第五届小学希望杯五年级1试试题及答案
2007年第五届五年级希望杯第1试及答案
第五届小学“希望杯”全国数学邀请赛五年级第1试2007年3月18日上午8:30至10:00 亲爱的小朋友们,欢迎你参加第五届小学“希望杯”全国数学邀请赛!你将进入一个新颖、有趣、有挑战性的数字天地,将会留个一个难忘的经历,好,我们开始前进吧!……以下每题6分,共120分1.2007÷200720072008=。
2.对不为0的自然数a,b,c 规定新运算“☆”:☆(a,b,c)=a b ca b c-÷+⨯则☆(1,2,3)=。
3.判断:“小明同学把一张电影票夹在数学书的51页至52页之间”这句话是(填“正确”或“错误”)4.已知a,b,c是三个连续自然数,其中a是偶数。
根据图1中的信息判断,小红和小明两人的说法中正确的是。
5.某个自然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最小是。
6.当p和3p+5都是质数时,5p+5=。
7.下列四个图形是由四个简单图形A、B、C、D(线段和正方形)组合(记为*)而成。
则图①—④中表示A*D的是。
(填序号)8.下面四幅图形中不是轴对称图形的是。
(填序号)(注:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
)9.小华用相同的若干个小正方体摆成一个立体(如图2)。
从上体上面看这个立方体,看到的图形是图①~③中的。
(填序号)图3 10.图3中内部有阴影的正方形共有个。
11.图4中的阴影部分BCGF是正方形,线段FH长18厘米,线段AC长24厘米,则长方形ADHE的周长是厘米。
12.图5中的熊猫图案的阴影部分的面积是平方厘米。
(注:阴影部分均由半圆和正方形组成,图中一个小正方形的面积是1平方厘米, 取3.14)图3 图4 图513.小红看一本故事书,第一天看了这本书的一半又10页,第二天看了余下的一半又10页,第三天看了10页正好看完。
这本故事书共有页。
14.在一副扑克牌中(去掉大、小王),最少取张牌就可以保证其中有3张牌的点数相同。
“希望杯”全国数学大赛小学五年级模拟试卷附答案[B]
“希望杯”全国数学大赛决赛模拟试卷附答案(小五) (时间:90分钟 满分:120分)一、填空题。
(每题6分,共72分。
) 1.计算:1+12 +22 +12 +13 +23 +33 +23 +13 +…+12006 +22006 +…+20062006 +…+22006 +12006=____________。
2.8+88+888+…+88…8的和的个位上的数字是____________。
3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。
4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。
最后橘子分完了,苹果还剩下12个。
那么一共分给了____________名小朋友。
5.有这样一种算式:三个不同的自然数相乘,积是100。
这样的算式有____________种。
(交换因数位置的算同一种。
)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。
7.一天,小慧和刘老师一起谈心。
小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。
”刘老师今年的年龄是____________岁。
8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。
他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。
9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。
已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。
那么前3名同学的总分比后3名同学的总分多____________分。
10.在右图中,已知正方形ABCD 的面积是正方形EFGH 面积的4倍,正方形AMEN 的周长是4厘米,那么正方形ABCD 的周长是____________厘米。
2024新希望杯五年级竞赛模拟数学试卷
1.对于非零自然数,,规定运算“”的含义是:,已知,的值 .2.计算:的结果个位数字是 .个3.把分解质因数是 。
4.将至六个数填入下图所示球体的圆内,使球体的各个大圆上每四个数的和都相等。
这个和是 。
5..6.有若干名小朋友,第一名小朋友的糖果比第二名小朋友的糖果多块,第二名小朋友的糖果比第三名小朋友的糖果多块……即前一名小朋友总比后一名小朋友多块糖果.他们按次序围成圆圈做游戏,从第一名小朋友开始给第二名小朋友块糖果,第二名小朋友给第三名小朋友块糖果……即每一名小朋友总是将前面传来的糖果再加上自己的块传给下面的小朋友.当游戏进行到最后一名小朋友无法按规定给出糖果时,有两名相邻的小朋友的糖果数之比是,最多有 名小朋友.7.新希望杯五年级竞赛模拟数学试卷①猴子和狮子的总数要比熊猫的数量多,②熊猫和狮子的总数要比猴子的两倍还多,③猴子和熊猫的总数要比狮子的三倍还多,④熊猫的数量没有狮子数量的两倍那么多,可知猴子有 只,熊猫有 只,狮子有 只.8.某天早上,一只怪物攻击了奥拉星球.为了拯救星球,从怪物出现时亚比英雄们就对怪物进行反击.怪物出现时有点生命值,每位亚比英雄每个白天可以消耗怪物点生命值,但在晚上亚比英雄们都休息时,怪物会恢复点生命值.如果在天内怪物被消灭,至少需要 位亚比英雄.9.在这个数中,十位数字是奇数的数共有 个.,,,,10.欢欢和乐乐同时出发去集市,他们以不同的速度沿同一条直路匀速前行,开始时两人相距米,小时后两人仍相距米.再过小时他们都没有到达集市,这时候他们相距 米.11.艾迪、 薇儿和大宽是好朋友, 住在同一个镇上, 靠着同一条镇中小道. 大宽在中间些,艾迪和薇儿在小道的两端. 三个好朋友每天都要聚一次. 第一天, 艾迪和薇儿从同一时刻出发, 从各自的家沿着小道走, 结果同时到达大宽家. 第二天, 艾迪比第一天提早小时出发,薇儿比第一天又推迟半个小时出发, 艾迪和薇儿比第一天提前了分钟相遇. 第三天薇儿比第一天提早小时出发, 艾迪比第一天推迟半个小时出发, 艾迪和薇儿在离大宽家千米处相遇. 问艾迪的速度是 .12.的分数单位是 ,再增加 个这样的单位就是最小的质数.13.边长是厘米的正方形纸片,正中间挖了一个正方形的洞,成为一个宽厘米的方框.把五个这样的方框放在桌面上,成为一个这样的图案(如图所示).桌面上被这些方框盖住的部分面积是 平方厘米.14.从这个自然数中删掉若干个连续的自然数,使得余下数的和能被整除,最少要删掉 个数.15.自然数、、、、都大于,其乘积,则其和的最大值是 ,最小值是 .16.三位数是一个质数,巧的是,,,,也都是质数, .17.个连续自然数的和恰好是三个不同质数的积,那么这三个质数的和最小是 .18.在这个数中,最多可取出 个数,使所取出的数中,任意两个数的和能被整除.19.若六位数能被和整除,则两位数 .20.的个位是 .21.平面内有个点,其中任意个点均不在同一条直线上,以这些点为端点连接线段,则除这个点外,这些线段至少还有 个交点.22.如图,若干边长为的小等边三角形组成一个边长为的大等边三角形.现在每个小三角形的顶点涂上黑色或白色,可以按照任意顺序涂色.如果某个小三角形有两个顶点的颜色相同,那么第三个顶点涂黑色;否则第三个顶点涂白色.完成涂色后的大三角形有 种不同的样式.(不可旋转、翻转)23.用,,,这个数字任意写出一个一万位数,从这个一万位数中任意截取相邻的个数字,可以组成许许多多的四位数,这些四位数中,至少有 个相同.24.甲、乙、丙、丁兄弟四人各收藏了一些宝石.每天早上他们都要聚在一起,重新分配宝石.分配的规则是:拥有宝石最多的人分给其他三人每人颗.如果第天早上分配完后,甲、乙、丙、丁四人分别有、、、颗宝石,那么第天早上分配完后,甲有 颗宝石.25.