全国第十届华杯赛决赛试题及解答
第十届华杯赛口试试题及解案
第十届华杯赛口试试题题1.(共答题1)粤++=10在上面的算式中,粤、惠、州、华、罗、庚、金、杯、赛代表1~9这九个不同的数字。
请给出一种填数法,使得等式成立。
题2.(群答题1)跳绳的时候,可以认为绳子的中间点在同一个圆周上运动。
如果小光用0.5秒跳一个“单摇”,用0.6秒跳一个“双摇”,则跳“单摇”时绳中间点的速度和跳“双摇”时绳中间点的速度之比是多少?(说明:“单摇”是脚离地面一次,绳子转一圈;“双摇”是脚离地面一次,绳子转两圈。
) 题3.(必答题A1)如图,阴影正方形的顶点分别是大正方形EFGH各边的中点,分别以大正方形各边的一半为直径向外作半圆,再分别以阴影正方形的各边为直径向外作半圆,形成8个“月牙形”。
这8个“月牙形”的总面积为5平方厘米,问大正方形EFGH的面积是多少平方厘米?题4.(必答题A2)两个自然数a,b的最小公倍数等于50,问a+b有多少种可能的数值?题5.(必答题A3)如图所示,三角形ABC中,点X,Y,Z分别在线段AZ,BX,CY上,且YZ=2ZC,ZX =3XA,XY=4YB,三角形XYZ的面积等于24,求三角形ABC的面积。
题6.(必答题A4)你能在3×3的方格表(如图)中填入彼此不同的9个自然数(每个格子里只填一个数),使得每行、每列及两条对角线上三个数的乘积都等于2005吗?若能,请填出一例,若不能,请说明理由。
题7.(必答题A5)已知长方形的长为8,宽为4,将长方形沿一条对角线折起压平,如图所示。
求重叠部分(灰色三角形)的面积。
题8.(必答题A6)开始有三个数为1,1,1,每次操作把其中的一个数换成其他两数的和。
问经过10次操作后所得的三个数中,最大数的最大可能值是多少?题9.(群答题2)中国古代的“黑火药”配制中硝酸钾、硫磺、木炭的比例为15∶2∶3。
今有木炭50千克,要配制“黑火药”1000千克,还需要木炭多少千克?题10.(群答题3)图中的大正方形ABCD的面积是18平方厘米,灰色正方形MNPQ的边MN在对角线BD 上,顶点P在边BC上,Q在边CD上。
各届华杯赛真题集锦-含答案哦!
目录2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (3)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷 (5)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (11)2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷 (13)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (19)2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷 (23)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (31)2007年第12届“华罗庚金杯”少年数学邀请赛初赛试卷 (33)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (39)2008年第13届“华罗庚金杯”少年数学邀请赛初赛试卷 (41)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (47)2009年第14届“华罗庚金杯”少年数学邀请赛初赛试卷 (49)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (55)2010年第15届“华罗庚金杯”少年数学邀请赛初赛试卷 (57)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (63)2011年第16届“华罗庚金杯”少年数学邀请赛初赛试卷 (66)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (73)2012年第17届“华罗庚金杯”少年数学邀请赛初赛试卷 (75)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (82)2013年第18届“华罗庚金杯”少年数学邀请赛初赛试卷 (84)2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?2002年第9届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与解析一、解答题(共12小题,满分0分)1.“华杯赛”是为了纪念和学习我国杰出的数学家华罗庚教授而举办的全国性大型少年数学竞赛.华罗庚教授生于1910年,现在用“华杯”代表一个两位数.已知1910与“华杯”之和等于2004,那么“华杯”代表的两位数是多少?考点:竖式数字谜.专题:填运算符号、字母等的竖式与横式问题.分析:根据整数加法的计算方法进行推算即可.解答:解:解法一:个位上:0+“杯”=4,可得“杯”=4;十位上:1+“华”的末尾是0,由1+9=10,可得“华”9,向百位上进1;百位上:9+1=10,向千位上进1;千位上:1+1=2;由以上可得:;因此,“华杯”代表的两位数是94.解法二:已知1910与“华杯”之和等于2004;那么“华杯”=2004﹣1910=94;因此,“华杯”代表的两位数是94.点评:本题非常巧妙地考察了对整数的加法运算法则及数位的进位等知识要点的熟悉掌握程度.2.长方形的各边长增加10%,那么它的周长和面积分别增加百分之几?考点:百分数的实际应用;长方形的周长;长方形、正方形的面积.专题:分数百分数应用题.分析:设长方形的长为a,宽为b,因此各边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,因此各边长增加10%时,周长增加2(1.1a+1.1b)﹣2(a+b)=2(a+b)×10%,即周长增加10%.面积增加1.1a×1.1b﹣ab=1.21ab﹣ab=ab×21%,即面积增加21%.解答:周长增加10%,面积增加21%解:设长方形的长为a,宽为b,边长增加10%时,则长为(1+10%)a=110%a,长为(1+10%)b=110%b,周长增加:2(110%a+110%b)﹣2(a+b)=220%a+220%b﹣2a﹣2b=2(a+b)×10%;面积增加:110%a×110%b﹣ab=121%ab﹣ab=ab×21%;答:周长增加了10%,面积增加了21%.点评:在求出长宽增加后的长度基础上,根据长方形的周长与面积公式计算是完成本题的关键.3.如图所示的是一个正方体木块的表面展开图,若在正方体的各面填上数,使其对面两数之和为7,则A、B、C处填的数各是多少?考点:正方体的展开图.专题:立体图形的认识与计算.分析:如图,是正方体展开图的“222”结构,把它折叠成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,相使使其对面两数之和为7,A面填6,B面填5,C面填3.解答:解:如图,折成正方体后,A面与1面相对,B面与2面相对,C面与4面相对,要使其对面之各为7,则A面填6,B面填5,C面填3.点评:本题是考查正方体的展开图,关键是弄清把它折叠成正方体后,哪两个面相对.4.在一列数:,,,,,,…中,从哪一个数开始,1与每个数之差都小于?考点:数列中的规律.专题:探索数的规律.分析:这列数的特点是每个数的分母比分子大2,分子为奇数列,要使1﹣<,则n>999.5,即从n=1000开始,带入分数,即可得解.解答:解:这列数的特点是每个数的分母比分子大2,分子为奇数列,1﹣<,n>999.5,从n=1000开始,即从开始,满足条件.答:从开始,1与每个数之差都小于.点评:找出这列数的规律,根据已知列出等式求解.5.“神舟五号”载人飞船载着航天英雄杨利伟于2003年10月16日清晨6时51分从太空返回地球,实现了中华民族的飞天梦.飞船绕地球共飞行14圈,其中后10圈沿离地面343千米的圆形轨道飞行.请计算飞船沿圆形轨道飞行了多少千米(地球半径为6371千米,圆周率π=3.14).考点:有关圆的应用题.专题:平面图形的认识与计算.分析:先圆形轨道的半径,再根据圆的周长公式:C=2πr求出飞船沿圆形轨道飞行1圈的长度,再乘以10即可求出飞船沿圆形轨道飞行了多少千米.解答:解:2×3.14×(6371+343)×10=2×3.14×6714×10=3.14×134280=421639.2(千米);答:飞船沿圆形轨道飞行了421639.2千米.点评:考查了有关圆的应用题,关键是熟练掌握圆的周长公式.6.如图,一块圆形的纸片分成4个相同的扇形,用红、黄两种颜色分别涂满各扇形,问共有几种不同的涂法?考点:染色问题.专题:传统应用题专题.分析:根据四个扇形中有一个红色、两个、三个、四个分类列举即可.解答:解:按逆时针方向涂染各扇形:红红红红红红红黄红红黄黄红黄红黄红黄黄黄黄黄黄黄所以,共有6种.点评:本题考查了排列组合知识中的染色问题,还可以列式解答:4×(4﹣1)÷2=6(种).7.在9点至10点之间的某一时刻,5分钟前分针的位置与5分钟后时针的位置相同,此时刻是9点几分?考点:时间与钟面.专题:时钟问题.分析:可设当前是9点x分,则5分钟前分针指向x﹣5的位置,而分针转动的速度是时针的12倍,分针5分钟后指向x+5的位置,时针指向9刻度后刻度处,根据题意列出方程解答即可.解答:解:设当前时刻是9点x分.则5分钟后时针的位置为45+=x﹣5540+x+5=12x﹣6011x=605x=55;答:此时刻是9点55分.点评:本题主要考查钟表问题的实际应用,熟练掌握钟表的特征是解答本题的关键.8.一副扑克牌有54张,最少要抽取几张牌,方能使其中至少有2张牌有相同的点数?考点:抽屉原理.专题:传统应用题专题.