高考圆锥曲线中的定点与定值问题(题型总结超全)
圆锥曲线中的定值与定点问题
研题型 能力养成 随堂内化
x=ty+n, ②设直线 PQ 的方程为 x=ty+n.由x42+y2=1, 得(t2+4)y2+2tny+n2-4=0,所以
y1+y2=-t22+tn4, y1y2=nt22+-44. 由①可知,kAP·kAQ=-112,即x1y+1 2·x2y+2 2=(ty1+n+2y)1y(t2y2+n+2)=-112,化简得 4n2+n21-6n4+16=-112,解得 n=1 或 n=-2(舍去),所以直线 PQ 的方程为 x=ty+1, 因此直线 PQ 经过定点(1,0).
研题型 能力养成 举题说法
若选②:设 A(x1,y1),B(x2,y2).联立x42-y32=1, 得(3-4k2)x2-8kmx-4m2-12= y=kx+m,
0,所以 3-4k2≠0,Δ=(-8km)2-4(3-4k2)(-4m2-12)>0,即 m2+3-4k2>0,x1+ x2=3-8km4k2,x1x2=-34-m24-k212(*). 由 k1k2=1,得yx11- -34·yx22- -34=1,即(kx1+m)(kx2+m()x-1-3[4()k(xx12+-m4))+(kx2+m)]+9=1,整
研题型 能力养成 随堂内化
1.(2023·梅州一模)已知动圆 M 经过定点 F1(- 3,0),且与圆 F2:(x- 3)2+y2=
16 内切. (2) 设轨迹 C 与 x 轴从左到右的交点分别为 A,B,点 P 为轨迹 C 上异于 A,B 的动 点,设 PB 交直线 x=4 于点 T,连接 AT 交轨迹 C 于点 Q,直线 AP,AQ 的斜率分别 为 kAP,kAQ. ①求证:kAP·kAQ 为定值; ②证明直线 PQ 经过 x 轴上的定点,并求出该定点的坐标.
圆锥曲线【定点定值】12 大题型(原卷版)
圆锥曲线中的定点、定值问题1、定值问题解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下:(1)变量----选择适当的量为变量.(2)函数----把要证明为定值的量表示成变量的函数.(3)定值----化简得到的函数解析式,消去变量得到定值.2、求定值问题常见的方法有两种:(1)从特殊情况入手,求出定值,再证明该定值与变量无关;(2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值.常用消参方法:①等式带用消参:找到两个参数之间的等式关系(,)0F k m =,用一个参数表示另外一个参数()k f m =,即可带用其他式子,消去参数k .②分式相除消参:两个含参数的式子相除,消掉分子和分母所含参数,从而得到定值.③因式相减消参:两个含参数的因式相减,把两个因式所含参数消掉.④参数无关消参:当与参数相关的因式为0时,此时与参数的取值没什么关系,比如:2()0y kg x -+=,只要因式()0g x =,就和参数k 没什么关系了,或者说参数k 不起作用.3、求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.一般解题步骤:①斜截式设直线方程:y kx m =+,此时引入了两个参数,需要消掉一个.②找关系:找到k 和m 的关系:m =()f k ,等式带入消参,消掉m .③参数无关找定点:找到和k 没有关系的点.题型一:面积定值【典例1-1】如图所示,已知椭圆22:14x C y +=,A ,B 是四条直线2x =±,1y =±所围成的矩形的两个顶点.若M ,N 是椭圆C 上的两个动点,且直线OM ,ON 的斜率之积等于直线OA ,OB 的斜率之积,试探求OM N V 的面积是否为定值,并说明理由.【典例1-2】(2024·湖北荆州·三模)从抛物线28y x =上各点向x 轴作垂线段,垂线段中点的轨迹为Γ.(1)求Γ的轨迹方程;(2),,A B C 是Γ上的三点,过三点的三条切线分别两两交于点,,D E F ,①若//AC DF ,求BDBF的值;②证明:三角形ABC 与三角形DEF 的面积之比为定值.【变式1-1】已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1(1,0)F -、2(1,0)F ,M 在椭圆E 上,且12MF F △(1)求椭圆E 的方程;(2)直线:l y kx m =+与椭圆E 相交于P ,Q 两点,且22434k m +=,求证:OPQ △(O 为坐标原点)的面积为定值.【变式1-2】(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ^;(ii )记PMQ V ,HNQ V ,MNQ V 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.【变式1-3】(2024·广东广州·模拟预测)已知()1,0A -,()10B ,,平面上有动点P ,且直线AP 的斜率与直线BP 的斜率之积为1.(1)求动点P 的轨迹Ω的方程.(2)过点A 的直线与Ω交于点M (M 在第一象限),过点B 的直线与Ω交于点N (N 在第三象限),记直线AM ,BN 的斜率分别为1k ,2k ,且124k k =.试判断AMN V 与BMN V 的面积之比是否为定值,若为定值,请求出该定值;若不为定值,请说明理由.题型二:向量数量积定值【典例2-1】(2024·高三·江苏盐城·开学考试)已知椭圆C :22142x y +=,()0,1A ,过点A 的动直线l 与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得AP AQ OP OQ l ×+×uuu r uuu r uuu r uuu r为定值?若存在,求出l 的值;若不存在,说明理由.【典例2-2】(2024·上海闵行·二模)已知点12F F 、分别为椭圆22:12x y G +=的左、右焦点,直线:l y kx t =+与椭圆G 有且仅有一个公共点,直线12,F M l F N l ^^,垂足分别为点M N 、.(1)求证:2221t k =+;(2)求证:12F M F N ×uuuu r uuuu r为定值,并求出该定值;【变式2-1】(2024·陕西宝鸡·一模)椭圆()2222:10x y C a b a b +=>>经过点P æççè,且两焦点与短轴的两个端点的连线构成一个正方形.(1)求椭圆C 的方程;(2)设5,04M æöç÷èø,过椭圆C 的右焦点F 作直线l 交C 于A 、B 两点,试问:MA MB ×uuu r uuu r 是否为定值?若是,求出这个定值;若不是,请说明理由.【变式2-2】(2024·高三·河南南阳·期末)P 为平面直角坐标系内一点,过P 作x 轴的垂线,垂足为M ,交直线b y x a =-(0a b >>)于Q ,过P 作y 轴的垂线,垂足为N ,交直线by x a=-于R ,若△OMQ ,V ONR 的面积之和为2ab.(1)求点P 的轨迹C 的方程;(2)若2a =,1b =,()4,0A -,(),0G n ,过点G 的直线l 交C 于D ,E 两点,是否存在常数n ,对任意直线l ,使AD AE ×uuu r uuu r为定值?若存在,求出n 的值及该定值,若不存在,请说明理由.【变式2-3】(2024·高三·天津河北·期末)设椭圆2222:1(0)x y E a b a b +=>>的左右焦点分别为12,F F ,短轴的两个端点为,A B ,且四边形12F AF B 是边长为2的正方形.,C D 分别是椭圆的左右顶点,动点M 满足MD CD ^,连接CM ,交椭圆E 于点P .(1)求椭圆E 的方程;(2)求证:OM OP ×uuuu r uuu r为定值.【变式2-4】已知椭圆()2222:10x y C a b a b +=>>的左、右顶点分别为,A B ,右焦点为F ,且3AF =uuu r ,以F为圆心,OF 为半径的圆F 经过点B .(1)求C 的方程;(2)过点A 且斜率为()0k k ¹的直线l 交椭圆C 于P ,(ⅰ)设点P 在第一象限,且直线l 与y x =-交于HHAO Ð,求k 的值;(ⅱ)连接PF 交圆F 于点T ,射线AP 上存在一点Q ,且QT BT ×为定值,已知点Q 在定直线上,求Q 所在定直线方程.题型三:斜率和定值【典例3-1】已知椭圆()222:11x M y a a +=>与双曲线222:1y N x a-=的离心率的平方和为234.(1)求a 的值;(2)过点1,02Q æöç÷èø的直线l 与椭圆M 和双曲线N 分别交于点A ,B ,C ,D ,在x 轴上是否存在一点T ,直线TA ,TB ,TC ,TD 的斜率分别为TA k ,TB k ,TC k ,TD k ,使得1111TA TB TC TDk k k k +++为定值?若存在,请求出点T 的坐标;若不存在,请说明理由.【典例3-2】(2024·河南·二模)已知椭圆2222:1(0)x y C a b a b +=>>的焦距为2,两个焦点与短轴一个顶点构成等边三角形.(1)求椭圆C 的标准方程;(2)设()3,P t ,过点P 的两条直线1l 和2l 分别交椭圆C 于点,D E 和点,M N (1l 和2l .不重合),直线1l 和2l 的斜率分别为1k 和2k .若PM PN PD PE =,判断12k k +是否为定值,若是,求出该值;若否,说明理由.【变式3-1】椭圆C :22221x y a b +=(0a b >>)的左焦点为(),且椭圆C 经过点()0,1P ,直线21y kx k =+-(0k ¹)与C 交于A ,B 两点(异于点P ).(1)求椭圆C 的方程;(2)证明:直线PA 与直线PB 的斜率之和为定值,并求出这个定值.【变式3-2】(2024·宁夏银川·一模)已知1F ,2F 分别是椭圆()2222:10x yC a b a b+=>>的左、右焦点,左顶点为A ,则上顶点为1B ,且1AB 20y -+=.(1)求椭圆C 的标准方程;(2)若P 是直线3x =上一点,过点P 的两条不同直线分别交C 于点D ,E 和点M ,N ,且PD PMPN PE=,求证:直线DE 的斜率与直线MN 的斜率之和为定值.题型四:斜率积定值【典例4-1】(2024·高三·陕西·开学考试)已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为F ,左顶点为E ,虚轴的上端点为P ,且3PF =,PE =(1)求双曲线C 的标准方程;(2)设M N 、是双曲线C 上不同的两点,Q 是线段MN 的中点,O 是原点,直线MN OQ 、的斜率分别为12k k 、,证明:12k k ×为定值.【典例4-2】已知椭圆2222:1(0)x y E a b a b +=>>,过点,A ,B 分别是E 的左顶点和下顶点,F 是E右焦点,π3AFB Ð=.(1)求E 的方程;(2)过点F 的直线与椭圆E 交于点P ,Q ,直线AP ,AQ 分别与直线4x =交于不同的两点M ,N .设直线FM ,FN 的斜率分别为1k ,2k ,求证:12k k 为定值.【变式4-1】已知椭圆22122:1(0)22x y C a b a b +=>>左右焦点12,F F 分别为椭圆22222:1(0)x y C a b a b +=>>的左右顶点,过点1F 且斜率不为零的直线与椭圆1C 相交于,A B 两点,交椭圆2C 于点M ,且2ABF △与12BF F △的周长之差为4-(1)求椭圆1C 与椭圆2C 的方程;(2)若直线2MF 与椭圆1C 相交于,D E 两点,记直线1MF 的斜率为1k ,直线2MF 的斜率为2k ,求证:12k k 为定值.【变式4-2】(2024·湖南长沙·二模)如图,双曲线22122:1(0,0)x y C a b a b -=>>的左、右焦点1F ,2F 分别为双曲线22222:144x y C a b -=的左、右顶点,过点1F 的直线分别交双曲线1C 的左、右两支于,A B 两点,交双曲线2C 的右支于点M (与点2F 不重合),且12BF F △与2ABF △的周长之差为2.(1)求双曲线1C 的方程;(2)若直线2MF 交双曲线1C 的右支于,D E 两点.①记直线AB 的斜率为1k ,直线DE 的斜率为2k ,求12k k 的值;②试探究:DE AB -是否为定值?并说明理由.【变式4-3】已知双曲线C:x 2a 2―y 2b 2=1(a >0,b >0)过点((1)求双曲线C 的标准方程;(2)设过点()2,0P 且斜率不为0的直线l 与双曲线C 的左右两支交于A ,B 两点.问:在x 轴上是否存在定点Q ,使直线QA 的斜率1k 与QB 的斜率2k 的积为定值?若存在,求出该定点坐标;若不存在,请说明理由.题型五:斜率比定值【典例5-1】设抛物线2:2(0)C y px p =>的焦点为F ,点(),0M p ,过点F 且斜率存在的直线交C 于不同的,A B 两点,当直线AM 垂直于x 轴时,3AF =.(1)求C 的方程;(2)设直线,AM BM 与C 的另一个交点分别为,D E ,设直线,AB DE 的斜率分别为12,k k ,证明:(ⅰ)12k k 为定值;(ⅱ)直线DE 恒过定点.【典例5-2】如图所示,已知点()1,0K ,F 是椭圆22195x y+=的左焦点,过F 的直线与椭圆交于,A B 两点,直线,AK BK 分别与椭圆交于,P Q 两点.(1)证明:直线PQ 过定点.(2)证明:直线PQ 和直线AB的斜率之比为定值.【变式5-1】(2024·重庆·模拟预测)如图,DM x ^轴,垂足为D ,点P 在线段DM 上,且||1||2DP DM =.(1)点M 在圆224x y +=上运动时,求点P 的轨迹方程;(2)记(1)中所求点P 的轨迹为,(0,1)A G ,过点10,2æöç÷èø作一条直线与G 相交于,B C 两点,与直线2y =交于点Q .记,,AB AC AQ 的斜率分别为123,,k k k ,证明:123k k k +是定值.【变式5-2】(2024·云南·二模)已知椭圆EO ,焦点在x 轴上,右焦点为F ,A 、B 分别是E 的上、下顶点.E 的短半轴长是圆O 的半径,点M 是圆O 上的动点,且点M 不在y 轴上,延长BM 与E 交于点,N AM AN ×uuuu r uuu r的取值范围为(0,4).(1)求椭圆E 、圆O 的方程;(2)当直线BM 经过点F 时,求AFN V 的面积;(3)记直线AM 、AN 的斜率分别为12k k 、,证明:21k k 为定值.【变式5-3】(2024·河南·三模)已知点())A B ,,动点V 满足直线VA 与直线VB 的斜率之积为13,动点V 的轨迹为曲线C .(1)求曲线C 的方程:(2)直线PQ 与曲线C 交于,P Q 两点,且BP BQ BM PQ ^^,交PQ 于点M ,求定点N 的坐标,使MN 为定值;(3)过(2)中的点N 作直线交曲线C 于,G H 两点,且两点均在y 轴的右侧,直线,AG BH 的斜率分别为12,k k ,求12k k 的值.题型六:斜率差定值【典例6-1】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()()122,0,2,0F F -,D 为椭圆C 的右顶点,且124DF DF ×=uuu u r uuuu r.(1)求椭圆C 的方程;(2)设()4,2M -,过点()4,0Q -的直线与椭圆C 交于A ,B 两点(A 点在B 点左侧),直线AM 与直线2x =-交于点N ,设直线NA ,NB 的斜率分别为1k ,2k ,求证:21k k -为定值.【典例6-2】已知双曲线2222;1(0,0)x y C a b a b -=>>经过点æççè,右焦点为(),0F c ,且222,,c a b 成等差数列.(1)求C 的方程;(2)过F 的直线与C 的右支交于,P Q 两点(P 在Q 的上方),PQ 的中点为,M M 在直线:2l x =上的射影为,N O 为坐标原点,设POQ △的面积为S ,直线,PN QN 的斜率分别为12,k k ,试问12k k S-是否为定值,如果是,求出该定值,如果不是,说明理由.【变式6-1】已知椭圆()2222:10x y M a b a b+=>>的离心率为12,A ,B ,C 分别为椭圆的左顶点,上顶点和右顶点,1F 为左焦点,且1ABF V P 是椭圆M 上不与顶点重合的动点,直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点N .(1)求椭圆M 的标准方程;(2)求证:2QN QC k k -为定值,并求出此定值(其中QN k 、QC k 分别为直线QN 和直线QC 的斜率).【变式6-2】(2024·高三·上海闵行·期中)已知双曲线C :()222210,0x y a b a b-=>>,点()3,1-在双曲线C 上.过C 的左焦点F 作直线l 交C 的左支于A 、B 两点.(1)求双曲线C 的方程;(2)若()2,0M -,试问:是否存在直线l ,使得点M 在以AB 为直径的圆上?请说明理由.(3)点()4,2P -,直线AP 交直线2x =-于点Q .设直线QA 、QB 的斜率分别1k 、2k ,求证:12k k -为定值.题型七:线段定值【典例7-1】(2024·高三·山西·期末)已知椭圆E :()2221024x y b b +=<<.(1)若椭圆E 22y x =-与椭圆E 交于M ,N 两点,求证:OM ON ^;(2)P 为直线l :4x =上的一个动点,A ,B 为椭圆E 的左、右顶点,PA ,PB 分别与椭圆E 交于C ,D 两点,证明CA PD PC BD××为定值,并求出此定值.【典例7-2】如图,已知圆22:210T x y ++-=,圆心是点T ,点G 是圆T 上的动点,点H 的坐标为),线段CH 的垂直平分线交线段TC 于点R ,记动点R 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点H 作一条直线与曲线E 相交于A ,B 两点,与y 轴相交于点C ,若CA AH l =uuu r uuur ,CB BH m =uuur uuur ,试探究l m +是否为定值?若是,求出该定值;若不是,请说明理由;(3)过点()2,1M 作两条直线MP ,MQ ,分别交曲线E 于P ,Q 两点,使得1MP MQ k k ×=.且MD PQ ^,点D 为垂足,证明:存在定点F ,使得DF 为定值.【变式7-1】已知点N 在曲线22:11612x y C +=上,O 为坐标原点,若点M 满足2ON OM =uuu r uuuu r ,记动点M 的轨迹为G .(1)求G 的方程;(2)设,C D 是上G 的两个动点,且以CD 为直径的圆经过点O ,证明:2211OCOD+为定值.【变式7-2】(2024·湖北·模拟预测)平面直角坐标系xOy 中,动点(,)P x y 满足=,点P 的轨迹为C ,过点(2,0)F 作直线l ,与轨迹C 相交于A ,B 两点.(1)求轨迹C 的方程;(2)求OAB △面积的取值范围;(3)若直线l 与直线1x =交于点M ,过点M 作y 轴的垂线,垂足为N ,直线NA ,NB 分别与x 轴交于点S ,T ,证明:||||SF FT 为定值.【变式7-3】(2024·浙江宁波·模拟预测)已知12(2,0),(2,0),(1,0),(1,0)A B F F --,动点P 满足34PA PB k k ×=-,动点P 的轨迹为曲线1,PF t 交t 于另外一点2,Q PF 交t 于另外一点R .(1)求曲线t 的标准方程;(2)已知1212PF PF QF RF +是定值,求该定值;题型八:坐标定值【典例8-1】(2024·陕西安康·模拟预测)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,上顶点为A ,122AF AF AF -=uuur uuuu r uuuu r ,12AF F △(1)求C 的方程;(2)B 是C 上位于第一象限的一点,其横坐标为1,直线l 过点2F 且与C 交于M ,N 两点(均异于点B ),点P 在l 上,设直线BM ,BP ,BN 的斜率分别为1k ,2k ,3k ,若2312k k k -=,问点P 的横坐标是否为定值?若为定值,求出点P 的横坐标;若不为定值,请说明理由.【典例8-2】(2024·全国·模拟预测)一般地,抛物线的三条切线围成的三角形称为抛物线的切线三角形,对应的三个切点形成的三角形称为抛物线的切点三角形.如图,012P PP V ,ABC V 分别为抛物线y 2=2px(p >0)的切线三角形和切点三角形,F 为该抛物线的焦点.当直线AB 的斜率为1-时,AB 中点的纵坐标为2-.(1)求p .(2)若直线AC 过点F ,直线,AB BC 分别与该抛物线的准线交于点,D E ,记点,D E 的纵坐标分别为,D E y y ,证明:D E y y 为定值.(3)若,,A B C 均不与坐标原点重合,证明:012FA FB FC FP FP FP ××=××【变式8-1】(2024·四川凉山·三模)已知平面内动点P 与两定点()11,0A -,()21,0A 连线的斜率之积为3.(1)求动点P 的轨迹E 的方程:(2)过点()2,0的直线与轨迹E 交于A ,B 两点,点A ,B 均在y 轴右侧,且点A 在第一象限,直线2AA 与1BA 交于点M ,证明:点M 横坐标为定值.题型九:角度定值【典例9-1】抛物线C :()20x py p =>的焦点为()0,1F ,直线l 的倾斜角为a 且经过点F ,直线l 与抛物线C 交于两点A ,B .(1)若16AB =,求角a ;(2)分别过A ,B 作抛物线C 的切线1l ,2l ,记直线1l ,2l 的交点为E ,直线EF 的倾斜角为b .试探究a b -是否为定值,并说明理由.【典例9-2】(2024·高三·广东广州·期中)已知椭圆C :()222210+=>>x y a b a b的离心率为12,焦距为2.(1)求椭圆C 的方程;(2)若椭圆C 的左顶点为A ,过右焦点F 的直线l 与椭圆C 交于B ,D (异于点A )两点,直线AB ,AD 分别与直线4x =交于M ,N 两点,试问MFN Ð是否为定值?若是,求出该定值;若不是,请说明理由.【变式9-1】(2024·辽宁沈阳·模拟预测)在平面直角坐标系xOy 中,利用公式x ax byy cx dy¢=+ìí¢=+î①(其中a ,b ,c ,d 为常数),将点(,)P x y 变换为点(),P x y ¢¢¢的坐标,我们称该变换为线性变换,也称①为坐标变换公式,该变换公式①可由a ,b ,c ,d 组成的正方形数表a b c d æöç÷èø唯一确定,我们将a b c d æöç÷èø称为二阶矩阵,矩阵通常用大写英文字母A ,B ,…表示.(1)如图,在平面直角坐标系xOy 中,将点(,)P x y 绕原点O 按逆时针旋转a 角得到点(),P x y ¢¢¢(到原点距离不变),求坐标变换公式及对应的二阶矩阵A ;(2)在平面直角坐标系xOy 中,求双曲线1xy =绕原点O 按逆时针旋转π4(到原点距离不变)得到的双曲线方程C ;(3)已知由(2)得到的双曲线C ,上顶点为D ,直线l 与双曲线C 的两支分别交于A ,B 两点(B 在第一象限),与x 轴交于点T ö÷÷ø.设直线DA ,DB 的倾斜角分别为a ,b ,求证:a b +为定值.【变式9-2】已知椭圆()2222:10x y C a b a b +=>>上的点到它的两个焦点的距离之和为4,以椭圆C 的短轴为直径的圆O 经过这两个焦点,点A ,B 分别是椭圆C 的左、右顶点.(1)求圆O 和椭圆C 的方程;(2)已知P ,Q 分别是椭圆C 和圆O 上的动点(P ,Q 位于y 轴两侧),且直线PQ 与x 轴平行,直线AP ,BP 分别与y 轴交于点M ,N .求证:MQN Ð为定值.题型十:直线过定点【典例10-1】(2024·陕西·模拟预测)已知动圆M 经过定点1(F ,且与圆222:(16F x y +=内切.(1)求动圆圆心M 的轨迹C 的方程;(2)设轨迹C 与x 轴从左到右的交点为点A ,B ,点P 为轨迹C 上异于A ,B 的动点,设直线PB 交直线4x =于点T ,连接AT 交轨迹C 于点Q ;直线AP ,AQ 的斜率分别为AP k ,AQ k .(i )求证:AP AQ k k ×为定值;(ii )设直线:PQ x ty n =+,证明:直线PQ 过定点.【典例10-2】(2024·广西·模拟预测)已知圆E 恒过定点()1,0,且与直线=1x -相切,记圆心E 的轨迹为G ,直线11:10l x m y --=与G 相交于A ,B 两点,直线22:10l x m y --=与G 相交于C ,D 两点,且121m m =-,M ,N 分别为弦,AB CD 的中点,其中A ,C 均在第一象限,直线AC 与直线BD 的交点为G .(1)求圆心E 的轨迹G 的方程;(2)直线MN 是否恒过定点?若是,求出定点坐标?若不是,请说明理由.【变式10-1】(2024·江西·二模)已知()12,0F -,()22,0F ,M 是圆O :221x y +=上任意一点,1F 关于点M 的对称点为N ,线段1F N 的垂直平分线与直线2F N 相交于点T ,记点T 的轨迹为曲线C .(1)求曲线C 的方程;(2)设(),0E t (0t >)为曲线C 上一点,不与x 轴垂直的直线l 与曲线C 交于G ,H 两点(异于E 点).若直线GE ,HE 的斜率之积为2,求证:直线l 过定点.【变式10-2】在平面直角坐标系xoy 中,已知椭圆C :()222210x y a b a b +=>>,F 是椭圆的右焦点且椭圆C与圆M :()22616x y -+=外切,又与圆N :(223x y +-=外切.(1)求椭圆C 的方程.(2)已知A ,B 是椭圆C 上关于原点对称的两点,A 在x 轴的上方,连接AF ,BF 并分别延长交椭圆C 于D ,E 两点,证明:直线DE 过定点.题型十一:动点在定直线上【典例11-1】已知椭圆()2222:10x y C a b a b +=>>,A ,B 分别为C 的上、下顶点,O 为坐标原点,直线4y kx =+与C 交于不同的两点M ,N .(1)设点P 为线段MN 的中点,证明:直线OP 与直线MN 的斜率之积为定值;(2)若AB 4=,证明:直线BM 与直线AN 的交点G 在定直线上.【典例11-2】已知椭圆2222:1(0)x y C a b a b+=>>经过点31,2H æö-ç÷èø,离心率12e =.(1)求椭圆C 的标准方程;(2)设过点()4,3P 且倾斜角为135o 的直线l 与x 轴,y 轴分别交于点,M N ,点R 为椭圆C 上任意一点,求RMN V 面积的最小值.(3)如图,过点()4,3P 作两条直线,AB CD 分别与椭圆C 相交于点,,,A B C D ,设直线AD 和BC 相交于点Q .证明点Q 在定直线上.【变式11-1】已知A ,B 分别是双曲线2222:1(0,0)x y C a b a b -=>>的左、右顶点,P 是C 上异于A ,B 的一点,直线PA ,PB 的斜率分别为12,k k ,且12||4k k AB ==.(1)求双曲线C 的方程;(2)已知过点(4,0)的直线:4l x my =+,交C 的左,右两支于D ,E 两点(异于A ,B ).(i )求m 的取值范围;(ii )设直线AD 与直线BE 交于点Q ,求证:点Q 在定直线上.【变式11-2】已知椭圆G :()222210+=>>x y a b a b 的右焦点为F ,过点F 作x 轴的垂线交椭圆G 于点3(1,)2P .过点P 作椭圆G 的切线,交x 轴于点Q .(1)求点Q 的坐标;(2)过点Q 的直线(非x 轴)交椭圆G 于A 、B 两点,过点A 作x 轴的垂线与直线BP 交于点D ,求证:线段AD 的中点在定直线上.【变式11-3】(2024·河北·三模)已知椭圆C 的中心在原点O 、对称轴为坐标轴,A æççè、12B ö÷÷ø是椭圆上两点.(1)求椭圆C 的标准方程;(2)椭圆C 的左、右顶点分别为1A 和2A ,M ,N 为椭圆上异于1A 、2A 的两点,直线MN 不过原点且不与坐标轴垂直.点M 关于原点的对称点为S ,若直线1A S 与直线2A N 相交于点T .(i )设直线1MA 的斜率为1k ,直线2MA 的斜率为2k ,求12k k -的最小值;(ii )证明:直线OT 与直线MN 的交点在定直线上.题型十二:圆过定点【典例12-1】已知椭圆2222:1(0)x y C a b a b +=>>A 、B 分点是椭圆C 的左、右顶点,P 是椭圆C 上不同于A 、B 的一点,ABP V 面积的最大值是2.(1)求椭圆C 的标准方程;(2)记直线AP 、BP 的斜率分别为1k 、2k ,且直线AP 、BP 与直线6x =分别交于D 、E 两点.①求D 、E 的纵坐标之积;②试判断以DE 为直径的圆是否过定点.若过定点,求出定点坐标;若不过定点,请说明理由.【典例12-2】(2024·西藏拉萨·二模)已知抛物线2:2(0)C x py p =>上的两点,A B 的横坐标分别为4,8,AB -=.(1)求抛物线C 的方程;(2)若过点()0,8Q 的直线l 与抛物线C 交于点,M N ,问:以MN 为直径的圆是否过定点?若过定点,求出这个定点;若不过定点,请说明理由.【变式12-1】已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,离心率为12,点P 是椭圆上异于顶点的任意一点,过点P 作椭圆的切线l ,交y 轴于点A ,直线l ¢过点P 且垂直于l ,交y 轴于点B .(1)求椭圆的方程;(2)试判断以AB 为直径的圆能否过定点?若能,求出定点坐标;若不能,请说明理由.【变式12-2】(2024·山东泰安·模拟预测)已知抛物线2:2(0)E x py p =>,焦点为F ,点(2,1)C 在E 上,直线1l ∶1y kx =+(0)k ¹与E 相交于,A B 两点,过,A B 分别向E 的准线l 作垂线,垂足分别为11,A B .(1)设1111,,FA B FAA FBB V V V 的面积分别为123,,S S S ,求证:21234S S S =×;(2)若直线AC ,BC 分别与l 相交于,M N ,试证明以MN 为直径的圆过定点P ,并求出点P 的坐标.1.(2024·全国·模拟预测)已知复平面上的点Z 对应的复数z 满足2297z z --=,设点Z 的运动轨迹为W .点O 对应的数是0.