舞台中央有一个音效区,被分隔成个不同区域,每个区域安装个音箱(音箱无差别),音箱朝向只能向东、西、南或北,且相邻两个区域的音箱朝向不能面对面(有公共边的两个区域视为相邻).共有 种安装方案.东南西北(1)可以组成 个不同的三位数.26.有张卡,分别写有数字,,,,.如果允许可以作用,那么从中任意取出张卡片,并排放在一起.27.在平面上有个点,其中任意个点都不在同一条直线上.如果在这个点之间连结条线段,那么这些线段最多能构成 个三角形.28.计算 .29.计算: .30.定义新运算:,(个相乘),则.31.已知三个不同的非零自然数、、满足算式, 且.那么代表的自然数是 .32.下面表格所有数的和是 ?33.三位数(,,互不相同),是,,的最小公倍数,是,,的最大公因数,等于的因数个数,这样的三位数有 个.34.35.一个两位数,在它的前面写上,得到一个三位数.这个三位数比原两位数的倍多,那么原来的两位数为 .36.左图一个由小正方体组成的的大正方体.从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通.右图中的阴影部分是抽空的状态.右图的正方体中还剩 个小正方体.37.有一个两位数,除以余,除以余,除以余,那么这个数最小是 .38.小明全家拍全家福,家里有爷爷、奶奶、爸爸、妈妈和小明人,爷爷必须站最中间,小明不站两边,请问:一共有 种不同的排队方式.39.图中有四个等边三角形,边长分别为,,,,那么阴影部分的总面积是最小的等边三角形面积的 倍.乐乐老师想把件相同的礼物全部分给个小朋友,要使每个小朋友都分到礼物,则分礼物的不同方法一共有 种.41.题图中共有 个正方形.42.龙猫家的大花园是一个平行四边形.如图,线段和将花园分成四块,其中的和的面积分别是和,则四边形的面积是 .43.如图所示,正六边形的面积为,则阴影部分的面积为 .44.一张卡片如左图所示,从中选个数字,分别写在个部分上,“”已经写好,然后将卡片折成右图的正方体纸盒.这个纸盒三组相对面上的数字和都相等,这个和是 .45.在一个的方阵中,任意填上自然数,从中任选出个的方格.如果选出的方格中必有个方格为原方阵中一个矩形的个角,上面所填的个数的和是偶数,那么的最小值是 .46.潘多拉星球遭到只飞龙和只地虎的袭击,机甲战士奋力抗击.潘多拉星球上的机甲战士共名,每个战士击退只飞龙需要分钟,击退只地虎需要分钟.那么,战士们击退全部敌人至少需要 分钟.47.自动扶梯以匀速由下往上行驶,两个急性子的孩子嫌扶梯走的太慢,于是在行驶的扶梯上,男孩每秒向上走梯级,女孩每秒钟走梯级.结果男孩用秒到达楼上,女孩用秒到达楼上.该楼梯共有 级.48.小明读一本小说,已读页数比全书页数的多页,未读的页数比全书页数的少页.这本书共有 页.49.父亲节来临之际,商店进行优惠促销.领带原价元条,现在买条送条,妈妈和两位阿姨现在合买条领带,每条领带比原来便宜 元.50.年父亲的年龄是儿子年龄的倍,年父亲年龄是儿子年龄的倍.儿子是在 年出生的.51.一辆汽车的速度是每小时千米,现有一个每小时比标准表多走秒的计时器,若用该计时器计时,则测得这辆汽车的速度是每小时 千米.52.放暑假真棒啊下面算式中不同的汉字代表不同的数字,六位数“”的最小值是 .放放放暑暑暑假假假真真棒啊53.若,则整数的所有数位上数字的和是 .个个54.甲、乙、丙三位同学去买书,他们买的本数都是两位数,且甲买的最多,丙买的最少,又知这些书本数的总和是偶数,它们的积是,那么乙最多买 本.55.已知、两地相距千米,从到是下坡路.小高同学早上点骑车从地去地,点整到达;第天早上点,他从地原路返回,中午点整才到达地.他在两天往返的过程中曾在同一时刻到达同一地点,那么小高同学 时 分到达这一地点,此地距离地 千米.56.有这样一类四位数,它满足的形式,如.这样的四位数中偶数有 个.57.下图有五个圆,它们相交相互分成个区域,现在两个区域里已经填上与,要求在另外七个区域里分别填进、、、、、、七个数,使每个圆内的和都等于.则所表示的三位数是 .58.四个边长都是整数的正方形如下图摆放,正方形的三个顶点分别是正方形,,的中心.若红色部分的总面积和绿色部分的面积相等,则正方形的边长最小是 .59.名工人小时加工零件个,按这个效率,小时加工个零件,需要 名工人.60.一只蚂蚁从正方体某个面的中心出发,每次走到相邻面的中心,每个中心恰好经过一次最终回到出发点,所有经过的中心排出的序列共有 种.(两条序列不同指沿着行走方向经过的中心点顺序不一样)61.若一个能被整除的两位数,既不能被整除,又不能被整除,它的倍是偶数,十位数字不小于,则这个两位数是 .62.除以的余数是 .63.一个正方体被切成个大小形状一模一样的小长方体(如图所示),这些小长方体的表面积之和为平方厘米。
五年级数学培优:基本行程问题(含解析)
五年级数学培优:基本行程问题(含解析)知识概述一、相遇问题:1.相遇问题基本量:① 路程和:我们把同时出发时刻两人(或物体)间的距离称为路程和;② 相遇时间:从同时出发到两人(物体)相遇所用的时间称为相遇时间.2.相遇问题基本数量关系:相遇时间=路程和÷速度和二、追及问题:1.追及问题基本量:① 路程差:我们把同时移动时刻前后两人(或物体)间的距离称为路程差;② 追及时间:从开始追的时刻到追上前者所用的时间称为追及时间.2.追及问题基本数量关系:追及时间=路程差÷速度差三、火车过桥问题:3.火车通过大桥是指从车头上桥到车尾离桥.即当火车通过桥时,火车实际运动的路程就是火车的运动总路程,即车长与桥长的和.四、流水行船问题:船在江河里航行时,除了本身的前进速度外,还受到流水的推力或阻力,在这种情况下计算船只的航行速度、时间和所行的路程,称为流水问题.流水问题还有两个特殊的速度,即顺水速度=船速+水速逆水速度=船速-水速这里船速指的是船本身的速度,就是在静水中的速度.水速是指水流的速度.顺水速和逆水速分别指船在顺水航行时和逆水航行时的速度.历届杯赛考试中,行程问题是最大的难点之一,一般情况下每次比赛都会出现多次.行程问题首先考察学生对于题目的理解以及分析能力,其次考察学生转化题意变成数学语言的能力.并且行程问题的形式非常多样化,对于这类题目需要针对不同题型,具体问题具体分析.名师点题例1(第四届希望杯一试试题)甲乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇.如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后________秒相遇.【解析】原速度和:1500÷10=150(米/分)相遇时间:1500÷【150×(1+20%)】×60=500(秒)例2(第五届小机灵杯邀请赛试题)在同一高速公路上,乙车在甲车前面若干千米同向行驶,如果甲车的速度是65千米/时,它5小时可追上乙车;如果甲车的速度是75千米/时,它3小时可追上乙车.乙车的速度是()千米/时.【解析】解:设乙车的速度是x千米/时,依题意得5(65-x)=3(75-x)2x=100x=50答:乙车的速度是50千米/时.例3一列火车通过小明身边用了10秒钟,通过一座长486米的铁桥用了37秒,问这列火车多长?【解析】通过小明身边,可以看成火车通过它自己的身长所用的时间;过桥的时候,可以看成火车通过自己车长和桥一并所用的时间.486÷(37-10)=18(米/秒)18×10=180(米)答:这列火车长180米.甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.【解析】顺水速:208÷8=26(千米/时)逆水速:208÷13=16(千米/时)静水速:(26+16)÷2=21(千米/时)水流速度:(26-16)÷2=5(千米/时)答:船在静水中的速度是21千米/时,水流速度是5千米/时.【巩固拓展】1.甲、乙两人分别从A、B 两地同时出发,相向而行.如果两人都按照原定速度行进,3小时可以相遇.现在甲比原计划每小时少走1千米,乙比原计划每小时少走0.5千米,结果两人用了4小时相遇. AB两地相距()千米.