定义法求椭圆的标准方程

定义法求椭圆的标准方程
定义法求椭圆的标准方程

定义法求椭圆的标准方程

1、焦点在坐标轴上,且a 2=13,c 2=12的椭圆的标准方程为( )

A .2211312

x y += B . 2222

1113252513x y x y +=+=或 C .22113x y += D .22

22y 111313

x y x +=+=或 2、设B (-4,0),C (4,0),且△ABC 的周长等于18,则动点A 的轨迹方程为( )

A .221(0)259x y y +=≠

B .()22

10259

y x y +=≠ C .()22101616x y y +=≠ D .()22

10169

y x y +=≠

为____.

此椭圆的标准方程为________.

5、求适合下列条件的椭圆的标准方程:

(1)焦点在y 轴上,焦距是4,且经过点M (3,2);

(2)焦距是10,且椭圆上一点到两焦点的距离的和为26.

参考答案

(三)定义法求椭圆的标准方程

1、答案D解析显然,此题中并没有讲明椭圆的焦点在哪个轴上,题中也没有条件能够得出相应的信息,所以本题中椭圆的标准方程应有两种情况,所以可以先排除选项A 和C,又由于a2=13,c2=12,∴b2=a2-c2=13-12=1.

2、答案A解析由已知|AB|+|AC|+|BC|=18,|BC|=8,得|AB|+|AC|=10.由椭圆的定义可知,点A的轨迹是椭圆的一部分,且2a=10,2c=8,即a=5,c=4,所以b2

第12讲(椭圆的定义、标准方程及简单性质)

第12讲 解析几何初步(1) 模块一、椭圆的定义及标准方程 考点1椭圆的定义 1.平面内到两个定点的距离的和等于常数2a (大于12F F )的点的轨迹叫椭圆.定点1F ,2F 叫做椭圆的焦点,两焦点之间的距离叫做焦距(2c ). 2.已知B ,C 是两个定点,6BC =,且ABC ?的周长等于16,则顶点A 在 上运动. A.椭圆 B.直线 C.线段 D.圆 3.设M 是圆2F :22(1)16x y -+=上的任意一点,点1F (1,0)-是一定点,作1MF 的垂直平分线,交2MF 于P ,则点P 的轨迹为 . 4.设圆22(1)16x y -+=的圆心为A ,直线l 过点(1,0)B -且与x 轴不重合,交圆A 于C 、D 两点,过B 作AC 的平行线交AD 于M ,则点M 的轨迹为 . 考点2椭圆的标准方程 考法1焦点在x 轴上的椭圆的标准方程:122 22=+b y a x (0a b >>),(222c a b =-). 1.椭圆C :164 1002 2=+y x 的焦点在 轴上,焦点坐标为 , ,焦距为 . 2.已知4a =,3b =,焦点在x 轴上,则椭圆的标准方程为 . 3.已知4a =,3c =,焦点在x 轴上,则椭圆的标准方程为 . 4.(2015·广东卷·文科)已知椭圆22 2125x y m +=(0m >)的左焦点为1(4,0)F -, 则m = A .9 B .4 C .3 D .2 5.(2015·广东卷·文科)已知椭圆22 2125x y m +=(0m >)的左焦点为1(4,0)F -,

则m = A .9 B .4 C .3 D .2 6.(2020·北京卷)已知椭圆C :22 221x y a b +=过点(2,1)A --,且2a b =.则椭圆 C 的方程为 . 考法2焦点在y 轴上的椭圆的标准方程:方程为22 221y x a b +=(0a b >>). 1.椭圆C :125 92 2=+y x 的焦点在 轴上,焦点坐标为 , ,焦距为 . 2.(2002·全国卷)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k . 3.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 A.(0,)+∞ B.(0,2) C.(1,)+∞ D.(0,1) 4.(2009·陕西卷·文理科)“0m n >>”是“方程221mx ny +=表示焦点在y 轴上的椭圆”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 考点3 椭圆定义的应用 1.椭圆C : 136 1002 2=+y x 上一点P 到焦点1F 的距离等于6,则点P 到另一焦点2F 的距离是 . 2.已知椭圆C :22 16410 x y + =的焦点为1F 、2F ,直线l 过椭圆的焦点1F ,且与椭圆交于A B 、两点,则2ABF ?的周长为 . 3.已知椭圆C :22 192 x y + =的焦点分别为1F 、2F ,点M 在椭圆上,若14MF =,则2MF = ,21F MF ∠= . 6.(2009·上海卷)已知椭圆C :22 221x y a b +=(0a b >>)的焦点为1F 、2F ,P 是椭圆上的一点,且120PF PF ?=,若三角形12PF F ?的面积为9,则b = A.3 B.6 C.9 D.12 模块二、椭圆的简单性质