分析:建立抽屉:一副扑克牌有54张,大小鬼不相同,那么(54﹣2)÷4=13,所以一共有13+2=15个抽屉;分别是:1、2、3、…K、小鬼、大鬼,由此利用抽屉原理考虑最差情况,即可进行解答.解答:解:建立抽屉:54张牌,根据点数特点可以分别看做15个抽屉,考虑最差情况:每个抽屉都摸出了1张牌,共摸出15张牌,此时再任意摸出一张,无论放到哪个抽屉,都会出现有两张牌在同一个抽屉,即两张牌点数相同,15+1=16(张),答:至少抽取16张扑克牌,方能使其中至少有两张牌有相同的点数.点评:此类问题关键是根据点数特点,建立抽屉,这里要注意考虑最差情况.9.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?考点:带余除法.专题:余数问题.分析:先设这个两位数为10a+b,则可用含a、b的代数式表示将它依次重复写3遍成的一个8位数,再将此8位数除以该两位数得到商为1010101,然后将1010101除以9即可求解.解答:解:设这个两位数为10a+b,则将它依次重复3遍成的一个8位数为:1000000(10a+b)+10000(10a+b)+100(10a+b)+10a+b=1010101(10a+b),将此8位数除以该两位数得到的商为:1010101(10a+b)÷(10a+b)=1010101,则1010101÷9=112233…4.答:得到的余数是4.点评:本题考查了带余除法的定义及应用,难度中等,用含a、b的代数式正确表示将(10a+b)这个数依次重复写3遍成的一个8位数是解题的关键.10.一块长方形的木板,长为90厘米,宽为40厘米,将它锯成2块,然后拼成一个正方形,你能做到吗?考点:图形的拆拼(切拼).专题:平面图形的认识与计算.分析:因为这块长方形木板的面积为90×40=3600(平方厘米),又因为3600=60×60,即所求的正方形的边长为60厘米,如下图所示.解答:解:因为90×40=3600,3600=60×60,所求的正方形的边长为60厘米,可以如下图拼成:因此,能拼成一个正方形.点评:先求出总面积,看看是否能分成两个数的平方.11.如图,大小两个半圆,它们的直径在同一直线上,弦AB与小圆相切,且与直径平行,弦AB长12厘米.求图中阴影部分的面积(圆周率π=3.14).考点:组合图形的面积.专题:平面图形的认识与计算.分析:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,利用圆的面积公式即可求解.解答:解:将小圆缩小至0,则AB就是大圆直径,阴影部分就是大圆的一半,所以阴影部分的面积是:×3.14×(12÷2)2=×3.14×36=56.52(平方厘米);答:图中阴影部分的面积是56.52平方厘米.点评:此题可以巧妙地利用“缩小法”,得出阴影部分的面积与直径为AB的圆的面积的关系,问题即可得解.12.半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?考点:有关圆的应用题.专题:平面图形的认识与计算.分析:由于小铁环的半径为25厘米,大铁环的半径为50厘米,可得小铁环的半径是大铁环半径的一半.根据周长与半径的关系可得大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,再减去公转的1圈,可得小环自身转动的圈数.解答:解:由于小铁环的半径是大铁环半径的一半,所以大环周长是小环的2倍,即小环沿大环转2个周长时又回到原位,其中有1个周长属于小环公转的,而另一个周长才是小环自身转动的,因此,小环自身转动1圈.点评:本题考查了圆与圆的位置关系,小铁环运动的圈数乘以它的周长就等于大铁环的周长.2004年第10届“华罗庚金杯”少年数学邀请赛初赛试卷一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?2004年第1届“华罗庚金杯”少年数学邀请赛初赛试卷参考答案与试题解析一、解答题(共12小题,满分0分)1.2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年.问这两次远洋航行相差多少年?考点:日期和时间的推算.分析:先求出郑和首次下西洋的时间,再求差.解答:解:2005﹣600=1405(年),1492﹣1405=87(年).答:这两次远洋航行相差87年.点评:本题先根据2005年求出郑和首次下西洋的时间,再用较晚的时间减去较早的时间.2.从冬至之日起每九天分为一段,依次称之为一九,二九,…,九九,2004年的冬至为12月21日,2005年的立春是2月4日.问立春之日是几九的第几天?考点:日期和时间的推算.分析:先求出2004年的12月21日到2005年的2月4日经过了多少天,再求这些天里有几个9天,还余几天,再根据余数推算是几九第几天即可.解答:解:2004年的12月21日到12月31日共有11天,1月份有31天,2月4日是2月的第四天,那么一共经过了:11+31+4=46(天),46÷9=5…1,说明已经经过了5个9天,还余1天,这一天就是六九的第一天.答:立春之日是六九的第1天.点评:本题的是9天为1个周期,先求出经过的天数(注意两头的天数都算),再求这些天里有几个9天,还余几天,再根据余数判断.3.如图是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是多少?考点:规则立体图形的体积.分析:根据棱柱的体积公式:底面积×高,进行计算.解答:解:因为直三棱柱的底面是直角边都为1的直角三角形,高为1,所以直三棱柱的体积=×1×1×1=.答:这个直三棱柱的体积是.故答案为:.点评:本题考查了直三棱柱及展开图的特征和直三棱柱体积计算.直三棱柱是由三个长方形的侧面和上下两个底面组成.4.爸爸、妈妈、客人和我四人围着圆桌喝茶.若只考虑每人左邻的情况,问共有多少种不同的入座方法?考点:加法原理.分析:可先把我放在第一个位置,进而考虑我的左邻的情况,我的左邻的左邻的情况,找到总情况数即可.解答:解:共有6种不同的入座方法.点评:考查用列表法解决问题;把1个人固定位置,进而考虑左邻的情况是解决本题的关键.5.在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米.求三项的总距离.考点:分数除法应用题.分析:把自行车的距离看成单位“1”,那么长跑的距离就是自行车的,游泳的距离是自行车的,它们的差对应的数量是8.5千米,用除法可以求出自行车的距离,根据自行车的距离求出另外两项的距离,再把三者加起来.解答:解:自行车比赛距离是长跑的4倍,那么长跑的距离就是自行车的,8.5÷()=8.5÷,=40(千米);40×=10(千米);40×=1.5(千米);40+10+1.5=51.5(千米);答:三项的总距离是51.5千米.点评:本题关键是把倍数关系看成一个是另一个的几分之几,找出单位“1”分析出数量关系,再由基本的数量关系求解.6.如图,用同样大小的正三角形,向下逐次拼接出更大的正三角形.其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,…问这列数中的第9个是多少?考点:事物的简单搭配规律.分析:观察图形,分析数列,发现规律:从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…据此规律,推出即可.解答:解:6﹣3=3;10﹣6=4;15﹣10=5;21﹣15=6;…从第一个数开始,后面的数依次比前一个数多3、4、5、6、7、…往下写数:3,6,10,15,21,28,36,45,55,…第9个数是55.答:这列数中的第9个是55.点评:观察图形,分析数列,发现规律,然后利用规律解决问题.7.一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示.若用甲容器取水来注满乙容器,问:至少要注水多少次?考点:规则立体图形的体积.分析:根据圆锥的体积公式求出容器甲容积,根据球的体积公式求出容器乙容积,相除即可求解.解答:解:容器甲容积:V甲=×π×()2×1=π;容器乙容积:V乙=×π×13=π,V乙÷V甲=π÷π=8.答:至少要注水8次.点评:考查了圆锥的体积和球的体积.球的体积公式是V=πr3.圆锥的体积是V=sh=πr2h.8.100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组.问:高、低年级学生各多少人?考点:鸡兔同笼.分析:可设高年级有学生x人,则低年级的学生有100﹣x人,根据等量关系:高年级组数+低年级组数=41组解答即可.解答:解:高年级有学生x人,则低年级的学生有100﹣x人,由题意得:=41,3x+2(100﹣x)=246,3x+200﹣2x=246,x=46,100﹣46=54(人),答:高年级有46人,低年级有54人.点评:此类题目中一般都有两个等量关系,抓住其中一个等量关系设出一个未知数,从而得出另一个未知数;另一个等量关系用来列方程.9.小鸣用48元钱按零售价买了若干练习本.如果按批发价购买,每本便宜2元,恰好多买4本.问:零售价每本多少元?考点:整数、小数复合应用题;合数与质数;质数与合数问题.分析:先将48分解质因数:48=1×48=2×24=3×16=4×12=6×8,因数全写出来,再找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价.解答:解:48=48=1×48=2×24=3×16=4×12=6×8,找出里面相差分别是2和4的,那么这两个算式就分别为零售价和批发价;只有4×12和6×8,12比8多4,4比6少2,则零售价为6元,批发价为4元;答:零售价为6元.点评:解答此题应结合合数和质数的含义进行分析,通过分解质因数,找出符合题意的答案即可.10.不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈.问最多有多少名同学?考点:最大与最小.