【解析】3×(1+0.5)÷(4-3)=4.5(千米/时)4.5×4=18(千米)答:AB两地相距18千米.2.早晨,小王骑车从甲地出发去乙地.中午12点,小李开车也从甲地出发前往乙地.下午1点30分时两人之间的距离是18千米,下午2点30分时两人之间的距离又是18千米.下午4点时小李到达乙地,晚上6点时小王到达乙地.小王是早晨()点出发的.【解析】速度差:(18+18)÷1=36(千米)小王速度:(36×1.5+36)÷(6-4)=45(千米/时)(18+36×1.5)÷45=1.6(小时)小王比小李提前出发1.6小时,所以小王是10点24分出发的.答:小王是早晨10点24分出发的.例43.一列火车通过一座长456米的巧需要80秒,用同样的速度通过一条长399米的隧道需要77秒.求这列火车的速度和长度.【解析】(456-399)÷(80-77)=19(米/秒)19×80-456=1064(米)答:火车的速度是每秒19米,火车的长度是1064米.4.甲、乙两港相距360千米,一轮船往返两港共需35小时,逆流航行比顺流航行多花了5小时.现在有一机帆船,静水中速度是每小时12千米,这机帆船往返两港要多少小时?【解析】逆流时间:(35+5)÷2=20(小时)顺流时间:(35-5)÷2=15(小时)顺水速度:360÷15=24(千米/时)逆水速度:360÷20=18(千米/时)水速:(24-18)÷2=3(千米/时)往返时间:360÷(12+3)+360÷(12-3)=64(小时)答:这机帆船往返两港要64小时.例1(第六届小机灵杯邀请赛试题)甲乙两人的步行速度之比是5:3,两人分别从A、B两地同时出发,如果相向而行,1小时后相遇;如果分别从A、B两地同向而行,甲需要()小时才能追上乙.【解析】设甲车的速度是5a,乙车的速度是3a,则AB距离是(5a+3a)×1=8a,追及时间是,8a÷(5a-3a)=4(小时)例2(第四届希望杯二试试题)甲、乙两人同时从A地出发前往B地,甲每分钟走80米,乙每分钟走60米.甲到达B地后,休息了半个小时,然后返回A地,甲离开B地15分钟后与正向B地行走的乙相遇.A、B两地相距______米.【解析】甲乙相遇时,甲比乙行驶的时间少了30分钟,但行驶的路程多80×15×2=2400(千米).如果甲行驶的时间和乙一样多,则甲比乙多行驶:2400+80×30=4800(千米).乙行驶时间是:4800÷(80-60)=240(分钟)A、B两地距离是:80×(240-15-30)=15600(米)【巩固拓展】(第六届希望杯一试试题)北京、天津相距140千米,客车和货车同时从北京出发驶向天津.客车每小时行70干米,货车每小时行50千米,客车到达天津后停留15分钟,又以原速度返回北京.则两车首次相遇的地点距离北京______千米.(结果保留整数)【解析】首次相遇时,两车一共行驶了2×140=280千米,货车比客车多行驶了15分钟,货车行驶的时间是:(280+70×0.25)÷(50+70)货车行驶的路程是:(280+70×0.25)÷(50+70)×50≈124(千米)即两车首次相遇的地点距离北京124千米.(第九届中环杯初赛试题)A 、B 两地相距27 千米.甲、丙两人从A 地向B 地行走,乙从B 地向A 地行走.甲每小时行4 千米,乙每小时行3千米,丙每小时行2 千米.三人同时出发,问几小时后甲刚好走到乙、丙两人距离的中点?【解析】解:设x小时后甲刚好走到乙、丙两人距离的中点,依题意得4x+3x+(4x-2x)=279x=27x=3答:3小时后甲刚好走到乙、丙两人距离的中点.例3【巩固拓展】(第十届中环杯初赛试题)A、B两地相距1600米,甲、乙两人分别以每分钟140米和120米的速度同时从A地出发,前往B地.同时,丙以每分钟160米的速度从B地出发,前往A地.()分钟后,甲恰好位于乙丙两人的中间.【解析】解:设x小时后甲刚好走到乙、丙两人距离的中点,依题意得140x+160x+(140x-120x)=1600320x=1600x=5答:5分钟后,甲恰好位于乙丙两人的中间.(第六届中环杯复赛试题)一列客车以每小时90千米的速度从南往北行驶,车上一位乘客以每秒钟1米的速度向车尾行走.一列长156米的货车从北往南行驶,4秒钟后从乘客身边驶过.货车每小时行驶()千米.【解析】90千米/时=25米/秒156÷4-(25-1)=15(米/秒)15米/秒=54千米/时【巩固拓展】(第五届中环杯复赛试题)铁路与公路平行,公路上有一个人在行走,速度是每小时4千米.一列火车追上并超过这个人用了6秒;公路上还有一辆汽车行驶,速度是每小时67千米,火车追上并超过这辆汽车用了48秒,则火车速度是每小时多少千米?火车的长度为多少米?例4【解析】火车追上并超过人的过程中,火车6秒行驶了“火车长+人6秒行驶的路程”,火车追上并超过汽车的过程中,火车48秒行驶了“火车长+汽车48秒行驶的路程”,所以火车42秒行驶的路程是:汽车48秒行驶的路程减去人6秒行驶的路程.火车速度:(67÷3600×48-4÷3600×6)÷(48-6)×3600=76(千米/时)火车长度:76×1000÷3600×6-4×1000÷3600×6=120(米)答:火车速度是每小时76千米,火车的长度为120米.(第六届中环杯复赛试题)一艘客船在两个码头之间航行,顺水5小时行完全程,逆水7小时行完全程.水速每小时5千米,两个码头之间的距离是()千米.【解析】解:设客船静水的速度是x千米/时,依题意得5(x+5)=7(x-5)2x=60x=30(30+5)×5=175(千米)答:两个码头之间的距离是175千米.【巩固拓展】(第八届希望杯一试试题)一艘客轮在静水中的航行速度是26千米/时,往返于A、B两港之间,河水的流速是6千米/时.如果客轮在河中往返4趟共用13小时,那么A、B两港之间相距______千米.(客轮掉头时间不计)【解析】解:客轮往返一趟时间是13÷4=3.25(小时)设客轮顺水行完AB全程需要x小时,依题意得(26+6)x=(26-6)(3.25-x)52x=65x=1.25例51.25×(26+6)=40(千米)答:A、B两港之间相距40千米.例1(第五届希望杯一试试题)李经理的司机每天早上7点30分到达李经理家接他去公司.有一天李经理7点从家里出发步行去公司,路上遇到从公司按时接他的车,再乘车去公司,结果比平常早到5分钟.则李经理乘车的速度是步行速度的______倍.(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)【解析】早到的5分钟路程就是李经理家到相遇点路程的2倍,,所以相遇点到李经理家的路程开车只要2.5分,所以相遇时间为7点27分30秒开车2.5分的路程李经理走了27.5分,所以车速是步行速度的27.5÷2.5=11倍.例2(第九届中环杯初赛试题)甲、乙两人从A 、B 两地同时出发相向而行,甲每分钟行70 米,乙每分钟行50 米.出发一段时间后,两人在距中点100米处相遇.如果甲出发后在途中某地停留了一会儿,两人还将在距中点250米处相遇.那么甲在途中停留了_________分钟.【解析】第1次相遇:相遇时甲比乙多行了100×2=200(米)相遇时间:200÷(70-50)=10(分钟)A、B距离:(70+50)×10=1200(米)第2次相遇:相遇时乙比多甲行了250×2=500(米)乙和甲一共行了1200米,乙行的路程:(1200+500)÷2=850(米)甲行的路程:1200-850=350(米)850÷50-350÷70=12(分钟)答:甲在途中停留了12分钟.(第五届希望杯一试试题)A、B两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分.如果甲、乙从A地,丙从B地同时出发相向而行,那么,在______分钟或______分钟后,丙与乙的距离是丙与甲的距离的2倍.【解析】第一种情况:丙处于甲乙之间,如下图:设x分钟后,丙与乙的距离是丙与甲的距离的2倍,依题意得2(203-4x-5x)=6x+5x-20329x=609x=2121分钟后,丙与乙的距离是丙与甲的距离的2倍.