曲线和方程的概念说课

《曲线和方程的概念》说课稿 临朐二中谢文利 各位评委、老师,大家好! 我说课的内容是“曲线和方程的概念”。下面我从教材分析、教学方法、学法指导、教学程序设计、板书设计以及教后评价六个方面来汇报对教材的钻研情况和本节课的教学设想。恳请在座的领导、专家、同仁批评指正。 一、关于教材分析 1、教材的地位和作用 “曲线和方程”是高中数学人教B版选修2-1第二章第一节的重点内容之一,对一般曲线(也包括直线)与二元方程的关系作进一步的研究。这部分内容从理论上揭示了几何中的“形”与代数中的“数”相统一的关系,为“形”与“数”的相互转化开辟了途径,同时也体现了解析几何的基本思想,为解析几何 https://www.360docs.net/doc/123849847.html,/view/900761eae009581b6bd9eb45.html 的教学奠定了一个理论基础。 2、教学内容的选择和处理 本节教材主要讲解曲线的方程和方程的曲线 https://www.360docs.net/doc/123849847.html,/view/9d02094fc850ad02de8041ad.html) 坐标法、解析几何等概念,讨论怎样求曲线的方程以及曲线的交点等问题。共分两课时,这是第一课时。此课时的主要内容是建立“曲线的方程”和“方程的曲线”这两个概念,并对概念进行初步运用。我在处理教材时,不拘泥于教材,敢于大胆进行调整。主要体现在对曲线的方程和方程的曲线的定义进行归纳上,通过构造反例,引导学生进行观察、讨论、分析、正反对比,逐步揭示其内涵,加深学生对概念的认识然后在此基础上归纳定义。 3、教学目标的确定 根据新课程标准的要求以及本节教材的地位和作用,结合高二学生的认知特点,我认为,通过本节课的教学,应使学生理解曲线和方程的概念;会用定义来判断点是否在方程的曲线上、证明曲线的方程;培养学生分析、判断、归纳的逻辑思维能力,渗透数形结合的数学思想;并借用曲线与方程的关系进行辩证唯物主义观点的教育;通过对问题的不断探讨,培养学生勇于探索的精神。 4、关于教学重点、难点和关键 由于曲线和方程的概念体现了解析几何的基本思想,学生只有透彻理解了这个概念,才能用解析法去研究几何图形,才算是踏上学好解析几何的入门之径。因此,我把曲线和方程的概念确定为本节课的教学重点。另外,由于曲线和方程的概念比较抽象,加之刚刚进入高二的学

圆的标准方程

第四章圆与方程 4.1圆的方程 4.1.1圆的标准方程 教材分析 本节内容数学必修2第四章第一节的起始课,是在学习了直线的有关知识后学习的,圆是学生比较熟悉的曲线,在初中就已学过圆的定义.这节课主要是根据圆的定义,推出圆的标准方程,并会求圆的标准方程.本节课的教学重点是圆的标准方程的理解、掌握;难点是会根据不同的已知条件,利用待定系数法,几何法求圆的标准方程.通过本节课的学习培养学生用坐标法研究几何问题的能力,使学生加深对数形结合思想和待定系数法的理解,增强学生的数学意识. 课时分配 本节内容用1课时的时间完成,主要讲解圆的标准方程的推导和应用. 教学目标 重点:圆的标准方程的理解、掌握. 难点:会根据不同的已知条件,利用待定系数法求圆的标准方程. 知识点:会求圆的标准方程. 能力点:根据不同的已知条件求圆的标准方程. 教育点:尝试用代数方法解决几何问题探究过程,体会数形结合、待定系数法的思想方法. 自主探究点:点与圆的位置关系的判断方法. 考试点:会求圆的标准方程. 易错易混点:不同的已知条件,如何恰当的求圆的标准方程. 拓展点:如何根据不同的条件,灵活适当地选取恰当的方法求圆的标准方程. 知识结构