分析:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a人,第二种的人数是8+5b人,因为总人数一定相等,求出a与b的关系,根据a和b关系讨论取值.解答:解:设两种组合外圈的组数为a、b,那么第一种的人数是5+8a,第二种的人数是8+5b,则5+8a=8+5b即;8a=5b+3,当b=1时,a=1,总人数为5+8×1=13(人);当b=9时,a=6,总人数为5+8×6=53(人);当b=17时,a=11,总人数为5+8×11=93(人).数字再大就超过100了,所以最多有93人.答:最多有93名同学.点评:本题先找出两种组数之间的关系,然后根据组数是自然数和它们之间的关系讨论取值,找出100以内最大的即可.11.输液100毫升,每分钟输2.5毫升.请你观察第12分钟时吊瓶图象中的数据,回答整个吊瓶的容积是多少毫升?考点:整数、小数复合应用题.分析:水平面的刻度是80毫升,说明空的部分是80毫升;根据每分钟的输液量和输液时间求出已经输出的体积,用100毫升减去已经输出的体积就是瓶内剩下的体积;整个吊瓶的容积就是空的部分加剩下的这部分体积.解答:解:100﹣2.5×12=70(毫升),80+70=150(毫升),答:整个吊瓶的容积是150毫升.点评:本题第12分时瓶子上方没有溶液的容积的等量关系是解决本题的关键.12.两条直线相交所成的锐角或直角称为两条直线的“夹角”.现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°.问:至多有多少条直线?考点:乘法原理.分析:根据题意,“夹角”只能是30°,60°或90°,都是30°的倍数,根据这个倍数,通过旋转的方法,进一步解答即可.解答:解:因为夹角只能是30°、60°或者90°,其均为30°的倍数,所以每画一条直线后,逆时针旋转30°画下一条直线,这样就能够保证两两直线夹角为30°的倍数,即为30°、60°或者90°(因为如果每次旋转度数其他角度,例如15°,则必然会出现两条直线的夹角为15°或15°的其它倍数,如45°这与题目不符);因为该平面上的直线两两相交,也就是说不会出现平行的情况,在画出6条直线时,直线旋转过5次,5×30°=150°,如果再画出第7条直线,则旋转6次,6×30°=180°,这样第七条直线就与第一条直线平行了.如图:所以最多能画出六条.答:至多有6条直线.点评:根据题意,由题目给出的条件,通过旋转的方法进一步解答即可.2006年第11届“华罗庚金杯”少年数学邀请赛初赛试卷一、选择题(共6小题,每小题6分,满分36分)1.(6分)如图所示,将一张正方形纸片先由下向上对折压平,再由右翻起向左对折压平,得到小正方形ABCD.取AB的中点M和BC的中点N,剪掉AMBN得五边形AMNCD.则将折叠的五边形AMNCD纸片展开铺平后的图形是()A.B.C.D.2.(6分)2008006共有()个质因数.A.4B.5C.6D.73.(6分)(2007•北塘区)奶奶告诉小明:“2006年共有53个星期日”.聪敏的小明立刻告诉奶奶:2007年的元旦一定是()A.星期一B.星期二C.星期六D.星期日4.(6分)如图,长方形ABCD小AB:BC=5:4.位于A点的第一只蚂蚁按A→B→C→D→A 的方向,位于C点的第二只蚂蚁按C→B→A→D→C的方向同时出发,分别沿着长方形的边爬行.如果两只蚂蚁第一次在B点相遇,则两只蚂蚁第二次相遇在()边上.A.A B B.B C C.C D D.D A5.(6分)如图,ABCD是个直角梯形(∠DAB=∠ABC=90°).以AD为一边向外作长方形ADEF,其面积为6.36平方厘米,连接BE交AD于P,再连接PC.则图中阴影部分的面积是()平方厘米.A.6.36 B.3.18 C.2.12 D.1.596.(6分)五位同学扮成奥运会吉祥物福娃贝见、晶晶、欢欢、迎迎和妮妮,排成一排表演节目,如果贝贝和妮妮不相邻,共有()种不同的排法.A.48 B.72 C.96 D.120二、填空题(共8小题,每小题3分,满分24分)7.(3分)在算式中,汉字“第、十、一、届、华、杯、赛”代表1,2,3,4,5,6.7,8,9中的7个数字,不同的汉字代表不同的数字,恰使得加法算式成立.则“第、十、一、届、华、杯、赛”所代表的7个数字的和等于_________•8.(3分)全班50个学生,每人恰有三角板或直尺中的一种,28人有直尺,有三角板的人中,男生是14人,若已知全班共有女生31人,那么有直尺的女生有_________人.9.(3分)如图是﹣个直圆柱形状的玻璃杯,一个长为12厘米的直棒状细吸管(不考虑吸管粗细)放在玻璃杯内.当吸管一端接触圆柱下底面时,另一端沿吸管最少可露出上底面边缘2厘米,最多能露出4厘米.则这个玻璃杯的容积为_________立方厘米.(取π=3.14)(提示:直角三角形中“勾6、股8、弦10)10.(3分)有5个黑色和白色棋子围成一圈,规定:将同色的和相邻的两个棋子之间放入一个白色棋子,在异色的和相邻的两个棋子之间放入一个黑色棋子,然后将原来的5个棋子拿掉,如果从图5(1)的初始状态开始依照上述规定操作下去,对于圆圈上呈现5个棋子的情况,圆圈上黑子最多能有_________个.11.(3分)李大爷用一批化肥给承包的麦田施肥.若每亩施6千克,则缺少化肥300千克;若每亩施5千克,则余下化肥200千克.那么李大爷共承包了麦田_________亩,这批化肥有_________千克.12.(3分)将从1开始的到103的连续奇数依次写成﹣个多位数:a=13579111315171921…9799101103.则数a共有_________位,数a除以9的余数是_________.。
关于三角形中两塞瓦线相交所得的线段比例
关于三角形中两塞瓦线相交所得的线段比例广东省深圳市新安中学(集团)第二外国语学校(518100)华南师范大学(510631)钟焕旻摘要本文首先介绍了共边定理的不同情形下的图形命名.接着我们给出一道有关三角形中两塞瓦线相交所得的线段比例的计算的例题.这个图形在小学高年级及中学低年级阶段的数学竞赛试题中出现频率很高.我们应用共边定理给出多种解法.然后我们对此类题进行一般化推广和变式,并利用共边定理给出多种解法.最后总结其通解通法.关键词共边定理;三角形;塞瓦线;线段比1引言如图1是三角形中两条塞瓦线相交的图形模型.虽然是一个非常简单的图形模型,但在小学高年级和中学低年级阶段的数学竞赛中出现的频率很高.我们在此图1简单列举几道竞赛真题.题1(第十届华杯赛初一组总决赛一试第4题[1])如图2中三角形ABC 的面积是60,BE :CE =1:2,AD :CD =3:1,求四边形DOEC 的面积.题2(第十三届华杯赛初一组决赛第11题[1])如图3所示,E,F 是三角形ABC 边上的点,CE 与BF 相交于点P .已知三角形P BC 的面试是12,且S ∆EBP =S ∆F P C =S 四边形AEP F ,求三角形EBP 的面积.图2图3题3(第十八届华杯赛初一组决赛B 卷第5题[1])如图4所示,三角形ABC 中,E,F 分别是边AB,AC 上的一点,CE,BF 相交于点P ,已知S ∆EBP =S ∆F P C =S 四边形AEP F =4,则三角形P BC 的面积是().题4(2017年第十五届小学希望杯全国数学邀请赛第一试6年级第8题[2])如图5,点E,F 是三角形ABC 边AB,AC 上的点,线段CE,BF 交于点D .若三角形CDF ,三角形BCD ,三角形BDE 面积分别为3,7,7,则四边形AEDF 面积为.图4图5我们可以在这几道竞赛真题中看到,在这个图形中,常考察的是面积和线段比的计算.张景中院士所提出的共边定理就是解决面积和线段比问题的强有力工具.在本文中,我们就将使用共边定理的四种图形形式来对这种类型的问题给出通解通法.2基本概念及相关性质定义1[3]连接三角形的一个顶点和它的对边(或延长线)上一点(非端点)的线段称为塞瓦线.定理1[4]如图6,∆ABC 、∆ABD 和∆ACD 等高,则BC :BD :CD =S ∆ABC :S ∆ABD :S ∆ACD ;证明见文献[4].图6等高模型是共边定理的理论基础.张景中院士所提出的共边定理正是由等高模型证明得到的.图7定理2[5](共边定理)若直线AB 与P Q 交于点M ,如图7,有四种情形,则有S ∆P AB S ∆QAB =P MQM.证明[5]S ∆P AB S ∆QAB =S ∆P AB S ∆P AM ·S ∆P AM S ∆QAM ·S ∆QAMS ∆QAB=AB AM·P MQM·AMAB=P MQM.为了方便记忆,人们对共边定理中的四种图形赋予了生动形象的模型名字.我们简要地介绍如下.2.1风筝模型风筝模型是在任意四边形内的一个图形模型,因四边形的两条对角线相交形似“风筝骨架”,故得名风筝模型.风筝模型是定理1共边定理中情形(1)的图形.即如图7(1).此处需注意风筝模型和筝形的区别.筝形是对角线相互垂直的四边形,而风筝模型是任意四边形内部两条相交的对角线形成的.可以说筝形是风筝模型的一种特殊情形.定理3如图8,在四边形ABCD中,点O是对角线AC 和BD的交点,则有以下结论:(1)S∆ABDS∆BCD=AOOC(共边定理图7情形(1));(2)S∆ABCS∆ACD=OBOD(共边定理图7情形(1));(3)S1×S3=S2×S4.证明(1)和(2)的证明见文献[5].由等高模型有S1 S2=ODOB=S4S3,故交叉相乘即可得S1×S3=S2×S4.图8图92.2燕尾模型如图9中,在∆ABC中任意两种颜色的阴影部分组合起来都如同燕尾的形状,故称之为燕尾模型.共边定理中的图7(2)就是燕尾模型.所以燕尾模型是共边定理.定理4如图9,若点O是三角形ABC内部任意一点,连接AO并延长与BC交于D点,连接BO并延长与AC交于E点,连接CO并延长与AB交于F点,即三角形ABC 中的线段AD,BE,CF交于一点O.(1)S∆ABOS∆ACO=BDDC,S∆ABOS∆BCO=AEEC,S∆ACOS∆BCO=AFF B(共边定理图7情形(2));S∆OBC S∆ABC =ODAD,S∆OACS∆ABC=OEBE,S∆OABS∆ABC=OFCF(共边定理图7情形(3));2.3双峰模型双峰模型就是共边定理1中的第四种图形的体现.