(1)证明W 是一个双曲线并求其离心率e ;(2)设W 的右焦点为1F ,其长半轴长为L ,点Z 到直线Lx e=的距离为d (点Z 在W 的右支上),证明:1ZF ed =;(3)设W 的两条渐近线分别为12l l ,,过Z 分别作12l l ,的平行线34l l ,分别交21l l ,于点P Q ,,则平行四边形OPZQ 的面积是否是定值?若是,求该定值;若不是,说明理由.2.(2024·湖南常德·三模)已知O 为坐标原点,椭圆C :2221(1)x y a a +=>的上、下顶点为A 、B ,椭圆上的点P 位于第二象限,直线PA 、PB 、PO 的斜率分别为123,,k k k ,且312114k k k =-+.(1)求椭圆C 的标准方程;(2)过原点O 分别作直线PA 、PB 的平行线与椭圆相交,得到四个交点,将这四个交点依次连接构成一个四边形,则此四边形的面积是否为定值?若为定值,请求出该定值;否则,请求出其取值范围.3.已知一张纸上画有半径为4的圆E ,在圆E 内有一个定点F ,且EF =,折叠纸片,使圆上某一点F ¢刚好与F 点重合,这样的每一种折法,都留下一条直线折痕,当F ¢取遍圆上所有点时,所有折痕与EF ¢的交点形成的曲线为C .(1)若曲线C 的焦点在x 轴上,求其标准方程;(2)在(1)的条件下,是否存在圆心在原点的圆,使得该圆的任意一条切线与曲线C 恒有两个交点,A B ,且OA OB ^,(O 为坐标原点),若存在,求出该圆的方程;若不存在,说明理由;(3)在(1)的条件下,P 是曲线C 上异于上顶点1A 、下顶点2A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T ,证明:线段OT 的长为定值,并求出定值.4.(2024·全国·模拟预测)已知椭圆()2222:10x y C a b a b +=>>,短轴长为1F ,2F ,P 是椭圆C 上的一个动点,12PFF V 面积的最大值为2.(1)求椭圆C 的方程;(2)求12PF PF ×uuu r uuu u r的取值范围;(3)过椭圆的左顶点A 作直线l x ^轴,M 为直线l 上的动点,B 为椭圆右顶点,直线BM 交椭圆C 于点Q .试判断数量积AQ OM ×uuu v uuuu v ,OQ OM ×uuu v uuuu v是否为定值,如果为定值,求出定值;如果不是定值,说明理由.5.(2024·重庆沙坪坝·模拟预测)如图, 在平面直角坐标系xOy 中,双曲线()222210,0y x a b a b -=>>的上下焦点分别为()10,F c ,()20,F c -. 已知点(e 和(都在双曲线上, 其中e 为双曲线的离心率.(1)求双曲线的方程;(2)设,A B 是双曲线上位于y 轴右方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i) 若122AF BF -=,求直线1AF 的斜率;(ii) 求证:12PF PF +是定值.6.已知椭圆22142x y +=,设动点P 满足OP OM ON =+uuu r uuuu r uuu r ,其中M ,N 是椭圆上的点,直线OM 与ON 的斜率之积为12-.问:是否存在两个点1F ,2F ,使得21PF PF +为定值?若存在,求1F ,2F 的坐标;若不存在,请说明理由.7.(2024·黑龙江齐齐哈尔·三模)已知双曲线2222:1(0,0)x y C a b a b -=>>的实轴长为2,设F 为C 的右焦点,T 为C 的左顶点,过F 的直线交C 于A ,B 两点,当直线AB 斜率不存在时,TAB △的面积为9.(1)求C 的方程;(2)当直线AB 斜率存在且不为0时,连接TA ,TB 分别交直线12x =于P ,Q 两点,设M 为线段PQ 的中点,记直线AB ,FM 的斜率分别为12,k k ,证明:12k k 为定值.8.(2024·辽宁葫芦岛·一模)已知抛物线2:2(0)C y px p =>的焦点为F ,(,2)M m 是抛物线C 上一点,且||2MF =.(1)求抛物线C 的方程.(2)若()()004,0P y y >是抛物线C 上一点,过点(1,4)Q -的直线与拋物线C 交于,A B 两点(均与点P 不重合),设直线,PA PB 的斜率分别为12,k k ,试问12k k 是否为定值?若是,求出该定值;若不是,请说明理由.9.(2024·河南新乡·三模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别是12,A A ,椭圆C 的焦距是2,P (异于12,A A )是椭圆C 上的动点,直线1A P 与2A P 的斜率之积为34-.(1)求椭圆C 的标准方程;(2)12,F F 分别是椭圆C 的左、右焦点,Q 是12PFF V 内切圆的圆心,试问平面上是否存在定点,M N ,使得QM QN +为定值?若存在,求出该定值;若不存在,请说明理由.10.(2024·江苏盐城·一模)已知抛物线O :2x y =,圆C :()2221x y +-=,O 为坐标原点.(1)若直线l :()0y kx m k =+¹分别与抛物线O 相交于点A ,B (A 在B 的左侧)、与圆C 相交于点S ,T (S 在T 的左侧),且OAT !与OBS V 的面积相等,求出m 的取值范围;(2)已知1A ,2A ,3A 是抛物线O 上的三个点,且任意两点连线斜率都存在.其中12A A ,13A A 均与圆C 相切,请判断此时圆心C 到直线23A A 的距离是否为定值,如果是定值,请求出定值;若不是定值,请说明理由.11.设椭圆()2222:10x y C a b a b +=>>,1F ,2F 分别是C 的左、右焦点,C 上的点到1F 的最小距离为1,P是C 上一点,且12PFF V 的周长为6.(1)求C 的方程;(2)过点2F 且斜率为k 的直线l 与C 交于M ,N 两点,过原点且与l 平行的直线与C 交于A ,B 两点,求证:2ABMN为定值.12.(2024·内蒙古赤峰·三模)已知点P 为圆()22:24C x y -+=上任意一点,()2,0A -,线段PA 的垂直平分线交直线PC 于点M ,设点M 的轨迹为曲线H .(1)求曲线H 的方程;(2)若过点M 的直线l 与曲线H 的两条渐近线交于S ,T 两点,且M 为线段ST 的中点.(i )证明:直线l 与曲线H 有且仅有一个交点;(ii ) 求证:OS OT ×是定值.13.(2024·湖北·模拟预测)已知F 为抛物线G :()20y mx m =>的焦点,A ,B ,C 是G 上三个不同的点,直线AB ,BC ,AC 分别与x 轴交于F ,D ,E ,其中AB 的最小值为4.(1)求G 的标准方程;(2)ABC V 的重心G 位于x 轴上,且D ,G ,E 的横坐标分别为d ,g ,e ,32g d e --是否为定值?若是,请求出该定值;若不是,请说明理由.14.(2024·湖南岳阳·三模)已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=;(2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹G 交于不同于F 的三点C 、D 、G ,求证:CDG V 的重心的横坐标为定值.。
圆锥曲线中的定点、定值问题(含解析)
圆锥曲线中的定点、定值问题一、题型选讲题型一 、 圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法: (1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。
例1、【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.例2、(2020届山东省临沂市高三上期末)如图,已知点F 为抛物线C :22y px =(0p >)的焦点,过点F 的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,16MN =.(1)求抛物线C 的方程.(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.例3、【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.题型二、圆锥曲线中定值问题圆锥曲线中常见的定值问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值例4、【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.例5、(2020届山东省泰安市高三上期末)已知椭圆()2222:10x y E a b a b+=>>的离心率e 满足2220e −+=,右顶点为A ,上顶点为B ,点C (0,-2),过点C 作一条与y 轴不重合的直线l ,直线l 交椭圆E 于P ,Q 两点,直线BP ,BQ 分别交x 轴于点M ,N ;当直线l 经过点A 时,l .(1)求椭圆E 的方程;(2)证明:BOM BCN S S ∆∆⋅为定值.例6、(2019苏州三市、苏北四市二调)如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB 为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值..思路分析 (1)根据已知条件,求出a ,b 的值,得到椭圆C 2的标准方程.(2)①对直线OP 斜率分不存在和存在两种情况讨论,当OP 斜率存在时,设直线OP 的方程为y =kx ,并与椭圆C 1的方程联立,解得点A 横坐标,同理求得点P 横坐标,再通过弦长公式,求出PAPB 的表达式,化简整理得到定值.②设P(x 0,y 0),写出直线l 1的方程,并与椭圆C 1联立,得到关于x 的一元二次方程,根据直线l 1与椭圆C 1有且只有一个公共点,得到方程只有一解,即Δ=0,整理得(x 20-4)k 21-2x 0y 0k 1+y 20-1=0,同理得到(x 20-4)k 22-2x 0y 0k 2+y 20-1=0,从而说明k 1,k 2是关于k 的一元二次方程的两个根,运用根与系数的关系,证得定值.二、达标训练1、(2020届浙江省温州市高三4月二模)如图,已知椭圆22:14x C y +=,F 为其右焦点,直线()0:k y x m l m k +<=与椭圆交于1122(,),(,)P x y Q x y 两点,点,A B 在l 上,且满足,,PA PF QB QF OA OB ===.(点,,,A P Q B 从上到下依次排列)(I )试用1x 表示PF :(II )证明:原点O 到直线l 的距离为定值.2、【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.3、(2019苏锡常镇调研)已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,焦点到相应准线的距离为33.(1) 求椭圆E 的标准方程;(2) 已知P(t ,0)为椭圆E 外一动点,过点P 分别作直线l 1和l 2,直线l 1和l 2分别交椭圆E 于点A ,B 和点C ,D ,且l 1和l 2的斜率分别为定值k 1和k 2,求证:PA ·PBPC ·PD 为定值.4、(2018苏州暑假测试)如图,已知椭圆O :x 24+y 2=1的右焦点为F ,点B ,C 分别是椭圆O 的上、下顶点,点P 是直线l :y =-2上的一个动点(与y 轴的交点除外),直线PC 交椭圆于另一个点M.(1) 当直线PM 经过椭圆的右焦点F 时,求△FBM 的面积;(2) ①记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1•k 2为定值;5、(2016泰州期末)如图,在平面直角坐标系xOy 中, 已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D (-65,0).设直线AB ,AC 的斜率分别为k 1,k 2.(1) 求k 1k 2的值;(2) 记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ的值;若不存在,说明理由;(3) 求证:直线AC 必过点Q .圆锥曲线中的定点、定值问题解析一、题型选讲例1【解析】(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3.由于直线P A 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +−=−,可得121227(3)(3)y y x x =−++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219x y +=得222(9)290.m y mny n +++−=所以12229mn y y m +=−+,212299n y y m −=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +−−++++=解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).例2、【解析】(1)当直线l 的倾斜角为45°,则l 的斜率为1,,02p F ⎛⎫⎪⎝⎭,l ∴的方程为2p y x =−.由2,22,p y x y px ⎧=−⎪⎨⎪=⎩得22304p x px −+=.设()11,M x y ,()22,N x y ,则123x x p +=, ∴12416x x p M p N ++===,4p =, ∴抛物线C 的方程为28y x =.(2)假设满足条件的点P 存在,设(),0P a ,由(1)知()2,0F , ①当直线l 不与x 轴垂直时,设l 的方程为()2y k x =−(0k ≠),由()22,8,y k x y x ⎧=−⎨=⎩得()22224840k x k x k −++=,()22222484464640k k k k ∆=+−⋅⋅=+>,212248k x x k++=,124x x =. ∵直线PM ,PN 关于x 轴对称, ∴0PM PN k k +=,()112PM k x k x a −=−,()222PNk x k x a−=−. ∴()()()()()()122112128(2)222240a k x x a k x x a k x x a x x a k+−−+−−=−+++=−=⎡⎤⎣⎦, ∴2a =−时,此时()2,0P −.②当直线l 与x 轴垂直时,由抛物线的对称性,易知PM ,PN 关于x 轴对称,此时只需P 与焦点F 不重合即可. 综上,存在唯一的点()2,0P −,使直线PM ,PN 关于x 轴对称. 例3、【解析】(1)由抛物线2:2C x py =−经过点(2,1)−,得2p =.所以抛物线C 的方程为24x y =−,其准线方程为1y =.(2)抛物线C 的焦点为(0,1)F −. 设直线l 的方程为1(0)y kx k =−≠.由21,4y kx x y=−⎧⎨=−⎩得2440x kx +−=.设()()1122,,,M x y N x y ,则124x x =−. 直线OM 的方程为11y y x x =. 令1y =−,得点A 的横坐标11A x x y =−. 同理得点B 的横坐标22B x x y =−. 设点(0, )D n ,则1212,1,,1x x DA n DB n y y ⎛⎫⎛⎫=−−−=−−− ⎪ ⎪⎝⎭⎝⎭, 21212(1)x x DA DB n y y ⋅=++ 2122212(1)44x x n x x =++⎛⎫⎛⎫−− ⎪⎪⎝⎭⎝⎭21216(1)n x x =++ 24(1)n =−++.令0DA DB ⋅=,即24(1)0n −++=,则1n =或3n =−. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)−.例4、【解析】(1)由题设得22411a b +=,22212a b a −=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++−=. 于是2121222426,1212km m x x x x k k −+=−=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y −−+−−=,可得221212(1)(2)()(1)40k x x km k x x m ++−−++−+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k−+−−−+−+=++. 整理得(231)(21)0k m k m +++−=.因为(2,1)A 不在直线MN 上,所以210k m +−≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =−−≠.所以直线MN 过点21(,)33P −.若直线MN 与x 轴垂直,可得11(,)N x y −.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y −−+−−−=.又2211163x y +=,可得2113840x x −+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P −.令Q 为AP 的中点,即41(,)33Q .若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP =. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.例5、【解析】(1)由2220e −+=解得2e =或e =,∴a =,又222a b c =+,a ∴=,又()020AC k a −−==−a ∴=1b ∴=,∴椭圆E 的方程为2212x y +=;(2)由题知,直线l 的斜率存在,设直线l 的方程为2y kx =−,设()()1122,,,P x y Q x y ,由22212y kx x y =−⎧⎪⎨+=⎪⎩得()2221860k x kx +−+=, ∴12122286,2121k x x x x k k +==++, ()()22=84621k k −−⨯⨯+=216240k −> 232k ∴>, ∴()121224421y y k x x k −+=+−=+,()()121222y y kx kx =−−()21212=24k x x k x x −++=224221k k −+, 直线BP 的方程为1111y y x x −=+,令0y =解得111x x y =−,则11,01x M y ⎛⎫⎪−⎝⎭,同理可得22,01x N y ⎛⎫⎪−⎝⎭, 12123411BOMBCNx x SSy y ∴=−−=()()()12121212123341141x x x x y y y y y y =−−−++=22226321444212121k k k k +−++++=12, BOM BON S S∆∴为定值12. 例6、 (1) 规范解答 设椭圆C 2的焦距为2c ,由题意,a =22,c a =32,a 2=b 2+c 2,解得b =2,因此椭圆C 2的标准方程为x 28+y 22=1.(3分)(2)①1°当直线OP 斜率不存在时,PA =2-1,PB =2+1,则PAPB =2-12+1=3-2 2.(4分) 2°当直线OP 斜率存在时,设直线OP 的方程为y =kx ,代入椭圆C 1的方程,消去y ,得(4k 2+1)x 2=4, 所以x 2A =44k 2+1,同理x 2P =84k 2+1.(6分)所以x 2P =2x 2A ,由题意,x P 与x A 同号,所以x P =2x A ,从而PAPB=|x P-x A||x P-x B|=|x P-x A||x P+x A|=2-12+1=3-2 2.所以PAPB=3-22为定值.(8分)②设P(x0,y0),所以直线l1的方程为y-y0=k1(x-x0),即y=k1x-k1x0+y0,记t=-k1x0+y0,则l1的方程为y=k1x+t,代入椭圆C1的方程,消去y,得(4k21+1)x2+8k1tx+4t2-4=0,因为直线l1与椭圆C1有且只有一个公共点,所以Δ=(8k1t)2-4(4k21+1)(4t2-4)=0,即4k21-t2+1=0,将t=-k1x0+y0代入上式,整理得,(x20-4)k21-2x0y0k1+y20-1=0,(12分)同理可得,(x20-4)k22-2x0y0k2+y20-1=0,所以k1,k2为关于k的方程(x20-4)k2-2x0y0k+y20-1=0的两根,从而k1·k2=y20-1x20-4.(14又点在P(x0,y0)椭圆C2:x28+y22=1上,所以y20=2-14x20,所以k1·k2=2-14x20-1x20-4=-14为定值.(16分)二、达标训练1、【解析】(I) 椭圆22:14xC y+=,故)F,1 ||22FP x ====−.(II)设()33,A x y,()44,B x y,则将y kx m=+代入2214xy+=得到:()222418440k x kmx m+++−=,故2121222844,4141km mx x x xk k−−+==++,21241x xk−=+,OA OB=,故()3434343421k x x my yx x x x k+++==−++,得到34221kmx xk−+=+,PA PF=13122x x−=−42222x x−=−,由已知得:3124x x x x<<<或3124x x x x>>>,)()123421x x x x x+−+=−,2228241141km kmk k k−+=+++,化简得到221m k=+.故原点O到直线l的距离为1d==为定值.2、【解析】(1)因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由241y xy kx⎧=⎨=+⎩得22(24)10k x k x+−+=.依题意22(24)410k k∆=−−⨯⨯>,解得k<0或0<k<1.又P A,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)设A(x1,y1),B(x2,y2).由(1)知12224kx xk−+=−,1221x xk=.直线P A的方程为1122(1)1yy xx−−=−−.令x=0,得点M的纵坐标为1111212211My kxyx x−+−+=+=+−−.同理得点N的纵坐标为22121Nkxyx−+=+−.由=QM QOλ,=QN QOμ得=1Myλ−,1Nyμ=−.所以2212121212122224112()111111=2111(1)(1)11M Nkx x x x x x k ky y k x k x k x x kk λμ−+−−−++=+=+=⋅=⋅−−−−−−.所以11λμ+为定值.3、规范解答(1)设椭圆的半焦距为c,由已知得,ca=32,则a2c-c=33,c2=a2-b2,(3分)解得a=2,b=1,c=3,(5分)所以椭圆E的标准方程是x24+y2=1.(6分)(2) 解法1 由题意,设直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分)设A(x 1,y 1),B(x 2,y 2).则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,因为PA =1+k 21|x 1-t|,PB =1+k 21|x 2-t|,(10分)所以PA·PB =(1+k 21)|x 1-t||x 2-t|=(1+k 21)|t 2-(x 1+x 2)t +x 1x 2| =(1+k 21)|t 2-8k 21t 21+4k 21+4k 21t 2-41+4k 21|=(1+k 21)|t 2-4|1+4k 21,(12分) 同理,PC ·PD =(1+k 22)|t 2-4|1+4k 22,(14分) 所以PA·PB PC·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)解法2 由题意,设直线l 1的方程为y =k 1(x -t),直线l 2的方程为y =k 2(x -t),设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4).直线l 1的方程为y =k 1(x -t),代入椭圆E 的方程中,并化简得(1+4k 21)x 2-8k 21tx +4k 21t 2-4=0,(8分) 则x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,同理则x 3+x 4=8k 22t1+4k 22,x 3x 4=4k 22t 2-41+4k 22,PA →·PB →=(x 1-t ,y 1)(x 2-t ,y 2)=(x 1-t)(x 2-t)+k 21(x 1-t)(x 2-t)=(x 1-t)(x 2-t)(1+k 21), PC →·PD →=(x 3-t ,y 3)(x 4-t ,y 4)=(x 3-t)(x 4-t)+k 22(x 3-t)(x 4-t)=(x 3-t)(x 4-t)(1+k 22).(12分) 因为P ,A ,B 三点共线,所以PA →·PB →=PA·PB ,同理,PC →·PD →=PC ·PD.PA ·PB PC ·PD =PA →·PB →PC →·PD →=(x 1-t )(x 2-t )(1+k 21)(x 3-t )(x 4-t )(1+k 22)=(1+k 21)(1+k 22)·(x 1-t )(x 2-t )(x 3-t )(x 4-t )=(1+k 21)(1+k 22)·x 1x 2-t (x 1+x 2)+t 2x 3x 4-t (x 3+x 4)+t 2.代入x 1+x 2=8k 21t 1+4k 21,x 1x 2=4k 21t 2-41+4k 21,x 3+x 4=8k 22t 1+4k 22,x 3x 4=4k 22t 2-41+4k 22,化简得PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21),(14分)因为是定值,所以PA ·PB PC ·PD =(1+k 21)(1+4k 22)(1+k 22)(1+4k 21)为定值.(16分)4规范解答 (1) 由题意B(0,1),C(0,-1),焦点F(3,0),当直线PM 过椭圆的右焦点F 时,则直线PM 的方程为x 3+y -1=1,即y =33x -1,联立⎩⎨⎧x 24+y 2=1,y =33x -1,解得⎩⎨⎧x =837,y =17或⎩⎪⎨⎪⎧x =0,y =-1(舍),即M ⎝⎛⎭⎫837,17.(2分)连结BF ,则直线BF :x 3+y1=1,即x +3y -3=0,而BF =a =2,点M 到直线BF 的距离为d =⎪⎪⎪⎪837+3×17-312+(3)2=2372=37.故S △MBF =12·BF ·d =12×2×37=37.(4分)(2) 解法1(点P 为主动点) ①设P(m ,-2),且m≠0,则直线PM 的斜率为k =-1-(-2)0-m =-1m , 则直线PM 的方程为y =-1m x -1,联立⎩⎨⎧y =-1m x -1,x 24+y 2=1化简得⎝⎛⎭⎫1+4m 2x 2+8m x =0,解得M ⎝ ⎛⎭⎪⎫-8m m 2+4,4-m 2m 2+4,(6分)所以k 1=4-m 2m 2+4-1-8m m 2+4=-2m 2-8m =14m ,k 2=1-(-2)0-m =-3m ,(8分)所以k 1·k 2=-3m ·14m =-34为定值.(10分)5、规范解答 (1) 设B (x 0,y 0),则C (-x 0,-y 0),x 204+y 20=1,因为A (2,0),所以k 1=y 0x 0-2,k 2=y 0x 0+2,所以k 1k 2=y 0x 0-2·y 0x 0+2=y 20x 20-4=1-14x 20x 20-4=-14.(4分)(2) 设直线AP 方程为y =k 1(x -2),联立⎩⎪⎨⎪⎧y =k 1x -2,x 2+y 2=4得(1+k 21)x 2-4k 21x +4(k 21-1)=0,解得x P =2k 21-11+k 21,y P =k 1(x P -2)=-4k 11+k 21, 联立⎩⎪⎨⎪⎧y =k 1x -2,x24+y 2=1得(1+4k 21)x 2-16k 21x +4(4k 21-1)=0,解得x B =24k 21-11+4k 21,y B =k 1(x B -2)=-4k 11+4k 21,(8分) 所以k BC =y B x B =-2k 14k 21-1,k PQ =y Px P +65=-4k 11+k 212k 21-11+k 21+65=-5k 14k 21-1, 所以k PQ =52k BC ,故存在常数λ=52,使得k PQ =52k BC .(10分) (3) 设直线AC 方程为y =k 2(x -2),当直线PQ 与x 轴垂直时,Q ⎝⎛⎭⎫-65,-85,则P -65,85,所以k 1=-12,即B (0,1),C (0,-1),所以k 2=12,则k AQ =-85-65-2=12=k 2,所以直线AC 必过点Q .当直线PQ 与x 轴不垂直时,设直线PQ 方程为y =-5k 14k 21-1⎝⎛⎭⎫x +65, 联立⎩⎪⎨⎪⎧y =-5k 14k 21-1⎝⎛⎭⎫x +65,x 2+y 2=4解得x Q =-216k 21-116k 21+1,y Q =16k 116k 21+1, 因为k 2=-y B -x B -2=4k 11+4k 2121-4k 211+4k 21-2=-14k 1, 所以k AQ =16k 116k 21+1-216k 21-116k 21+1-2=-14k 1=k 2,故直线AC 必过点Q .(16分) (不考虑直线与x 轴垂直的情形扣1分)。
圆锥曲线中定点与定值问题
假设该直线过定点(t,0), 设直线l的方程为y=k(x-t)(k≠0),
y=kx-t, 联立x42+y32=1, 消去y,整理得 (3+4k2)x2-8k2tx+4k2t2-12=0, 设M(x1,y1),N(x2,y2), 则 x1+x2=3+8k42tk2,x1x2=4k32+t2-4k122,
思维升华
求解直线或曲线过定点问题的基本思路 (1)把直线或曲线方程中的变量x,y当作常数看待,把方程一 端化为零,既然是过定点,那么这个方程就要对任意参数都 成立,这时参数的系数就要全部等于零,这样就得到一个关 于x,y的方程组,这个方程组的解所确定的点就是直线或曲 线所过的定点.
