k k Z π∈ 单调递 增区间 [2,2],22k k k Zππππ-++∈[2,2],k k k Z πππ-+∈ (,),22k k k Z ππππ-++∈ 单调递减区间3[2,2],22k k k Z ππππ++∈ [2,2],k k k Z πππ+∈无3.由y =A sin(ωx +ϕ)的图象求其函数式: 4.五点法作y =A sin (ωx +ϕ)的简图: 典例解析例1.(2000全国,5)函数y =-xc os x 的部分图象是( )例2.试述如何由y =31sin (2x +3π)的图象得到y =sin x 的图象。
例3.(2003上海春,15)把曲线yc os x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是( ) A .(1-y )sin x +2y -3=0 B .(y -1)sin x +2y -3=0 C .(y +1)sin x +2y +1=0 D .-(y +1)sin x +2y +1=0例4.(2003上海春,18)已知函数f (x )=A sin (ωx +ϕ)(A >0,ω>0,x ∈R )在一个周期内的图象如图所示,求直线y =3与函数f (x )图象的所有交点的坐标。
例5.(1)已知f (x )的定义域为[0,1],求f (c os x )的定义域;(2)求函数y =lgsin (c os x )的定义域;例6.求下列函数的单调区间:(1)y =21sin (4π-32x );(2)y =-|sin (x +4π)|。