在以往的小学高年级和中学低年级阶段的数学竞赛的平面几何试题中出现频率较少.但双峰模型的结论可图10以给直线形图形中求解线段比和面积比带来极大的简便.如图10中有AEDE=S∆ABCS∆DBC成立.此图形被称为双峰模型的原因是两个三角形ABC和DBC像两座山峰一样.它们以共同的“山底”BC为底,然后“山顶”顶点A,D连线和“山底”的延长线相交,所得到的线段AE,DE的比例等于两个三角形的面积之比.这样从图形的特点出发,给予生动形象的命名.鉴于小学高年级和中学低年级阶段的同学心智还比较不成熟,故使用贴近生活,生动形象的命名可以帮助同学们激发学习兴趣,从而更好地记忆共边定理的各个形式.另一方面,在竞赛题的图形中,也能更快地找到对应的图形以及其中的数量关系,从而使用共边定理给出简洁的解答.3例题详解及推广和变式例1[5]AD是∆ABC边BC上的中线,过点B任意做一条直线交AD于点E,交AC于F,证明AEED=2AFF C.图11图12图13证明一(风筝模型)如图12,连接DF,由风筝模型和等高模型有AEED=S∆ABFS∆BDF=S∆ABFS∆BCF·S∆BCFS∆BDF=AFF C·21=2AFF C.证明二(燕尾模型)如图13,连接CE,由燕尾模型和等高模型有AEED=S∆ABES∆BDE=S∆ABE12S∆BCE=2S∆ABES∆BCE=2AFCF 我们将例1推广.问题1如图13,已知AEEC=a,CDDB=b,求APP D,BPP E 的值.图14图15图16解法一(风筝模型)如图15,由风筝模型和等高模型有AP P D =S∆ABES∆BDE=S∆ABES∆BCE·S∆BCES∆BDE=AEEC·BCBD=a(1+b).BP P E =S∆ABDS∆ADE=S∆ABDS∆ADC·S∆ADCS∆ADE=BDDC·ACAE=1+aab.解法二(燕尾模型)如图16,由燕尾模型和等高模型有AP P D =S∆ABPS∆BDP=S∆ABPb1+bS∆BCP=1+bb·AEEC=a(1+b).BP P E =S∆ABPS∆AP E=S∆ABPa1+aS∆ACP=1+aa·BDCD=1+aab.评注当我们已知三角形边上的比例时,可以借助风筝模型或燕尾模型以及等高模型,以面积比例为中间桥梁,求得两相交的塞瓦线上的线段比.反过来,如果我们知道两相交的塞瓦线上的线段比,同样也有两种方式可以求得三角形边长上的线段比.我们对上面的问题进行变式.问题2如图14,已知APP D=p,BPP E=q,求AEEC,CDDB的值.解法一(双峰模型)如图15,由双峰模型和等高模型有CE CA =S∆BDES∆ABD=S∆BP D+S∆P DES∆BP D+S∆ABP=S∆BP D+1qS∆BP DS∆BP D+pS∆BP D=q+1q(p+1)从而有AE AC =1−q+1q(p+1)=pq−1q(p+1)所以AECE=pq−1q+1.由双峰模型和等高模型有CD BC =S∆ADES∆ABE=S∆AP E+S∆P DES∆AP E+S∆ABP=S∆AP E+1pS∆AP ES∆AP E+qS∆AP E=p+1p(q+1)从而有BD BC =1−p+1p(q+1)=pq−1p(q+1).所以CDBD=CDBC·BCBD=pq−1p+1.解法二(燕尾模型)如图16,由共边定理的有S∆AP C S∆ABC =P EBE=1q+1,S∆BP CS∆ABC=P DAD=1p+1所以S∆AP B S∆ABC =1−1q+1−1p+1=pq−1(p+1)(q+1)由燕尾模型有AE EC =S∆AP BS∆BP C=S∆AP BS∆ABC·S∆ABCS∆AP C=pq−1q+1CDBD=S∆AP CS∆AP B=S∆AP CS∆ABC·S∆ABCS∆AP B=P+1pq−1在问题1中,我们是已知了三角形两边上的线段比,可以利用风筝模型和燕尾模型来求解三角形内的两条塞瓦线上的线段比.问题2的已知条件和待求问题正好与问题1是相反的.已知条件是三角形内两条塞瓦线上的线段比,待求问题是三角形两条塞瓦线所对的两边上的线段比.我们可以应用双峰模型(共边定理的第四种图形形式)还有共边定理的第三种图形形式和燕尾模型给出两种解决方法.我们在问题1和问题2的解决过程中将共边定理的四种形式都展示了出来.可见本图形三角形内两塞瓦线相交的图形模型,虽然看着简单,但蕴含了丰富的数量关系.我们还可以进一步思考,如果在本图形模型中,已知三角形一边长上的线段比和某塞瓦线上的线段比,可否求出另一条边上的线段比和另一条塞瓦线上的线段比呢?是可以的.问题3如图14,已知AEEC=a,BPP E=q,求CDDB,APP D的值.解法一(风筝模型)如图15,由风筝模型和等高模型有CDDB=S∆ABDS∆ADC=S∆ABDS∆ADE·S∆ADES∆ADC=BPP E·AEAC=aq(1+a)APP D=S∆ABES∆BDE=S∆ABES∆BCE·S∆BCES∆BDE=AEEC·BCBD=a(1+q)q解法二(燕尾模型)如图16,由燕尾模型和等高模型有CDDB=S∆ABPS∆ACP=S∆ABPS∆AP E·S∆AP ES∆ACP=BPP E·AEAC=aq(1+a)APP D=S∆ABPS∆BDP=S∆ABPS∆BCP·S∆BCPS∆BDP=AEEC·BCBD=a(1+q)q同理,如果已知BDDC=b,APP D=p,求AEEC,BCBD也可有同上两种方法风筝模型和燕尾模型得出,不再赘述.问题4如图14,若已知AEEC=a,APP D=p,求CDBD,BPP E的值.解法一(双峰模型+风筝模型)如图15,由风筝模型有S∆ABES∆BDE=APP D=p,所以S∆ABE=pS∆BDE,由等高模型有S∆ADES∆CDE=AEEC=a,所以S∆ADE=aS∆CDE,由双峰模型有CDBC=S∆ADES∆ABE=aS∆CDEpS∆BDE=ap·CDBD.所以BDBC=ap,故CDBC=1−ap=p−ap,从而可得CDBD=CDBC·BCBD=p−ap·pa=p−aa.2020年广州市中考数学第25题评析与教学思考广东省广州市第二中学(510631)卢奕摘要2020年广州市中考数学压轴题是一道融合代数几何于一体的综合问题,是一道凸显数学思想方法的试题.文章从试题特色与分析,介绍了试题特点,分析了运用数形结合,合情推理寻求该试题的破题思路,并从几种不同的角度以思维导图呈现该试题的解法思路,还阐述了试题对教学的启示:重夯实基础,重深度思考,重积累经验.关键词数形结合;含参数问题;教学建议2020年中考广州考卷第25题一如既往的以二次函数抛物线为背景压轴出场.抛物线和各种几何图形组合易于综合考查多个知识点,蕴涵丰富的数学思想方法,特别适合考查学生的综合各项信息,解决问题的能力.下面笔者将对该二次函数综合题进行试题特色分析,赏析各类解法,并在此基础上为教学提供建议.再由双峰模型有S∆ABDS∆BDE=ACCE=a+1,所以S∆ABD=(a+1)S∆BDE,由风筝模型有S∆BDES∆ABE=P DAP=1 p ,所以S∆BDE=1pS∆ABE,再由风筝模型和双峰模型有BPP E=S∆ABDS∆ADE=(a+1)S∆BDES∆ADE=(a+1)·1pS∆ABES∆ADE=a+1p·BCCD=a+1p−a.解法二(燕尾模型)由共边定理有S∆P BCS∆ABC=P DAD= 1p+1,由燕尾模型有S∆P ABS∆P BC=AEEC=a,所以S∆P ABS∆ABC=S∆P ABS∆P BC·S∆P BCS∆ABC=ap+1所以S∆P AC S∆ABC =1−1p+1−ap+1=p−ap+1故由燕尾模型有CD BD =S∆P ACS∆P AB=S∆P ACS∆ABC=S∆ABCS∆P AB =p−ap+1·p+1a=p−aa另一方面由共边定理(3)有P E BE =S∆P ACS∆ABC=p−ap+1所以BPBE=1−p−ap+1=a+1p+1,BPP E=BPBE·BEP E=a+1p−a.由以上四个问题我们可以发现在三角形内两塞瓦线相交的图形模型中,只要知道了三角形两边上的线段比和两塞瓦线上的线段比这四组线段比中的两组,就可以求出另外两组线段比.为了叙述的简便性,我们将三角形的边称为“外边”,将塞瓦线成为“内边”.称“内边”AD与“外边”BC是相对的位置关系,称“内边”AD与“外边”AC是相邻的位置关系.同理可知BE与AC相对,BE与BC相邻.我们可以将解题思路简要地通过下面的三个流程图进行总结.图17图18图19若题目中再给出一个小三角形的面积,则可求得图形中各个三角形,四边形的面积,就是前面我们所列举的那些竞赛真题的考察形式.至此我们对此类问题给出了通解通法.参考文献[1]徐伟宣,王世坤,王鸣主编.华罗庚金杯少年数学邀请赛1至18届试题和解答汇编(初一册)[M].北京:科学普及出版社,2014.10. [2]刘嘉主编.小学数学竞赛年鉴MO2017[M].武汉:湖北科学技术出版社,2018.2.[3](美)Paul Zeitz著,李胜宏译.怎样解题:数学竞赛攻关宝典(第二版)[M].北京:人民邮电出版社,2010.7:301-317.[4](古希腊)欧几里得著,邹忌编译.几何原本(修订本)[M].重庆:重庆出版社,2014.1:2-18,181-190.[5]张景中,彭翕成.共边定理[J].中学生数理化(八年级数学)(人教版),2007(11):4-7.[6]张景中,彭翕成.共角定理[J].中学生数理化(八年级数学)(北师大版),2008(03):4-6.[7]周沛耕,刘建业著.平面几何题的解题规律[M].合肥:中国科学技术大学出版社,2017.3:202-204.。
马鞍山市成功学校第十届“华杯赛”集训题(4)