思维升华
(2)由直线方程确定其过定点时,若得到了直线方程的点斜式 y-y0=k(x-x0),则直线必过定点(x0,y0);若得到了直线方 程的斜截式y=kx+m,则直线必过定点(0,m).
(2)设点Q是直线x=-1(y≠0)上的任意一点,过点P(1,0)的直线l与抛物线 E交于A,B两点,记直线AQ,BQ,PQ的斜率分别为kAQ,kBQ,kPQ,证 明:kAQ+kBQ为定值.
kPQ
设Q(-1,y0),A(x1,y1),B(x2,y2), 因为直线l的斜率显然不为0,故可设直线l的方程为x=ty+1.
=
1+12+
22-02+
22=2
2,
即 a= 2,所以 b= a2-c2=1,
故椭圆 C 的方程为x22+y2=1.
(2)若过点
Q-
36,0的直线
l
交
C
于
A,B
两点,证明:|A1Q|2+|B1Q|2
为定值.
当直线AB的斜率为零时.点A,B为椭圆长轴的端点, 则|A1Q|2+|B1Q|2
帮你归纳总结(十三)圆锥曲线中的定值、定点问题
帮你归纳总结(十三):圆锥曲线中的定值、定点问题 一、常见基本题型:在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过 取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三 角式,证明该式是恒定的。
(1)直线恒过定点问题例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2:4C x y =的切线,EA EB , 切点为A 、B , 求证:直线AB 恒过一定点,并求出该定点的坐标;解:设),2,(-a E )4,(),4,(222211x x B x x A ,x y x y 214'2=∴=,)(2141121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(21421121x a x x -=--∴整理得:082121=--ax x同理可得:222280x ax --=8,2082,2121221-=⋅=+∴=--∴x x a x x ax x x x 的两根是方程)24,(2+a a AB 中点为可得,又2212121212124442ABx x y y x x a k x x x x --+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2ay x AB =+∴即过定点0,2. 例2、已知点00(,)P x y 是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。
解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --= 设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--从而直线PN 恒过定点(1,0)G (2)恒为定值问题例3、已知椭圆两焦点1F 、2F 在y轴上,短轴长为,P 是椭圆在第一 象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭 圆于A 、B 两点。
圆锥曲线中的定点、定值和定直线问题(解析)
圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,由y =x -2x 2-4y 2=4解得x =2或x =103,因此点E ,F 的横坐标x E ,x F 有x E =x F =103,即直线EF 过定点M 103,0 ,综上得直线EF 过定点M 103,0 ,由于DG ⊥EF ,即点G 在以DM 为直径的圆上,H 为该圆圆心,GH 为该圆半径,所以存在定点H 83,0 ,使GH 为定值23.【点睛】思路点睛:与圆锥曲线相交的直线过定点问题,设出直线的斜截式方程,与圆锥曲线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.【答案】(1)x 2-y 23=1;(2)证明见解析;(3)存在λ=2,理由见解析.【分析】(1)根据离心率,以及a ,结合b 2=c 2-a 2,即可求得曲线C 方程;(2)设出直线PQ 的方程,联立双曲线方程,得到关于点P ,Q 坐标的韦达定理;再分别求得AP ,AQ 的方程,以及点M ,N 的坐标,利用数量积的坐标运算,即可证明;(3)求得直线PQ 不存在斜率时满足的λ,当斜率存在时,将所求问题,转化为直线PA ,PF 2斜率之间的关系,结合点P 的坐标满足曲线C 方程,求解即可.【详解】(1)由题可得a =1,ca =2,故可得c =2,则b 2=c 2-a 2=4-1=3,故C 的标准方程为x 2-y23=1.(2)由(1)中所求可得点A ,F 2的坐标分别为-1,0 ,(2,0),又双曲线渐近线为y =±3x ,显然直线PQ 的斜率不为零,故设其方程为x =my +2,m ≠±33,联立双曲线方程x 2-y 23=1可得:3m 2-1 y 2+12my +9=0,设点P ,Q 的坐标分别为x 1,y 1 ,(x 2,y 2),则y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,x 1+x 2=m y 1+y 2 +4=-43m 2-1,x 1x 2=m 2y 1y 2+2m y 1+y 2 +4=-3m 2-43m 2-1;又直线AP 方程为:y =y 1x 1+1(x +1),令x =12,则y =32⋅y 1x 1+1,故点M 的坐标为12,32⋅y 1x 1+1;直线AQ 方程为:y =y 2x 2+1(x +1),令x =12,则y =32⋅y 2x 2+1,故点N 的坐标为12,32⋅y 2x 2+1;则MF 2 ⋅NF 2 =32,-32⋅y 1x 1+1 ⋅32,-32⋅y 2x 2+1=94+94⋅y 1y 2x 1x 2+x 1+x 2+1=94+94⋅93m 2-1-3m 2-43m 2-1-43m 2-1+1=94+94⋅9-9=0故MF 2 ⋅NF 2为定值0.(3)当直线PQ 斜率不存在时,对曲线C :x 2-y 23=1,令x =2,解得y =±3,故点P 的坐标为(2,3),此时∠PF 2A =90°,在三角形PF 2A 中,AF 2 =3,PF 2 =3,故可得∠PAF 2=45°,则存在常数λ=2,使得∠PF 2A =2∠PAF 2成立;当直线PQ 斜率存在时,不妨设点P 的坐标为(x ,y ),x ≠2,直线PF 2的倾斜角为α,直线PA 的倾斜角为β,则∠PF 2A =π-α,∠PAF 2=β,假设存在常数λ=2,使得∠PF 2A =2∠PAF 2成立,即π-α=2β,则一定有:tan π-α =-tan α=tan2β=2tan β1-tan 2β,也即-k PF2=2k PA 1-k 2PA;又-k PF 2=-yx -2;2k PA 1-k 2PA=2yx +11-y 2x +12=2y (x +1)x +1 2-y2;又点P 的坐标满足x 2-y 23=1,则y 2=3x 2-3,故2k PA1-k 2PA=2y x +1 x +1 2-y 2=2y x +1 x +1 2-3x 2+3=2y (x +1)-2x 2+2x +4=2y (x +1)-2(x -2)(x +1)=-y x -2=-k PF 2;故假设成立,存在实数常数λ=2,使得∠PF 2A =2∠PAF 2成立;综上所述,存在常数λ=2,使得∠PF 2A =2∠PAF 2恒成立.【点睛】关键点点睛:本题考察双曲线中定值以及存在常数满足条件的问题;其中第二问证明的关键是能够快速,准确的进行计算;第三问处理的关键是要投石问路,找到特殊情况下的参数值,再验证非特殊情况下依旧成立,同时还要注意本小题中把角度关系,转化为斜率关系;属综合困难题.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.【答案】(1)x 2=12y(2)证明见详解【分析】(1)设M x ,y ,由题意可得y +14=x 2+y -18 2+18,化简整理即可;(2)设A x 1,2x 21 ,B x 2,x 22 ,Q t ,t -1 ,结合导数的几何意义分析可得x 1,x 2为方程2x 2-4tx +t -1=0的两根,结合韦达定理求直线AB 的方程,即可得结果.【详解】(1)设M x ,y ,则MF =x 2+y -18 2,d =y +14 ,因为d =MF +18,即y +14 =x 2+y -18 2+18,当y +14≥0,即y ≥-14时,则y +14=x 2+y -18 2+18,整理得x 2=12y ;当y +14<0,即y <-14时,则-y -14=x 2+y -18 2+18,整理得x 2=y +18<0,不成立;综上所述:M 点的轨迹C 的方程x 2=12y .(2)由(1)可知:曲线C :x 2=12y ,即y =2x 2,则y =4x ,设A x 1,2x 21 ,B x 2,x 22 ,Q t ,t -1 ,可知切线QA 的斜率为4x 1,所以切线QA :y -2x 21=4x 1x -x 1 ,则t -1-2x 21=4x 1t -x 1 ,整理得2x 21-4tx 1+t -1=0,同理由切线QB 可得:2x 22-4tx 2+t -1=0,可知:x 1,x 2为方程2x 2-4tx +t -1=0的两根,则x 1+x 2=2t ,x 1x 2=t -12,可得直线AB 的斜率k AB =2x 21-2x 22x 1-x 2=2x 1+x 2 =4t ,设AB 的中点为N x 0,y 0 ,则x 0=x 1+x 22=t ,y 0=2x 21+2x 222=x 1+x 2 2-2x 1x 2=4t 2-t +1,即N t ,4t 2-t +1 ,所以直线AB :y -4t 2-t +1 =4t x -t ,整理得y -1=4t x -14,所以直线AB 恒过定点P 14,1 .【点睛】方法点睛:过定点问题的两大类型及解法(1)动直线l 过定点问题.解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk +n ,得y =k x +m +n ,故动直线过定点-m ,n ;(2)动曲线C 过定点问题.解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB,证明点N 在定直线上,并求该定直线的方程.【答案】(1)x 2=12y ;(2)证明见解析,y =3.【分析】(1)设直线l 1的方程为y =x +p2,再根据直线和圆相切求出p 的值得解;(2)依题意设M (m ,-3),求出切线l 2的方程和B 点坐标,求出MN =x 1-2m ,6 ,ON=x 1-m ,3 即可求解作答.【详解】(1)依题意得,物线C 1:x 2=2py 的焦点坐标为0,p 2 ,设直线l 1的方程为y =x +p2,而圆C 2:x +1 2+y 2=2的圆心C 2(-1,0),半径r =2,由直线l 1与圆C 2相切,得d =-1+p212+-12=2,又p >0,解得p =6,所以抛物线C 1的方程为x 2=12y .(2)由(1)知抛物线C 1:x 2=12y 的准线为y =-3,设M (m ,-3),由y =x 212,求导得y =x6,设A (x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16,于是切线l 2的方程为y =16x 1x -x 1 +y 1,令x =0,得y =-16x 21+y 1=-16×12y 1+y 1=-y 1,即l 2交y 轴于点B (0,-y 1),因此MA =(x 1-m ,y 1+3),MB =-m ,-y 1+3 ,MN =MA +MB =x 1-2m ,6 ,则ON =OM +MN=x 1-m ,3 ,设N 点坐标为(x ,y ),从而y =3,所以点N 在定直线y =3上.3已知直线l 1:x -y +1=0过椭圆C :x 24+y 2b2=1(b >0)的左焦点,且与抛物线M :y 2=2px (p >0)相切.(1)求椭圆C 及抛物线M 的标准方程;(2)直线l 2过抛物线M 的焦点且与抛物线M 交于A ,B 两点,直线OA ,OB 与椭圆的过右顶点的切线交于M ,N 两点.判断以MN 为直径的圆与椭圆C 是否恒交于定点P ,若存在,求出定点P 的坐标;若不存在,请说明理由.【答案】(1)x 24+y 23=1,y 2=4x(2)存在,-2,0【分析】(1)由直线l 1过椭圆C 的左焦点,求出c 得出椭圆方程,利用直线l 1与抛物线M 相切,联立两个方程,通过判别式为零进行求解;(2)分成直线l 2斜率存在与不存在两种情况进行讨论,斜率存在时可设直线方程y =k x -1 ,与椭圆方程联立得出韦达定理,表示M ,N 两点坐标,利用PM ⋅PN=0进行求解.【详解】(1)由y 2=2px x -y +1=0 ,得x 2+2-2p x +1=0,因为直线x -y +1=0与抛物线M 只有1个公共点,所以Δ=2-2p 2-4=0,解得p =2,故抛物线C 的方程为y 2=4x .由直线x -y +1=0过椭圆C 的左焦点得得c =1,所以,4-b 2=1,b 2=3,所以椭圆C 的方程为x 24+y 23=1.(2)如图1,设A x 1,y 1 ,B x 2,y 2 ,当直线l 2斜率存在时,可设直线方程:y =k x -1由y 2=4x y =k x -1 得k 2x 2-2k 2+4 x +k 2=0,所以Δ=2k 2+4 2-4k 4=16k 2+16>0,x 1+x 2=2k 2+4k2,x 1x 2=1. 所以y 1y 2=k 2x 1-1 x 2-1 =k 2x 1x 2-x 1+x 2 +1 =-4,x 2y 1+x 1y 2=kx 2x 1-1 +kx 1x 2-1 =k 2x 1x 2-x 1+x 2 =-4k,直线OA 的方程为y =y 1x 1x ,同理可得,直线OB 的方程为y =y 2x 2x ,令x =2得,M 2,2y 1x 1 ,N 2,2y 2x 2,假设椭圆C 上存在点P x 0,y 0 ,恒有PM ⊥PN .则PM ⋅PN =2-x 0,2y 1x 1-y 0 ⋅2-x 0,2y 2x 2-y 0=0即2-x 0 2+2y 1x 1-y 0 2y 2x 2-y 0=0,即2-x 0 2+y 20-2x 2y 1+2x 1y 2x 1x 2y 0+4y 1y 2x 1x 2=0,即2-x 0 2+y 20+8ky 0-16=0,令y 0=0,可得x 0=6或x 0=-2.由于点6,0 不在椭圆C 上,点-2,0 在椭圆D 上,所以椭圆C 上存在点P -2,0 ,使PM ⊥PN 恒成立如图2,当直线斜率不存在时,直线过抛物线的右焦点,则直线方程为x =1,与抛物线交于A 1,2 ,B 1,-2 ,则直线OA 方程为:y =2x ,直线OB 方程为:y =-2x ,椭圆的过右顶点的切线方程为x =2,切线方程x =2与直线OA 交于M 2,4 ,与直线OB 交于N 2,-4 ,由上面斜率存在可知恒过P -2,0 ,经验证满足PM ⋅PN=0,所以当斜率不存在时候也满足以MN 为直径的圆恒过定点-2,0 .4在平面直角坐标系中,已知圆心为点Q 的动圆恒过点F (0,1),且与直线y =-1相切,设动圆的圆心Q 的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P 为直线l :y =y 0y 0<0 上一个动点,过点P 作曲线Γ的切线,切点分别为A ,B ,过点P 作AB 的垂线,垂足为H ,是否存在实数y 0,使点P 在直线l 上移动时,垂足H 恒为定点?若不存在,说明理由;若存在,求出y 0的值,并求定点H 的坐标.【答案】(1)x 2=4y(2)存在这样的y 0,当y 0=-1时,H 坐标为(0,1).【分析】(1)依题意,由几何法即可得出圆心的轨迹Γ是以F (0,1)为焦点,l :y =-1为准线的抛物线.(2)设直线AP 的方程y -y 1=k x -x 1 ,对抛物线方程求导化简也可得直线AP 的方程,由恒等思想可得y 0+y 1=x 1x 02,y 0+y 2=x 2x 02,构造直线方程为y +y 0=x 0x2,故AB 两点代入化简可得恒过点0,-y 0 ,再由PH ⊥AB 得x =-x02y -y 0-2 ,PH 恒过点0,y 0+2 ,从而可得结论.。
第11课_圆锥曲线中的定点、定值问题
x1
x2
x1x2
即 k m 2 代入 y kx m
那么 k(x 1) y 2x ,即直线 AB 过定点 (1,2)
另外,当直线垂直 x 轴时,设 A(x1, y1) , B(x1, y1) ,代入 k1 k2 4 , 易得 x1 1,即直线 AB 的方程为 x 1 ,也过定点 (1,2)
,直线过定点
(1,2)
f
(x,
y)
g(x,
y)
0
,则曲线以
f (x, g(x,
y) y)
0 0
的交点为定点。
【典例分析】
例 1.如图,过抛物线 y 2 x 上一点 A(4,2) 作倾斜角互补的两条直线 AB, AC 交 抛物线于 B, C 两点,求证:直线 BC 的斜率是定值。
证明:显然直线 AB, AC 的斜率都不是零,设 AB 的直线方程是 y k(x 4) 2 ,
k1
k1k 2 [ x
(
2
k
2 2
m)] ,
即 y k1k2 (x m) 2 ,
直线 MN 恒过定点 (m,2) .
【典例分析】
变式训练3. 已知椭圆方程 x2 y2 1 ,过点 P(0,2) 分别作直线 PA, PB 交椭圆于 A, B 两点,设直线 84
PA, PB的斜率分别为 k1 , k2 ,且 k1 k2 4 ,求证:直线 AB 过定点
第11课 圆锥曲线中的定点、定值问题
【要点梳理】
1.解析几何中,定点、定值问题是高考命题的一个热点,也是一个难点, 解决这类问题并没有常规方法,但基本思想是明确的,那就是定点、定值必 然是在变化中所表现出来的不变量,所以可运用函数的思想方法,结合等式 的恒成立求解,也就是说要与题中的可变量无关。
圆锥曲线中的定点与定值问题
1
2
+ 2 = 1,
2
4
2
2
2 = 3,
ቊ 2
故椭圆 E 的方程为 + =1.
3
4
= 4,
法二:设椭圆 E 的方程为 mx 2+ ny 2=1( m >0, n >0且 m ≠ n ).由题意可
1
4 = 1,
= ,
2
2
4
得൝9
解得൞
故椭圆 E 的方程为 + =1.
1
3
4
若直线 MN 与 x 轴不垂直,
设直线 MN 的方程为 y = kx + m ,代入
得(1+2 k 2 ) x 2 +4 kmx +2 m 2 -6=0.
于是 x 1 + x 2 =-
4
1+2 2
, x 1 x 2=
2 2 −6
1+2 2
2
6
+
2
3
=1,
.①
由 AM ⊥ AN ,得 · =0,
M ( x 1, y 1), N ( x 2, y 2).