教具准备 多媒体课件和三角板 课堂模式 学案导学 一、引入新课 问题 1:圆在我们的生活中无处不在,日出东方,车行天下,这些都是圆的具体表现形式.请同学们思考一个问题:车轮为何设计为圆形,而不是其他的形状? 学生回答:若是方形,走起来颠簸,不舒服;不是圆形,转不起来. 老师点评:正是圆,可以让车轮上的每一点到轴心的距离相等,才保证了轮子转起来而不颠簸. 【设计意图】通过对问题的思考让学生体会圆的性质,回顾圆的定义. 【设计说明】通过实例引入问题,紧扣问题的本质提出矛盾问题,引发学生兴趣并自然切入圆的定义. 问题 2:圆是如何定义的? 学生回答:平面内与一定点距离等于定长的点的轨迹称为圆. 【设计意图】回顾圆的定义便于问题3的回答. 【设计说明】回顾圆的定义,通过分析定义引导学生分析问题3. 问题3:在平面直角坐标系中,两点确定一条直线,一点和倾斜角也可以确定一条直线,那么在什么条件下可以确定一个圆? 【设计意图】使学生在已有知识的基础上,结合圆的定义回答出确定圆的两个要素——圆心(定位)和半径(定形). 【设计说明】教师引导,学生回答. 问题4:在平面直角坐标系中,直线可以用一个二元一次方程表示,圆也可以用一个方程来表示吗?如果能,这个方程又有什么特征呢? 【设计意图】使学生在已有知识和经验的基础上,探索新知,引出本课题. 【设计说明】教师指出:建立圆的方程正是我们本节课要探究的问题.并板书本节课题:圆的标准方程. 二、探究新知 问题5:类比直线点斜式方程的推导方法,你能否总结出求曲线的方程的一般步骤? 师生共同回顾和探究:教师引导学生回答如何求曲线的方程. (1)建立适当的直角坐标系,用(x ,y )表示曲线上任意点M 的坐标; (2)写出适合条件P 的点M 的集合P ={M |P (M )|}; (3)用坐标表示条件P (M ),列出方程f (x ,y )=0; (4)化方程f (x ,y )=0为最简形式; (5)说明化简后的方程就是所求曲线的方程. 其中步骤(1)(3)(4)必不可少.下面我们用求曲线方程的一般步骤来建立圆的标准方程. 【设计意图】圆的标准方程的推导是学生第一次接触的曲线方程的推导问题,通过引导学生总结曲线方程的推导步骤,提高学生对求曲线方程问题的理解. 【设计说明】系统总结求曲线方程的步骤,帮助学生掌握求圆的标准方程的方法. 问题6:已知圆的圆心坐标为(,)A a b ,半径为r (其中a 、b 、r 都是常数,0r ),如何确定圆的方程? 教师:对于这一问题而言?是否已经建立了坐标系? 学生:已经建立了坐标系. 教师:设M(x,y)是圆上任意一点,根据圆的定义如何建立x ,y 满足的关系式?

椭圆的标准方程及其几何性质(供参考)

椭圆的标准方程及其几何性质 1. 椭圆定义: (1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点. 当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在; 当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<>=+b a b y a x 的位置关系: 当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+b y a x 时,点P 在椭圆上; 4.直线与椭圆的位置关系 直线与椭圆相交0>??;直线与椭圆相切0=??;直线与椭圆相离0

椭圆标准方程及其性质知识点大全(供参考)

【专题七】椭圆标准方程及其性质知识点大全 (一)椭圆的定义及椭圆的标准方程: ●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数 )2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦 点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121 F F PF PF <+,则动点P 的轨迹无图形 (二)椭圆的简单几何性: 标准方程 图形 性质 焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦距 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ± 轴长 长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2 离心率 ①(01)c e e a = << ,②21()b e a =-③2 22b a c -= (离心率越大,椭圆越扁) 1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中 a 最大且a 2= b 2+ c 2.

2. 方程22 Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A ≠B 。A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。 (三)焦点三角形的面积公式:122tan 2 PF F S b θ ?=如图: ●椭圆标准方程为:122 22=+b y a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点, 12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan 2 PF F S b θ ?=。 (四)通径 :如图:通径长 2 2b MN a = ●椭圆标准方程:122 22=+b y a x )0(>>b a , (五)点与椭圆的位置关系: (1)点00(,)P x y 在椭圆外?22 00 221x y a b +>;(2)点00(,)P x y 在椭圆上?220220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< (六)直线与椭圆的位置关系: ●设直线l 的方程为:Ax+By+C=0,椭圆122 22=+b y a x (a ﹥b ﹥0),联立组成方程 组,消去y(或x)利用判别式△的符号来确定: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离:0?>b a 相交于两点 11(,)A x y 、22(,)B x y , 把AB 所在直线方程y=kx+b ,代入椭圆方程122 22=+b y a x 整理得:Ax 2+Bx+C=0。 ●弦长公式: ① 212212 212 4)(11x x x x k x x k AB -++=-+=a k ? +=2 1(含M N F x y

椭圆及其标准方程教案

椭圆及其标准方程 一、教学目标 (一)知识目标 1、使学生理解椭圆的定义,掌握椭圆的标准方程及推导; 2、掌握焦点、焦点位置与方程关系、焦距; (二)能力目标 通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力; (三)学科渗透目标 通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力 二、教材分析 1.重点:椭圆的定义和椭圆的标准方程. (解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.) 2.难点:椭圆的标准方程的推导. (解决办法:推导分4步完成,每步讲解,关键步骤加以补充说明.) 3.疑点:椭圆的定义中常数加以限制的原因. (解决办法:分三种情况说明动点的轨迹.) 三、教学过程 (一)创设情境,引入概念 1、动画演示,描绘出椭圆轨迹图形。 2、实验演示。 思考:椭圆是满足什么条件的点的轨迹呢? (二)实验探究,形成概念 1、动手实验:学生分组动手画出椭圆。 实验探究: 保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化? 思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹? 2、概括椭圆定义 引导学生概括椭圆定义 椭圆定义:平面内与两个定点21,F F 距离的和等于常数(大于21F F )的点的轨迹叫椭圆。 教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。 思考:焦点为21,F F 的椭圆上任一点M ,有什么性质? 令椭圆上任一点M ,则有)22(22121F F c a a MF MF =>=+ (三)研讨探究,推导方程 1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么? M 2 F 1F