第二种情况:丙处于甲的左侧,如下图:设x分钟后,丙与乙的距离是丙与甲的距离的2倍,依题意得2(4x+5x-203)=6x+5x-2037x=203x=2929分钟后,丙与乙的距离是丙与甲的距离的2倍.综上所述,在21分钟或29分钟后,丙与乙的距离是丙与甲的距离的2倍.例3一艘游艇装满油,能够航行180个小时,已知游艇在静水中的速度为每小时24千米,水速为每小时4千米,现在要求这艘游艇开出之后沿原路回港,而且途中没有油料补给,请问:这艘游艇最多能够开出多远?【解析】解:设这艘游艇能够开出最远的距离,顺水航行需要x小时,依题意得(24+4)x=(24-4)×(180-x)48x=3600x=75(24+4)×75=2100(千米)答:艘游艇最多能够开出2100千米.一艘轮船顺流航行140千米,逆流航行80千米,共用了15小时;顺流航行60千米,逆流航行120千米,也用了15小时.求水流的速度.【解析】第一次:顺流140千米,逆流80千米,15小时;第二次:顺流60千米,逆流120千米,15小时;等量代换,可知顺流80千米时间=逆流40千米时间.即顺流速度是逆流速度的2倍.由第1次,顺流140千米,逆流80千米,15小时可知,若全顺流可行140+80×2=300(千米),由此顺流速度:300÷15=20(千米/时),逆流速度:20÷2=10(千米/时)水流的速度:(20-10)÷2=5(千米/时)【练习1】甲乙两地方相距14850米,自行车队8点整从甲地出发到乙地去,前一半时间的平均速度是每分钟250米,后一半时间的平均速度是每分钟200米.那么,自行车队到达乙地的时间是()点()分.【解析】解:14850÷(250+200)×2=66(分)到达时间是9点6分.【练习2】甲乙两车同时同地出发去同一目的地,甲车每小时行40千米,乙车每小时行35千米.途中甲车停车3小时,结果甲车比乙车迟到1小时到达目的地.那么,两地的距离是()千米.【解析】解:设乙行完全程要x小时,甲行完全程要(x-3+1)小时,根据题意列方程,得:40(x-3+1)=35x5x=80x=16两地距离:35×16=560(千米)【练习3】一艘轮船从A地出发去B地为顺流,需10小时.从B地返回A地为逆流,需15小时.水流速度为每小时10千米.那么A、B两地间的航程有()千米.【解析】逆水速:(10×2)×10÷(15-10)=40(千米/时)40×15=600(千米)答:A、B两地间的航程有600千米.【练习4】沿江有两个城市,相距600千米,甲船往返两城市需要35小时,其中顺水比逆水少用5小时,乙船的速度为每小时15千米,那么乙船往返两城市需要___________小时.【解析】甲顺水时间:(35+5)÷2=20(小时)甲逆水时间:35-20=15(小时)水速:(600÷15-600÷20)÷2=5(千米/时)乙顺水速:15+5=20(千米/时),乙逆水速:15-5=10(千米/时)600÷20+600÷10=90(小时)答:乙船往返两城市需要90小时.【练习5】小明站在一条直行的铁道旁,从远处向小明驶来的火车拉响汽笛,过了一会儿,小明听见了汽笛声,再过27秒,火车行驶到他面前.已知火车的速度是34米/秒,音速是340米/秒,那么火车拉响汽笛时距离小明多少米远?【解析】行驶同样多的路程——火车拉响汽笛时和小明的距离,火车需要的时间比声音需要的时间多27秒.声音需要的时间:34×27÷(340-34)=3(秒)3×340=1020(米)(本题亦可用方程求解,设火车拉响汽笛到小明听到汽笛需要x秒.)答:火车拉响汽笛时距离小明1020米远.【练习6】某船第一天顺流航行21千米,逆流航行4千米.第二天在同一河流中顺流航行12千米;逆流航行7千米.两次所用的时间相等.假设船本身速度及水流速度保持不变,顺水船速是逆水船速的()倍.【解析】顺流航行21-12=9千米的时间和逆流航行7-4=3千米的时间相同,9÷3=3顺水船速是逆水船速的3倍.【练习7】A、B两地相距27千米.甲、丙两人从A地向B地行走,乙从B向A地行走.甲每小时行4千米,乙每小时行3.5千米,丙每小时行2.5千米.三人同时出发,问几小时后甲刚好走到乙、丙两人距离的中点?【解析】解:设甲用x小时走到乙丙两人相距的中点,依题意得:4x+3.5x+(4x-2.5x)=279x=27x=3答:3小时后甲刚好走到乙、丙两人距离的中点.【练习8】一架飞机所带的燃料最多可以用9小时,飞机顺风,每小时可以飞1500千米,飞回时逆风,每小时可以飞1200千米,这架飞机最多飞出_________千米,就需往回飞?【解析】解:设这架飞机最多飞出的距离,顺风航行需要x小时,依题意得1500x=1200×(9-x)2700x=10800x=41500×4=6000(千米)答:这架飞机最多飞出6000千米,就需往回飞.。
新希望杯 全国数学大赛培训试题(五年级)
五年级训练题(一)一、选择题1.甲、乙两个数的和是201.3,其中甲数的小数点向左移动一位,就等于乙数,甲数与乙数的差是( )。
A. 164.3B.164.7C.165.3D.165.72.如图,平面上有12个点,上下或左右相邻的两点之间的距离都是1,选其中4个点围成一个正方形,不同的选法共有( )。
A.8种B.9种C.10种D.11种3.五年级两个班共100人参加智力竞赛,平均分是78分,其中男生平均分是80分,女生平均分是75分,男生比女生多( )。
A. 20人B.22人C.24人D.25人4.王伯去水果店买水果。
如果买4千克梨和6千克苹果,要付款84元;如果买5千克梨和6千克苹果,要付款91.5元。
那么买1千克梨和1千克苹果要付款 ( )。
A. 15元B.15.5元C.16元D.16.5元5.如下左图,某物体由14个小正方体堆积而成,从左边看该物体,看到的图形是( )。
999除以13所得的余数是( )。
6.1232012个9A.4 B.6 C.8 D.10二、填空题7.计算:(9.6×8.6×8.4)÷(4.3×3.2×2.1)=。
8.在400米长的环形跑道上,甲、乙两人同时同向从起跑线并排起跑,甲每秒跑5米,乙每秒跑4.2米。
两人起跑后第一次相遇时,乙共跑了米。
9.某校五年级举行篮球比赛,规定:胜一场积3分,平一场积1分,负一场积0分。
赛后统计,A班共积9分,其中平比胜多1局,负的局数是胜的2倍,A班负了局。
10.如图,连接大正方形各边的中点得到第二个正方形,再连接第二个正方形各边的中点得到第三个正方形,最后连接第三个正方形各边的中点得到第四个正方形。
大正方形的面积是图中阴影部分面积的倍。
11.如果+++=2.1, +++=2.5,+++=3, 则+++++=。
12.建设某项工程,原计划40名工人用90天完成。
现在这批工人工作30天后又增加了10人,完成剩下的部分需再做天。
五年级希望杯试题
19
★★★☆ 三、解答题 17
木材厂加工一批木材,原计划每天加工16.5吨,实际每
天比原计划多加工1.5吨,结果提前3.5天完成了任务。 实际完成任务用了多少天?
20
★★★☆ 三、解答题 18
如果长方形的长减少3.6厘米,宽减少2.5厘米,面积就
比原来减少57.8平方厘米,且剩下部分正好是一个正方 形,求这个正方形的面积。
③ 广西人与四川人、江苏人相隔的层数一样;
④ 广西人在的层数是湖南人和四川人在的层数的和。 根据以上条件可知,甲是( )。
A.广西人
B.湖南人
C.四川人
D.江苏人
9
★★ 二、填空题 计算:(81.8+818.818)÷8.18= 07
。
10
★★ 二、填空题 将两条长度分别是1.49米、1.17米的绳子接起来,接口处 08 共用去绳子0.28米,接好后的绳子长 米。
60
★★★☆
二、填空题
16
星星和贝贝各骑一辆自行车从学校出发,到相隔45千米的森林公园
游玩。贝贝比星星早出发20分,而星星比贝贝早到40分,星星到达 时,贝贝在他的后面10千米处。星星每小时行 千米。
61
★★★
三、解答题
17
食堂第一次运来6袋大米和5袋面粉,一共重360千克;第二次
又运来8袋大米和5袋面粉,一共重440千克。每袋大米和每袋 面粉各重多少千克?