+ 2 = ( − 1),
联立ቐ 2 2
得(3 k 2+4) x 2-6 k (2+ k ) x +3 k ( k +4)=0,
+ = 1,
3
4
6(2+)
3(+4)
−8(2+)
则 x1+ x 2= 2 , x 1 x 2= 2 , y 1+ y 2= 2 , y 1 y 2=
,由 = ,
− 6 + 3 − 1 = − (− 6 + 3),
= −
2 6
,
3
则 H −2 6 +
圆锥曲线定点定值及其他常用结论个人整理,已经没错误
圆锥曲线定点定值及其他常用结论一、直线过定点问题过定点模型:是圆锥曲线上的两动点,是一定点,其中分别为的倾斜角,则有下面的结论:、为定值直线恒过定点;、为定值直线恒过定点;、直线恒过定点.方法:要证明直线过定点,只需要找到与之间的关系即可.确定定点,可以证明任意两个斜率相等即可.二、定值问题基本思路:转化为与两点相关的斜率与的关系式的关系式代数式形式的定值(多个参数)结论:①若代数式表达式结果为分式,且为定值,则系数对应成比例;形如,若,则该式为定值,与无关;(注意是变量,具有任意性,是主元)②若代数式表达式结果为整式,则无关参数的系数为0.例如:,当即时,该式为定值与无关. (注意是变量,具有任意性,是主元)三、椭圆经典结论1、过椭圆(上任一点任意作两条倾斜角互补的直线交椭圆于两点,则直线有定向且(常数).(求偏导可得到)(类似结论适合于双曲线,抛物线)2、设椭圆()的两个焦点为(异于长轴端点)为椭圆上任意一点,在中,记,,,则有.3. 椭圆与直线有公共点的充要条件是4.已知椭圆(),为坐标原点,为椭圆上两动点,且.(对原点张直角)1); 2)的最大值为; 3)的最小值是.4)直线PQ必经过一个定点;5)点到直线的距离为定值:.5 . 过椭圆()的右焦点作直线交椭圆于两点,弦的垂直平分线交轴于,则.类比.过双曲线(a>0,b>0)的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,则.6.设椭圆(a>b>0),M(m,0)或(0,m)为其对称轴上除中心,顶点外的任一点,过M引一条直线与椭圆相交于P、Q两点,则直线AP、AQ(AA为对称轴上的两顶点)的交点N在直线:(或)上.(用极点与极线直接写出来)7、椭圆中的过定点模型:是椭圆上异于的两动点,其中分别为的倾斜角,则可以得到下面几个充要的结论:(手电筒模型)直线恒过定点类比.给定双曲线C:,对C上任意给定的点,它的任一直角弦必须经过定点(.8、抛物线中的过定点模型:是抛物线上异于的两动点,其中分别为的倾斜角,则可以得到下面充要的结论:(手电筒模型)直线恒过定点特别地直线恒过定点.9、设点是椭圆()上异于长轴端点的任一点,为其焦点记,则 (1). (2).(双曲线(a>0,b>0)中,,其中θ=∠FPF.)10.椭圆的参数方程是,椭圆上的动点可设对于抛物线上的动点的坐标可设为,(抛物线独有的一点两设)以简化计算.双曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:.(2)若渐近线方程为双曲线可设为.(3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上)(4).双曲线焦点到渐近线的距离总是.顶点到渐近线的距离为(5).双曲线称为等轴双曲线,其渐近线方程为,离心率.抛物线常用设为过抛物线焦点的弦,,直线的倾斜角为,则1. 2.3. 4. 5 .圆锥曲线的切线问题(用极点与极线直接写出来)(证明需要求偏导)1.过圆C:(x-a)+(y-b)=R上一点P(x,y)的切线方程为(x-a)(x-a)+(y-b)(y-b)=R.2. 若在椭圆上,则以为切点的切线的椭圆的切线方程是.3.若在双曲(a>0,b>0)上,则过的双曲线的切线方程是.4.已知点M(x,y)在抛物线C:y=2px(p≠0)上时,M为切点的切线l:yy=p(x+x).(切点弦结论完全相同,用极点与极线直接写出来)圆锥曲线的中点弦问题(点差法)(广义的垂径定理)(也适合于相切情况)AB 是椭圆的不平行于对称轴的弦,M为AB的中点,则=e-1,即。
圆锥曲线中的定点、定值问题(含解析)
圆锥曲线中的定点、定值问题一、题型选讲题型一 、 圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法:(1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点·(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。
例1、【2020年高考全国Ⅰ卷理数】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.例2、(2020届山东省临沂市高三上期末)如图,已知点F 为抛物线C :22y px =(0p >)的焦点,过点F 的动直线l 与抛物线C 交于M ,N 两点,且当直线l 的倾斜角为45°时,16MN =.(1)求抛物线C 的方程.(2)试确定在x 轴上是否存在点P ,使得直线PM ,PN 关于x 轴对称?若存在,求出点P 的坐标;若不存在,请说明理由.例3、【2019年高考北京卷理数】已知抛物线C :x 2=−2py 经过点(2,−1).(1)求抛物线C 的方程及其准线方程;(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.题型二、圆锥曲线中定值问题圆锥曲线中常见的定值问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值例4、【2020年新高考全国Ⅰ卷】已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.例5、(2020届山东省泰安市高三上期末)已知椭圆()2222:10x y E a b a b+=>>的离心率e 满足2220e -+=,右顶点为A ,上顶点为B ,点C (0,-2),过点C 作一条与y 轴不重合的直线l ,直线l 交椭圆E 于P ,Q 两点,直线BP ,BQ 分别交x 轴于点M ,N ;当直线l 经过点A 时,l .(1)求椭圆E 的方程;(2)证明:BOM BCN S S ∆∆⋅为定值.例6、(2019苏州三市、苏北四市二调)如图,在平面直角坐标系xOy 中,已知椭圆C 1:x 24+y 2=1,椭圆C 2:x 2a 2+y 2b 2=1(a>b>0),C 2与C 1的长轴长之比为2∶1,离心率相同.(1) 求椭圆C 2的标准方程; (2) 设点P 为椭圆C 2上的一点.①射线PO 与椭圆C 1依次交于点A ,B ,求证:PAPB 为定值;②过点P 作两条斜率分别为k 1,k 2的直线l 1,l 2,且直线l 1,l 2与椭圆C 1均有且只有一个公共点,求证k 1·k 2为定值.二、达标训练1、(2020届浙江省温州市高三4月二模)如图,已知椭圆22:14x C y +=,F 为其右焦点,直线()0:k y x m l m k +<=与椭圆交于1122(,),(,)P x y Q x y 两点,点,A B 在l 上,且满足,,PA PF QB QF OA OB ===.(点,,,A P Q B 从上到下依次排列)(I )试用1x 表示PF :(II )证明:原点O 到直线l 的距离为定值.2、【2018年高考北京卷理数】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值.3、(2019苏锡常镇调研)已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,焦点到相应准线的距离为33.(1) 求椭圆E 的标准方程;(2) 已知P(t ,0)为椭圆E 外一动点,过点P 分别作直线l 1和l 2,直线l 1和l 2分别交椭圆E 于点A ,B 和点C ,D ,且l 1和l 2的斜率分别为定值k 1和k 2,求证:PA ·PBPC ·PD 为定值.4、(2018苏州暑假测试)如图,已知椭圆O :x 24+y 2=1的右焦点为F ,点B ,C 分别是椭圆O 的上、下顶点,点P 是直线l :y =-2上的一个动点(与y 轴的交点除外),直线PC 交椭圆于另一个点M.(1) 当直线PM 经过椭圆的右焦点F 时,求ⅠFBM 的面积;(2) Ⅰ记直线BM ,BP 的斜率分别为k 1,k 2,求证:k 1•k 2为定值;5、(2016泰州期末)如图,在平面直角坐标系xOy 中, 已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆右顶点.过原点O 且异于坐标轴的直线与椭圆C 交于B ,C 两点,直线AB 与圆O 的另一交点为P ,直线PD 与圆O 的另一交点为Q ,其中D (-65,0).设直线AB ,AC 的斜率分别为k 1,k 2.(1) 求k 1k 2的值;(2) 记直线PQ ,BC 的斜率分别为k PQ ,k BC ,是否存在常数λ,使得k PQ =λk BC ?若存在,求λ的值;若不存在,说明理由;(3) 求证:直线AC 必过点Q .一、题型选讲题型一 、 圆锥曲线中过定点问题圆锥曲线中过定点问题常见有两种解法:(1)、求出圆锥曲线或直线的方程解析式,研究解析式,求出定点·(2)、从特殊位置入手,找出定点,在证明该点符合题意(运用斜率相等或者三点共线)。
专题15 圆锥曲线中的定点与定值问题(解析版)
专题15 圆锥曲线中的定点与定值问题【考点1】、【直线过定点的解题策略】(1)如果题设条件没有给出这个定点,那么,我们可以这样思考:由于这个定点对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定点,再证明这个点与变量无关.(2)直接推理、计算,找出参数之间的关系,并在计算过程中消去部分参数,将直线方程化为点斜式方程,从而得到定点.(3)若直线方程含多个参数并给出或能求出参数满足的方程,观察直线方程特征与参数方程满足的方程的特征,即可找出直线所过顶点坐标,并带入直线方程进行检验.注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 【重要结论】1.动直线l 过定点问题,设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).2.动曲线C 过定点问题,引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.3.“弦对定点张直角”-圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-. 4.只要任意一个限定AP 与BP 条件(如=•BP AP k k 定值,=+BP AP k k 定值),直线AB 依然会过定点【考点2】、【定值问题的常见类型及解题策略】二、考点再现一、核心先导(1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值; (2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得. 【知识拓展】1.设点(),P m n 是椭圆C :()222210x y a b a b +=>>上一定点,点A,B 是椭圆C 上不同于P 的两点,若PA PBk k λ+=,则0λ=时直线AB 斜率为定值()220bm n an≠,若0λ≠,则直线AB 过定点2222,n b m m n a λλ⎛⎫--- ⎪⎝⎭;2. 设点(),P m n 是双曲线C :()222210,0x y a b a b-=>>一定点,点A,B 是双曲线C 上不同于P 的两点,若PA PBk k λ+=,则0λ=时直线AB 斜率为定值()220bm n an-≠,若0λ≠,则直线AB 过定点2222,n b m m n a λλ⎛⎫--+ ⎪⎝⎭;3. 设点(),P m n 是抛物线C :()220y px p =>一定点,点A,B 是抛物线C 上不同于P 的两点,若PA PB k k λ+=,则0λ=时直线AB 斜率为定值()0pn n-≠,若0λ≠,则直线AB 过定点22,n p m n λλ⎛⎫--+ ⎪⎝⎭; 圆锥曲线的第三定义:平面内的动点到两定点1,0A a 2,0A a 的斜率乘积等于常数21e 点的轨迹叫做椭圆或双曲线,其中两个定点为椭圆和双曲线的两个顶点.其中如果常数211e 时,轨迹为双曲线,如果211,0e 时,轨迹为椭圆。
高考圆锥曲线中的定点定值专题(附答案)
高考圆锥曲线中的定点定值问题定点问题是常见的考题形式,解决这类问题的关键就是引进变参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和b 的一次函数关系式,代入直线方程即可类型一:“手电筒”模型例题、已知椭圆C :13422=+y x 若直线m kx y l +=:与椭圆C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解:设1122(,),(,)A x y B x y ,由223412y kx m x y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=, 22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k-⋅=+⋅+=+++=+ 以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k--+++=+++, 整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +-+-。
高考圆锥曲线中的定点与定值问题(题型总结超全)完整版.doc
专题08 解锁圆锥曲线中的定点与定值问题一、解答题1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标.【答案】(1)(2)【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得。
设x轴上的定点为,可得,由定值可得需满足,解得可得定点坐标。
解得。
∴椭圆的标准方程为.(Ⅱ)证明:由题意设直线的方程为,由消去y整理得,设,,要使其为定值,需满足,解得.故定点的坐标为.点睛:解析几何中定点问题的常见解法(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意.2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k 的直线l 经过点()1,0-与抛物线2:2C y px =(0,p p >为常数)交于不同的两点,M N ,当12k =时,弦MN 的长为15. (1)求抛物线C 的标准方程;(2)过点M 的直线交抛物线于另一点Q ,且直线MQ 经过点()1,1B -,判断直线NQ 是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1)24y x =;(2)直线NQ 过定点()1,4-【解析】试题分析:(1)根据弦长公式即可求出答案; (2)由(1)可设()()()2221122,2,,2,,2M t t N t t Q t t ,则12MN k t t =+, 则()11:220MN x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=()1212:220NQ x t t y t t -++=.由()1,0-在直线MN 上11t t ⇒=(1); 由()1,1-在直线MQ 上22220t t tt ⇒+++=将(1)代入()121221t t t t ⇒=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ⇒-+-+-=,即可得出直线NQ 过定点.(2)设()()()2221122,2,,2,,2M t t N t t Q t t ,则12211222=MN t t k t t t t -=-+, 则()212:2MN y t x t t t -=-+即()11220x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=;()1212:220NQ x t t y t t -++=.由()1,0-在直线MN 上11tt ⇒=,即11t t =(1); 由()1,1-在直线MQ 上22220t t tt ⇒+++=将(1)代入()121221t t t t ⇒=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ⇒-+-+-=,易得直线NQ 过定点()1,4-3.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知抛物线()2:0C y mx m =>过点()1,2-, P 是C 上一点,斜率为1-的直线l 交C 于不同两点,A B (l 不过P 点),且PAB ∆的重心的纵坐标为23-. (1)求抛物线C 的方程,并求其焦点坐标;(2)记直线,PA PB 的斜率分别为12,k k ,求12k k +的值.【答案】(1)方程为24y x =;其焦点坐标为()1,0(2)120k k +=【解析】试题分析;(1)将()1,2-代入2y mx =,得4m =,可得抛物线C 的方程及其焦点坐标;(2)设直线l 的方程为y x b =-+,将它代入24y x =得22220x b x b -++=(),利用韦达定理,结合斜率公式以及PAB ∆的重心的纵坐标23-,化简可12k k + 的值;因为PAB ∆的重心的纵坐标为23-, 所以122p y y y ++=-,所以2p y =,所以1p x =,所以()()()()()()1221121212122121221111y x y x y y k k x x x x ------+=+=----, 又()()()()12212121y x y x --+--()()()()12212121x b x x b x ⎡⎤⎡⎤=-+--+-+--⎣⎦⎣⎦()()()12122122x x b x x b =-+-+--()()()22212220b b b b =-+-+--=.所以120k k +=.4.已知椭圆2222:1(0)x y C a b a b+=>>的短轴端点到右焦点()10F ,的距离为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点F 的直线交椭圆C 于A B ,两点,交直线4l x =:于点P ,若1PA AF λ=,2PB BF λ=,求证: 12λλ-为定值.【答案】(1) 22143x y +=;(2)详见解析. 【解析】试题分析:(Ⅰ)利用椭圆的几何要素间的关系进行求解;(Ⅱ)联立直线和椭圆的方程,得到关于x 或y 的一元二次方程,利用根与系数的关系和平面向量的线性运算进行证明.(Ⅱ)由题意直线AB 过点()1,0F ,且斜率存在,设方程为()1y k x =-, 将4x =代人得P 点坐标为()4,3k ,由()221{ 143y k x x y =-+=,消元得()22223484120k x k x k +-+-=,设()11,A x y , ()22,B x y ,则0∆>且21222122834{ 41234k x x k k x x k +=+-⋅=+, 方法一:因为1PA AF λ=,所以11141PA x AF x λ-==-. 同理22241PB x BFx λ-==-,且1141x x --与2241x x --异号,所以12121212443321111x x x x x x λλ⎛⎫---=+=--+ ⎪----⎝⎭()()1212123221x x x x x x +-=-+-++()2222238682412834k k k k k --=-+--++0=. 所以, 12λλ-为定值0.当121x x <<时,同理可得120λλ-=. 所以, 12λλ-为定值0.同理2223PB my BFmy λ-==,且113my my -与223my my -异号,所以()12121212123332y y my my my my my y λλ+---=+=- ()()36209m m ⨯-=-=⨯-.又当直线AB 与x 轴重合时, 120λλ-=, 所以, 12λλ-为定值0.【点睛】本题考查直线和椭圆的位置关系,其主要思路是联立直线和椭圆的方程,整理成关于x 或y 的一元二次方程,利用根与系数的关系进行求解,因为直线AB 过点()1,0F ,在设方程时,往往设为1x my =+()0m ≠,可减少讨论该直线是否存在斜率.5.【四川省绵阳南山中学2017-2018学年高二上学期期中考】设抛物线C : 24y x =, F 为C 的焦点,过F 的直线l 与C 相交于,A B 两点. (1)设l 的斜率为1,求AB ;(2)求证: OA OB ⋅u u u v u u u v是一个定值. 【答案】(1) 8AB =(2)见解析【解析】试题分析:(1)把直线的方程与抛物线的方程联立,利用根与系数的关系及抛物线的定义、弦长公式即可得出;(2)把直线的方程与抛物线的方程联立,利用根与系数的关系、向量的数量积即可得出;(2)证明:设直线l 的方程为1x ky =+,由21{4x ky y x=+-得2440y ky --= ∴124y y k +=, 124y y =- ()()1122,,,OA x y OB x y ==u u u v u u u v, ∵()()1212121211OA OB x x y y kx ky y y ⋅=+=+++u u u v u u u v,()212121222144143k y y k y y y y k k =++++=-++-=-, ∴OA OB ⋅u u u v u u u v是一个定值.点睛:熟练掌握直线与抛物线的相交问题的解题模式、根与系数的关系及抛物线的定义、过焦点的弦长公式、向量的数量积是解题的关键,考查计算能力,直线方程设成1x ky =+也给解题带来了方便.6.【内蒙古包头市第三十三中2016-2017学年高一下学期期末】已知椭圆C : 22221(0,0)x y a b a b+=>>的离心率为6,右焦点为(2,0).(1)求椭圆C 的方程; (2)若过原点作两条互相垂直的射线,与椭圆交于A ,B 两点,求证:点O 到直线AB 的距离为定值.【答案】(1) 2213x y += ,(2) O 到直线AB 3【解析】试题分析:(1)根据焦点和离心率列方程解出a ,b ,c ;(2)对于AB 有无斜率进行讨论,设出A ,B 坐标和直线方程,利用根与系数的关系和距离公式计算;有OA ⊥OB 知x 1x 2+y 1y 2=x 1x 2+(k x 1+m ) (k x 2+m )=(1+k 2) x 1x 2+k m (x 1+x 2)=0 代入,得4 m 2=3 k 2+3原点到直线AB 的距离231m d k ==+ , 当AB 的斜率不存在时, 11x y = ,可得, 13x d == 依然成立.所以点O 到直线的距离为定值32. 点睛: 本题考查了椭圆的性质,直线与圆锥曲线的位置关系,分类讨论思想,对于这类题目要掌握解题方法.设而不求,套用公式解决.7.【四川省成都市石室中学2017-2018学年高二10月月考】已知双曲线()222210x y b a a b-=>>渐近线方程为3y x =, O 为坐标原点,点(3,3M 在双曲线上.(Ⅰ)求双曲线的方程;(Ⅱ)已知,P Q 为双曲线上不同两点,点O 在以PQ 为直径的圆上,求2211OPOQ+的值.【答案】(Ⅰ)22126x y -=;(Ⅱ) 221113OP OQ+=. 【解析】试题分析:(1)根据渐近线方程得到设出双曲线的标准方程,代入点M 的坐标求得参数即可;(2)由条件可得OP OQ ⊥,可设出直线,OP OQ 的方程,代入双曲线方程求得点,P Q 的坐标可求得221113OPOQ+=。
圆锥曲线中定点定值问题
定点、定值问题一、定点问题:题型一:三大圆锥曲线中的顶点直角三角形斜边所在的直线过定点例题1:抛物线22(0),.y px p A B =>在抛物线上,OA OB ⊥,求证:直线AB 过定点。
例题2:椭圆223412,x y +=直线:l y kx m =+与椭圆交于,A B 两点,且以AB 为直径的圆过椭圆的右顶点。
求证:直线l 过定点,并求出定点的坐标。
2(,0)7例题3:已知焦点在x 轴上的椭圆过点(0,1),求离心率为2,Q 为椭圆的左顶点, (1) 求椭圆的标准方程;(2) 若过点6(,0)5-的直线l 与椭圆交于,A B 两点。
(i ) 若直线l 垂直x 轴,求AQB ∠的大小; (ii ) 若直线l 不垂直x 轴,是否存在直线l 使得AQB ∆为等腰三角形?如果存在,求出l的方程;如果不存在,请说明理由。
例题4:已知定点(1,0),(2,0)A F -,定直线1:2l x =不在x 轴上的动点P 与点F 的距离是它到直线l 的距离的2倍,设P 点的轨迹为E ,过点F 的直线交E 于,B C 两点,直线,AB AC 分别交l 于点,M N 。
(1) 求E 的方程;(2) 试判断以MN 为直径的圆是否过点F ,并说明理由。
变式训练:抛物线22(0),..y px p A B =>在抛物线上运动,00(,)P x y 是抛物线上的定点,直线,PA PB 的斜率之积为定值0m ≠求证:直线AB 过定点,并求出此定点。
题型二:三大圆锥曲线中,若过焦点的弦为AB ,则焦点所在的轴上存在唯一的定点N ,使得NA NB ∙为定值。
例题1:已知椭圆22221x y a b +=(0)a b >>的右焦点为(1,0)F 且点(-在椭圆上。
(1)求椭圆的标准方程;(2)已知动直线l 过点F 与椭圆交于,A B 两点,试问x 轴上是否存在定点Q ,使得716QA QB ∙=-恒成立?如果存在,求出Q 的坐标;如果不存在,请说明理由。
高考数学复习:圆锥曲线的定点、定值、定直线