高中数学椭圆标准方程的求法举例

椭圆标准方程的求法举例 一、定义法 例1.已知圆2 2 :(1)8C x y ++=,点(10)A ,是圆内一点,AM 的垂直平分线l 交CM 于点N ,当点M 在圆C 上运动时,求点N 的轨迹方程。 解:连结AN ,由NM NA =,得22NC NA NC NM CM +=+==, 而2CA =,因此,点N 的轨迹是以点C A ,为焦点的椭圆, 设为22 221(0)x y a b a b +=>>,222a =,22c =, 所以2a =,1c =,2 2 2 1b a c =-=。因此,所求轨迹方程为2 212 x y +=。 评注:用定义法求椭圆的方程,首先要清楚椭圆的中心是否在原点、对称轴是否为坐标轴;其次,要紧紧的抓住定义,由定义产生椭圆的基本量a 、b 、c . 二、待定系数法 例2.已知椭圆的焦距离为26且过点(32),,求焦点在x 轴上时,它的标准方程. 解析:焦点在x 轴上,设所求方程为22 221x y a b +=(0)a b >>, 由题意得22223 21 a b a b ?+=???-? ,, 解之得2293.a b ?=??=??,因此,所求方程为22193x y +=. 评注:用待定系数法求椭圆方程的基本步骤是:首先设出含待定系数的椭圆方程;然后根据题目条件再逐步求出待定的系数,从而得到方程. 三、轨迹法 例3.点()P x y ,到定点(01)A -,的距离与定直线14y =-的距离之比为 14 ,求动点P 的轨迹方程. 解析:设d 为动点()P x y ,到定直线14y =-的距离,根据题意动点P 的轨迹就是集合 14()14PA M P x y d ????==?????? ,|,由此得 22(1)141414x y y ++=+. 将上式两边平方,并化简得2 2 14131413x y +=?,即22 11314 x y +=为所求. 评注:用轨迹法求椭圆方程,首先要写出适合条件的点集,然后用坐标代入,再对含x y ,的式子进行化简,最后产生所求方程,这是必须的基本步骤. 四、奇思妙解法 例4.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1(02)32A B ?? ??? ,, ,求

(完整版)《椭圆及其标准方程》(第一课时)教学设计

《椭圆及其标准方程》(第一课时)教学设计 一、教学内容分析 教材选自人教A版《普通高中课程标准实验教科书》数学选修2-1.《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例。椭圆的标准方程是圆锥曲线方程研究的基础,它的学习方法对整个这一章具有导向和引领作用。一方面,它是对前面所学的运用“代数方法研究几何问题”的又一次实际演练,同时它也是进一步研究椭圆几何性质和双曲线、抛物线的基础;另一方面,教科书以椭圆作为学习圆锥曲线的开始和重点,并依此来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,为我们后面研究双曲线、抛物线这两种圆锥曲线提供了基本模式和方法。因此本节课有承前启后的作用,是本章和本节的重点内容。 椭圆是通过描述椭圆形成过程进行定义的,作为椭圆本质属性的揭示和椭圆方 程建立的基石,这是本节课的一个教学重点;而坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例,让学生亲身经历椭圆概念形成的数学化过程,并通过探究得到椭圆的标准方程,有利于培养学生观察分析、抽象概括的能力。 学生对“曲线与方程”的内在联系仅在“圆的方程”一节中有过一次感性认识,并未真正有所感受。通过本节学习,学生一方面认识到椭圆与圆的区别与联系,另一方面也为利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础。 根据以上分析,确定本课时的教学难点和教学重点分别是: 教学重点:掌握椭圆的定义及标准方程,体会坐标法的应用。 教学难点:椭圆概念的深入理解及选择不同的坐标系推导椭圆的标准方程。 二、学生学情分析 在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识。因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力。而本节课要求学生通过自己动手亲自作出椭圆并且还要

曲线与方程(轨迹方程)