马鞍山市成功学校第十届“华杯赛”集训题(4)一、填空题(每小题10分,共60分)1.计算:+++++++++432113211211 (100)3211+++++ = . 2.已知ac z c b y b a x -=-=-,则z y x ++= . 3.在分数4328的分子、分母上分别加上正整数a 、b 以后,所得的结果是127,那么b a + 的最小值是 .4. 刘林在计算一道多位数乘法的算式时,把被乘数十位上的5看成了8,算出的结果是83568;张明在做这道题时,把被乘数百位的4看成了2,算出的结果是78048.正确的结果是 . 5.如图,在△ABC 中,E 、D 、G 分别是AB 、BC 、AD 的中点,那么图中与△AED 的面积相等的有n 个,则n 等于 __________ .6.小明、小强、小华三个人参加华杯赛,他们是来金城、沙市、水乡的选手,并分别获得一、二、三等奖,现在知道:(1)小明不是金城的选手;(2)小强不是沙市的选手;(3)金城的选手不是一等奖;(4)沙市的选手得二等奖;(5)小强不是三等奖.根据上述情况,小华就是 的选手,他得的是 等奖.二、解下列各题(每小题10分,共60分)7.三个互不相等的有理数,既可以表示为1,b a +,a 的形式,也可以表示为0,a b ,b 的形式,试求20012000b a+的值.B AC ED G8.如果把一个六位数的个位数移到最前面的十万位上,把其他各位的数字依次向后移一位,得到一个新的六位数,如果新数是原数的5倍,那么原来的六位数几?9.王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现他从甲地到乙地的速度只有每小时55千米.如果他想按时返回甲地,他应以多大的速度往回开?10.一条船往返于甲、乙两港之间.由甲至乙是顺水行驶;由乙至甲是逆水行驶.已知船在静水中的速度为每小时8公里,平时逆行与顺行所用的时间的比为2∶1.某天恰逢暴雨,水流速度变为原来的2倍,这条船往返共用了9小时,那么甲、乙港相距多少公里?11.某公园门票价格,对达到一定人数的团体,按团体票优惠.现有A、B、C三个旅游团共72人,如果各团单独购票,门票费依次为360元、384元、480元;如果三个团合起来购票,总共可少花72元.(1)这三个旅游团各有多少人?(2)在下面填写一种票价方案,使其与上述购票情况相符:12.一个棱长为6cm的正方体,把它切开成49个小正方体,小正方体的大小不必都相同,而小正方体的棱长以厘米作单位必须是整数.问:可切出几种不同尺寸的正方体?每种正方体的个数各是多少?参考答案一、填空题1.10199 2.0 3.24 4.82848 5.3 6.金城 三 二、解下列各题7.由于三个互不相等的有理数,既表示为1,b a +,a 的形式,又可以表示为0,a b ,b 的形式,也就是说这两个数组的元素分别对应相等.于是可以判定b a +与a 中有一个是0,b a b 与中有一个是1,但若0=a ,会使ab 无意义,∴0≠a ,只能0=+b a ,即b a -=,于是1-=a b .只能是1=b ,于是a =-1。
华杯赛行程问题汇编(1-18届)
1。
(第一届华杯赛初赛第8题)早晨8点多钟有两辆汽车先后离开化肥厂向幸福村开去。
两辆车的速度都是每小时60千米。
8点32分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的三倍.到了8点39分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的2倍.那么,第一辆汽车是8点几分离开化肥厂的?2. (第一届华杯赛初赛第16题)有一路电车的起点站和终点站分别是甲站和乙站.每隔5分钟有一辆电车从甲站出发开往乙站,全程要走15分钟。
有一个人从乙站出发沿电车路线骑车前往甲站。
他出发的时候,恰好有一辆电车到达乙站。
在路上他又遇到了10辆迎面开来的电车,才到达甲站.这时候,恰好又有一辆电车从甲站开出。
问他从乙站到甲站用了多少分钟?3。
(第一届华杯赛决赛第12题)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4公里的地方追上了他,然后爸爸立刻回家,到家后又立刻回头去追小明,再追上他时候,离家恰好是8公里。
问这时是几点几分?4. (第一届华杯赛总决赛一试第13题)如下图,甲、乙、丙是三个站,乙站到甲、丙两站的距离相等。
小明和小强分别从甲、丙两站同时出发相向而行,小明过乙站100米后与小强相遇,然后两人又继续前进,小明走到丙站立即返回,经过乙站后300米又追上小强。
问甲、丙两站的距离是多少米?5。
(第一届华杯赛总决赛二试第4题)快、中、慢三辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人,这三辆车分别用6分钟、10分钟、12分钟追上骑车人,现在知道快车每小时走24千米,中车每小时走20千米,那么,慢车每小时走多少千米?6。
(第二届华杯赛初赛第2题)一个充气的救生圈(如右图).虚线所示的大圆,半径是33厘米.实线所示的小圆,半径是9厘米.有两只蚂蚁同时从A点出发,以同样的速度分别沿大圆和小圆爬行.问:小圆上的蚂蚁爬了几圈后,第一次碰上大圆上的蚂蚁?7. (第二届华杯赛决赛第11题)王师傅驾车从甲地开乙地交货.如果他往返都以每小时60公里的速度行驶,正好可以按时返回甲地。
华杯数论
华杯赛数论专辑A1.哥德巴赫猜想是说:“每个大于2的偶数都可以袤示成两个质数之和”。
问:168是哪两个两位数的质数之和,并且其中的一个的个位数字是1?【第六届华杯赛初赛试题】2.任意写一个两位数,再将它依次重复3遍成一个8位数.将此8位数除以该两位数所得到的商再除以9,问:得到的余数是多少?【第九届华杯赛初赛试题】3.将l999表示为两个质数之和:l999=口+口,在口中填入质数。
共有多少种表示法?【第七届华杯赛初赛试题】4.五个比0大的数它们两两的乘积是1,80,35,1.4,50,56,1.6,2,40,70这十个值,问这五个数中最大数是最小数的多少倍?【第07届华罗庚金杯少年数学邀请赛团体决赛口试试题】5.能将1,2,3,4,5,6,7,8,9填在3×3的方格表中(如下图),使得横向与竖向任意相邻两数之和都是质数吗?如果能,请给出一种填法:如果不能,请你说明理由.【第07届华罗庚金杯少年数学邀请赛团体决赛口试试题】6.将1,2,3,4,5,6,7,8,9九个数排成一行,使得第二个数整除第一个数,第三个数整除前两个数的和,第四个数整除前三个数的和,…,第九个数整除前八个数的和,如果第一个数是6,第四个数是2,第五个数是1.问排在最后的数是几?【第07届华罗庚金杯少年数学邀请赛团体决赛口试试题】7.能否找到自然数a和b,使a2=2002+b2.【第八届华杯赛复赛试题及解答】8.1到100所有自然数中与100互质各数之和是多少?【第九届华杯赛总决赛一试试题】9.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。
如果它们满足等式ab+c=2005,则a+b+c=( )。
【第十届华杯赛决赛试题】10.小于10且分母为36的最简分数共有多少个? 【第十届华杯赛口赛试题】11.构成自然数的所有数字互不相同,这些数字的乘积等于360。
求n的最大值。
【第十届华杯赛口赛试题】12.将两个不同的自然数中较大的数换成这两个数的差,称为一次操作,如对18和42可连续进行这样的操作。
奥数几何,数论,行程专题
宇光教育专题诊断——几何专题教师: 耿宏雷 所在学校: 联系电话:1. 下图是由9个等边三角形拼成的六边形,已知中间最小的等边三角形的边长是1,问:这个六边形的周长是多少? (第七届华杯赛初赛第6题)2. 如图:将三角形ABC 的BA 边延长1倍到D ;CB 边延长2倍到E ,AC 边延长3倍到F ,如果三角形ABC 的面积等于1,那么三角形DEF 的面积是_____。
(第一届迎春杯决赛第32题)3. 长方形草地ABCD 被分为面积相等的甲、乙、丙和丁四份(如下图),其中图形甲的长和宽的比是2:1,其中图形乙的长和宽的比是( ):( )。
(第八届华杯赛复赛第2题)4. 五环图由内圆直径为8,外圆直径为10的五个圆环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等。
已知五个圆环盖住的总面积是112.5,求每个小曲边四边形的面积(圆周率π取3.14)(第三届华杯赛复赛第15题)5.求图阴影部分的面积为_____平方厘米(取π为3)。
(第二届迎春杯决赛第40题)6.如下图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下侧面的中心打通一个圆柱形的洞。
已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下侧面的洞口是直径为4厘米的圆,求下图立体的表面积和体积?(π取3.14)(第七届华杯赛复赛第11题)7.有6个棱长分别是3cm,4cm,5cm的相同长方体,把它们的某些面染上红色,使得有的长方体只有一个面是红色的,有的长方体恰有两个面是红色的,有的长方体恰有三个面是红色的,有的长方体恰有四个面是红色的,有的长方体恰有五个面是红色的,还有一个长方体六个面都是红色,染色后把所有的长方体分割成棱长为1cm的小正方体,分割完毕后,恰有一面是红色的小正方体最多有几个?(第四届华杯赛决赛二试第4题)8.下图中的正方形被分为9个相同的小正方形,它们一共有16个顶点(共同的顶点算一个)。
以其中不在一条直线上的3个点为顶点,可以构成三角形。
第10~21届全国华罗庚金杯少年数学邀请赛试题
第十届“华罗庚金杯”少年数学邀请赛初赛试题1、2005年是中国伟大航海家郑和首次下西洋600周年,西班牙伟大航海家歌伦布首次远洋航行是在1492年。
问这两次远洋航行相差多少年?2、从冬至之日起每九天分为一段,依次称之为一九,二九,……,九九,2004年的冬至为12月21日,2005年的立春是2月4日。
问立春之日是几九的第几天?3、右下方是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形。
问这个直三棱柱的体积是多少?4、爸爸、妈妈、客人和我四人围着圆桌喝茶。
若只考虑每人左邻的情况,问共有多少种不同的入座方法?5、在奥运会的铁人三项比赛中,自行车比赛距离是长跑的4倍,游泳的距离是自行车的,长跑与游泳的距离之差为8.5千米。