子中各取一个球放入这个盒子;……如此继续,当第2017位小朋友
放完后,A、B、C、D、E五个盒子中各放有几个球?
44
五年级训练题(三)
45
★★ 一、选择题 01 下列说法正确的是(
)。
A. 一个分数的分母越小,它的分数单位就越小
希望杯五年级奥数试卷【含答案】
希望杯五年级奥数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 27答案:B2. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 29B. 30C. 31D. 32答案:D3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形答案:A4. 一个正方形的边长是4厘米,那么它的面积是多少平方厘米?A. 8B. 16C. 32D. 64答案:B5. 下列哪个数是偶数?A. 101B. 102C. 103D. 104答案:D二、判断题(每题1分,共5分)1. 2的倍数都是偶数。
(正确)2. 所有的等差数列都是递增的。
(错误)3. 两个奇数相加的和是偶数。
(正确)4. 任何数乘以0都等于0。
(正确)5. 所有的质数都是奇数。
(错误)三、填空题(每题1分,共5分)1. 1+2+3++100的和是______。
(5050)2. 一个等边三角形的周长是15厘米,那么它的边长是______厘米。
(5)3. 两个质数相乘得到的数是______数。
(合)4. 一个数的因数个数是______。
(有限的)5. 0的阶乘是______。
(1)四、简答题(每题2分,共10分)1. 请列举出前5个质数。
答案:2,3,5,7,112. 请写出等差数列的通项公式。
答案:an = a1 + (n 1)d3. 请解释什么是偶数。
答案:偶数是能被2整除的整数。
4. 请解释什么是因数。
答案:因数是能整除一个数的数。
5. 请解释什么是等边三角形。
答案:等边三角形是三边长度相等的三角形。
五、应用题(每题2分,共10分)1. 一个数列的前三项分别是2,4,6,那么第10项是多少?答案:第10项是20。
2. 一个正方形的边长是6厘米,那么它的面积是多少平方厘米?答案:36平方厘米。
3. 请列举出10以内的所有质数。
答案:2,3,5,7。
希望杯五年级历届试题与答案
2011年第九届初赛1.计算:1.25×31.3×24= 。
2.把0.123,0.1·23·,0.12·3·,0.123·按照从小到大的顺序排列:< < <。
4.如图1,从A到B,有条不同的路线。
(不能重复经过同一个点)5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等若被除数是47.则除数是,余数是。
7.如果六位数2011□□能被90整除.那么它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”。
那么,1000以内最大的“希望数”是。
9.将等边三角形纸片按图3所示步骤折叠3次(图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角(如图4)将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
那么,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元。
那么,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0?9这10个数字全都用上了,不重也不漏。
”那么.维纳这一年岁。
(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)14.鸡与兔共100只,鸡的脚比兔的脚多26只。
2021年希望杯冬令营竞赛试题及答案5年级
2021思维挑战冬令营五年级真题1. (1分)根据规律,“?”是________.A.B.C.2. (1分)“?”处是什么运算符号?A. B.C. D.根据规律,“?”是________.4.(1分)在字母四阶数独中,每一行、每一列、每一个粗线框里都有A,B,C,D.“?”应该是().A. B. C. D.6.(1分)A. B. C. D.8.(1分)9.(1分)“?”处填________.11.(5分)淘气包马小跳设计了一个计算机程序,程序中原来写有1~2020这2020个自然数,每次执行以下操作:擦掉两个数,并写上它们的和的数字和,如:擦掉99和100两个数,并写上19(99+100=199,1+9+9=19).经过多次操作,当最后只剩下4个数时,发现它们的乘积为27,那么这4个数的和是_________.12.(5分)游乐园“森林河流之旅”有一条环形的河流,如图所示.8:00飞飞乘坐小船顺水出发.飞飞在静水中划船的速度为每小时4千米,水流速度为每小时2千米,飞飞每划半小时要休息5分钟,休息时船随水漂流.如果飞飞在10:00恰好回到出发点,那么这条河流的长度为________千米.羊羊天团的5人参加竞技选拔赛,有2人只有“攀爬”满分,另外2人只有“跳跃”满分,还有1人“攀爬”、“跳跃”都满分.现在要从这5人中选出2人进入决赛,要求选出的2人中有“攀爬”满分的,也有“跳跃”满分的,共有________种不同的选法.14.(5分)在比武大会上,熊猫阿宝和金猴两人进行比试,最多七局,谁先获得四局胜利,谁就是胜者.那么一共有________种可能的比试情况.15.(5分)哪一个不能围成长方体?A. B. C.D. E.下图是中国象棋的一部分,棋盘上A点处有一只马.按规定,马走“日”字,如:从A点到B点最少走1步,从A点到C点最少走2步.那么从A点到Q点最少走________步.17.(5分)汤姆和杰瑞打台球,共有10个球,编号分别是1~10.开始时10个球都在球桌上,汤姆至少要把________个球击入洞,才能保证洞中必有3个球的编号之和大于14.18.(5分)“水仙花数”是指这样一类数:将各位数字的立方相加,得到的和正好是原来的数,比如370,33+73+03=27+343+0=370.将一个数的各位数字的立方相加,得到一个新的数,这称为一次操作.从645开始不断重复操作,最后得到的水仙花数是________.19.(5分)韩信带兵,士兵们站成一个实心长方形阵列,步兵站在阵列内部,弓箭手围在最外一圈.如果弓箭手有130人,那么步兵最多有________人.佩奇用一些相同的小正方体积木摆好一个城堡后,发现从正面观察和从侧面观察都是如图所示的形状.佩奇最多用了________个小正方体积木.21.(5分)如图是一个5×5的点阵,每行和每列相邻两个点的距离都为1.以其中4个点为顶点画出的正方形中,红色点在正方形边上(含顶点)的正方形有________个.22.(5分)江流儿用30枚围棋子围成一圈,每一枚黑子都恰好与一枚白子相邻,跟黑子相邻的白子占白子总数的一半,那么30枚棋子中最多有________枚黑子.23.(5分)一个自然数除以4,6,8后,得到的三个余数的和是15,那么这个数除以12后,得到的余数是________.金属王国有金、银、铜三种正方形地砖,边长之比为2∶3∶5,三种地砖数量相同.国王要用地砖铺满宫殿,如果只用金地砖恰好缺75块,只用银地砖恰好多50块,那么只用铜地砖恰好多________块.(地砖不能分割)25.(5分)有的自然数,它最大的因数和第二大的因数的和是2700,满足条件的自然数有________个.26.(5分)美羊羊的糖罐里有10粒完全相同的巧克力豆,每次可以取出1粒或2粒.要把10粒巧克力豆全部取出,共有________种不同的取法.27.(5分)从1~10的10个整数中选出若干个数相乘,最接近2021的乘积是________.28.(5分)如图,梯形ABCD中,AB//CD,AB∶DC = 1∶3,点E,F分别在AD,BC 上,BE交AF于点G,EC交DF于点H,△AGE,△BGF,△DHE的面积分别为8,10,30,△FHC的面积为________.在海洋王国跨年晚会上,2022只水母按“红橙黄绿蓝紫”的顺序从左到右重复排列,如图所示:它们开始表演节目,先是从左到右第1,3,5,……只水母向上游,剩下的水母从左到右重新排序编号,然后又是第1,3,5,……只水母向上游.按这样的规则,每次都是序号为奇数的水母向上游,直到剩下最后一只水母为止.最后剩下的水母是什么颜色?A. 红B. 橙C. 黄D. 绿E. 蓝F. 紫30.(5分)卢克乘坐飞船来到奥尔德兰星球,发现这里一年的天数和地球不同.