高二数学第二章曲线与方程学案 学习目标: 1、理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 2、掌握求曲线的方程的方法及一般步骤; 学习重点:理解曲线和方程的概念,掌握求曲线的方程的方法及一般步骤; 学习难点:曲线和方程概念的理解; 学习过程: 完成教学目标1:理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 新授知识:曲线的方程与方程的曲线的概念 一般地,在直角坐标系中,如果其曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点; 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 例1、判断下列结论的正误并说明理由 (1)过点A (3,0)且垂直于x 轴的直线为x=3 ; (2)到x 轴距离为2的点的轨迹方程为y=2 ; (3)到两坐标轴距离乘积等于1的点的轨迹方程为xy=1 ; 练习:1、到两坐标轴距离相等的点组成的直线方程是0=-y x 吗? 2、已知等腰三角形三个顶点的坐标是)3,0(A ,)0,2(-B ,)0,2(C ,中线O AO (为原点)的 方程是0=x 吗?为什么? 3、若曲线C 上的点的坐标满足方程(,)0f x y =,则下列说法正确的是( ) A.曲线C 的方程是(,)0f x y = B.方程(,)0f x y =的曲线是C C.坐标不满足方程(,)0f x y =的点都不在曲线C 上 D.坐标满足方程(,)0f x y =的点都在曲线C 上 例2、已知方程252 2=+by ax 的曲线经过点)3 5,0(A 和点)1,1(B ,求a 、b 的值。 练习:已知方程 2 2 25x y +=表示的曲线C 经过点)A m ,求m 的值。 完成教学目标2:掌握求曲线的方程的方法及一般步骤; 类型一:待定系数法求轨迹方程(设出标准方程,根据题意求出a ,b ,p ) 例1:已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O , 且0=?,||2||=,求椭圆的方程。 练习:已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.求椭圆C 的标准方程; 类型二:直接法求轨迹方程(根据题目条件,直译为关于动点的几何关系,即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。注意:是否应该建立适当的坐标系) 例2:已知点F(1,0),直线l:x =-1,P为平面上的动点,过点P作直线l的垂线,垂 足为点Q,且FQ FP QF QP ?=?,求动点P的轨迹C的方程; **练习:已知动点M 到定点A (1,0)与到定直线l :x=3的距离之和等于4,求动点M 的轨迹方程,并说明轨迹是什么曲线?

椭圆定义、标准方程及性质(一)

椭圆的定义、标准方程及性质(一) 一、选择题(本大题共8小题,每小题5分,共40分.) 1、椭圆的焦距() A.2 B. C. D. 2、是定点,,动点M满足,则点M的轨迹是() A.椭圆 B.圆 C.线段 D.直线 3、若椭圆的两个焦点分别为,且椭圆过点则椭圆的方程为()A. B. C. D. 4、方程表示焦点在y轴上的椭圆,则k的取值范围是() A. B. C. D.(0,1) 5、过椭圆的一个焦点的直线与椭圆交于A、B两点,则A、B与椭圆的另一焦点构成的周长是() A. B.2 C. D.1 6、已知椭圆的对称轴是坐标轴,离心率为,长轴长为12,则椭圆方程为() A.或 B. C.或 D. 7、已知,则曲线有() A.相同的短轴 B.相同的焦点 C.相同的离心率 D.相同的长轴 8、椭圆的焦点,P为椭圆上的一点,已知,则的面积为() A.9 B.12 C.10 D.8 二、填空题(本大题共4小题,每小题5分,共20分.) 9、椭圆的离心率为,则= . 10、设是椭圆上的一点,是椭圆的两个焦点,则*的最大值为 . 11、椭圆的焦点分别是,点在椭圆上.如果线段的中点在轴上,那么是倍. 12、已知圆及点,为圆上一点,的垂直平分线交于于,则点的轨迹方程为 . 三、解答题(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤) 13、如果点在运动的过程中,总满足关系式,点的轨迹是什么曲线?写出它的方程.

14、点到定点的距离和它到定直线的距离的比是,求点的轨迹方程,并指出轨迹是什么图形. 15、已知点是椭圆上的一点,且以点及焦点为顶点的三角形的面积等于1,求点的坐标.

椭圆的标准方程与性质

椭圆的标准方程与性质 教学目标: 1了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用; 2 掌握椭圆的定义、几何图形、标准方程及简单几何性质. 高考相关点: 在高考中所占分数:13分 考查出题方式:解答题的形式,而且考查方式很固定,涉及到的知识点有:求曲线方程,弦长,面积,对称关系,范围问题,存在性问题。 涉及到的基础知识 1.引入椭圆的定义 在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|=2c)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数: 有以下3种情况 (1)若a>c,则集合P为椭圆; (2)若a=c,则集合P为线段; (3)若a

标准方程x2 a2 +\f(y2,b2)=1 (a>b>0) \f(y2,a2)+错误!=1 (a>b>0) 图形 性质范围 -a≤x≤a -b≤y≤b -b≤x≤b -a≤y≤a 对称性对称轴:坐标轴;对称中心:原点 顶点 A1(-a,0),A2(a,0) B1(0,-b),B2(0,b) A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b 焦距|F1F2|=2c 离心率e=错误!∈(0,1) a,b,c的关系c2=a2-b2题型总结

类型一椭圆的定义及其应用 例1:如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( ) A.椭圆? B.双曲线 C.抛物线 D.圆 【解析】根据CD是线段MF的垂直平分线.可推断出,进而可以知道 结果为定值,进而根据椭圆的定义推断出点P的轨迹【答案】根据题意知,CD是线段MF的垂直平分线.,(定值),又显然,根 据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.所以A选项是正确的 练习1:已知F1,F2是椭圆C: 22 22 1 x y a b +=(a>b>0)的两个焦点,P为椭圆C 上的一点,且 错误! 1⊥2 PF,若△PF1F2的面积为9,则b=________. 【解析】由题意的面积∴故答案为: 【答案】3 练习2:已知F1,F2是椭圆错误!+错误!=1的两焦点,过点F2的直线交椭圆于A,B两点,在△AF1B中,若有两边之和是10,则第三边的长度为() A.6?B.5 C.4 D.3