求三项的总距离。
6、如右图,用同样大小的正三角形,向下逐次拼接出更大的正三角形。
其中最小的三角形顶点的个数(重合的顶点只计一次)依次为:3,6,10,15,21,……问这列数中的第9个是多少?7、一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示。
若用甲容器取水来注满乙容器,问:至少要注水多少次?8、100名学生参加社会实践,高年级学生两人一组,低年级学生三人一组,共有41组。
问:高、低年级学生各多少人?9、小鸣用48元钱按零售价买了若干练习本。
如果按批发价购买,每本便宜2元,恰好多买4本。
问:零售价每本多少元?10、不足100名同学跳集体舞时有两种组合:一种是中间一组5人,其他人按8人一组围在外圈;另一种是中间一组8人,其他人按5人一组围在外圈。
问最多有多少名同学?11、输液100毫升,每分钟输2.5毫升。
请你观察第12分钟时吊瓶图像中的数据,回答整个吊瓶的容积是多少毫升?12、两条直线相交所成的锐角或直角称为两条直线的“夹角”。
现平面上有若干条直线,它们两两相交,并且“夹角”只能是30°,60°或90°。
马鞍山市成功学校第十届“华杯赛”集训题(5)
马鞍山市成功学校第十届“华杯赛”集训题(5)一、填空题(每小题10分,共60分)1.若7217561542133011209127311+-+-+-+=n ,则n 的负倒数是 . 2.m 为正整数,已知二元一次方程组⎩⎨⎧=-=+023,102y x y mx 有整数解,即x 、y 均为整数,则 2m = .3.满足不等式|5||1|x x -+-<π2的整数解共有个.4.将棱长相等的正方体按如图所示的形状摆放,从上往下依次为第1层、第2层、第3层….则第2004层 …… 正方体的个数是 .5.袋子里有三种球,分别标有数字2、3和5,小明从中摸出12个球,它们的数字之和是43.那么,小明最多摸出 个标有数字2的球.6.有十级楼梯,每一步可以上一级、二级或三级,要由最下面到第十级,一共有 种不同的走法.二、解下列各题(每小题10分,共60分)7.有甲、乙、丙3种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现购甲、乙、丙各一件共需多少元?8.已知两个自然数的乘积是8214,它们的最大公约数是37,求这两个自然数.9.求出分母是111的最简真分数之和.10.如图,P是平行四边形ABCD内一点,且S△PAB=5,S△PAD=2,请你求出S△PAC(即阴影部分的面积).11.某小组在规定的时间内完成一项工程,如果增加2名工人,那么可提前2天完成;如果减少3名工人,那么要推迟6天完成.问小组原有多少人?规定完成工程的时间是多少?12.一批旅客决定分乘几辆大汽车,并且要使每辆车有相同的人数.起先,每辆车乘坐22人,发现有一人坐不上车.若是开走一辆空车,那么所有的旅客刚好平均分乘余下的汽车.已知每辆车的载客量不能多于32人,问原有多少辆汽车?这批旅客有多少人?参考答案一、填空题1.109- 2.4 3.7 4.2009010 5.5 6.20 二、解下列各题7.设购甲、乙、丙务一件分别需x 元,y 元,z 元,则⎩⎨⎧=++=++,20.4104,15.373z y x z y x 解关于x 、y 的方程组,得⎩⎨⎧=-=.5.0,5.105.1z y z x 故05.15.0)5.105.1(=++-=++z z z z y x (元).答:购甲、乙、丙务一件共需1.05元.8.设这两个自然数分别为x ,y ,则⎩⎨⎧==.37),(,8214y x xy 由②,令a x 37=,b y 37=,且(a ,b )=1,代入①得6=ab .由于(a ,b )=1,所以只有以下两种情况:⎩⎨⎧==;6,1b a 或 ⎩⎨⎧==.3,2b a 故这两个自然数分别为37,222或74,111.9.分母为111最简真分数有72个,它们的和是:+++111411121111…111110111109++ ⎝⎛++-111211113… ⎝⎛⎪⎭⎫++⎪⎭⎫+111211113711136 ① ②=111337111)361(36213111)1101(11021⨯-+⨯⨯⨯-+⨯⨯ =55-18-1=36.10.因为S △PAB +S △PCD =21S ABCD =S △ACD .所以S △ACD -S △PCD =S △PAB .则S △PAC =S △ACD -S △PCD -S △PAD=S △PAB -S △PAD=5-2=3.11.设小组原有x 人,规定完成工程的时间为y 天,根据题意,得⎩⎨⎧=+-=-+.)6)(3(,)2)(2(xy y x xy y x 整理,得⎩⎨⎧=--=-.62,2y x y x 解得⎩⎨⎧==.10,8y x 答:该小组原有8人,规定完成工程的时间为10天.12.设原有k 辆汽车,开走一辆空车后,留下的每辆车乘坐n 个人,显然k ≥2,n ≤32. 易知旅客人数等于122+k ,当一辆空车开走以后,所有旅客的人数可以表示为)1(-k n ,由此列出方程)1(122-=+k n k .所以 12322123)1(221122-+=-+-=-+=k k k k k n . 因为n 为正整数数,所以123-k 必为正整数,但由于23是质数,因数只有1和23两个,且k ≥2,所以11=-k ,或231=-k . 如果11=-k ,则2=k ,45=n ,不满足n ≤32的条件.如果231=-k ,则24=k ,23=n ,符合题意.所以旅客人数等于)1(-k n =23×23=529(人).答:原有24辆汽车,共有旅客529人.。
新版华杯赛的试题及解答
华杯赛的试题及解答华杯赛的试题及解答试题:1.计算:2.00×2.0(结果用最简分数表示)2.水池装有一个水管和若干每小时注水量相同的注水管,注水管注水时,排水管同时排水.若用12个注水管注水,8小时可注满水池;若用9个注水管注水,24小时可注满水池.现在用8个注水管注水,那么需要多少小时注满水池?3.在操场上做游戏,上午8:00从A地出发,匀速地行走,每走5分钟就折转90o。
问:(1)上午9:20能否恰好回到原处?(2)上午9:10能否恰好回到原处?如果能,请说明理由,并设计一条路线.如果不能,请说明理由。
4.1到100所有自然数中与100互质各数之和是多少?5.老王和老张各有5角和8角的邮票若干张,没有其它面值的邮票,但是他们邮票的总张数一样多.老王的5角邮票的张数与8角邮票张数相同,老张的5角邮票的金额等于8角邮票的'金额.用他们的邮票共同支付110元的邮资足够有余,但不够支付160元的邮资.问他们各有8角邮票多少张?6.在下面一列数中,从第二个数开始,每个数都比它前面相邻的数大7,8,15,22,29,36,43,……。
它们前n-1个数相乘的积的末尾0的个数比前n个数相乘的积的末尾0的个数少3个,求n的最小值.解答:1.答:2.00×2.0原式=2.解:设单开水管需x小时将满池水排完,单开一个注水管需要y小时,则可知排水管每小时排整池水的,注水管每小时注水,可知有即为……………………………①同时由2小时用9个注水管注满水知即为……………………………②将①-②得可知代入①中得所以用8个注水管注水每小时注水故需用时(小时)答:用8个注水管注水,需要72小时注满水池.3.答:(1)上午9:20分恰好回到原地.我们可以设计如下的路线:我们若没定每走5分钟都按顺时针方向(或逆时针方向)折转90°,则可知每过20分钟回到原处,而到9:20恰好过了80分钟,故可知9:20恰好第4次回原处.(2)上午9:10不能回到原地.因为到上午9:10共走了70分钟,而我们可以验证不管每一步为逆时针折转90°,还是顺时针折转90°都不能在70分钟内回原地.4.解:我们可以先去考虑到100的所有自然数中与100不可质的数,因为100=2×2×5×5,故1到100中所有含因子2或5的数都与100不互质.其中含因子2的有2,4,6,8…,100(即为50个数),含因子5的有5,10,15,20…,100但其中10,20,30,…100已经包括在上面内,故与100不互质的1到100之内的数为:2,4,6,…100,5,15,25,…95。
历年华杯赛试题及答案小学
历年华杯赛试题及答案小学华杯赛,全称“全国青少年数学华罗庚金杯赛”,是中国最具影响力的青少年数学竞赛之一,旨在激发青少年对数学的兴趣,培养他们的数学思维能力。
以下是一些历年华杯赛小学组的试题及答案,供参考。
试题一:小明有3个红球和2个蓝球,他随机从袋子里摸出一个球,然后放回。
接着,他又随机摸出一个球。
请问小明两次都摸到红球的概率是多少?答案:小明第一次摸到红球的概率是3/5,放回后,第二次摸到红球的概率仍然是3/5。
因此,两次都摸到红球的概率是(3/5) * (3/5) = 9/25。
试题二:有一个数字序列:1, 1, 2, 3, 5, 8, 13, 21, ... 这个序列的特点是每一项都是前两项的和。
请问这个序列的第10项是多少?答案:这是一个斐波那契数列。
根据题目给出的数列,第10项是第9项(21)和第8项(13)的和,即21 + 13 = 34。
试题三:一个班级有40名学生,其中20名男生和20名女生。
如果随机选择一名学生,那么选择到男生的概率是多少?答案:班级中有20名男生,总共40名学生,所以选择到男生的概率是20/40 = 1/2。
试题四:一个圆形的直径是14厘米,求这个圆的面积。
答案:圆的面积公式是A = πr²,其中r是圆的半径。
直径是14厘米,所以半径是14/2 = 7厘米。
代入公式得到面积A = π * 7² = 49π ≈ 153.94平方厘米。
试题五:小华有5个苹果,他决定将这些苹果平均分给3个朋友。
如果每个朋友分得的苹果数必须是整数,小华应该如何分配?答案:小华可以将5个苹果分成1, 2, 2的组合,这样每个朋友得到的苹果数都是整数。
试题六:一个长方体的长、宽、高分别是8厘米、6厘米和5厘米。
求这个长方体的体积。
答案:长方体的体积公式是V = 长 * 宽 * 高。