在奥尔德兰星球的一年中,如果3天一周,则正好有整数周;如果5天一周,将余下4天不足一周;如果7天一周,将余下6天不足一周.那么奥尔德兰星球的一年至少有________天.31.(5分)ab ac ba bc ca cb,他发乖乖虎用3个不同的数字a,b,c组成6个两位数,,,,,现这6个两位数的和恰好等于(a+2)×(b+2)×(c+2),那么三位数abc最小是________.32.(5分)孙悟空打算给19只小猴分桃,每只小猴分得a个桃,还剩b个桃(b<a)留给自己.结果有两只小猴已经离开花果山,孙悟空把桃分给了剩下的17只小猴,每只小猴分得(a+1)个桃,还剩(b+1)个桃留给自己.则a =________.超能陆战队的大白把一些巴克球摆成了正四面体状(如下图摆了3层).如果他要摆100层,那么一共需要________个巴克球.34.(5分)如图,在直角三角形ABC中,D是斜边AB上一点,正方形CEDF的边长为4.若蓝色部分的面积为12,则红色部分的面积为________.四十大盗要把一些相同的金币藏在一个4×4的迷宫里,要求:①每个迷宫方格最多只能放1枚金币;②每行每列都有金币;③每行金币数互不相同,每列金币数也互不相同.不同的放法共有_________种.36.(5分)大耳朵图图和好朋友壮壮二人分别从A、B两地同时出发相向而行,原计划在C地相遇,47AC AB=,但图图途中休息了35秒钟,结果壮壮比原计划多走了60米才和图图相遇,那么图图的速度为________米/秒.37.(5分)算式(1011×1012×1013×……×2022)÷(1×3×5×……×2021)计算结果的末位数字是________.数学王子高斯小时候有一件趣事.一天,老师对淘气的孩子们说:“对从1开始的连续自然数依次相加求和,每次只加一个数,一直加到100,在计算过程中一共发生了多少次进位?答对才能放学回家.”结果高斯很快就得出了正确答案,高高兴兴回家去了.那么,高斯给的答案是________.39.(5分)2021年,疯狂动物城警察局为了表彰表现优异的警察,给他们授予特殊的警号,这些警号是形如2021□□的六位数,并且都能被21整除,这样的警号有________个.40.(5分)用数字0~9组成无重复数字的十位数,其中能被11整除的有________个.答案。
希望杯2023数学竞赛五年级一试解析
希望杯2023数学竞赛五年级一试解析一、赛事背景希望杯数学竞赛是一项旨在提高学生数学素养和解决问题能力的竞赛活动,致力于促进学生对数学的兴趣和热爱。
每年都吸引了众多学生参与,展现出了良好的影响力和号召力。
二、目标对象本次解析主要针对参加希望杯数学竞赛的五年级学生,对于初步入门的数学知识和解题方法进行梳理和解析,帮助学生更好地应对竞赛。
三、试题解析1. 题目一:小亮的花园有10米长,6米宽,他要用0.5米宽的砖砌一圈,他需要多少砖?解析:首先计算出花园的周长,即2*(10+6)=32米,然后将周长除以砖的宽度,即32/0.5=64块砖。
2. 题目二:甲、乙两人共有25张邮票,甲有乙的3/5,共有几张邮票?解析:设乙有x张邮票,则甲有3/5*x张邮票,根据题意得出3/5x+x=25,解得x=10,所以甲有15张,乙有10张。
3. 题目三:在1至100中,6的倍数之和与10的倍数之和之差是多少?解析:首先计算出1至100中6的倍数之和为6+12+……+96=6*(1+2+……+16)=6*51*8=2448,然后计算10的倍数之和为10+20+……+100=10*(1+2+……+10)=10*55*5=2750,最后计算差值为2750-2448=302。
四、解题技巧1. 充分利用图形和图表:对于与形状和数量相关的问题,可以绘制简单的图形或图表来帮助理解和解决问题。
2. 善于分析和转化:对于一些复杂的问题,可以尝试分析和转化问题,将大问题分解成小问题来解决。
3. 多做练习:数学是一个需要不断练习的学科,通过多做练习能够提高解题能力和速度。
五、总结希望杯数学竞赛五年级一试的试题涉及到了数学中的基础知识和解题方法,在解题过程中需要学生善于分析、转化问题,灵活运用所学的知识。
希望通过本次解析能够帮助学生更好地理解和应对数学竞赛中的问题,提高数学解题能力。
祝愿参加希望杯数学竞赛的小学生们取得优异的成绩,享受数学学习的乐趣。
小学五年级“希望杯”第1-12届试题及详解(第一试
第一届小学―希望杯‖全国数学邀请赛五年级第1试一、填空题1.计算=_______ 。
2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是______平方厘米。
10.六位自然数1082□□能被12整除,末两位数有_____种情况。
11.右边的除法算式中,商数是______。
12.比大,比小的分数有无穷多个,请写出三个:__________。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E赛了______场。
14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是_________。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:―第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2‖。
警察由此判断该车牌号可能是________。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
2024年希望杯五年级竞赛数学试卷培训题含答案
2024年希望杯五年级竞赛数学试卷培训题1 .计算:.2 .计算:.3 ..4 ..5 .在横线上填上“”“”或“”.6 .已知:,则.7 .现定义一种新运算“”:,则.8 .表示的整数部分,如:,.计算:.9 .小强在计算除法时,把除数写成,结果得到的商是且余数是,正确的商是,余数是.10 .小虎在计算时,先算了减法,最后得到的结果是,正确的计算结果应该是.11 .在的两个里填入相同的数,使等式成立,里应填.12 .一个数的小数点向右移动一位后,比原来的数大,原来的数是.13 .循环小数小数点后第位数字是.14 .把化成小数,小数点后面第位上的数字是.15 .请你根据题图所示向日葵上的数字规律,在方框中填入正确的数字.16 .在一个四位数的前、后分别加上,组成两个五位数.若这两个五位数相差,则.17 .王冬有存款元,张华有存款元.王冬每月存元,张华每月存元,个月后张华的存款才能和王冬的一样多.18 .,要使商的中间有,里可以填.19 .题图算式中的,,分别代表不同的数字.式中的,和分别表示,和的倒置数字(如的倒置数字是,的倒置数字还是).那么是,是,是.20 .请把图中的除法竖式补充完整.21 .这个自然数的和是三位数,且这个三位数各个数位上的数字相同,则.22 .九位数能被中任何一个自然数整除,且数字、、互不相同,则三位数.23 .一个自然数的个位数字是,将这个移动到最左边,得到的新数恰好是原数的倍.原数最小是.24 .已知三个最简真分数的分母分别为,和,它们的乘积是.则这三个最简真分数中,最大的数是.25 .在等差数列1,8,15,22,29,36,43,…中,如果前个数乘积的末尾0的个数比前个数乘积的末尾0的个数少3个,那么最小是 .26 .是的倍数,则.27 .有一篮鸡蛋,每次取出个,最后剩下个,如果每次取出个或个,最后都剩下个,篮子里的鸡蛋至少有个.28 .自然数除以的余数是,则除以的余数是.29 .Given and are two non-zero digits and the digit numbers formed by these two digits have the following properties:.can be expressed by a product of and;.is a square number;Find the digit number.已知和为两个非零数位.且利用这两个数位组成的两位数有以下性质:.可以被写成和的积;.是个平方数;求两位数.30 .快速公交路线有四个站点,把这四个站点两两之间的距离从小到大排列,分别是:,,,,,,则“”.31 .有个因数且能被整除的最小自然数是.32 .从开始做乘法:,当乘到时,乘积的末尾有个连续的.33 .的计算结果末尾有个.34 .一个正整数与的积是一个完全平方数,则的最小值是.35 .,都是非零自然数.如果是的倍,那么和的最大公因数是;如果,那么和的最小公倍数是.36 .已知存在三个小于的自然数,它们的最大公因数是,且两两不互质,将这三个数相加,最大可能是.37 .