椭圆的定义及其标准方程

椭圆的定义及其标准方程 教学课题椭圆及其标准方程 所属学科数学课时安排1课时年级高二 所选教材 《普通高中课程标准实验教科书数学》人民教育出版社课程教材研究所中学数学课程教材研究开发中心编著选修2-1第二章第二节《椭圆及其标准方程》 教学目标 1.知识与技能 理解椭圆的概念,掌握椭圆的定义及其标准方程,能够准确的推导出椭圆的标准方程。 2.过程与方法 通过椭圆标准方程的推导,能运用坐标法解决简单的几何问题;通过椭圆的学习,进一步体会数形结合的思想。 3.情感态度和价值观 感受数学在其他领域的广泛运用,培养对数学的热爱。 教学重难点 重点:椭圆的定义,椭圆的标准方程的推导。 难点:对椭圆定义的理解,椭圆标准方程的推导。 学情分析 本节课是圆锥曲线的第一课时。它是在学生学习了直线和圆的方程的基础上,进一步学习用坐标法研究曲线。椭圆的学习为后面研究双曲线、抛物线提供了基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容。 从知识上看,学生已掌握了一些椭圆图形的实物与实例,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步的认识。 从学生现有的学习能力看,通过一年多的实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。

从学生的心理学习心理上看,学生头脑中虽有一些椭圆的实物实例,但并没有上升为“概念”的水平,如何给椭圆以数学描述?如何“定性”“定量”地描述椭圆是学生关注的问题,也是学习的重点问题。他们渴望将感性认识理性化,渴望通过自己动手作图、观察、辨析和完善概念,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。 因此,本节课关注的重点:知识上是椭圆的定义和标准方程;从学生的情感态度上,关注学生的全方位参与,特别是思维起点和思维发展点。 教学方法 探究式教学法,通过教师引导学生自主探究、合作学习完成本节课的学习,是学生在获得知识的同时能够掌握学习方法,提高自主学习能力。 教学过程 1.联系实际、引入课题 火腿是受到大家广泛喜爱的一种食品,在食用时我们有时我们会把它切成片吃,那么不知道大家有没有发现切火腿也是一门学问,我们都知道火腿具有轴对称性,当我们垂直于火腿的轴线切下去时,截面曲线为圆;倾斜一定角度之后,截面曲线就变成了另外的一种曲线,这是一种我们没有研究过的曲线,现在我们把火腿近似的看成一个圆柱,用截面去截圆锥,所得到的截面曲线就是我们切火腿时形成的截面曲线——椭圆,今天我们就来学习椭圆及其标准方程。 (说明:从生活实际出发,引发对于椭圆的思考,培养学生从生活中发现数学问题的能力,同时激发学生的学习激情。) 2.回顾复习,温故知新 在之前的学习中我们已经认识了圆,研究了圆的定义、标准方程、和其他几何性质。那么请大家回忆圆的定义是什么?其标准方程是什么?求曲线方程的方法步骤是什么?(请同学复述圆的定义、其标准方程、曲线方程的推导方法,如果学生复述有困难,需教师引导学生进行回顾) 圆的定义:平面内到定点的距离等于常数r(r>0)的点的轨迹叫做圆。 圆的标准方程:(x-a)2+(y-b)2=r2,圆心O(a,b),半径r。 圆的标准方程的推导过程:(建设限代化) (1)建系设点,

曲线和方程教案

《课堂教学设计》 课题:曲线和方程(1) 一:教学目标 ?知识与技能目标 (1)了解曲线上的点与方程的解之间的一一对应关系; (2)初步领会“曲线的方程”与“方程的曲线”的概念; (3)学会根据已有的情景资料找规律,培养学生分析、判断、归纳的逻辑思维能力与抽象思维能力,同时强化“形”与“数”一致并相互转化的思想方法。 ?过程与方法目标 (1)通过直线方程的复习引入,加强学生对方程的解和曲线上的点的一一对应关系的直观认识; (2)在形成曲线和方程概念的过程中,学生经历观察,分析,讨论等数学活动过程,探索出结论并能有条理的阐述自己的观点; (3)能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。 ?情感与态度目标 (1)通过概念的复习引入,从特殊到一般,让学生感受事物的发展规律; (2)通过本节课的学习,学生能够体验几何问题可以转化成代数问题来研究,真正认识到数学是解决实际问题的重要工具; (3)学生通过观察、分析、推断可以获得数学猜想,体验到数学活动充满着探索性和创造性。 二:教材分析 1、教学分析:因为学生已有了用方程(有时用函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程。所以本节课采用了复习引入课题,从特殊到一般的方法让学生易于接受。在概念的探索过程中采用了举反例的方法来揭示概念的内涵。在概念的应用即例题的设计方面,着重巩固对概念的两个条件的认识。 2、教学重点 “曲线的方程”与“方程的曲线”的概念。