代入数值得到V = 8 * 6 * 5 = 240立方厘米。
试题七:如果一个数的平方等于这个数本身,那么这个数是什么?答案:这个数是0或1,因为0² = 0,1² = 1。
华杯赛历届试题
第一届华杯赛决赛一试试题1. 计算:2.975×935×972×〔〕,要使这个连乘积的最后四个数字都是“0〞,在括号内最小应填什么数?3.把+、-、×、÷分别填在适当的圆圈中,并在长方形中填上适当的整数,可以使下面的两个等式都成立,这时,长方形中的数是几?9○13○7=100 14○2○5=□4.一条1米长的纸条,在间隔一端0.618米的地方有一个红点,把纸条对折起来,在对准红点的地方涂上一个黄点然后翻开纸条从红点的地方把纸条剪断,再把有黄点的一段对折起来,在对准黄点的地方剪一刀,使纸条断成三段,问四段纸条中最短的一段长度是多少米?5.从一个正方形木板锯下宽为米的一个木条以后,剩下的面积是平方米,问锯下的木条面积是多少平方米?6.一个数是5个2,3个3,2个5,1个7的连乘积。
这个数当然有许多约数是两位数,这些两位的约数中,最大的是几?7.修改31743的某一个数字,可以得到823的倍数,问修改后的这个数是几?8.蓄水池有甲、丙两条进水管,和乙、丁两条排水管,要灌满一池水,单开甲管需3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时,如今池内有池水,假如按甲、乙、丙、丁的顺序,循环各开水管,每天每管开一小时,问多少时间后水清苦始溢出水池?9.一小和二小有同样多的同学参加金杯赛,学校用汽车把学生送往考场,一小用的汽车,每车坐15人,二小用的汽车,每车坐13人,结果二小比一小要多派一辆汽车,后来每校各增加一个人参加竞赛,这样两校需要的汽车就一样多了,最后又决定每校再各增加一个人参加竞赛,二小又要比一小多派一辆汽车,问最后两校共有多少人参加竞赛?10.如以下图,四个小三角形的顶点处有六个圆圈。
假如在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数之和相等。
问这六个质数的积是多少?11.假设干个同样的盒子排成一排,小明把五十多个同样的棋子分装在盒中,其中只有一个盒子没有装棋子,然后他外出了,小光从每个有棋子的盒子里各拿一个棋子放在空盒内,再把盒子重新排了一下,小明回来仔细查看了一番,没有发现有人动过这些盒子和棋子,问共有多少个盒子?12.如右图,把1.2,3.7, 6.5, 2.9, 4.6,分别填在五个○内,再在每个□中填上和它相连的三个○中的数的平均值,再把三个□中的数的平均值填在△中,找出一个填法,使△中的数尽可能小,那么△中填的数是多少?13.如以下图,甲、乙、丙是三个站,乙站到甲、丙两站的间隔相等。
华杯赛1-15届的真题和答案
=11111111110000000000-1111111111=111111111088888888889 于是有 10 个数字是奇数。 12.【解】10 根筷子,可能 8 根黑,1 根白,1 根黄,其中没有颜色不同的两双筷子。 如果取 11 根,那么由于 11>3,其中必有两根同色组成一双,不妨设这一双是黑色的,去掉 这两根,余下 9 根,其中黑色的至多 6(=8-2)根,因而白、黄两色的筷子至少有 3(=9-6) 根,3 根中必有 2 根同色组成一双。这样就得到颜色不同的两双筷子。所以至少要取 11 根。 13.【解】菜地的 3 倍和麦地的 2 倍是 13× 6 公顷。菜地的 2 倍和麦地的 3 倍是 12× 6 公顷, 因此菜地与麦地共:(13× 6+12× 6)÷ (3+2)=30(公顷), 菜地是 13× 6-30× 2=18(公顷)。 14. 【解】71427 被 7 除,余数是 6,19 被 7 除,余数是 5,所以 71427× 19 被 7 除,余数就 是 6× 5 被 7 除所得的余数 2。 15.【解】从第一次记录到第十二次记录,相隔十一次,共 5× 11=55(小时)。时针转一圈是 12 小时,55 除以 12 余数是 7,9-7=2 答:时针指向 2。 16.【解】因为电车每隔 5 分钟发出一辆,15 分钟走完全程。骑车人在乙站看到的电车是 15 分钟以前发出的,可以推算出,他从乙站出发的时候,第四辆电车正从甲站出发骑车人从乙 站到甲站的这段时间里,甲站发出的电车是从第 4 辆到第 12 辆。电车共发出 9 辆,共有 8 个 间隔。于是:5× 8=40(分) 。 17.【解】小数点后第 7 位应尽可能大,因此应将圈点点在 8 上,新的循环小数是 。
18.【解】三个背包分别装 8.5 千克、6 千克与 4 千克,4 千克、3 千克与 2 千克,这时最重 的背包装了 lO 千克。 另一方面最重的包放重量不少于 10 千克:8.5 千克必须单放(否则这一包的重量超过 10)6 千 克如果与 2 千克放在一起, 剩下的重量超过 10, 如果与 3 千克放在一起, 剩下的重量等于 10。 所以最重的背包装 10 千克。 19.【解】从第一排与第二排看,五个小纸片的长等于三个小纸片的长加三个小纸片的宽, 也就是说,二个小纸片的长等于三个小纸片的宽。 已知小纸片的宽是 12 厘米,于是小纸片的长是:12× 3÷ 2=18(厘米), 阴影部分是三个正方形,边长正好是小纸片的长与宽的差:18-12=6 于是,阴影部分的面积是:6× 6× 3=108(平方厘米)。
第十届华杯赛决赛试题答案
第十届华杯赛决赛试题答案2008-04-19 22:37分类:华杯赛字号:大大中中小小第十届华杯赛决赛试题一、填空(每题10分,共80分)12.计算:①18.3×0.25+5.3÷0.4-7.13 = ();②= ()。
3.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。
一个字节由8个“位”组成,记为B。
常用KB,MB等记存储空间的大小,其中1KB=1024B,1MB=1024KB。
现将240MB的教育软件从网上下载,已经下载了70%。
如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。
(精确到分钟)4.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。
如果它们满足等式ab+c=2005,则a+b+c=()。
5.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。
6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是0.9元,如果改用乙等油漆,每平方米的费用降低为0.4元,一个集装箱可以节省6.5元,则集装箱总的表面积是()平方米,体积是()立方米。
7.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。
现在将这列自然数排成以下数表:规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。
8.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG的面积是40平方厘米,那么ABCD的面积是()平方厘米。
图2二、解答下列各题,要求写出简要过程(每题10分,共40分)9.图3是由风筝形和镖形两种不同的砖铺设而成。
请仔细观察这个美丽的图案,并且回答风筝形砖的四个内角各是多少度?10.有2、3、4、5、6、7、8、9、10和11共10个自然数,①从这10个数中选出7个数,使这7个数中的任何3个数都不会两两互质;②说明从这10个数中最多可以选出多少个数,这些数两两互质。
初一数学历年“华罗庚杯”竞赛试题
初一数学试题集
初一数学
历年“华罗庚杯”竞赛试题
(由我爱我家整理)
二〇〇九年九月十六日
第一届全国“华罗庚金杯”少年数学邀请赛决赛一试试题(初一组)
[初一组]第一届“华杯赛”数学第2试答案
第二届全国“华罗庚金杯”少年数学邀请赛决赛一试试题(初一组)
第二届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案(初一组)
第二届全国“华罗庚金杯”少年数学邀请赛决赛二试试题(初一组)
第二届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
第三届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案(初一组)
[初一组]第三届“华杯赛”数学第1试答案
第三届全国“华罗庚金杯”少年数学邀请赛决赛二试试题(初一组)
第三届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
[初一组]第四届“华杯赛”数学第1试
第四届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案
第四届全国“华罗庚金杯”少年数学邀请赛决赛二试试题(初一组)
第四届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
第五届全国“华罗庚金杯”少年数学邀请赛决赛一试试题(初一组)
第五届全国“华罗庚金杯”少年数学邀请赛决赛一试试题参考答案(初一组)
[初一组]第五届“华杯赛”数学第2试
第五届全国“华罗庚金杯”少年数学邀请赛决赛二试试题参考答案(初一组)
[初一组]第六届“华杯赛”数学第1试答案
[初一组]第六届“华杯赛”数学第2试。
解题的思路与策略例谈
10 10 10 (2) 101 102 103
结果的整数部分是(
10 10 119 120
)。★ )。
1 1 1 (3) 11 12 13
1 A比 小 3
1 1 的结果( 20 21
1 1 1 B 比 大,比 小 C 比 大,比1小 D 比1大 2 2 3
三、解决问题中的思维策略
1、基于相同模型的情景变换(提炼情景背后的共同模型) 鸡兔同笼问题模型 (1)鸡兔同笼,共有头100个,脚260只,鸡兔各有多少只?