定义,则有个因数.38 .选一选..A..B..C..D..E.39 .九张卡片上分别写有数,,,,,,,,(不能倒过来看).甲,乙,丙,丁四人分别抽取了其中两张:甲说:“我拿到的两个数互质,因为它们相邻.”乙说:“我拿到的两个数不互质,但也不是倍数关系.”丙说:“我拿到的两个数都是合数,但它们却互质.”丁说:“我拿到的两个数是倍数关系,它们不互质.”如果这四人说的都是真话,那么剩下的一张卡片上写的数是.40 .用、、、四个数字可以组成个双数,其中最大的是.(每个数字都要用且不重复)41 .将一个能被整除的三位数的首、末数字交换后,还是三位数,原数的倍也是三位数,原数的后两位数字的和是的约数,满足条件的最大的三位数是.42 .如图,大长方形被两条互相垂直的线段分成了四个小长方形.已知四个小长方形面积均为整数,其中两块面积分别为和.大长方形面积最大是.(注:图中各部分大小并不代表其面积大小关系)43 .如图,正方形的面积是,是中点,连接、交于点.是中点,连接并延长交于点.阴影部分的面积是.44 .如图,分别以一个正六边形的顶点和各边的中点为圆心,以正六边形的边长为直径画了个圆和个半圆.若阴影部分的面积和是,那么正六边形内部的阴影面积是.45 .正方形的面积是,,,,是正方形各边的中点,那么阴影部分的总面积是.46 .如图,在四边形中,,分别是,边的三等分点.已知四边形的面积是平方厘米,求四边形的面积是平方厘米.47 .如图所示,如果一块正方形土地的两边各增加米,面积将增加平方米.原来正方形的面积是平方米.48 .如图,两个正方形并排放在一起,、、在同一条直线上,大正方形边长为厘米,小正方形边长为厘米,那么阴影三角形的面积为平方厘米.49 .下图中,平行四边形的面积是,点是线段的中点.三角形的面积是.50 .如图,若大正方形的周长是,小正方形的周长是,则蓝色阴影部分的面积是.51 .正方形的边长为,,,是对角线的四等分点.图中阴影部分的总面积是.52 .学校校园里有一块宽为米的长方形空地,后勤部门准备从空地中划分出一块米宽的形区域作为绿植区,剩下的部分作为休闲区,而且休闲区和绿植区的面积刚好相等,如图所示(单位:米).那么这块空地的面积是平方米.53 .如图所示,梯形的面积为平方厘米,,厘米,厘米,又已知于点,那么阴影部分的总面积为平方厘米.54 .如图,长方形中有四个完全相同的直角三角形,这四个直角三角形的面积总和是.55 .鲁西西最近爱上了折纸,她发现如果把折纸按照图中的样子翻折一下,以直线为折痕将点翻折到,,.当阴影部分的面积与空白部分的面积相等时,如果知道折纸的面积就能算出折痕的长度.如果鲁西西的这张折纸(正方形)的面积是平方厘米,折痕厘米.56 .如图,长方形的广告牌长为,宽为,,,,分别在四条边上,并且比低,在的左边,四边形的面积是.57 .如图的一个骰子,其中对面的数字之和等于,首先将骰子如图放置,然后将骰子向右滚动次,再向前滚动次,此时面朝上.58 .,它一定是由个相同大小的正方体摆成的.59 .一个正方体木块,棱长是,从它的八个顶点处各截去棱长分别是、、、、、、、的小正方体.这个木块剩下部分的表面积最少是.60 .如图,在一个棱长为厘米的正方体密闭容器的下底固定了一个实心圆柱体,容器内盛有一定量的水且水面恰好经过圆柱体的上底面.如果将容器倒置,圆柱体有厘米露出水面.已知圆柱体的底面积是正方体底面积的,则实心圆柱体的体积为立方厘米.61 .琳琳、彤彤各带一些钱去书店,她们看上了一本元的书.如果这元由琳琳出,则琳琳剩下的钱是彤彤的倍;如果这元由彤彤出,琳琳的钱是彤彤剩下的钱的倍.那么开始时琳琳带了元,彤彤带了元.62 .一片牧场,每天草的生长速度相同,这片牧场可供头牛吃天,或者可供只羊吃天.如果只羊的吃草量相当于头牛的吃草量,那么头牛和只羊一起吃这片牧场上的草,可以吃天.63 .大黄蜂从赛博坦星球飞往潘多拉星球,原计划每小时行驶万千米,实际途中遇到电子风暴,只有一半的路程能按原计划的速度行驶,其余路程每小时行驶万千米,结果比原计划推迟了小时抵达潘多拉星球.赛博坦星球到潘多拉星球的路程是万千米.64 .张强晚上六点多外出锻炼身体,此时时针与分针的夹角;回家时还未到七点,此时时针与分针的夹角仍是,则张强外出锻炼身体用了分钟.65 .一条线段上最初有个点(包含端点),第一次在每相邻的两点之间增加一个点,第二次同样在每相邻的两点之间增加一个点.这时线段上共有个点.66 .冰墩墩练习滑雪一周,其中后四天平均每天滑雪的长度比前三天平均每天滑雪的长度多千米,后三天平均每天滑雪的长度比前四天平均每天滑雪的长度多千米.冰墩墩后三天滑雪的总长度比前三天滑雪的总长度多千米.67 .个数的平均数是,如果其中一个数变为,则这个数的平均数为.原来这个数是.68 .小林和叔叔的年龄和是岁.69 .若干年后,爷爷的年龄比小高年龄的倍多岁;再过几年,爷爷的年龄比小高年龄的倍多岁,已知今年小高岁,那么爷爷今年岁(今年爷爷年龄不到岁).70 .某汽车厂同时建成两条生产线.第一条生产线第一个月生产了辆汽车,以后每个月比前一个月多生产辆;第二条生产线第一个月也生产了辆汽车,以后每半个月比前半个月生产辆.那么,该厂生产辆汽车需要个月.71 .张三、李四两人一起加工一批零件,用时天完成了任务,李四中途有事请假天.已知张三每天比李四多做个零件,且最终李四加工的零件数恰好是张三的一半.这批零件的总数是个.72 .一项工程,甲单独做天完成,乙单独做天完成,若甲先做若干天后乙接着做,共用天完成.甲做了天.73 .游艇在静水中的速度是千米时,水速是千米时,喜羊羊驾驶游艇从下游的地到上游的地,然后立即返回下游地.游艇从到的时间是从到的倍,那么.74 .一位考古学家乘坐游艇从尼罗河上游码头出发,沿河行驶米到下游,然后原路返回.水流速度是千米时,游艇逆流而上比顺流而下多用小时,那么游艇在静水中的速度是每小时千米.75 .从地球到沙拉达行星有光年(注:光年是一个长度单位).贝吉塔和孙悟空从地球出发前往沙拉达行星.贝吉塔比孙悟空先出发天,如果贝吉塔和孙悟空沿直线飞行,他们每天都能飞行光年,那么孙悟空出发天后,贝吉塔正好在孙悟空和沙拉达行星的正中间.76 .有甲、乙两个村,小王从甲村步行到乙村,小李骑摩托车从乙村与小王同时出发,并不停地往返于甲、乙两村之间,过分钟后两人第一次相遇,分钟时小李第一次追上小王,那么当小王到达乙村时,小李追上小王的次数是.77 .甲乙两车分别从、两地同时出发,相向而行,在距离地米处的地相遇.相遇后乙的速度保持不变,甲的速度变为原来一半,甲继续行驶到地后立即掉头返回.当甲再次到达地时,乙刚好第一次到达地.、两地的距离是米.78 .甲乙两站相距,某天上午,车以的速度从甲站开往乙站,当天上午时,车以每小时的速度从乙站开往甲站,那么两车在点分时相遇.79 .如图所示,一个边长为米的正方形围墙,甲、乙两人分别从两个对角处沿围墙按逆时针方向同时出发.已知甲每秒走米,乙每秒走米.至少经过秒甲才能看到乙.80 .边长为的正方形的顶点,各有一只小虫,它们同时出发沿正方形的边顺时针爬行,小虫甲每秒爬,小虫乙每秒爬,它们在顶点处转弯时都需要耗秒.经过秒其中一只小虫将首次追上另一只小虫.81 .在校运动会上,三班参加跳绳比赛的有人,参加踢毽比赛的有人,那么参加这两项比赛的最多有人,最少有人.82 .数一数,下图一共有个“☆”.83 .如图,若干边长为的小等边三角形组成一个边长为的大等边三角形.现在每个小三角形的顶点涂上黑色或白色,可以按照任意顺序涂色.如果某个小三角形有两个顶点的颜色相同,那么第三个顶点涂黑色;否则第三个顶点涂白色.完成涂色后的大三角形有种不同的样式.(不可旋转、翻转)84 .用三种颜色去涂如图所示的三块区域,要求一个区域中只能涂一种颜色,相邻区域涂不同颜色,那么共有种不同的涂法.86 .从以内的个质数中任取两个构成真分数,这样的真分数有个.87 .池塘中片莲叶如下图排列.青蛙在莲叶间跳跃,每次只能从一片莲叶跳到相邻的另一片莲叶.一只青蛙盘算着从其中一片莲叶上起跳,连跳步,那么它有种不同的跳法.88 .数一数,下图中共有个梯形.89 .图中共有个平行四边形.90 .如图,在的网格中,每一个小正方形的面积为,点可以是每个小正方形的顶点,则满足的点的个数是.91 .把本书分给某班学生,不论怎么分总有一个学生至少分到本,那么这个班最多有人.92 .桌上有编号至的张卡片,小明每次取出张卡片,要求一张卡片的编号是另一张卡片的倍多,则小明最多取出张卡片.93 .果蔬王国正在举行国王竞选,全国人每人投票,从番茄勇士、香蕉超人、胡萝卜博士中选择人,票数最多的人当选.截至目前番茄勇土得票,香蕉超人得票,胡萝卜博士得票.那么,番茄勇士至少再得票就能够保证当选国王.94 .