求椭圆的标准方程

求椭圆的标准方程 1、求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0); (2)焦点在y 轴上,且经过两个点(0,2)和(1,0); . (3)经过点A (3,-2)和点B (-23,1). . 2、求适合下列条件的椭圆的标准方程. (1)焦点在x 轴上,且a =4,c =2; (2)经过点A (0,2)和B ? ?? ??12,3. 3、已知一椭圆的标准方程中b =3,c =4,求此椭圆的标准方程. 4、已知椭圆过点P ? ????35,-4和点Q ? ?? ??-45,3,则此椭圆的标准方程是( A ) +x 2=1 +y 2=1或x 2+y 2 25=1 +y 2=1 D .以上都不对 5、求适合下列条件的椭圆的标准方程. (1)椭圆过(3,0),离心率e =63 ; (2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为8. 6、中心在原点,焦点在坐标轴上的椭圆上有M ? ????1,432,N ? ?? ??-322,2两点. 求椭圆的标准方程; 7、求满足下列各条件的椭圆的标准方程. (1)长轴是短轴的3倍且经过点A (3,0),焦点在x 轴上; (2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 3.

答案: 1、(1)x2 25 + y2 9 =1(2) y2 4 +x2=1(3) x2 15 + y2 5 =1 2、(1)x2 16 + y2 12 =1(2)x2+ y2 4 =1 3、当焦点在x轴上时,椭圆的标准方程为x2 25 + y2 9 =1. 当焦点在y轴上时,椭圆的标准方程为x2 9 + y2 25 =1. 4、A 5、(1)若焦点在x轴上,椭圆的方程为x2 9 + y2 3 =1. 若焦点在y轴上,椭圆的方程为y2 27 + x2 9 =1. (2)x2 32 + y2 16 =1. 6、x2 9 + y2 4 =1 7、x2 9 +y2=1 8、x2 12 + y2 9 =1或 x2 9 + y2 12 =1

曲线和方程知识要点

曲线和方程的概念 【知识要点】 定义 一般地,如果曲线C 与方程0),(=y x F 之间有以下两个关系:(1)曲线C 上的点的坐标都是方程0),(=y x F 的解;(2)以方程0),(=y x F 的解为坐标的点都在曲线C 上. 我们就把0),(=y x F 叫做曲线C 的方程,曲线C 叫做方程0),(=y x F 的曲线. 注意:要建立曲线与方程间的对应关系,仅有条件“曲线C 上的点的坐标都是方程0),(=y x F 的解”是不够的,因为可能有满足方程0),(=y x F 的点不在曲线C 上;仅有条件“以方程0),(=y x F 的解为坐标的点都在曲线C 上”也是不够的,因为曲线C 上可能有不满足方程0),(=y x F 的点.只有同时具备这两个条件时,才能说方程0),(=y x F 是曲线C 的方程,曲线C 是方程0),(=y x F 的曲线. 求曲线的方程 【知识要点】 1 求曲线的方程的步骤: ①建立适当的直角坐标系(如果已给出,本步骤省略). ②设曲线上任意一点的坐标为),(y x ,写出已知点的坐标,设出相关点的坐标. ③根据曲线上点所适合的条件,写出等式. ④用坐标表示这个等式(方程),并化简. ⑤证明以化简后的方程的解为坐标的点都是曲线上的点(在本教材不作要求). (6)检验,该说明的要说明. 2 求曲线方程的常用方法:定义法、直接法、代入法、参数法等. (1)定义法:根据题意可以得出或推出动点的轨迹是直线或圆或椭圆或双曲线或抛物线.根据所学知识可以写出或求出轨迹方程.若方程形式知道,往往用待定系数法求. (2)直接法:根据题设条件直接写出动点的坐标),(y x 所满足的关系式,即方程0),(=y x F . (3)相关点法(代入法):是所求轨迹上的动点),(y x P 随着另一个已知曲线上的动点),(11y x M 的运动而运动时,一般用代入法求动点P 的轨迹方程.其方法是根据题设条件求得两动点坐标),(y x 与),(11y x 之间的关系式,从中解出),(),,(11y x g y y x f x ==,由于),(11y x M 在已知曲线上,故),(11y x M 满足已知曲线方程,将11,y x 的表达式代入已知曲线方程,从而求得动点P 的轨迹方程. (4)参数法:根据题意得出动点P 的坐标y x ,用其他点的坐标或长度、角、斜率、时间等参