高考数学复习:圆锥曲线的定点、定值、定直线【热点聚焦】纵观近几年的高考试题,圆锥曲线的定点、定值、定直线问题是热点之一.从命题的类型看,主要是大题.一般说来,考查直线与椭圆、双曲线、抛物线的位置关系问题,综合性较强,涉及方程组联立,根的判别式、根与系数的关系、弦长、面积、参数、几何量为定值,或定点在某直线上、定直线过某点等.难度往往大些.【重点知识回眸】(一)定值问题1.定义:定值问题是指虽然圆锥曲线中的某些要素(通常可通过变量进行体现)有所变化,但在变化过程中,某个量的值保持不变即为定值.2.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.3.常见定值问题的处理方法:(1)确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示(2)将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.4.定值问题的处理技巧:(1)对于较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向.(2)在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢(3)巧妙利用变量间关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算(二)定点问题1.求解圆锥曲线中的定点问题的两种思路:(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立直线系方程,一般将题目中给出的曲线方程(包含直线方程)中的常量当成变量,将变量x,y当成常量,将原方程转化为kf(x,y)+g(x,y)=0的形式(k是原方程中的常量);②根据直线过定点时与参数没有关系(即直线系方程对任意参数都成立),得到方程组()0g()0f x y x y =⎧⎨=⎩,,;③以②中方程组的解为坐标的点就是直线所过的定点,若定点具备一定的限制条件,则可以特殊解决.2.求解圆锥曲线中的定点问题的方法(1)确定题目中的核心变量(此处设为k )(2)利用条件找到k 与过定点的曲线(),0F x y =的联系,得到有关k 与,x y 的等式(3)所谓定点,是指存在一个特殊的点()00,x y ,使得无论k 的值如何变化,等式恒成立.此时要将关于k 与,x y 的等式进行变形,直至易于找到00,x y .常见的变形方向如下:①若等式的形式为整式,则考虑将含k 的项归在一组,变形为“()k ⋅”的形式,从而00,x y 只需要先让括号内的部分为零即可②若等式为含k 的分式,00,x y 的取值一方面可以考虑使其分子为0,从而分式与分母的取值无关;或者考虑让分子分母消去k 的式子变成常数(这两方面本质上可以通过分离常数进行相互转化,但通常选择容易观察到的形式)3.一些技巧与注意事项:(1)面对复杂问题时,可从特殊情况入手,以确定可能的定点(或定直线).然后再验证该点(或该直线)对一般情况是否符合.属于“先猜再证”.(2)有些题目所求与定值无关,但是在条件中会隐藏定点,且该定点通常是解题的关键条件.所以当遇到含参数的方程时,要清楚该方程为一类曲线(或直线),从而观察这一类曲线是否过定点.尤其在含参数的直线方程中,要能够找到定点,抓住关键条件.例如:直线:1l y kx k =+-,就应该能够意识到()11y k x =+-,进而直线绕定点()1,1--旋转.(三)定直线问题探求圆锥曲线中的定直线问题的两种方法:方法一是参数法,即先利用题设条件探求出动点T 的坐标(包含参数),再消去参数,即得动点T 在定直线上;方法二是相关点法,即先设出动点T 的坐标为(x,y),根据题设条件得到已知曲线上的动点R 的坐标,再将动点R 的坐标代入已知的曲线方程,即得动点T 在定直线上.【典型考题解析】热点一定值问题【典例1】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ= ,QN QO μ= ,求证:11λμ+为定值.【典例2】如图,已知抛物线2:4C x y =,过点(0,2)M 任作一直线与C 相交于,A B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线2y =相交于点1N ,与(1)中的定直线相交于点2N ,证明:2221||MN MN -为定值,并求此定值.【典例3】已知抛物线C :22(0)y px p =>的焦点为F ,过F 且斜率为43的直线l 与抛物线C 交于A ,B 两点,B 在x 轴的上方,且点B 的横坐标为4.(1)求抛物线C 的标准方程;(2)设点P 为抛物线C 上异于A ,B 的点,直线PA 与PB 分别交抛物线C 的准线于E ,G 两点,x 轴与准线的交点为H ,求证:HG HE ⋅为定值,并求出定值.【典例4】已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH = .证明:直线HN 过定点.【典例5】已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【典例6】已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【总结提升】动直线l 过定点问题的常见思路设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k(x +m),故动直线过定点(-m,0).【典例7】设椭圆的焦点在x 轴上(Ⅰ)若椭圆的焦距为1,求椭圆的方程;(Ⅱ)设分别是椭圆的左、右焦点,为椭圆上第一象限内的点,直线交轴与点,并且,证明:当变化时,点在某定直线上.【典例8】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是()11,0F -,()21,0F ,点()0,A b ,若12AF F △的内切圆的半径与外接圆的半径的比是1:2.(1)求椭圆C 的方程;(2)过C 的左焦点1F 作弦DE ,MN ,这两条弦的中点分别为P ,Q ,若0DE MN ⋅= ,证明:直线PQ 过定点.【典例9】设12,F F 是双曲线()2222:10,0x y C a b a b-=>>的左、右两个焦点,O 为坐标原点,若点P 在双曲线C 的右支上,且1122,OP OF PF F == 的面积为3.(1)求双曲线C 的渐近线方程;(2)若双曲线C 的两顶点分别为()()12,0,,0A a A a -,过点2F 的直线l 与双曲线C 交于M ,N 两点,试探究直线1A M 与直线2A N 的交点Q 是否在某条定直线上?若在,请求出该定直线方程;若不在,请说明理由.1.已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2.在平面直角坐标系中,动点(),M x y 与定点()5,0F 的距离和M 到定直线16:5l x =的距离的比是常数54,设动点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)设()2,0P ,垂直于x 轴的直线与曲线C 相交于,A B 两点,直线AP 和曲线C 交于另一点D ,求证:直线BD 过定点.3.已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率为32,右焦点F.(1)求双曲线C 的方程;(2)若12,A A 分别是C 的左、右顶点,过F 的直线与C 交于,M N 两点(不同于12,A A ).记直线12,A M A N 的斜率分别为12,k k ,请问12k k 是否为定值?若是定值,求出该定值;若不是,请说明理由.4.已知椭圆C :()222210x y a b a b+=>>的左焦点为()11,0F -,上、下顶点分别为A ,B ,190AF B ∠=︒.(1)求椭圆C 的方程;(2)若椭圆上有三点P ,Q ,M 满足OM OP OQ =+uuu r uu u r uuu r ,证明:四边形OPMQ 的面积为定值.5.已知动圆M 过定点()2,0A ,且在y 轴上截得的弦长为4,圆心M 的轨迹为曲线L .(1)求L 的方程;(2)已知点()3,2B --,()2,1C ,P 是L 上的一个动点,设直线PB ,PC 与L 的另一交点分别为E ,F ,求证:当P 点在L 上运动时,直线EF 恒过一个定点,并求出这个定点的坐标.6.已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.7.在直角坐标系xOy 中,已知定点(0,1)F ,定直线:3l y =-,动点M 到直线l 的距离比动点M 到点F 的距离大2.记动点M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线?(2)设0(2,)P y 在C 上,不过点P 的动直线1l 与C 交于A ,B 两点,若90APB ∠=︒,证明:直线1l 恒过定点.8.椭圆()2222:10x y C a b a b+=>>的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C 的标准方程;(2)设F 为椭圆C 的左焦点,M 为直线3x =-上任意一点,过F 作MF 的垂线交椭圆C 于点P ,Q .证明:OM 经过线段PQ 的中点N .(其中O 为坐标原点)9.已知椭圆E :()222210x y a b a b +=>>的离心率为2,短轴长为2.(1)求E 的方程;(2)过点()4,0M -且斜率不为0的直线l 与E 自左向右依次交于点B ,C ,点N 在线段BC 上,且MB NBMC NC =,P 为线段BC 的中点,记直线OP ,ON 的斜率分别为1k ,2k ,求证:12k k 为定值.10.已知椭圆C :22221x y a b+=()0a b >>的右焦点为F ,过点F 作一条直线交C 于R ,S 两点,线段RS,C的离心率为2.(1)求C 的标准方程;(2)斜率不为0的直线l 与C 相交于A ,B 两点,(2,0)P ,且总存在实数R λ∈,使得PA PB PF PA PB λ⎛⎫ ⎪=+ ⎪⎝⎭ ,问:l 是否过一定点?若过定点,求出该定点的坐标11.已知椭圆C :()222210x y a b a b+=>>的右焦点为F ,圆O :222x y a +=,过F 且垂直于x 轴的直线被椭圆C 和圆O.(1)求C 的方程;(2)过圆O 上一点P (不在坐标轴上)作C 的两条切线1l ,2l ,记1l ,2l 的斜率分别为1k ,2k ,直线OP 的斜率为3k ,证明:()123k k k +为定值.12.已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点()2,1A .(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.圆锥曲线的定点、定值、定直线答案【典例1】解:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2),所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x .由题意可知直线l 的斜率存在且不为0,设直线l 的方程为y =kx +1(k ≠0).由241y x y kx ⎧=⎨=+⎩得()222410k x k x +-+=.依题意()2224410k k ∆=--⨯⨯>,解得k<0或0<k<1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(Ⅱ)设A (x 1,y 1),B (x 2,y 2).由(I )知12224k x x k -+=-,1221x x k =.直线PA 的方程为()112211y y x x --=--.令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--.同理得点N 的纵坐标为22121N kx y x -+=+-.由=QM QO λ ,=QN QO μ得=1M y λ-,1N y μ=-.所以()()()2212121212122224211111111=21111111M N k x x x x x x k k y y k x k x k x x k k λμ-+-+--+=+=+=⋅=⋅------.所以11λμ+为定值.【典例2】(1)依题意可设AB 的方程为2y kx =+,代人24x y =,得()242x kx =+,即2480x kx --=,设()()1122,,,A x y B x y ,则有128x x =-,直线AO 的方程为11,y y x BD x =的方程为2x x =,解得交点D 的坐标为1221,y x x x ⎛⎫⎪⎝⎭,注意到128x x =-及2114x y =,则有1121211824y x x y y x y -===-,因此D 点在定直线2y =-上()0x ≠.(2)依题意,切线l 的斜率存在且不等于0.设切线l 的方程为()0y ax b a =+≠,代人24x y =得,即2440x ax b --=.由0∆=得()24160a b +=,化简整理得2b a =-.故切线l 的方程可写为2y ax a =-.分别令2,2y y ==-,得12,N N 的坐标为1222,2,,2N a N a a a ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭,则22222212248MN MN a a a a ⎛⎫⎛⎫-=-+-+= ⎪ ⎪⎝⎭⎝⎭,即2221MN MN -为定值8.【典例3】(1)由题意得:(,0)2pF ,因为点B 的横坐标为4,且B 在x 轴的上方,所以B ,因为AB 的斜率为43,4342=-,整理得:80p +=,即0=,得2p =,抛物线C 的方程为:24y x =.(2)由(1)得:(4,4)B ,(1,0)F ,淮线方程1x =-,直线l 的方程:4(1)3y x =-,由24(1)34y x y x⎧=-⎪⎨⎪=⎩解得14x =或4x =,于是得1(,1)4A -.设点2(,)4n P n ,又题意1n ≠±且4n ≠±,所以直线PA :41114y x n ⎛⎫+=- ⎪-⎝⎭,令1x =-,得41n y n +=--,即41n HE n +=--,同理可得:444n HG n -=+,444414n n HG HE n n +-⋅=-⋅=-+.热点二定点问题【典例4】(1)解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得(1,M,N ,代入AB 方程223y x =-,可得(3,T ,由MT TH =得到(5,H -+.求得HN 方程:(2)23y x =+-,过点(0,2)-.②若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=,可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++-可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-【典例5】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -,(),0B a ,()0,1G ∴(),1AG a = ,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)[方法一]:设而求点法证明:设()06,P y ,则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭.同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022*******22000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=- ⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭.故直线CD 过定点3,02⎛⎫⎪⎝⎭.[方法二]【最优解】:数形结合设(6,)P t ,则直线PA 的方程为(3)9ty x =+,即930-+=tx y t .同理,可求直线PB 的方程为330--=tx y t .则经过直线PA 和直线PB 的方程可写为(93)(33)0-+--=tx y t tx y t .可化为()22292712180-+-+=txy txy ty .④易知A ,B ,C ,D 四个点满足上述方程,同时A ,B ,C ,D 又在椭圆上,则有2299x y -=-,代入④式可得()2227912180--+=t y txy ty .故()227912180⎡⎤--+=⎣⎦y t y tx t ,可得0y =或()227912180--+=t y tx t .其中0y =表示直线AB ,则()227912180--+=t y tx t 表示直线CD .令0y =,得32x =,即直线CD 恒过点3,02⎛⎫ ⎪⎝⎭.【整体点评】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.第二问的方法一最直接,但对运算能力要求严格;方法二曲线系的应用更多的体现了几何与代数结合的思想,二次曲线系的应用使得计算更为简单.【典例6】(Ⅰ)将点()2,1-代入抛物线方程:()2221p =⨯-可得:2p =,故抛物线方程为:24x y =-,其准线方程为:1y =.(Ⅱ)很明显直线l 的斜率存在,焦点坐标为()0,1-,设直线方程为1y kx =-,与抛物线方程24x y =-联立可得:2440x kx +-=.故:12124,4x x k x x +=-=-.设221212,,,44x x M x N x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,则12,44OM ON x x k k =-=-,直线OM 的方程为14x y x =-,与1y =-联立可得:14,1A x ⎛⎫- ⎪⎝⎭,同理可得24,1B x ⎛⎫- ⎪⎝⎭,易知以AB 为直径的圆的圆心坐标为:1222,1x x ⎛⎫+- ⎪⎝⎭,圆的半径为:1222x x -,且:()1212122222x x k x x x x ++==,12222x x -==,则圆的方程为:()()()2222141x k y k -++=+,令0x =整理可得:2230y y +-=,解得:123,1y y =-=,即以AB 为直径的圆经过y 轴上的两个定点()()0,3,0,1-.【总结提升】动直线l 过定点问题的常见思路设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k(x +m),故动直线过定点(-m,0).热点三定直线问题【典例7】(1)由题意21c =,得12c =,而221(1)4a a --=,所以2253,88a b ==所以椭圆的标准方程为2288153x y +=(2)设0000(,)(0,0)P x y x y >>,12(,0),(,0)F c F c -直线2PF 的直线方程为00y x c y x c -=-,当0x =时,00cy y x c-=⋅-,故Q 点坐标00(0,)cy x c-⋅-,由题意110F P FQ ⋅=得0000(,)(,)0cx c y c y x c-+⋅=-即2000()0cy x c c x c+-=-解得又P 点在曲线上,22002211x y a a +=-,解得2200,1x a y a ==-则P 点在定直线1x y +=.【典例8】(1)由题设1c =,又12||2F F c =,112||||AF A F a ==,若内切圆半径为r ,则外接圆半径为2r ,所以112()222r a c c b ⨯+=⨯⨯,即()r a c bc +=,222(2)4c r b r +-=,而222a b c =+,即24a rb =,综上,22()4a a c b c +=,即222(1)444a a b a +==-,可得2a =,所以24a =,23b =,则22:143x y C +=.(2)当直线斜率都存在时,令DE 为1x ky =-,联立22:143x y C +=,整理得:22(34)690k y ky +--=,且2144(1)0k ∆=+>,所以2634D E k y y k +=+,则28()234D E D E x x k y y k +=+-=-+,故2243,33)44(kk k P -++,由0DE MN ⋅= ,即DE MN ⊥,故MN 为1y x k =--,联立22:143x y C +=,所以2236(4)90y y k k ++-=,有2634M N k y y k +=-+,则228234M N M N y y k x x k k ++=--=-+,故22243,(34)34k kQ k k +--+,所以274(1)PQ k k k =-,则PQ 为222374()344(1)34k k y x k k k -=++-+,整理得2(74)4(1)k x k y +=-,所以PQ 过定点4(,0)7-;当一条直线斜率不存在时,P Q 对应1,O F ,故PQ 即为x 轴,也过定点4(,0)7-;综上,直线PQ 过定点.【典例9】(1)由12OP OF ==得2c =,且12PF PF ⊥所以12122,1.32PF PF a PF PF ⎧-=⎪⎨=⎪⎩()22221212124162PF PF c PF PF PF PF +===-+即241216a +=解得1,a =又2224,a b c b +===故双曲线的渐近线方程为by x a=±=.(2)由(1)可知双曲线的方程为2213y x -=.(i )当直线l 的斜率不存在时,()()2,3,2,3M N -,直线1A M 的方程为1y x =+,直线2A N 的方程为33y x =-+,联立直线1A M 与直线2A N 的方程可得13,22Q ⎛⎫⎪⎝⎭,(ii )当直线l 的斜率存在时,易得直线l 不和渐近线平行,且斜率不为0,设直线l 的方程为()(()()112220,,,,,y k x k k M x y N x y =-≠≠,联立()22213y k x y x ⎧=-⎪⎨-=⎪⎩得()222234430,k x k x k -+--=221212224430,,33k k x x x x k k +∴>+==-- ∴直线1A M 的方程为()1111y y x x =++,直线2A N 的方程为()2211yy x x =--,联立直线1A M 与直线2A N 的方程可得:()()21121111y x x x y x ++=--,两边平方得()()2222122121111y x x x y x ++⎛⎫= ⎪-⎝⎭-,又()()1122,,,M x y N x y 满足2213yx -=,()()()()()()()()()()()()222221212112122222121212121231111111111311x x y x x x x x x x x x x x x x y x xx-+++++++∴===---++---.22222222222222434143433394344343133k k k k k k k k k k k k k k ++++++---===++-+--+--,2119,12x x x +⎛⎫∴=∴= ⎪-⎝⎭,或2x =,(舍去).综上,Q 在定直线上,且定直线方程为12x =.解答题1.(Ⅰ)因为椭圆的右焦点为(1,0),所以1225;因为椭圆经过点(0,1)A ,所以1b =,所以2222a b c =+=,故椭圆的方程为2212x y +=.(Ⅱ)设1122(,),(,)P x y Q x y 联立2212(1)x y y kx t t ⎧+=⎪⎨⎪=+≠⎩得222(12)4220k x ktx t +++-=,21212224220,,1212kt t x x x x k k -∆>+=-=++,121222()212t y y k x x t k +=++=+,222212121222()12t k y y k x x kt x x t k -=+++=+.直线111:1y AP y x x --=,令0y =得111x x y -=-,即111x OM y -=-;同理可得221x ON y -=-.因为2OM ON =,所以1212121212211()1x x x x y y y y y y --==---++;221121t t t -=-+,解之得0=t ,所以直线方程为y kx =,所以直线l 恒过定点(0,0).2.(154=,即222162516(5)5x y x ⎛⎫-+=- ⎪⎝⎭,整理得221169x y -=;(2)解:设()11,A x y ,()11,B x y -,()22,D x y ,显然直线AP 斜率不为0,设直线AP 方程为2x my =+,联立2211692x y x my ⎧-=⎪⎨⎪=+⎩,消去x 并整理得()22916361080m y my -+-=,由题设29160m -≠且()22Δ(36)41089160m m =+⨯->,化简得243m >且2169m ≠,由韦达定理可得12236916m y y m -+=-,122108916y y m -=-,直线BD 的方程是()211121y y y y x x x x ++=--,令0y =得()()()21112212112112121222x x y y my y my x y x y x xy y y y y y -++++=+==+++()1212121212221082222836my y y y y y m m y y y y m++==⨯+=⨯+=++,所以直线BD 过定点()8,0.3.(1)设C 的半焦距为c ,由题意可知32c e a ==,又222+=a b c ,双曲线C 的一条渐近线方程为b y x a=bc a b =,故2225b c a =-=,所以229,4c a ==,所以双曲线C 的方程为22145x y -=.(2)由(1)可知()()()123,0,2,0,2,0F A A -.设直线MN 的方程为3x my =+,点()11,M x y ,点()22,N x y ,则11223,3x my x my =+=+.由221,453,x y x my ⎧-=⎪⎨⎪=+⎩得()225430250,m y my -++=,所以1212223025,5454m y y y y m m -+==--.121212,22y yk k x x ==+-,所以()()()()121211112122121212222122552y x y my y k x my y y y k x y my y my y y x -+++====+++-.又1212222530,5454my y y y m m -==---,所以22212222530545425554m my k m m m k y m -+---=+-22225154.255554my m m y m ---==-+-综上,12k k 为定值,且1215k k =-.4.(1)解:依题意1c =,又190AF B ∠=︒,所以1b c ==,所以a ,所以椭圆方程为2212x y +=.(2)证明:设(),M x y ,()11,P x y ,()22,Q x y ,因为OM OP OQ =+uuu r uu u r uuu r,所以四边形OPMQ 为平行四边形,且1212x x x y y y =+⎧⎨=+⎩,所以()()22121212x x y y +++=,即2212112122221222x x y y x x y y ⎛⎫⎛⎫+++ ⎪⎭+ ⎝⎝+⎭=⎪,又221112x y +=,222212x y +=,所以121212x x y y +=-,若直线PQ 的斜率不存在,M 与左顶点或右顶点重合,则P Q x x =P Q y y ==所以12222OPMQ P P S x y =⨯⨯,若直线PQ 的斜率存在,设直线PQ 的方程为y kx t =+,代入椭圆方程整理得()222124220k xktx t +++-=,所以()228210k t∆=+->,122412kt x x k -+=+,21222212t x x k -=+,所以()()()2212121212=++=+++y y kx t kx t k x x kt x x t222222241212t kt k kt t k k --⎛⎫=⋅+⋅+ ⎪++⎝⎭所以()22222224212211212t kt k kt t k k --⎛⎫+⋅+⋅+=- ⎪++⎝⎭,整理得22412t k =+,又12PQ x =-=又原点O 到PQ的距离d所以12POQS PQ d==,将22412t k=+代入得4POQS==,所以2POOP Q QMSS==综上可得,四边形OPMQ的面积为定值2.5.(1)解:设圆心(),C x y,圆的半径为R,则()()22222220R x x y=+=-+-,整理得24y x=.所以动圆圆心的轨迹方程为24y x=.(2)证明:抛物线的方程为24y x=,设2,4yD y⎛⎫⎪⎝⎭,121,4yE y⎛⎫⎪⎝⎭,222,4yF y⎛⎫⎪⎝⎭,则直线EF的方程为()1211221244y yy y x xy y--=--,得2111211121212124444x y y y xx xy yy y y y y y y y+-=-+=+++++,又2114y x=,所以直线EF的方程为1212124y yxyy y y y=+++.同理可得直线DE的方程为1010104y yxyy y y y=+++,直线DF的方程为022024y yxyy y y y=+++因为直线DE过点()3,2B--,所以()1101222y y y-=+;因为直线DF过点()2,1C,所以()22081y y y-=-.消去0y,得()121210433y y y y=++.代入EF的方程,得12411033y xy y⎛⎫=++⎪+⎝⎭,所以直线EF恒过一个定点110,33⎛⎫- ⎪⎝⎭.6.(1)由2y=-,可得()1F,∴c=,∴2a=,22b=,∴椭圆C 的方程为22142x y +=.(2)设()()1122,,,A x y B x y ,由22142y kx m x y =+⎧⎪⎨+=⎪⎩,可得()222214240+++-=k x mkx m ,∴()()()2224421240mk k m ∆=-+->,可得2242m k <+,2121222424,2121mk m x x x x k k -+=-=++,由直线1F A 与1F B 关于x 轴对称,∴110F A F B k k +=0=,∴((()(()(122112210y x y x kx m x kx m x ++=+++++,即()12122)0kx x m x x ++++=,∴2222442)202121m mk k m k k -⎛⎫⨯++-+= ++⎝⎭,可得m =,所以直线l方程为(y k x =+,恒过定点()-.7.(1)因为动点M 到直线l 的距离比到F 的距离大2,故M 到F 的距离与M 到直线:1m y =-的距离相等,所以M 的轨迹C 是以F 为焦点m 为准线的抛物线,因此2:4C x y =,C 是顶点为原点开口向上的抛物线.(2)因为P 在C 上故()2,1P ,设221212:,,,,44x x AB y kx b A x B x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,联立方程24y kx bx y=+⎧⎨=⎩,可得2440x kx b --=,()()21212161601,4,42k b x x k x x b =+>+==- ,2212121144122PA PBx x k k x x --⋅=⋅=---,将(2)代入化简得:25b k =+或21b k =-+,以上均可满足(1)式,所以直线方程为:()25y k x =++或()21y k x =-+,直线分别过定点()2,5-或()2,1,又()2,1P ,所以直线1l 恒过定点()2,5-.8.(1)解:由题意可得2c =,短轴的两个端点与长轴的一个端点构成正三角形,可得2a b,即有a =,又2224c a b =-=,解得a =,b ,所以椭圆方程为22162x y +=;(2)证明:设(3,)M m -,11(,)P x y ,22(,)Q x y ,PQ 的中点为00(,)N x y ,MF k m =-,由(2,0)F -,可设直线PQ 的方程为2x my =-,代入椭圆方程可得22(3)420m y my +--=,即有12243m y y m +=+,12223y y m =-+,则()212121222412224433m x x my my m y y m m -+=-+-=+-=-=++,于是2262,33m N m m ⎛⎫-⎪++⎝⎭,则直线ON 的斜率3ON mk =-,又3OM mk =-,可得OM ON k k =,则O ,N ,M 三点共线,即有OM 经过线段PQ 的中点.9.(1)由椭圆E :()222210x y a b a b +=>>2,可知22c b a =,则22231,44b a a -=∴=,故E 的方程为2214x y +=;(2)证明:由题意可知直线l 的斜率一定存在,故设直线l 的方程为(4)y k x =+,设11223300(,),(,),(,),(,)B x y C x y N x y P x y ,联立2214(4)x y y k x ⎧+=⎪⎨⎪=+⎩,可得2222(41)326440k x k x k +++-=,22116(112)0,012k k ∆=->∴<<,则2212122232644,4141k k x x x x k k --+==++,所以220002222164164,,(,)414114)4(41k k k kx y x P k k k k k --==∴++++=+,又MB NBMCNC=,所以31122344x x x x x x -+=+-,解得2222121233212264432424()41411,3328841k k x x x x k k x y k k x x k --⨯+⨯++++===-=-++++,从而(1,3)N k -,故03120313(3)44y y k k k x x k ⋅=⋅=-⨯-=,即12k k 为定值.10.