找规律填数.95 .一列慢车长米,一列快车长米,如果两车在并行的轨道上同向而行,从快车追上慢车到快车超过慢车要秒,如果两车相向而行,从两车相遇到完全错开要秒.慢车的速度是米秒.96 .小明手里有一盒棋子,最初盒子里全是白子.他先取出颗白子,然后放入颗黑子,再取出颗白子,再放入颗黑子.此时小明发现盒子里的白子恰好是黑子颗数的一半,那么最初盒子里有颗白子.97 .在六位数的某一位数字后面再插入一个同样的数字(例如,可以在的后面插入得到),这样得到的七位数最大是,最小是.98 .从、、、、、、、、这串奇数中至少取个数,才能保证其中一定有两个数之和是.99 .左图的表格中分别填入了,我们把对角相邻的两个数同时加上或同时减去一个相同的数叫做一次操作(如和同时加,变成和),经过若干次操作得到右图,那么和的乘积是.100 .将数字填入空白方格中,使得每一行、每一列、每个粗线围成的区域数字都只恰好出现一次,那么最下面的一行个数字组成的位数是.2 、【答案】3 、【答案】4 、【答案】5 、【答案】6 、【答案】7 、【答案】8 、【答案】9 、【答案】10 、【答案】11 、【答案】12 、【答案】略13 、【答案】14 、【答案】15 、【答案】.16 、【答案】17 、【答案】18 、【答案】,,,,19 、【答案】20 、【答案】.21 、【答案】22 、【答案】23 、【答案】24 、【答案】25 、【答案】 10826 、【答案】27 、【答案】28 、【答案】29 、【答案】.30 、【答案】31 、【答案】34 、【答案】35 、【答案】36 、【答案】37 、【答案】38 、【答案】 DECAB39 、【答案】40 、【答案】41 、【答案】42 、【答案】43 、【答案】44 、【答案】45 、【答案】46 、【答案】47 、【答案】48 、【答案】49 、【答案】50 、【答案】51 、【答案】52 、【答案】53 、【答案】54 、【答案】55 、【答案】56 、【答案】57 、【答案】58 、【答案】59 、【答案】60 、【答案】61 、【答案】62 、【答案】63 、【答案】66 、【答案】67 、【答案】68 、【答案】69 、【答案】70 、【答案】71 、【答案】72 、【答案】73 、【答案】74 、【答案】75 、【答案】76 、【答案】77 、【答案】78 、【答案】79 、【答案】80 、【答案】81 、【答案】82 、【答案】83 、【答案】84 、【答案】85 、【答案】86 、【答案】87 、【答案】88 、【答案】89 、【答案】90 、【答案】91 、【答案】92 、【答案】93 、【答案】94 、【答案】95 、【答案】97 、【答案】98 、【答案】99 、【答案】100 、【答案】。
希望杯五年级历届试题与答案
2011年第九届初赛1.计算:1.25×31.3×24= 。
2.把0.123,0.1·23·,0.12·3·,0.123·按照从小到大的顺序排列:< < <。
4.如图1,从A到B,有条不同的路线。
(不能重复经过同一个点)5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等若被除数是47.则除数是,余数是。
7.如果六位数2011□□能被90整除.那么它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”。
那么,1000以内最大的“希望数”是。
9.将等边三角形纸片按图3所示步骤折叠3次(图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角(如图4)将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
那么,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元。
那么,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0?9这10个数字全都用上了,不重也不漏。
”那么.维纳这一年岁。
(注:数a的立方等于a×a×a,数a 的四次方等于a×a×a×a)14.鸡与兔共100只,鸡的脚比兔的脚多26只。
希望杯第1-13届五年级数学1试和2试试题及答案(WORD版)
第一届小学“希望杯”全国数学邀请赛五年级第1试2003年3月30日上午8:30至10:00一、填空题1.计算=_______ 。
2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。
10.六位自然数1082□□能被12整除,末两位数有种情况。
11.右边的除法算式中,商数是。
12.比大,比小的分数有无穷多个,请写出三个:。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E赛了场。
14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。
警察由此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次,得分高的可能性最大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五届小学“希望杯”全国数学邀请赛(五年级第1试)
1.2007÷=______。
2.对不为零的自然数a,b,c,规定新运算“☆”:☆(a,b,c)=,则☆(1,2,3)=______。
3.判断:“小明同学把一张电影票夹在数学书的51页至52页之间”这句话
是的。
(填“正确”或“错误”)
4.已知a,b,c是三个连续自然数,其中a是偶数。
根据图中的信息判断,小红和小明两人的说法中正确的是______。
5.某个自然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最小是______。
6.当p和+5都是质数时,+5=______.
7.下列四个图形是由四个简单图形A、B、C、D(线段和正方形)组合(记为*)而成。
则图中①~④中表示A*D的是______。
(填序号)
8.下面四幅图形中不是轴对称图形的是______。
(填序号)
(注:如果一个图沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形)。
9.小华用相同的若干个小正方形摆成一个立体(如右图)。
从上面看这个立体,看到的图形是图①~③中的______。
(填序号)
10.图中内部有阴影的正方形共有______个。
11.下图中的阴影部分BCGF是正方形,线段FH长18厘米,线段AC长24厘米,则长方形ADHE的周长是______厘米。
12.图5中的熊猫图案的阴影部分的面积是______平方厘米。
(注:阴影部分均由半圆和正方形组成,图中一个小正方形的面积是1平方厘米,π取3.14)
13.小红看一本故事书,第一天看了这本书的一半又10页,第二天看了余下的一半又10页,第三天看了10页正好看完。
这本故事书共有______页。
14.有一副扑克牌中(去掉大、小王),最少取______张牌就可以保证其中3张牌的点数相同。
15.如图,摩托车里程表显示的数字表示摩托车已经行驶了24944千米,经过两小时后,里程表上显示的数字从左到右与从右到左的读数相同,若摩托车的时速不超过90千米,则摩托车在这两小时内的平均速度是______千米/时。
16.一名搬运工从批发部搬运500只瓷碗到商店,货主规定:运到一只完好的瓷碗得运费3角,打破一只瓷碗赔9角,结果他领到运费136.80元。
则在运输中搬运工打破了______只瓷碗。
17.李经理的司机每天早上7点30分到达李经理家接他去公司。
有一天李经理7点从家里出发步行去公司,路上遇到从公司按时接他的车,再乘车去公司,结果比平常早到5分钟。
则李经理乘车的速度是步行速度的______倍。
(假设车速、步行速度保持不变,汽车掉头与上下车时间忽略不计)
18.将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有______种不同的放法。
19.在算式“”中,不同的汉字表示不同的自然数,则“希+望+
杯”=______。
20.A、B两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分。
如果甲、乙从A地,丙从B地同时出发相向而行,那么,在______分钟或______
分钟后,丙与乙的距离是丙与甲的距离的2倍。