(2)六(一)班和六(二)班共100人,六(一)班的
六(二)班的
鸡兔 鸡 鸡 兔 兔 兔脚 脚数差 2 头数 脚数 鸡脚 5 共37人,两个班各有多少人? 100 260 2 4 4-2
2、用比和比例思考分数百分数问题 (1)有电影票140张,先分给一年级,剩下的分给二年级,则二年级只能 一半同学有票;若先分给二年级,剩下的分给一年级,则一年级只能 同学 有票。问两个年级各有多少人?★ (2)一件工作,如果单独做,甲按规定时间可提前2天完成,乙则要超过 规定时间3天才完成。现在甲、乙两人合作2天后,剩下的继续由乙单独做, 刚好在规定日期内完成。若全部甲、乙合作,完成工作需要多少天? 解:本题很容易找到甲、乙两人之间工作效率的关系。由题意可知,完成这 项工程,甲比乙少用(2+3)=5(天),找出这5天是几分之几便是关键。 由“现在甲、乙两人合作2天后,剩下的继续由乙单独做,刚好在规定日期 内完成”可知,甲做2天的工作量=乙做3天的工作量,即甲和乙的工作效率 的比是3:2,那么,做相同的工作,他们所需时间的比是2:3,甲比乙少 用 1 的时间,这就是甲和乙完成这项工程相差的时间。 3 1 乙所用的天数: (2 3) 15(天);甲所用的天数:15-5=10(天);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国第十届华杯赛决赛
试题及解答
Document number:NOCG-YUNOO-BUYTT-UU986-1986UT
第十届华杯赛决赛试题
一、填空(每题10分,共80分)
1.下表中每一列为同一年在不同历法中的年号,请完成下表:
公元历2005 1985 1910
希伯莱历5746
伊斯兰历1332
印度历1927
2.计算:
① ×+÷ = ();②= ()。
3.计算机中最小的存储单位称为“位”,每个“位”有两种状态:0和1。
一个字节由8个“位”组成,记为B。
常用KB,MB等记存储空间的大小,其中
1KB=1024B, 1MB=1024KB。
现将240MB的教育软件从网上下载,已经下载了70%。
如果当前的下载速度为每秒72KB,则下载完毕还需要()分钟。
(精确到分钟)
4.a,b和c都是二位的自然数,a,b的个位分别是7与5,c的十位是1。
如果它们满足等式ab+c=2005,则a+b+c=()。
5.一个正方体的每个顶点都有三条棱以其为端点,沿这三条棱的三个中点,从这个正方体切下一个角,这样一共切下八个角,则余下部分的体积(图1中的阴影部分)和正方体体积的比是()。
6.某种长方体形的集装箱,它的长宽高的比是4∶3∶2,如果用甲等油漆喷涂它的表面,每平方米的费用是元,如果改用乙等油漆,每平方米的费用降低为
元,一个集装箱可以节省元,则集装箱总的表面积是()平方米,体积是()立方米。
7.一列自然数0,1,2,3,…,2005,…,2004,第一个数是0,从第二个数开始,每一个都比它前一个大1,最后一个是2024。
现在将这列自然数排成以下数表:
0 3 8 15 …
1 2 7 14 …
4 5 6 13 …
9 10 11 12 …
……………
规定横排为行,竖排为列,则2005在数表中位于第()行和第()列。
8.图2中,ABCD是长方形,E,F分别是AB,DA的中点,G是BF和DE的交点,四边形BCDG的面积是40平方厘米,那么ABCD的面积是()平方厘米。
图2
二、解答下列各题,要求写出简要过程(每题10分,共40分)
9.图3是由风筝形和镖形两种不同的砖铺设而成。
请仔细观察这个美丽的图案,并且回答风筝形砖的四个内角各是多少度
10.有2、3、4、5、6、7、8、9、10和11共10个自然数,
①从这10个数中选出7个数,使这7个数中的任何3个数都不会两两互质;
②说明从这10个数中最多可以选出多少个数,这些数两两互质。
11.一个直角三角形的三条边的长度是3、4、5,如果分别以各边为轴旋转一周,得到三个立体。
求这三个立体中最大的体积和最小的体积的比。
12.A码头在B码头的上游,“2005号”遥控舰模从A码头出发,在两个码头之间往返航行。
已知舰模在静水中的速度是每分钟200米,水流的速度是每分钟40米。
出发20分钟后,舰模位于A码头下游960米处,并向B码头行驶。
求A码头和B码头之间的距离。
三、解答下列各题,要求写出详细过程(每题15分,共30分)
13.已知等式其中A,B是非零自然数,求A+B的最大值。
14.两条直线相交,四个交角中的一个锐角或一个直角称为这两条直线的“夹角”(见图4)。
如果在平面上画L条直线,要求它们两两相交,并且“夹角”只能是15°、30°、45°、60°、75°、90°之一,问:
(1)L的最大值是多少
(2)当L取最大值时,问所有的“夹角”的和是多少
第十届华杯赛决赛试题解答
一、填空
1. 145 3. 10005与10020
二、解答题
4. 红色八边形的面积是
5. 至少有25名小朋友
6. 甲到过山顶9次
1.【解】甲跑1000米,乙跑了950米,乙跑1000米,丙跑900米,
所以甲跑1000米时,丙跑了950×=855(米),丙距终点1000-855=145(米).
2.【解】设中间数为n则(n-2)×n×(n+2)=2***3,又知(n-2)×(n +2)<,而=19683,所以,n应大于27,而7×9×1=63,故最小数应为27,27×29×31=24273,符合题意,并且是唯一解.
3.【解】能被15整除的最小5位数是10005,10005+15=10020,按照题目所给的操作,只需将这两个五位数取为10005和10020,则经过1次操作,较小的数变为15,较大的数变为10005,再经若干此次操作,较小的数一直不变,较大的数每次减少15,直到较大的数变为30,再经一次操作两个数都变成了15.
4.【解】如图,易知蓝边正方形面积为,△ABD面积为,△BCD面积为,
所以△ABC面积为-=,可证AE∶EB=1∶4,
黄色三角形面积为△ABC的,等于,由此可得,所求八边形的面积是:.
至此,我们对各部分的面积都已计算出来,如下图所示.
【又解】设O为正方形中心(对角线交点),连接OE、OF,分别与AF、BG 交于M、N,设AF与EC的交点为P,连接OP,△MOF的面积为正方形面积的,N为OF中点,△OPN面积等于△FPN面积,又△OPN面积与△OPM
面积相等,所以△OPN面积为△MOF面积的,为正方形面积的,八边形面积等于△OPM面积的8倍,为正方形面积的.
5.【解】不超过15元可购买商品的方法有:
3元件数5元件数总钱数
1 1 3
2 2 6
3 3 9
4 4 12
5 5 15
6 1 5
7 2 10
8 3 15
9 1 1 8
10 1 2 13
11 2 1 11
12 3 1 14
共12种方法,所以如果有25人,必然会有3人购买的商品完全相同.
答:至少有25名小朋友.
6.【解】不妨设想为在一条直线上的运动,将上山的路程看作下山路程的倍,并设AC=1,则CB=2,下山路程=2,将上山、下山一个全程看作5,重复在一条直线上进行.如下图:
B点表示山顶,甲到达山顶所走的路程可以表示为:5×n-2(其中n为整数,表示到达山顶的次数),此时乙所走的路程为(5×n-2)×,乙处于的位置为(5×n-2)×÷5=(5×n-2)÷6的余数,设此余数为k,当0<k≤1时,乙刚好处于AC段.因为所求为甲第二次在山顶上看到乙在AC段上爬,可以从n
=1开始,依次求出,列表如下:
n 1 2 3 4 5 6 7 8 9
即当甲第二次在山顶上看到乙在AC段上爬时(包括此时),甲到过山顶9次.。