(1)由线段RS22b a =又c a =22212a b a -=,解得222,1,a b ⎧=⎨=⎩所以C 的标准方程为2212x y +=.(2)由PA PB PF PA PB λ⎛⎫ ⎪=+ ⎪⎝⎭,可知PF 平分APB ∠,∴0PA PB k k +=.设直线AB 的方程为x my t =+,()11,A my t y +,()22,B my t y +,由2222x my t x y =+⎧⎨+=⎩得()2222220m y mty t +++-=,()22820m t ∆=-+>,即222m t >-,∴12222mt y y m -+=+,212222t y y m -=+,∴1212022PA PB y y k k my t my t +=+=+-+-,∴()()1212220my y t y y +-+=,∴()()222220m t t mt ---⋅=,整理得()410m t -=,∴当1t =时,上式恒为0,即直线l 恒过定点()1,0Q .11.(1)设椭圆C 的半焦距为()0c c >,过F 且垂直于x 轴的直线被椭圆C 所截得的弦长分223b a =;过F 且垂直于x 轴的直线被圆O所截得的弦长分别为=,又222a cb -=,解得a b ⎧⎪⎨⎪⎩C 的方程为22132x y +=.(2)设()()0000,0≠P x y x y ,则22003x y +=.①设过点P 与椭圆C 相切的直线方程为()00y y k x x -=-,联立()2200236x y y y k x x ⎧+=⎪⎨-=-⎪⎩得()()()2220000326320k x k y kx x y kx ⎡⎤++-+--=⎣⎦,则()()()22200006432320k y kx k y kx ⎡⎤∆=--⨯+⨯--=⎡⎤⎣⎦⎣⎦,整理得()22200003220x k x y k y --+-=.②由题意知1k ,2k 为方程②的两根,由根与系数的关系及①可得0000012220002223x y x y x k k x y y +===---.又因为030OP y k k x ==,所以()001230022x y k k k y x +=-⋅=-,所以()123k k k +为定值2-.12.(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)[方法一]:通性通法设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+,代入椭圆方程消去y 并整理得:()222124260k x kmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=,根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264121401212m kmk km k m k k-⎛⎫++---+-+= ⎪++⎝⎭,整理化简得()()231210k m k m +++-=,因为(2,1)A 不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -,由·0AM AN =得:()()()()111122110x x y y --+---=,得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=,解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭.令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP ==若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值.[方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为22(2)(1)163x y +++=,设直线MN 的方程为4mx ny +=.将直线MN 方程与椭圆方程联立得224240x x y y +++=,即22()2()0x mx ny x y mx ny y +++++=,化简得22(2)()(1)0n y m n xy m x +++++=,即2(2)()(1)0y y n m n m x x ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,M x y N x y ,因为AM AN ⊥则1212AM AN y y k k x x ⋅=⋅112m n +==-+,即3m n =--.代入直线MN 方程中得()340n y x x ---=.则在新坐标系下直线MN 过定点44,33⎛⎫-- ⎪⎝⎭,则在原坐标系下直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 的中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==[方法三]:建立曲线系A 点处的切线方程为21163x y⨯⨯+=,即30x y +-=.设直线MA 的方程为11210k x y k --+=,直线MB 的方程为22210k x y k --+=,直线MN 的方程为0kx y m -+=.由题意得121k k ×=-.则过A ,M ,N 三点的二次曲线系方程用椭圆及直线,MA MB 可表示为()()22112212121063x y k x y k k x y k λ⎛⎫+-+--+--+= ⎪⎝⎭(其中λ为系数).用直线MN 及点A 处的切线可表示为()(3)0kx y m x y μ-+⋅+-=(其中μ为系数).即()()22112212121()(3)63x y k x y k k x y k kx y m x y λμ⎛⎫+-+--+--+=-++- ⎪⎝⎭.对比xy 项、x 项及y 项系数得()()()121212(1),4(3),21(3).k k k k k m k k k m λμλμλμ⎧+=-⎪++=-⎨⎪+-=+⎩①②③将①代入②③,消去,λμ并化简得3210m k ++=,即2133m k =--.故直线MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP为直径的圆上.AP 中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==[方法四]:设()()1122,,,M x y N x y .若直线MN 的斜率不存在,则()()1111,,,M x y N x y -.因为AM AN ⊥,则0AM AN ⋅=,即()1221210x y -+-=.由2211163x y +=,解得123x =或12x =(舍).所以直线MN 的方程为23x =.若直线MN 的斜率存在,设直线MN 的方程为y kx m =+,则()()()222122()6120x kx m k x x x x ++-=+--=.令2x =,则()()1222(21)(21)2212k m k m x x k +-++--=+.又()()221221262y m y y y y y k k -⎛⎫⎛⎫+-=+-- ⎪ ⎪⎝⎭⎝⎭,令1y =,则()()122(21)(21)1112k m k m y y k +--+---=+.因为AM AN ⊥,所以()()()()12122211AM AN x x y y ⋅=--+-- 2(21)(231)12k m k m k +-++=+0=,即21m k =-+或2133m k =--.当21m k =-+时,直线MN 的方程为21(2)1y kx k k x =-+=-+.所以直线MN 恒过(2,1)A ,不合题意;当2133m k =--时,直线MN 的方程为21213333y kx k k x ⎛⎫=--=-- ⎪⎝⎭,所以直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭.综上,直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭,所以||3AP =.又因为AD MN ⊥,即AD AP ⊥,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为41,33Q ⎛⎫ ⎪⎝⎭,则1||||2DQ AP ==所以存在定点Q ,使得||DQ 为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法;方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为4mx ny +=,再通过与椭圆方程联立,构建齐次式,由韦达定理求出,m n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线:MN y kx m =+,再利用过点,,A M N 的曲线系,根据比较对应项系数可求出,m k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解()()1222--x x 以及()()1211y y --的计算.。
圆锥曲线中的定点和定值问题(毛玉峰)
圆锥曲线中的定点和定值问题泰兴市第二高级中学毛玉峰圆锥曲线是解析几何的重要内容之一 ,是高考的重点考查内容•这部分知识综合性较强,对学生 逻辑思维能力、计算能力等要求很高 ,特别是圆锥曲线中的定点与定值问题,此类问题主要涉及到直 线、圆、圆锥曲线等方面的知识,渗透了函数、化归、数形结合等思想,是高考的热点题型之一 . 【要点梳理】1.解析几何中,定点、定值问题是高考命题的一个热点,也是一个难点,解决这类问题基本思想是 明确的,那就是定点、定值必然是在变化中所表现出来的不变量,所以可运用函数的思想方法,选 定适当的参数,结合等式的恒成立求解,也就是说与题中的可变量无关。
2.椭圆中常见的定值结论:校际交流材料结论 1:经过原点的直线1与椭圆x ~~2 ay b 2 1(a 点,直线 PM ,PN 的斜率都存在,则kPM*PN 为定值结论 x 22:已知M ,N 是椭圆—- 2 y_■ 2 1(ab 0b 0)相交于M,N 两点,P 是椭圆上的动 两点,P 是M,N 的中点,直线MN,OP 的2 2结论3:设A, B, C 是椭圆—2 y ? a bM ,N 两点,则1(ab 0)上的三个不同点,B,C 关于x 轴对称,直线AB, AC 分别与x 轴交于OMgDN 为定值a 2.结论2x4:过椭圆— a 2y_ b 21(a b 0)上一点P (x o , y o )上任意作两条斜率互为相反数的直线交椭圆于 M ,N 两点,则直线 MN 的斜率为定值b冷 2 a y o结论2x5:分别过椭圆—a2y''21(a b 0)上两点P (x °,y °),Q (x °,y 。
)作两条斜率互为相反数的直线交椭圆于 M,N 两点,则直线 MN 的斜率为定值b (x° x 。
)a 2(y 。
y 。
)3.定点问题:对圆锥曲线中定点的确定,通常设出适当的参数,求出相应曲线系(直线系)方程, 利用定点对参变量方程恒成立的特点,列出方程(组),从而确定出定点或者也可以对参变量取特殊值确定出定点,再进行一般性证明.22a b b 2斜率都存在,则k MN 広“为定值2 .a4.定值问题:求证或判断某几何量是否为定值时,可引进适当的参变量,直接求出相应几何量的值,说明或证明其为定值(与参变量无关)下面结合具体例子加以说明•例 1.已知圆G:(x 1)2 y2 1 和圆C2: (x 4)2 y2 4 .(1)过圆心G作倾斜角为的直线I交圆C2于A,B两点,且A为GB的中点,求sin ;(2)过点P(m,1)引圆C2的两条割线b和12,直线l i和12被圆C2截得的弦的中点分别为M,N.试问过点P,M,N,C2的圆是否过定点(异于点C2 )?若过定点,求出该定点;若不过定点,说明理由;【解析】(1)(解略)(2)依题意,过点P,M , N,C2的圆即为以PC2为直径的圆,所以(x 4)( x m)(y 1)(y0) 0 ,即 2 x2(m 4)x 4m y y 0整理成关于实数m的等式(4x)m x24x y2 y 0恒成立4x0x 4 , x4则2 2,所以或即存在定点(4,1).x 4x y y0y 0 y1小结:本题列出了圆系方程,再整理成关于参变量的方程,列出方程组,得出定点。
圆锥曲线中定点定值定直线问题(解析版)--2024高考数学常考题型精华版
圆锥曲线中定点定值定直线问题【考点分析】考点一:直线过定点问题①设直线为m kx y +=,根据题目给出的条件找出m 与k 之间的关系即可②求出两点的坐标(一般含参数),再求出直线的斜率,利用点斜式写出直线的方程,再化为()()n m x k f y +-=的形式,即可求出定点。
考点二:定值问题探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.③求斜率,面积等定值问题,把斜率之和,之积,面积化为坐标之间的关系,再用韦达定理带入化简一般即可得到定值考点三:定直线问题①一般设出点的坐标,写出两条直线的方程,两直线的交点及两个直线中的y x ,相同,然后再用韦达定理带入化简即可得y x ,的关系即为定直线【题型目录】题型一:直线圆过定点问题题型二:斜率面积等定值问题题型三:定直线问题【典型例题】题型一:直线过定点问题【例1】已知点()1,1P 在椭圆()2222:10x y C a b a b+=>>上,椭圆C 的左右焦点分别为1F ,2F ,12PF F △的面(1)求椭圆C 的方程;(2)设点A ,B 在椭圆C 上,直线PA ,PB 均与圆()222:01O x y r r +=<<相切,记直线PA ,PB 的斜率分别为1k ,2k .(i )证明:121k k =;(ii )证明:直线AB 过定点.,即可求椭圆若10m k +-=,则直线():111AB y kx k k x =+-=-+,此时AB 过点P ,舍去.若330m k ++=,则直线():3333AB ykx k k x =--=--,此时AB 恒过点()3,3-,所以直线AB 过定点()3,3-.【例2】已知椭圆()2222:10x y C a b a b +=>>,一个焦点1F 与抛物线2y =-的焦点重合.(1)求椭圆C 的方程;(2)若直线:l y kx m =+交C 于,A B 两点,直线1F A 与1F B 关于x 轴对称,证明:直线l 恒过一定点.【例3】已知椭圆22:1(0)C a b a b+=>>的上顶点为P ,右顶点为Q ,其中POQ △的面积为1(O 为原点),椭圆C(1)求椭圆C 的方程;(2)若不经过点P 的直线l 与椭圆C 交于A ,B 两点,且0PA PB ⋅=,求证:直线l 过定点.【例4】已知椭圆C :221(0)x y a b a b+=>>过点()2,0A -.右焦点为F ,纵坐标为2的点M 在C 上,且AF ⊥MF .(1)求C 的方程;(2)设过A 与x 轴垂直的直线为l ,纵坐标不为0的点P 为C 上一动点,过F 作直线PA 的垂线交l 于点Q ,证明:直线PQ 过定点.的坐标代入椭圆【点睛】求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.【例5】已知椭圆C :22221x y a b +=(0a b >>)的离心率为2,其左、右焦点分别为1F ,2F ,T 为椭圆C 上任意一点,12TF F △面积的最大值为1.(1)求椭圆C 的标准方程;(2)已知()0,1A ,过点10,2⎛⎫⎪⎝⎭的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 与x 轴的交点分别为P ,Q ,证明:以PQ 为直径的圆过定点.【题型专练】1.已知椭圆()2222:10x y C a b a b+=>>的短轴长为A 到右焦点F 的距离为3.(1)求椭圆C 的方程(2)设直线l 与椭圆C 交于不同两点M ,N (不同于A ),且直线AM 和AN 的斜率之积与椭圆的离心率互为相反数,求证:l 经过定点.2.已知椭圆()2222:10x y C a b a b +=>>的离心率为3,且过点()3,1A .(1)求椭圆C 的方程;(2)点M ,N 在椭圆C 上,且AM AN ⊥.证明:直线MN 过定点,并求出该定点坐标.的方程3.已知椭圆22:1(0)x y E a b a b+=>>的左,右焦点分别为1F ,2F ,且1F ,2F 与短轴的两个端点恰好为正方形的四个顶点,点2P ⎛ ⎝⎭在E 上.(1)求E 的方程;(2)过点2F 作互相垂直且与x 轴均不重合的两条直线分别交E 于点A ,B 和C ,D ,若M ,N 分别是弦AB ,CD 的中点,证明:直线MN 过定点.4.焦距为2c 的椭圆2222:1x y a bΓ+=(a >b >0),如果满足“2b =a +c ”,则称此椭圆为“等差椭圆”.(1)如果椭圆2222:1x y a b Γ+=(a >b >0)是“等差椭圆”,求b a的值;(2)对于焦距为12的“等差椭圆”,点A 为椭圆短轴的上顶点,P 为椭圆上异于A 点的任一点,Q 为P 关于原点O 的对称点(Q 也异于A ),直线AP 、AQ 分别与x 轴交于M 、N 两点,判断以线段MN 为直径的圆是否过定点?说明理由.题型二:斜率面积等定值问题【例1】动点M 与定点(1,0)A 的距离和M 到定直线4x =的距离之比是常数12.(1)求动点M 的轨迹G 的方程;(2)经过定点(2,1)M -的直线l 交曲线G 于A ,B 两点,设(2,0)P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +恒为定值.【例2】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点()0,1Q x 在椭圆上且位于第一象限,12QF F 121QFQF ⋅=-.(1)求椭圆C 的标准方程;(2)若M ,N 是椭圆C 上异于点Q 的两动点,记QM ,QN 的倾斜角分别为α,β,当αβπ+=时,试问直线MN 的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.【例3】已知点()2,1P -在椭圆2222:1(0)x yC a b a b +=>>上,C 的长轴长为2:l y kx m =+与C 交于,A B 两点,直线,PA PB 的斜率之积为14.(1)求证:k 为定值;(2)若直线l 与x 轴交于点Q ,求22||QA QB +的值.【例4】已知椭圆()22:10x y C a b a b+=>>的离心率23e =,且椭圆C 的右顶点与抛物线212y x =的焦点重合.(1)求椭圆C 的方程.(2)若椭圆C 的左、右顶点分别为12,A A ,直线():1l y k x =-与椭圆C 交于E ,D 两点,且点E 的纵坐标大于0,直线12,A E A D 与y 轴分别交于()()0,,0,P Q P y Q y 两点,问:P Qy y 的值是否为定值?若是,请求出该定值;若不是,请说明理由.【例5】已知椭圆()22:10x y C a b a b+=>>的左、右顶点分别为,A B ,且AB 4=,离心率为12,O 为坐标原点.(1)求椭圆C 的方程;(2)设P 是椭圆C 上不同于,A B 的一点,直线,PA PB 与直线4x =分别交于点,M N .证明:以线段MN 为直径作圆被x 轴截得的弦长为定值,并求出这个定值.【例6】已知P 为圆22:4M x y +=上一动点,过点P 作x 轴的垂线段,PD D 为垂足,若点Q 满足DQ =.(1)求点Q 的轨迹方程;(2)设点Q 的轨迹为曲线C ,过点()1,0N -作曲线C 的两条互相垂直的弦,两条弦的中点分别为E F 、,过点N 作直线EF 的垂线,垂足为点H ,是否存在定点G ,使得GH 为定值?若存在,求出点G 的坐标;若不存在,请说明理由.-.【点睛】方法点睛:直线与圆锥曲线位置关系的题目,往往需要联立两者方程,利用韦达定理解决相应关系,其中的计算量往往较大,需要反复练习,做到胸有成竹.【例7】已知椭圆C :()222210x y a b a b+=>>的右焦点为,F P 在椭圆C 上,PF 的最大值与最小值分别是6和2.(1)求椭圆C 的标准方程.(2)若椭圆C 的左顶点为A ,过点F 的直线l 与椭圆C 交于,B D (异于点A )两点,直线,AB AD 分别与直线8x =交于,M N 两点,试问MFN ∠是否为定值?若是,求出该定值;若不是,请说明理由.【题型专练】1.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.【点睛】方法点睛:探究性问题求解的思路及策略:(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.2.已知椭圆C :()222210x y a b a b+=>>过点()2,1D ,且该椭圆长轴长是短轴长的二倍.(1)求椭圆C 的方程;(2)设点D 关于原点对称的点为A ,过点()4,0B -且斜率存在的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线4x =-于点P ,Q ,求证PBBQ为定值.3.如下图,过抛物线22(0)y px p =>上一定点000(,)(0)P x y y >,作两条直线分别交抛物线于11(,)A x y ,22(,)B x y .(1)求该抛物线上纵坐标为2p的点到其焦点F 的距离;(2)当PA 与PB 的斜率存在且倾斜角互补时,求12+y y y 的值,并证明直线AB 的斜率是非零常数.由抛物线定义可知抛物线上一点到焦点距离等于到准线距离,即可求出结果4.如图,椭圆214x y +=的左右焦点分别为1F ,2F ,点()00,P x y 是第一象限内椭圆上的一点,经过三点P ,1F ,2F 的圆与y 轴正半轴交于点()10,A y ,经过点(3,0)B 且与x 轴垂直的直线l 与直线AP 交于点Q .(1)求证:011(2)试问:x轴上是否存在不同于点B的定点M,满足当直线MP,MQ的斜率存在时,两斜率之积为定值?若存在定点M,求出点M的坐标及该定值;若不存在,请说明理由.Q5.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,点(1,0)F 为椭圆的右焦点,点P 在椭圆上,且在x 轴上方,PF x ⊥轴,斜率为12的直线l 交C 于,M N 两点,(1)若直线l 过点F ,求PMN 的面积.(2)直线PM 和PN 的斜率分别为1k 和2k ,当直线l 平行移动时,12k k +是否为定值?若是,请求出该定值,若不是,请说明理由.6.已知椭圆22Γ:1a b+=()0a b >>的左焦点为()1,0F -,左、右顶点及上顶点分别记为A 、B 、C ,且1CF CB ⋅= .(1)求椭圆Γ的方程;(2)设过F 的直线PQ 交椭圆Γ于P 、Q 两点,若直线PA 、QA 与直线l :40x +=分别交于M 、N 两点,l 与x 轴的交点为K ,则MK KN ⋅是否为定值?若为定值,请求出该定值;若不为定值,请说明理由.7.已知平面上一动点P 到()2,0F 的距离与到直线6x =的距离之比为3.(1)求动点P 的轨迹方程C ;(2)曲线C 上的两点()11,A x y ,()22,B x y ,平面上点()2,0E -,连结PE ,PF 并延长,分别交曲线C 于点A ,B ,若1PE EA λ= ,2PF FB λ=,问,12λλ+是否为定值,若是,请求出该定值,若不是,请说明理由.8.已知椭圆2:14x C y +=,过点0,2M ⎛⎫- ⎪⎝⎭直线1l ,2l 的斜率为1k ,2k ,1l 与椭圆交于()11,A x y ,()22,B x y 两点,2l 与椭圆交于()33,C x y ,()44,D x y 两点,且A ,B ,C ,D 任意两点的连线都不与坐标轴平行,直线12y =-交直线AC ,BD 于P ,Q .(1)求证:1122341234k x x k x x x x x x =++;(2)PM QM的值是否是定值,若是,求出定值;若不是,请说明理由.【答案】(1)证明见解析k9.已知椭圆22:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F 且离心率为12,椭圆C 的长轴长为4.(1)求椭圆C 的标准方程;(2)设,A B 分别为椭圆的左、右顶点,过点B 作x 轴的垂线1l ,D 为1l 上异于点B 的一点,以线段BD 为直径作圆E ,若过点2F 的直线2l (异于x 轴)与圆E 相切于点H ,且2l 与直线AD 相交于点,P 试判断1PF PH +是否为定值,并说明理由.))可知()()()222,0,2,0,1,0A B F F H -=,112212PF PH PF PF F H PF PF +=+-=+()()2,0,E m m ≠则()2,2,D m 圆E 的半径为则直线AD 直线方程为(2)2my x =+,的方程为1,x ty =+10.已知椭圆()22:10x y C a b a b+=>>的左顶点和上顶点分别为A 、B ,直线AB 与圆22:3O x y +=相切,切点为M ,且2AM MB =.(1)求椭圆C 的标准方程;(2)过圆O 上任意一点P 作圆O 的切线,交椭圆C 于E 、F 两点,试判断:PE PF ⋅是否为定值?若是,求出该值,并证明;若不是,请说明理由.11.已知椭圆22:1(0)x y C a b a b+=>>,左、右焦点分别为()11,0F -、()21,0F ,左、右顶点分别为,A B ,若T 为椭圆上一点,12FTF ∠的最大值为π3,点P 在直线4x =上,直线PA 与椭圆C 的另一个交点为M ,直线PB 与椭圆C 的另一个交点为N ,其中,M N 不与左右顶点重合.(1)求椭圆C 的标准方程;(2)从点A 向直线MN 作垂线,垂足为Q ,证明:存在点D ,使得DQ 为定值.题型三:定直线问题【例1】已知如图,长为宽为12的矩形ABCD,以为,A B焦点的椭圆2222:1x yMa b+=恰好过,C D两点,(1)求椭圆M的标准方程;(2)根据(1)所得椭圆M的标准方程,若AB是椭圆M的左右顶点,过点(1,0)的动直线l交椭圆M与CD两点,试探究直线AC与BD的交点是否在一定直线上,若在,请求出该直线方程,若不在,请说明理由.【例2】已知椭圆:C22221x ya b+=(0a b>>)的离心率为23,且⎭为C上一点.(1)求C的标准方程;(2)点A,B分别为C的左、右顶点,M,N为C上异于A,B的两点,直线MN不与坐标轴平行且不过坐标原点O,点M关于原点O的对称点为M',若直线AM'与直线BN相交于点P,直线OP与直线MN相交于点Q,证明:点Q位于定直线上.【例3】已知1F 为椭圆2222:1(0)x y C a b a b+=>>的左焦点,直线y =与C 交于A ,B 两点,且1ABF 的周长为4+ 2.(1)求C 的标准方程;(2)若(2,1)P 关于原点的对称点为Q ,不经过点P 且斜率为12的直线l 与C 交于点D ,E ,直线PD 与QE 交于点M ,证明:点M 在定直线上.【题型专练】1.已知椭圆C :()222210x y a b a b +=>>2H ⎛ ⎝⎭是C 上一点.(1)求C 的方程.(2)设A ,B 分别为椭圆C 的左、右顶点,过点()1,0D 作斜率不为0的直线l ,l 与C 交于P ,Q 两点,直线AP 与直线BQ 交于点M ,记AP 的斜率为1k ,BQ 的斜率为2k .证明:①1k k 为定值;②点M 在定直线上.C2.已知()()1,0,1,0B C -为ABC 的两个顶点,P 为ABC 的重心,边,AC AB 上的两条中线长度之和为6.(1)求点P 的轨迹T 的方程.(2)已知点()()()3,0,2,0,2,0N E F --,直线PN 与曲线T 的另一个公共点为Q ,直线EP 与FQ 交于点M ,试问:当点P 变化时,点M 是否恒在一条定直线上?若是,请证明;若不是,请说明理由.3.已知椭圆C :()222210x y a b a b +=>>的离心率为2,左顶点为1A ,左焦点为1F ,上顶点为1B ,下顶点为2B ,M 为C 上一动点,11M AF △1.(1)求椭圆C 的方程;(2)过()0,2P 的直线l 交椭圆C 于D ,E 两点(异于点1B ,2B ),直线1B E ,2B D 相交于点Q ,证明:点Q 在一条平行于x 轴的直线上.。
圆锥曲线中的定点、定值问题
圆锥曲线中的定点、定值问题
1、几个常见的定点模型
若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.
(1)对于椭圆()上异于右顶点的两动点,,
以为直径的圆经过右顶点,则直线过定点.
同理,当以为直径的圆过左顶点时,直线过定点.
(2)对于双曲线上异于右顶点的两动点,,以为直径的圆经过右顶点,则直线过定点.同理,对于左顶点,则定点为.
(3)对于抛物线上异于顶点的两动点,,
若,则弦所在直线过点.
同理,抛物线上异于顶点的两动点,,若,则直线过定点.
2、几个常见的定值模型
在圆锥曲线(椭圆、双曲线、抛物线)中,曲线上的一定点(非顶点)与曲线上的两动点,满足直线与的斜率互为相反数(倾斜角互补),则直线的斜率为定值.