圆的标准方程优秀教案

第四章圆与方程 4.1 圆的方程 4.1.1 圆的标准方程 教材分析 本节内容数学必修2 第四章第一节的起始课,是在学习了直线的有关知识后学习的,圆是学生比较熟悉的曲线,在初中就已学过圆的定义.这节课主要是根据圆的定义,推出圆的标准方程,并会求圆的标准方程.本节课的教学重点是圆的标准方程的理解、掌握;难点是会根据不同的已知条件,利用待定系数法,几何法求圆的标准方程.通过本节课的学习培养学生用坐标法研究几何问题的能力,使学生加深对数形结合思想和待定系数法的理解,增强学生的数学意识. 课时分配 本节内容用1课时的时间完成,主要讲解圆的标准方程的推导和应用. 教学目标 重点: 圆的标准方程的理解、掌握. 难点:会根据不同的已知条件,利用待定系数法求圆的标准方程. 知识点:会求圆的标准方程. 能力点:根据不同的已知条件求圆的标准方程. 教育点:尝试用代数方法解决几何问题探究过程,体会数形结合、待定系数法的思想方法. 自主探究点:点与圆的位置关系的判断方法. 考试点:会求圆的标准方程. 易错易混点:不同的已知条件,如何恰当的求圆的标准方程. 拓展点:如何根据不同的条件,灵活适当地选取恰当的方法求圆的标准方程. 教具准备多媒体课件和三角板 课堂模式学案导学 一、引入新课 问题 1:什么是圆? 【设计意图】回顾圆的定义便于问题2的回答. 【设计说明】学生回答. 问题2:在平面直角坐标系中,两点确定一条直线,一点和倾斜角也可以确定一条直线,那么在什么条件下可以确定一个圆? 【设计意图】使学生在已有知识的基础上,结合圆的定义回答出确定圆的两个要素—圆心(定位)和半径(定形). 【设计说明】教师引导,学生回答. 问题3:直线可以用一个方程表示,圆也可以用一个方程来表示吗? 【设计意图】使学生在已有知识和经验的基础上,探索新知,引出本课题. 【设计说明】教师指出建立圆的方程正是我们本节课要探究的问题. 二、探究新知

椭圆的标准方程与几何性质

椭圆的标准方程与几何性质 高考频度:★★★★☆ 难易程度:★★★☆☆ 典例在线 (1)已知椭圆24x +2 2 y =1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则12PF F △的面积是 A B .2 C . D (2)已知F 1,F 2分别是椭圆E :22x a +221y b =(0a b >>)的左、右焦点,点(1)在椭圆 上,且点(1-,0)到直线PF 2P (1-,4-),则椭圆的标准方程为 A .x 2 +2 4 y =1 B .24x +y 2 =1 C .x 2 +2 2 y =1 D .22 x +y 2 =1 (3)已知椭圆22x a +2 2y b =1(0a b >>)的左、右焦点分别为F 1(c -,0),F 2(c ,0),若椭圆上 存在点P ,使1221 sin sin a c PF F PF F ∠∠=,则该椭圆离心率的取值范围为 A .(01-) B .,1) C .(0) D .1-,1) 【参考答案】(1)A ;(2)D ;(3)D . 【试题解析】(1)由椭圆的方程可知a =2,c ,且|PF 1|+|PF 2|=2a =4,又|PF 1|-|PF 2|=2, 所以|PF 1|=3,|PF 2|=1.又|F 1F 2|=2c =|PF 1|2=|PF 2|2+|F 1F 2|2 ,即12PF F △为直

角三角形,所以12122||11 12 |2|PF F S F F PF = =?=△.故选A . (3)根据正弦定理得 2112 21 sin sin PF PF PF F PF F ∠∠= ,又 1221 sin sin a c PF F PF F ∠∠=可得 21 a c PF PF =,即12 PF c PF a = =e , 所 以 |PF 1|=e|PF 2| . 又 |PF 1|+|PF 2|=e|PF 2|+|PF 2|=|PF 2|·(e+1)=2a ,所以|PF 2|= 21 a e +.因为a -c <|PF 2|往往是解决计算问题的关键,椭圆上的一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用椭圆的定义和正弦定理、余弦定理. (2)求椭圆的方程有两种方法:①定义法;②待定系数法.用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为 221mx ny =+(0,0m n >>且)m n ≠. (3)与几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形.理解顶点、焦点、长轴、短轴等椭圆的基本量之间的关系,深挖出它们之间的联系,求解自然就不难了. (4)椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围)有两

圆的方程练习及答案

考点四十 圆的方程 知识梳理 1.圆的定义 在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径. 2. 圆的标准方程 (1) 以(a ,b )为圆心,r (r >0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2. (2) 特殊的,以(0,0)为圆心,r (r >0)为半径的圆的标准方程为x 2+y 2=r 2. 3. 圆的一般方程 方程x 2 +y 2 +Dx +Ey +F =0可变形为????x +D 22 +????y +E 22 =D 2+E 2 -4F 4 . (1) 当D 2 +E 2 -4F >0时,方程表示以????-D 2,-E 2为圆心,D 2+E 2-4F 2 为半径的圆; (2) 当D 2+E 2-4F =0时,该方程表示一个点????-D 2,-E 2; (3) 当D 2+E 2-4F <0时,该方程不表示任何图形. 4. 点与圆的位置关系 点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2

相关文档
最新文档