(1)在椭圆中:已知椭圆,定点()在椭圆上,设,是椭圆上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
(2)在双曲线:中,定点()在双曲线上,设,是双曲线上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
(3)在抛物线:,定点()在抛物线上,设,是抛物线上的两个动点,直线,的斜率分别为,,且满足.则直线的斜率.
3、解题导语
解决定点、定值问题的关键是检测数学运算的能力,所以只
要细致、耐心的计算就可以得到答案。
又因为此种问题找得分点比较容易,所以千万不要放弃。
2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)
圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.2024年高考数学专项复习圆锥曲线中的定点、定值和定直线问题(解析版)3如图,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN 若存在,求出该定点坐标,若不存在,请说明理由.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.2双曲线C:x2a2-y2b2=1(a>0,b>0)的左顶点为A,焦距为4,过右焦点F作垂直于实轴的直线交C于B、D两点,且△ABD是直角三角形.(1)求双曲线C的方程;(2)已知M,N是C上不同的两点,MN中点的横坐标为2,且MN的中垂线为直线l,是否存在半径为1的定圆E,使得l被圆E截得的弦长为定值,若存在,求出圆E的方程;若不存在,请说明理由.3已知双曲线C:x2a2-y2b2=1a>0,b>0的右焦点,右顶点分别为F,A,B0,b,AF=1,点M在线段AB上,且满足BM=3MA,直线OM的斜率为1,O为坐标原点.(1)求双曲线C的方程.(2)过点F的直线l与双曲线C的右支相交于P,Q两点,在x轴上是否存在与F不同的定点E,使得EP⋅FQ=EQ⋅FP恒成立?若存在,求出点E的坐标;若不存在,请说明理由.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF =0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.5已知双曲线C :x 2-y 2b2=1b >0 的左、右焦点分别为F 1,F 2,A 是C 的左顶点,C 的离心率为2.设过F 2的直线l 交C 的右支于P 、Q 两点,其中P 在第一象限.(1)求C 的标准方程;(2)若直线AP 、AQ 分别交直线x =12于M 、N 两点,证明:MF 2 ⋅NF 2 为定值;(3)是否存在常数λ,使得∠PF 2A =λ∠PAF 2恒成立?若存在,求出λ的值;否则,说明理由.三、抛物线定点问题1已知动圆M 恒过定点F 0,18 ,圆心M 到直线y =-14的距离为d ,d =MF +18.(1)求M 点的轨迹C 的方程;(2)过直线y =x -1上的动点Q 作C 的两条切线l 1,l 2,切点分别为A ,B ,证明:直线AB 恒过定点.2已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1焦点,且l 1与C 2相切.(1)求抛物线C 1的方程;(2)动点M 在C 1的准线上,动点A 在C 1上,若C 1在点A 处的切线l 2交y 轴于点B ,设MN =MA +MB ,证明点N 在定直线上,并求该定直线的方程.3已知直线l1:x-y+1=0过椭圆C:x24+y2b2=1(b>0)的左焦点,且与抛物线M:y2=2px(p>0)相切.(1)求椭圆C及抛物线M的标准方程;(2)直线l2过抛物线M的焦点且与抛物线M交于A,B两点,直线OA,OB与椭圆的过右顶点的切线交于M,N两点.判断以MN为直径的圆与椭圆C是否恒交于定点P,若存在,求出定点P的坐标;若不存在,请说明理由.4在平面直角坐标系中,已知圆心为点Q的动圆恒过点F(0,1),且与直线y=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(1)求曲线Γ的方程;(2)P为直线l:y=y0y0<0上一个动点,过点P作曲线Γ的切线,切点分别为A,B,过点P作AB的垂线,垂足为H,是否存在实数y0,使点P在直线l上移动时,垂足H恒为定点?若不存在,说明理由;若存在,求出y0的值,并求定点H的坐标.5已知抛物线C :y 2=2px p >0 ,直线x +y +1=0与抛物线C 只有1个公共点.(1)求抛物线C 的方程;(2)若直线y =k x -p 2与曲线C 交于A ,B 两点,直线OA ,OB 与直线x =1分别交于M ,N 两点,试判断以MN 为直径的圆是否经过定点?若是,求出定点坐标;若不是,请说明理由.四、椭圆定值问题1已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =12,短轴长为23.(1)求椭圆C 的方程;(2)已知经过定点P 1,1 的直线l 与椭圆相交于A ,B 两点,且与直线y =-34x 相交于点Q ,如果AQ =λAP ,QB =μPB ,那么λ+μ是否为定值?若是,请求出具体数值;若不是,请说明理由.2在椭圆C :x 2a 2+y 2b2=1(a >b >0)中,其所有外切矩形的顶点在一个定圆Γ:x 2+y 2=a 2+b 2上,称此圆为椭圆的蒙日圆.椭圆C 过P 1,22,Q -62,12 .(1)求椭圆C 的方程;(2)过椭圆C 的蒙日圆上一点M ,作椭圆的一条切线,与蒙日圆交于另一点N ,若k OM ,k ON 存在,证明:k OM ⋅k ON 为定值.3已知O 为坐标原点,定点F 1-1,0 ,F 21,0 ,圆O :x 2+y 2=2,M 是圆内或圆上一动点,圆O 与以线段F 2M 为直径的圆O 1内切.(1)求动点M 的轨迹方程;(2)设M 的轨迹为曲线E ,若直线l 与曲线E 相切,过点F 2作直线l 的垂线,垂足为N ,证明:ON 为定值.4设椭圆E :x 2a 2+y 2b2=1a >b >0 过点M 2,1 ,且左焦点为F 1-2,0 .(1)求椭圆E 的方程;(2)△ABC 内接于椭圆E ,过点P 4,1 和点A 的直线l 与椭圆E 的另一个交点为点D ,与BC 交于点Q ,满足AP QD =AQ PD ,证明:△PBC 面积为定值,并求出该定值.5椭圆C :x 2a 2+y 2b2=1的右焦点为F (1,0),离心率为12.(1)求椭圆C 的方程;(2)过F 且斜率为1的直线交椭圆于M ,N 两点,P 是直线x =4上任意一点.求证:直线PM ,PF ,PN 的斜率成等差数列.五、双曲线定值问题1在平面直角坐标系xOy中,圆F1:x+22+y2=4,F22,0,P是圆F1上的一个动点,线段PF2的垂直平分线l与直线PF1交于点M.记点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点F2作与x轴不垂直的任意直线交曲线C于A,B两点,线段AB的垂直平分线交x轴于点H,求证:ABF2H为定值.2已知双曲线x2-y2=1的左、右顶点分别为A1,A2,动直线l:y=kx+m与圆x2+y2=1相切,且与双曲线左、右两支的交点分别为P1(x1,y1),P2(x2,y2).(1)求k的取值范围;(2)记直线P1A1的斜率为k1,直线P2A2的斜率为k2,那么k1k2是定值吗?证明你的结论.3已知P 是圆C :(x +2)2+y 2=12上一动点,定点M (2,0),线段PM 的垂直平分线n 与直线PC 交于点T ,记点T 的轨迹为C .(1)求C 的方程;(2)若直线l 与曲线C 恰有一个共点,且l 与直线l 1:y =33x ,l 2:y =-33x 分别交于A 、B 两点,△OAB 的面积是否为定值?若是,求出该定值,若不是,请说明理由.4已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±34x ,焦距为10,A 1,A 2为其左右顶点.(1)求C 的方程;(2)设点P 是直线l :x =2上的任意一点,直线PA 1、PA 2分别交双曲线C 于点M 、N ,A 2Q ⊥MN ,垂足为Q ,求证:存在定点R ,使得QR 是定值.5已知F1,F2分别为双曲线C:x2a2-y2b2=1(a>0,b>0)的左,右焦点,点P2,26在C上,且双曲线C的渐近线与圆x2+y2-6y+8=0相切.(1)求双曲线C的方程;(2)若过点F2且斜率为k的直线l交双曲线C的右支于A,B两点,Q为x轴上一点,满足QA=QB,试问AF1+BF1-4QF2是否为定值?若是,求出该定值;若不是,请说明理由.六、抛物线定值问题1已知抛物线C:x2=2py(p>0)的焦点为F,准线为l,过点F且倾斜角为π6的直线交抛物线于点M(M在第一象限),MN⊥l,垂足为N,直线NF交x轴于点D,MD=43.(1)求p的值.(2)若斜率不为0的直线l1与抛物线C相切,切点为G,平行于l1的直线交抛物线C于P,Q两点,且∠PGQ=π2,点F到直线PQ与到直线l1的距离之比是否为定值?若是,求出此定值;若不是,请说明理由.2已知抛物线C1:y2=2px p>0到焦点的距离为3.上一点Q1,a(1)求a,p的值;(2)设P为直线x=-1上除-1,-3两点外的任意一点,过P作圆C2:x-2,-1,32+y2=3的两条切线,分别与曲线C1相交于点A,B和C,D,试判断A,B,C,D四点纵坐标之积是否为定值?若是,求该定值;若不是,请说明理由.3已知点F是抛物线C:y2=2px p>0的焦点,纵坐标为2的点N在C上,以F为圆心、NF为半径的圆交y轴于D,E,DE=23.(1)求抛物线C的方程;(2)过-1,0作直线l与抛物线C交于A,B,求k NA+k NB的值.4贝塞尔曲线是计算机图形学和相关领域中重要的参数曲线.法国数学象卡斯特利奥对贝塞尔曲线进行了图形化应用的测试,提出了De Casteljau 算法:已知三个定点,根据对应的比例,使用递推画法,可以画出地物线.反之,已知抛物线上三点的切线,也有相应成比例的结论.如图所示,抛物线Γ:x 2=2py ,其中p >0为一给定的实数.(1)写出抛物线Γ的焦点坐标及准线方程;(2)若直线l :y =kx -2pk +2p 与抛物线只有一个公共点,求实数k 的值;(3)如图,A ,B ,C 是H 上不同的三点,过三点的三条切线分别两两交于点D ,E ,F ,证明:|AD ||DE |=|EF ||FC |=|DB ||BF |.5已知点A 为直线l :x +1=0上的动点,过点A 作射线AP (点P 位于直线l 的右侧)使得AP ⊥l ,F 1,0 ,设线段AF 的中点为B ,设直线PB 与x 轴的交点为T ,PF =TF .(1)求动点P 的轨迹C 的方程.(2)设过点Q 0,2 的两条射线分别与曲线C 交于点M ,N ,设直线QM ,QN 的斜率分别为k 1,k 2,若1k 1+1k 2=2,请判断直线MN 的斜率是否为定值以及其是否过定点,若斜率为定值,请计算出定值;若过定点,请计算出定点.七、椭圆定直线问题1椭圆E的方程为x24+y28=1,左、右顶点分别为A-2,0,B2,0,点P为椭圆E上的点,且在第一象限,直线l过点P(1)若直线l分别交x,y轴于C,D两点,若PD=2,求PC的长;(2)若直线l过点-1,0,且交椭圆E于另一点Q(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,说明理由.2已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).(1)若曲线C是椭圆,求m的取值范围.(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线l:y=kx+4与曲线C交于不同的两点M,N.设直线AN与直线BM相交于点G.试问点G是否在定直线上?若是,求出该直线方程;若不是,说明理由.3已知椭圆C :x 2a 2+y 2b2=1a >0,b >0 过点M 263,63 ,且离心率为22.(1)求椭圆C 的标准方程;(2)若直线l :y =x +m 与椭圆C 交y 轴右侧于不同的两点A ,B ,试问:△MAB 的内心是否在一条定直线上?若是,请求出该直线方程;若不是,请说明理由.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 过点Q 1,32 ,且离心率为12.(1)求椭圆C 的方程;(2)过点P 1,2 的直线l 交C 于A 、B 两点时,在线段AB 上取点M ,满足AP ⋅MB =AM ⋅PB ,证明:点M 总在某定直线上.5椭圆E的中心为坐标原点,坐标轴为对称轴,左、右顶点分别为A-2,0,B2,0,点1,6在椭圆E上.(1)求椭圆E的方程.(2)过点-1,0的直线l与椭圆E交于P,Q两点(异于点A,B),记直线AP与直线BQ交于点M,试问点M是否在一条定直线上?若是,求出该定直线方程;若不是,请说明理由.八、双曲线定直线问题1如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线E:x24-y2b2=1b>0的左、右焦点分别为F1、F2,从F2发出的光线经过图2中的A、B两点反射后,分别经过点C和D,且tan∠CAB=-34,AB⊥BD.(1)求双曲线E的方程;(2)设A1、A2为双曲线E实轴的左、右顶点,若过P4,0的直线l与双曲线C交于M、N两点,试探究直线A1M与直线A2N的交点Q是否在某条定直线上?若存在,请求出该定直线方程;如不存在,请说明理由.2已知曲线C上的动点P满足|PF1|-|PF2|=2,且F1-2,0,F22,0.(1)求C的方程;(2)若直线AB与C交于A、B两点,过A、B分别做C的切线,两切线交于点P .在以下两个条件①②中选择一个条件,证明另外一个条件成立.①直线AB经过定点M4,0;②点P 在定直线x=14上.3已知点(2,3)在双曲线C:x2a2-y2a2+2=1上.(1)双曲线上动点Q处的切线交C的两条渐近线于A,B两点,其中O为坐标原点,求证:△AOB的面积S 是定值;(2)已知点P12,1,过点P作动直线l与双曲线右支交于不同的两点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,证明:点H恒在一条定直线上.4已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 经过点D 4,3 ,直线l 1、l 2分别是双曲线C 的渐近线,过D 分别作l 1和l 2的平行线l 1和l 2,直线l 1交x 轴于点M ,直线l 2交y 轴于点N ,且OM ⋅ON =23(O 是坐标原点)(1)求双曲线C 的方程;(2)设A 1、A 2分别是双曲线C 的左、右顶点,过右焦点F 的直线交双曲线C 于P 、Q 两个不同点,直线A 1P 与A 2Q 相交于点G ,证明:点G 在定直线上.5已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率为2,过点E 1,0 的直线l 与C 左右两支分别交于M ,N 两个不同的点(异于顶点).(1)若点P 为线段MN 的中点,求直线OP 与直线MN 斜率之积(O 为坐标原点);(2)若A ,B 为双曲线的左右顶点,且AB =4,试判断直线AN 与直线BM 的交点G 是否在定直线上,若是,求出该定直线,若不是,请说明理由九、抛物线定直线问题1过抛物线x 2=2py (p >0)内部一点P m ,n 作任意两条直线AB ,CD ,如图所示,连接AC ,BD 延长交于点Q ,当P 为焦点并且AB ⊥CD 时,四边形ACBD 面积的最小值为32(1)求抛物线的方程;(2)若点P 1,1 ,证明Q 在定直线上运动,并求出定直线方程.2已知抛物线E :y 2=2px p >0 ,过点-1,0 的两条直线l 1、l 2分别交E 于A 、B 两点和C 、D 两点.当l 1的斜率为12时,AB =210.(1)求E 的标准方程;(2)设G 为直线AD 与BC 的交点,证明:点G 在定直线上.3已知抛物线C 1:x 2=2py (p >0)和圆C 2:x +1 2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切.(1)求p 的值:(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN =MA +MB,求证:点N 在定直线上,并求该定直线的方程.4已知拋物线x 2=4y ,P 为拋物线外一点,过P 点作抛物线的切线交抛物线于A ,B 两点,交x 轴于M ,N 两点.(1)若P -1,-2 ,设△OAB 的面积为S 1,△PMN 的面积为S 2,求S 1S 2的值;(2)若P x 0,y 0 ,求证:△PMN 的垂心H 在定直线上.5已知F为抛物线C:x2=2py(p>0)的焦点,直线l:y=2x+1与C交于A,B两点且|AF|+|BF|= 20.(1)求C的方程.(2)若直线m:y=2x+t(t≠1)与C交于M,N两点,且AM与BN相交于点T,证明:点T在定直线上.圆锥曲线中的定点、定值和定直线问题一、椭圆定点问题1已知圆E :x +1 2+y 2=16,点F 1,0 ,G 是圆E 上任意一点,线段GF 的垂直平分线和半径GE 相交于H(1)求动点H 的轨迹Γ的方程;(2)经过点F 和T 7,0 的圆与直线l :x =4交于P ,Q ,已知点A 2,0 ,且AP 、AQ 分别与Γ交于M 、N .试探究直线MN 是否经过定点.如果有,请求出定点;如果没有,请说明理由.【答案】(1)x 24+y 23=1(2)经过定点,定点坐标为1,0 【分析】(1)利用椭圆的定义即可求出动点H 的轨迹Γ的方程;(2)设M x 1,y 1 ,N x 2,y 2 ,直线MN 的方程为:x =my +n ,与椭圆方程联立,根据韦达定理列出x 1,y 1,x 2,y 2之间的关系,再利用两点式写出直线MA 的方程,求出点P 4,2y 1x 1-2 ,Q 4,2y 2x 2-2,再写出以PQ 为直径的圆的方程,根据圆的方程经过点T 7,0 ,得到关系式,进而求得n 为定值,从而得到直线MN 过定点.【详解】(1)如图所示,∵HE +HF =HE +HG =4,且EF =2<4,∴点H 的轨迹是以E ,F 为焦点的椭圆,设椭圆方程x 2a 2+y 2b2=1,则2a =4,c =1,∴a =2,b =a 2-c 2= 3.所以点H 的轨迹方程为:x 24+y 23=1.(2)设直线MN 的方程为:x =my +n ,由x 24+y 23=1x =my +n ,得3m 2+4 y 2+6mny +3n 2-12=0设M x 1,y 1 ,N x 2,y 2 ,则y 1+y 2=-6mn 3m 2+4,y 1y 2=3n 2-123m 2+4.所以,x 1+x 2=m y 1+y 2 +2n =8n 3m 2+4,x 1x 2=my 1+n my 2+n =-12m 2+4n 23m 2+4因为直线MA 的方程为:y =y 1x 1-2x -2 ,令x =4,得y P =2y 1x 1-2,所以,P 4,2y 1x1-2 ,同理可得Q 4,2y 2x 2-2,以PQ 为直径的圆的方程为:x -4 2+y -2y 1x 1-2 y -2y 2x 2-2=0,即x -4 2+y 2-2y 1x 1-2+2y 2x 2-2y +2y 1x 1-2×2y 2x 2-2=0,因为圆过点7,0 ,所以,9+2y 1x 1-2×2y 2x 2-2=0,得9+4y 1y 2x 1x 2-2x 1+x 2 +4=0,代入得9+12n 2-483m 2+4-12m 2+4n 23m 2+4-16n3m 2+4+4=0,化简得,9+12n 2-484n 2-16n +16=04n 2-16n +16≠0,n ≠2 ,解得n =1或n =2(舍去),所以直线MN 经过定点1,0 ,当直线MN 的斜率为0时,此时直线MN 与x 轴重合,直线MN 经过点1,0 ,综上所述,直线MN 经过定点1,0 .2已知点A (2,0),B -65,-45 在椭圆M :x 2a 2+y 2b2=1(a >b >0)上.(1)求椭圆M 的方程;(2)直线l 与椭圆M 交于C ,D 两个不同的点(异于A ,B ),过C 作x 轴的垂线分别交直线AB ,AD 于点P ,Q ,当P 是CQ 中点时,证明.直线l 过定点.【答案】(1)x 24+y 2=1(2)证明见解析【分析】(1)根据椭圆所经过的点列方程求出其方程;(2)设出CD 方程,结合韦达定理和P 是CQ 中点的条件,找到直线CD 中两个参数的关系,从而求出定点.【详解】(1)由题知a =2,又椭圆经过B -65,-45 ,代入可得14-652+1b2-452=1,解得b 2=1,故椭圆的方程为:x 24+y 2=1(2)由题意知,当l ⊥x 轴时,不符合题意,故l 的斜率存在,设l 的方程为y =kx +m ,联立y =kx +m x 24+y 2=1消去y 得4k 2+1 x 2+8kmx +4m 2-4=0,则Δ=64k 2m 2-16m 2-1 4k 2+1 =164k 2-m 2+1 >0,即4k 2+1>m 2设C x 1,y 1 ,D x 2,y 2 ,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1AB 的方程为y =14(x -2),令x =x 1得P x 1,x 1-24 ,AD 的方程为y =y 2x 2-2(x -2),令x =x 1得Q x 1,x 1-2x 2-2y 2,由P 是CQ 中点,得x 1-22=y 1+x 1-2x 2-2⋅y 2,即y 1x 1-2+y 2x 2-2=12,即kx 1+m x 2-2 +kx 2+m x 1-2 =12x 1x 2-2x 1+x 2 +4 ,即(1-4k )x 1x 2+(4k -2m -2)x 1+x 2 +4+8m =0,即4m 2+(16k +8)m +16k 2+16k =0,所以(m +2k )(m +2k +2)=0,得m =-2k -2或m =-2k ,当m =-2k -2,此时由Δ>0,得k <-38,符合题意;当m =-2k ,此时直线l 经过点A ,与题意不符,舍去.所以l 的方程为y =kx -2k -2,即y =k (x -2)-2,所以l 过定点(2,-2).3如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B .左、右焦点分别为F 1,F 2,离心率为22,点M (2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)已知P ,Q 是椭圆C 上两动点,记直线AP 的斜率为k 1,直线BQ 的斜率为k 2,k 1=2k 2.过点B 作直线PQ 的垂线,垂足为H .问:在平面内是否存在定点T ,使得TH 为定值,若存在,求出点T 的坐标;若不存在,试说明理由.【答案】(1)C :x 24+y 22=1;(2)存在定点T 23,0 使TH 为定值,理由见解析.【分析】(1)根据离心率,椭圆上点及参数关系列方程组求a ,b ,c ,即可得椭圆方程;(2)根据题意设BQ :y =k (x -2),AP :y =2k (x +2),联立椭圆方程求P ,Q 坐标,判断直线PQ 过定点,结合BH ⊥PQ 于H 确定H 轨迹,进而可得定点使得TH 为定值.【详解】(1)由题意c a =222a 2+1b 2=1a 2=b 2+c 2,可得a 2=4b 2=c 2=2 ,则椭圆方程为C :x 24+y 22=1;(2)若直线BQ 斜率为k ,则直线AP 斜率为2k ,而A (-2,0),B (2,0),所以BQ :y =k (x -2),AP :y =2k (x +2),联立BQ 与椭圆C ,则x 2+2k 2(x -2)2=4,整理得(1+2k 2)x 2-8k 2x +8k 2-4=0,所以2x Q =8k 2-41+2k 2,则x Q =4k 2-21+2k 2,故y Q =-4k1+2k 2,联立AP 与椭圆C ,则x 2+8k 2(x +2)2=4,整理得(1+8k 2)x 2+32k 2x +32k 2-4=0,所以-2x P =32k 2-41+8k 2,则x P =2-16k 21+8k 2,故y P=8k 1+8k 2,综上,x Q -x P =4k 2-21+2k 2-2-16k 21+8k 2=64k 4-4(1+8k 2)(1+2k 2),y Q -y P =-4k 1+2k 2-8k 1+8k 2=-12k +48k 31+8k 2 1+2k 2,当64k 4-4≠0,即k ≠±12时,k PQ =12k (1+4k 2)4(1-16k 4)=3k1-4k 2,此时PQ :y +4k 1+2k 2=3k 1-4k 2x +2-4k 21+2k 2=3k 1-4k 2x +6k -12k 3(1+2k 2)(1-4k 2),所以PQ :y =3k 1-4k 2x +2k 1-4k 2=k 1-4k 2(3x +2),即直线PQ 过定点-23,0 ;当64k 4-4=0,即k =±12时,若k =12,则x Q =-23且y Q =-43,x P =-23且y P =43,故直线PQ 过定点-23,0 ;若k =-12,则x Q =-23且y Q =43,x P =-23且y P =-43,故直线PQ 过定点-23,0 ;综上,直线PQ 过定点M -23,0 ,又BH ⊥PQ 于H ,易知H 轨迹是以BM 为直径的圆上,故BM 的中点23,0 到H 的距离为定值,所以,所求定点T 为23,0 .【点睛】关键点点睛:第二问,设直线BQ ,AP 联立椭圆,结合韦达定理求点P ,Q 坐标,再写出直线PQ 方程判断其过定点是关键.4已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,A ,B 分别是C 的右、上顶点,且AB =7,D 是C 上一点,△BF 2D 周长的最大值为8.(1)求C 的方程;(2)C 的弦DE 过F 1,直线AE ,AD 分别交直线x =-4于M ,N 两点,P 是线段MN 的中点,证明:以PD 为直径的圆过定点.【答案】(1)x 24+y 23=1;(2)证明见解析.【分析】(1)根据椭圆的定义结合三角形不等式求解即可;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,联立直线与椭圆的方程,根据过两点圆的方程,结合图形的对称性可得定点在x 轴上,代入韦达定理求解即可.【详解】(1)依题意,a 2+b 2=7,△BF 2D 周长DB +DF 2 +a =DB +2a -DF 1 +a ≤BF 1 +3a =4a ,当且仅当B ,F 1,D 三点共线时等号成立,故4a =8,所以a 2=4,b 2=3,所以C 的方程x 24+y 23=1;(2)设D x 1,y 1 ,E x 2,y 2 ,直线DE :x =my -1,代入x 24+y 23=1,整理得3m 2+4 y 2-6my -9=0,Δ=36m 2+363m 2+4 >0,y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4,易知AD :y =y 1x 1-2x -2 ,令x =-4,得N -4,-6y 1x 1-2 ,同得M -4,-6y 2x 2-2,从而中点P -4,-3y 1x 1-2+y 2x 2-2,以PD 为直径的圆为x +4 x -x 1 +y +3y 1x 1-2+y 2x 2-2y -y 1 =0,由对称性可知,定点必在x 轴上,令y =0得,x +4 x -x 1 -3y 1y 1x 1-2+y 2x 2-2=0,y 1x 1-2+y 2x 2-2=y 1my 1-3+y 2my 2-3=2my 1y 2-3y 1+y 2 m 2y 1y 2-3m y 1+y 2 +9=-18m3m 2+4-18m 3m 2+4-9m 23m 2+4-18m 23m 2+4+9=-36m36=-m ,所以x +4 x -x 1 +3my 1=0,即x 2+4-x 1 x -4x 1+3my 1=0,因为x 1=my 1-1,所以x 2+5-my 1 x -my 1+4=0,即x +1 x -my 1+4 =0,解得x =-1,所以圆过定点-1,0 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)的形式;(5)代入韦达定理求解.5已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点为A ,过右焦点F 且平行于y 轴的弦PQ =AF =3.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于M ,N ,交PQ 于点R ,且满足MR ⋅ND =MD ⋅RN若存在,求出该定点坐标,若不存在,请说明理由.【答案】(1)7-354,0 (2)存在定点D (4,0)【分析】(1)由题意,根据椭圆的定义以及a 2=b 2+c 2,列出等式即可求出椭圆C 的方程,判断△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于点T ,此时T 为△APQ 的内心,进行求解即可;(2)设直线l 方程为y =k (x -t ),M (x 1,y 1),N (x 2,y 2),将直线l 的方程与椭圆方程联立,得到根的判别式大于零,由点M 、R 、N 、D 均在直线l 上,得到MR ⋅ND =MD ⋅RN,此时2t -(1+t )(x 1+x 2)+2x 1x 2=0,结合韦达定理求出t =4,可得存在定点D (4,0)满足题意.【详解】(1)∵a 2=b 2+c 2,2b 2a=a +c =3∴a =2,b =3,c =1∴椭圆C 的标准方程为x 24+y 23=1,不妨取P 1,32 ,Q 1,-32 ,A (-2,0),则AP =352,PF =32;因为△APQ 中,AP =AQ ,所以△APQ 的内心在x 轴,设直线PT 平分∠APQ ,交x 轴于T ,则T 为△APQ 的内心,且AT TF =AP PF =5=AT 3-AT ,所以AT =355+1,则T 7-354,0 ;(2)∵椭圆和弦PQ 均关于x 轴上下对称.若存在定点D ,则点D 必在x 轴上∴设D (t ,0)当直线l 斜率存在时,设方程为y =k (x -t ),M x 1,y 1 ,N x 2,y 2 ,直线方程与椭圆方程联立y =k (x -t )x 24+y 23=1,消去y 得4k 2+3 x 2-8k 2tx +4k 2t 2-3 =0,则Δ=48k 2+3-k 2t 2>0,x 1+x 2=8k 2t4k 2+3,x 1x 2=4k 2t 2-3 4k 2+3①∵点R 的横坐标为1,M 、R 、N 、D 均在直线l 上,MR ⋅ND =MD ⋅RN∴1+k 2 1-x 1 t -x 2 =1+k 2 t -x 1 x 2-1∴2t -(1+t )x 1+x 2 +2x 1x 2=0∴2t -(1+t )8k 2t 4k 2+3+2×4k 2t 2-3 4k 2+3=0,整理得t =4,因为点D 在椭圆外,则直线l 的斜率必存在.∴存在定点D (4,0)满足题意【点睛】解决曲线过定点问题一般有两种方法:①探索曲线过定点时,可设出曲线方程,然后利用条件建立等量关系进行消元,借助于曲线系的思想找出定点,或者利用方程恒成立列方程组求出定点坐标.②从特殊情况入手,先探求定点,再证明与变量无关.二、双曲线定点问题1已知点P 4,3 为双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,E 的左焦点F 1到一条渐近线的距离为3.(1)求双曲线E 的标准方程;(2)不过点P 的直线y =kx +t 与双曲线E 交于A ,B 两点,若直线PA ,PB 的斜率和为1,证明:直线y =kx +t 过定点,并求该定点的坐标.【答案】(1)x 24-y 23=1(2)证明见解析,定点为(-2,3).【分析】(1)由点到直线的距离公式求出b =3,再将点P 4,3 代入双曲线方程求出a 2=4,可得双曲线E 的标准方程;(2)联立直线与双曲线方程,利用韦达定理得x 1+x 2、x 1x 2,再根据斜率和为1列式,推出t =2k +3,从而可得直线y =kx +t 过定点(-2,3).【详解】(1)设F 1(-c ,0)(c >0)到渐近线y =bax ,即bx -ay =0的距离为3,则3=|-bc |b 2+a2,结合a 2+b 2=c 2得b =3,又P (4,3)在双曲线x 2a 2-y 23=1上,所以16a2-93=1,得a 2=4,所以双曲线E 的标准方程为x 24-y 23=1.(2)联立y =kx +tx 24-y 23=1,消去y 并整理得3-4k 2 x 2-8ktx -4t 2-12=0,则3-4k 2≠0,Δ=64k 2t 2+4(3-4k 2)(4t 2+12)>0,即t 2+3>4k 2,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8kt 3-4k 2,x 1x 2=-4t 2+123-4k 2,则k PA +k PB =y 1-3x 1-4+y 2-3x 2-4=kx 1+t -3x 1-4+kx 2+t -3x 2-4=kx 1+t -3 x 2-4 +kx 2+t -3 x 1-4 x 1-4 x 2-4=2kx 1x 2+t -4k -3 x 1+x 2 -8t +24x 1x 2-4(x 1+x 2)+16=1,所以2kx 1x 2+t -4k -3 x 1+x 2 -8t +24=x 1x 2-4(x 1+x 2)+16,所以2k -1 x 1x 2+t -4k +1 x 1+x 2 -8t +8=0,所以-2k -1 4t2+123-4k 2+t -4k +1 ⋅8kt3-4k2-8t +8=0,整理得t 2-6k +2kt -6t -8k 2+9=0,所以(t -3)2+2k (t -3)-8k 2=0,所以t -3-2k t -3+4k =0,因为直线y =kx +t 不过P (4,3),即3≠4k +t ,t -3+4k ≠0,所以t -3-2k =0,即t =2k +3,所以直线y =kx +t =kx +2k +3,即y -3=k (x +2)过定点(-2,3).【点睛】关键点点睛:利用韦达定理和斜率公式推出t =2k +3是解题关键.2双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左顶点为A ,焦距为4,过右焦点F 作垂直于实轴的直线交C 于B 、D 两点,且△ABD 是直角三角形.(1)求双曲线C 的方程;(2)已知M ,N 是C 上不同的两点,MN 中点的横坐标为2,且MN 的中垂线为直线l ,是否存在半径为1的定圆E ,使得l 被圆E 截得的弦长为定值,若存在,求出圆E 的方程;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E :(x -8)2+y 2=1【分析】(1)根据双曲线的性质,结合△ABD 是等腰直角三角形的性质,列出关系式即可求解双曲线方程;(2)首先利用点差法求出直线l 所过的定点,即可求出定圆的方程.【详解】(1)依题意,∠BAD =90°,焦半径c =2,当x =c 时,c 2a 2-y 2b 2=1,得y 2=b 2c 2a 2-1=b 4a2,即y =±b 2a ,所以BF =b 2a ,由AF =BF ,得a +c =b 2a,得a 2+2a =22-a 2,解得:a =1(其中a =-2<0舍去),所以b 2=c 2-a 2=4-1=3,故双曲线C 的方程为x 2-y 23=1;(2)设M x 1,y 1 ,N x 2,y 2 ,MN 的中点为Q x 0,y 0 因为M ,N 是C 上不同的两点,MN 中点的横坐标为2.所以x 21-y 213=1,①x 22-y 223=1,②x 0=x 1+x 22=2,③y 0=y 1+y 22,④.①-②得x 1+x 2 x 1-x 2 -y 1+y 2 y 1-y 23=0,当k MN 存在时,k MN =y 1-y2x 1-x 2=3x 1+x 2 y 1+y 2=3×42y 0=6y 0,因为MN 的中垂线为直线l ,所以y -y 0=-y 06x -2 ,即l :y =-y 06x -8 ,所以l 过定点T 8,0 .当k MN 不存在时,M ,N 关于x 轴对称,MN 的中垂线l 为x 轴,此时l 也过T 8,0 ,所以存在以8,0 为圆心的定圆E :(x -8)2+y 2=1,使得l 被圆E 截得的弦长为定值2.【点睛】关键点点睛:本题考查直线与双曲线相交的综合应用,本题的关键是求得直线所过的定点,因为半径为1,所以定圆圆心为定点,弦长就是直径.3已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点,右顶点分别为F ,A ,B 0,b ,AF =1,点M 在线段AB 上,且满足BM =3MA ,直线OM 的斜率为1,O 为坐标原点.(1)求双曲线C 的方程.(2)过点F 的直线l 与双曲线C 的右支相交于P ,Q 两点,在x 轴上是否存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立?若存在,求出点E 的坐标;若不存在,请说明理由.【答案】(1)x 2-y 23=1(2)存在,E 12,0 【分析】(1)由AF =1,BM =3MA ,直线OM 的斜率为1,求得a ,b ,c 之间的关系式,解得a ,b 的值,进而求出双曲线的方程;(2)设直线PQ 的方程,与双曲线的方程联立,可得两根之和及两根之积,由等式成立,可得EF 为∠PEQ 的角平分线,可得直线EP ,EQ 的斜率之和为0,整理可得参数的值,即求出E 的坐标.【详解】(1)设c 2=a 2+b 2c >0 ,所以F c ,0 ,A a ,0 ,B 0,b ,因为点M 在线段AB 上,且满足BM =3MA ,所以点M 33+1a ,13+1b,因为直线OM 的斜率为1,所以13+1b 33+1a =1,所以ba=3,因为AF =1,所以c -a =1,解得a =1,b =3,c =2.所以双曲线C 的方程为x 2-y 23=1.(2)假设在x 轴上存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,当直线l 的斜率不存在时,E 在x 轴上任意位置,都有EP ⋅FQ =EQ ⋅FP ;当直线l 的斜率存在且不为0时,设E t ,0 ,直线l 的方程为x =ky +2,直线l 与双曲线C 的右支相交于P ,Q 两点,则-33<k <33且k ≠0,设P x 1,y 1 ,Q x 2,y 2 ,由x 2-y 23=1x =ky +2 ,得3k 2-1 y 2+12ky +9=0,3k 2-1≠0,Δ=36k 2+36>0,所以y 1+y 2=-12k 3k 2-1,y 1y 2=93k 2-1,因为EP ⋅FQ =EQ ⋅FP ,即EP EQ=FP FQ,所以EF 平分∠PEQ ,k EP +k EQ =0,有y 1x 1-t +y 2x 2-t =0,即y 1ky 1+2-t +y 2ky 2+2-t=0,得2ky 1y 2+2-t y 1+y 2 =0,所以2k93k 2-1+2-t -12k 3k 2-1=0,由k ≠0,解得t =12.综上所述,存在与F 不同的定点E ,使得EP ⋅FQ =EQ ⋅FP 恒成立,且E 12,0.【点睛】方法点睛:解答直线与双曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形,要强化有关直线与双曲线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.4已知双曲线C 与双曲线x 212-y 23=1有相同的渐近线,且过点A (22,-1).(1)求双曲线C 的标准方程;(2)已知点D (2,0),E ,F 是双曲线C 上不同于D 的两点,且DE ·DF=0,DG ⊥EF 于点G ,证明:存在定点H ,使GH 为定值.【答案】(1)x 24-y 2=1;(2)证明见解析.【分析】(1)根据给定条件,设出双曲线C 的方程,再将点A 的坐标代入求解作答.(2)当直线EF 斜率存在时,设出其方程并与双曲线C 的方程联立,由给定的数量积关系结合韦达定理求得直线EF 过定点,再验证斜率不存在的情况,进而推理判断作答.【详解】(1)依题意,设双曲线C 的方程为x 212-y 23=λ(λ≠0),而点A (22,-1)在双曲线C 上,于是λ=(22)212-(-1)23=13,双曲线C 的方程为x 212-y 23=13,即x 24-y 2=1,所以双曲线C 的标准方程为x24-y 2=1.(2)当直线EF 斜率存在时,设直线EF 的方程为:y =kx +m ,设E x 1,y 1 ,F x 2,y 2 ,由y =kx +mx 2-4y 2=4消去y 并整理得4k 2-1 x 2+8kmx +4m 2+1 =0,有4k 2-1≠0,且Δ=(8km )2-16(m 2+1)(4k 2-1)>0,即4k 2-1≠0且4k 2-m 2-1<0,有x 1+x 2=-8km 4k 2-1,x 1x 2=4m 2+44k 2-1,又y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,DE =(x 1-2,y 1),DF =(x 2-2,y 2),由DE ·DF =0,得x 1-2 x 2-2 +y 1y 2=0,整理得k 2+1 ⋅x 1x 2+(km -2)⋅x 1+x 2 +m 2+4=0,于是k 2+1 ⋅4m 2+44k 2-1+(km -2)⋅-8km 4k 2-1+m 2+4=0,化简得3m 2+16km +20k 2=0,即(3m +10k )(m +2k )=0,解得m =-2k 或m =-103k ,均满足条件,当m =-2k 时,直线EF 的方程为y =k (x -2),直线EF 过定点(2,0),与已知矛盾,当m =-103k 时,直线EF 的方程为y =k x -103 ,直线EF 过定点M 103,0 ;当直线EF 的斜率不存在时,由对称性不妨设直线DE 的方程为:y =x -2,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题08 解锁圆锥曲线中的定点与定值问题一、解答题1.【陕西省榆林市第二中学2018届高三上学期期中】已知椭圆的左右焦点分别为,离心率为;圆过椭圆的三个顶点.过点且斜率不为0的直线与椭圆交于两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)证明:在轴上存在定点,使得为定值;并求出该定点的坐标.【答案】(1)(2)【解析】试题分析:(Ⅰ)设圆过椭圆的上、下、右三个顶点,可求得,再根据椭圆的离心率求得,可得椭圆的方程;(Ⅱ)设直线的方程为,将方程与椭圆方程联立求得两点的坐标,计算得。
设x轴上的定点为,可得,由定值可得需满足,解得可得定点坐标。
解得。
∴椭圆的标准方程为.(Ⅱ)证明:由题意设直线的方程为,由消去y整理得,设,,要使其为定值,需满足,解得.故定点的坐标为.点睛:解析几何中定点问题的常见解法(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点; (2)从特殊位置入手,找出定点,再证明该点符合题意.2.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知斜率为k 的直线l 经过点()1,0-与抛物线2:2C y px =(0,p p >为常数)交于不同的两点,M N ,当12k =时,弦MN的长为. (1)求抛物线C 的标准方程;(2)过点M 的直线交抛物线于另一点Q ,且直线MQ 经过点()1,1B -,判断直线NQ 是否过定点?若过定点,求出该点坐标;若不过定点,请说明理由. 【答案】(1)24y x =;(2)直线NQ 过定点()1,4- 【解析】试题分析:(1)根据弦长公式即可求出答案;(2)由(1)可设()()()2221122,2,,2,,2M t t N t t Q t t ,则12MN k t t =+, 则()11:220MN x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=()1212:220NQ x t t y t t -++=.由()1,0-在直线MN 上11t t ⇒=(1);由()1,1-在直线MQ 上22220t t tt ⇒+++=将(1)代入()121221t t t t ⇒=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ⇒-+-+-=,即可得出直线NQ 过定点.(2)设()()()2221122,2,,2,,2M t t N t t Q t t ,则12211222=MN t t k t t t t -=-+, 则()212:2MN y t x t t t -=-+即()11220x t t y tt -++=; 同理: ()22:220MQ x t t y tt -++=;()1212:220NQ x t t y t t -++=.由()1,0-在直线MN 上11tt ⇒=,即11t t =(1); 由()1,1-在直线MQ 上22220t t tt ⇒+++=将(1)代入()121221t t t t ⇒=-+- (2) 将(2)代入NQ 方程()()12122420x t t y t t ⇒-+-+-=,易得直线NQ 过定点()1,4-3.【四川省成都市第七中学2017-2018学年高二上学期半期考】已知抛物线()2:0C y mx m =>过点()1,2-, P 是C 上一点,斜率为1-的直线l 交C 于不同两点,A B (l 不过P 点),且PAB ∆的重心的纵坐标为23-. (1)求抛物线C 的方程,并求其焦点坐标;(2)记直线,PA PB 的斜率分别为12,k k ,求12k k +的值. 【答案】(1)方程为24y x =;其焦点坐标为()1,0(2)120k k +=【解析】试题分析;(1)将()1,2-代入2y mx =,得4m =,可得抛物线C 的方程及其焦点坐标;(2)设直线l 的方程为y x b =-+,将它代入24y x =得22220x b x b -++=(),利用韦达定理,结合斜率公式以及PAB ∆的重心的纵坐标23-,化简可12k k + 的值;因为PAB ∆的重心的纵坐标为23-, 所以122p y y y ++=-,所以2p y =,所以1p x =,所以()()()()()()1221121212122121221111y x y x y y k k x x x x ------+=+=----, 又()()()()12212121y x y x --+--()()()()12212121x b x x b x ⎡⎤⎡⎤=-+--+-+--⎣⎦⎣⎦()()()12122122x x b x x b =-+-+-- ()()()22212220b b b b =-+-+--=.所以120k k +=.4.已知椭圆2222:1(0)x y C a b a b+=>>的短轴端点到右焦点()10F ,的距离为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点F 的直线交椭圆C 于A B ,两点,交直线4l x =:于点P ,若1PA AF λ=,2PB BF λ=,求证: 12λλ-为定值.【答案】(1) 22143x y +=;(2)详见解析. 【解析】试题分析:(Ⅰ)利用椭圆的几何要素间的关系进行求解;(Ⅱ)联立直线和椭圆的方程,得到关于x 或y 的一元二次方程,利用根与系数的关系和平面向量的线性运算进行证明.(Ⅱ)由题意直线AB 过点()1,0F ,且斜率存在,设方程为()1y k x =-, 将4x =代人得P 点坐标为()4,3k ,由()221{ 143y k x x y =-+=,消元得()22223484120k xk x k +-+-=,设()11,A x y , ()22,B x y ,则0∆>且21222122834{ 41234k x x kk x x k +=+-⋅=+, 方法一:因为1PA AF λ=,所以11141PA x AF x λ-==-. 同理22241PB x BFx λ-==-,且1141x x --与2241x x --异号,所以12121212443321111x x x x x x λλ⎛⎫---=+=--+ ⎪----⎝⎭()()1212123221x x x x x x +-=-+-++()2222238682412834k k k k k --=-+--++0=. 所以, 12λλ-为定值0.当121x x <<时,同理可得120λλ-=. 所以, 12λλ-为定值0.同理2223PB my BFmy λ-==,且113my my -与223my my -异号,所以()12121212123332y y my my my my my y λλ+---=+=-()()36209m m ⨯-=-=⨯-.又当直线AB 与x 轴重合时, 120λλ-=, 所以, 12λλ-为定值0.【点睛】本题考查直线和椭圆的位置关系,其主要思路是联立直线和椭圆的方程,整理成关于x 或y 的一元二次方程,利用根与系数的关系进行求解,因为直线AB 过点()1,0F ,在设方程时,往往设为1x my =+()0m ≠,可减少讨论该直线是否存在斜率.5.【四川省绵阳南山中学2017-2018学年高二上学期期中考】设抛物线C : 24y x =, F 为C 的焦点,过F 的直线l 与C 相交于,A B 两点. (1)设l 的斜率为1,求AB ; (2)求证: OA OB ⋅是一个定值. 【答案】(1) 8AB =(2)见解析【解析】试题分析:(1)把直线的方程与抛物线的方程联立,利用根与系数的关系及抛物线的定义、弦长公式即可得出;(2)把直线的方程与抛物线的方程联立,利用根与系数的关系、向量的数量积即可得出;(2)证明:设直线l 的方程为1x ky =+,由21{4x ky y x=+-得2440y ky --= ∴124y y k +=, 124y y =-()()1122,,,OA x y OB x y ==,∵()()1212121211OA OB x x y y kx ky y y ⋅=+=+++,()212121222144143k y y k y y y y k k =++++=-++-=-,∴OA OB ⋅是一个定值.点睛:熟练掌握直线与抛物线的相交问题的解题模式、根与系数的关系及抛物线的定义、过焦点的弦长公式、向量的数量积是解题的关键,考查计算能力,直线方程设成1x ky =+也给解题带来了方便.6.【内蒙古包头市第三十三中2016-2017学年高一下学期期末】已知椭圆C : 22221(0,0)x y a b a b+=>>的,右焦点为求椭圆C 的方程; (2)若过原点作两条互相垂直的射线,与椭圆交于A ,B 两点,求证:点O 到直线AB 的距离为定值.【答案】(1) 2213x y += ,(2) O 到直线AB 的距离为定值2. 【解析】试题分析:(1)根据焦点和离心率列方程解出a ,b ,c ;(2)对于AB 有无斜率进行讨论,设出A ,B 坐标和直线方程,利用根与系数的关系和距离公式计算;有OA⊥OB知x1x2+y1y2=x1x2+(k x1+m) (k x2+m)=(1+k2) x1x2+k m(x1+x2)=0 代入,得4 m2=3 k2+3原点到直线AB的距离d==,当AB的斜率不存在时, 11x y= ,可得,1x d==依然成立.所以点O 到直线点睛:本题考查了椭圆的性质,直线与圆锥曲线的位置关系,分类讨论思想,对于这类题目要掌握解题方法.设而不求,套用公式解决.7.【四川省成都市石室中学2017-2018学年高二10月月考】已知双曲线()222210x yb aa b-=>>渐近线方程为y=,O为坐标原点,点(M在双曲线上.(Ⅰ)求双曲线的方程;(Ⅱ)已知,P Q为双曲线上不同两点,点O在以PQ为直径的圆上,求2211OP OQ+的值.【答案】(Ⅰ)22126x y-=;(Ⅱ)221113OP OQ+=.【解析】试题分析:(1)根据渐近线方程得到设出双曲线的标准方程,代入点M的坐标求得参数即可;(2)由条件可得OP OQ⊥,可设出直线,OP OQ的方程,代入双曲线方程求得点,P Q的坐标可求得221113OP OQ+=。
(Ⅱ)由题意知OP OQ ⊥。
设OP 直线方程为y kx =,由221{ 26x y y kx -== ,解得2222263{ 63x k ky k =-=-, ∴()222222226166||333k kOP x y k k k +=+=+=---。