人教版七年级数学上册 同步练习:1.2.3 相反数【精品】
1.2.3 相反数—2024-2025学年人教版数学七年级上册课堂练习(含答案)
1.2.3相反数—2024-2025学年人教版数学七年级上册堂堂练1.-5的相反数是( )A. B. C.5 D.-52.从百年前的“奥运三问”到今天的“双奥之城”,2022年中国与奥运再次牵手,2022年注定是不平凡的一年.数字2022的相反数是( )A.2022B.-2022C.D.3.的相反数是( )A.2B.-2C.D.4.的相反数是( )A. B. C. D.25.下列各对数中,是互为相反数的是( )A.-2与3B.与C.4与-4D.5与6.中国人最早使用负数,可追溯到两千多年前的秦汉时期,的相反数是_________.7.化简:___________;___________;___________.8.如图,小明有8张写着不同数字的卡片,将这8张卡片上的数字在数轴上表示出来,再找出哪些数互为相反数.答案以及解析1.答案:C解析:-5的相反数是5.故选C.2.答案:B解析:2022的相反数是-2022;故选B.3.答案:B解析:去括号是2,2的相反数是-2,故选B.4.答案:C解析:是的相反数是.5.答案:C解析:根据只有符号不同的两个数叫做互为相反数进行判断:-2与3不是只有符号不同的两个数;与化简后都是-3;4与-4是只有符号不同的两个数,是互为相反数;5与符号相同,故选C.6.答案:2解析:,故答案为:2.7.答案:6,-6,-0.73解析:故答案为:6,-6,-0.738.答案:在数轴上表示如图所示:-3.5与3.5,-0.5与0.5互为相反数.。
七年级数学上册《相反数》同步练习(含解析)
人教版数学七年级上册第1章 1.2.3相反数同步练习一、单选题(共12题;共24分)1、﹣(﹣)的相反数是()A、﹣﹣B、﹣+C、﹣D、+2、下列的数中,负有理数的个数为()﹣,﹣(﹣2),﹣|﹣7|,|﹣|,﹣(+ ).A、2个B、3个C、4个D、5个3、下列说法正确的是()A、a一定是正数B、绝对值最小的数是0C、相反数等于自身的数是1D、绝对值等于自身的数只有0和14、﹣2017的相反数是()A、2017B、C、﹣D、05、相反数不大于它本身的数是()A、正数B、负数C、非正数D、非负数6、一个数的相反数是非负数,这个数是()A、负数B、非负数C、正数D、非正数7、下列各组数中,互为相反数的是()A、2和B、﹣2和C、2 和﹣2.375D、+(﹣2)和﹣28、一个数的相反数等于它本身,这样的数一共有()A、1个B、2个C、3个D、4个9、已知5个数中:(﹣1)2017,|﹣2|,﹣(﹣1.5),﹣32,﹣3的倒数,其中正数的个数有()A、1B、2C、3D、410、在﹣中,负数有()A、1个B、2个C、3个D、4个11、如果a,b互为相反数,那么(6a2﹣12a)﹣6(a2+2b﹣5)的值为()A、﹣18B、18C、30D、﹣3012、下列各对数:﹣2与+(﹣2),+(+3)与﹣3,﹣(﹣)与+(﹣),﹣(﹣12)与+(+12),﹣(+1)与﹣(﹣1).其中互为相反数的有()A、0对B、1对C、2对D、3对二、填空题(共5题;共13分)13、当2x+1和﹣3x+2互为相反数时,则x2﹣2x+1=________.14、±=________;=________;|﹣|=________;π﹣3.14的相反数是________.15、的相反数是________,它的绝对值是________.16、计算:﹣(+ )=________,﹣(﹣5.6)=________,﹣|﹣2|=________,0+(﹣7)=________.(﹣1)﹣|﹣3|=________.17、当x=________时,代数式与x﹣3的值互为相反数.三、解答题(共5题;共25分)18、a、b互为相反数,c、d互为倒数,|m|=2,且m<0,求2a﹣(cd)2007+2b﹣3m的值.19、把下列各数及其相反数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来﹣2.5,0,+3.5,﹣.20、已知a、b互为相反数,c、d互为倒数,x的绝对值是3,求x2﹣(a+b+cd)x﹣cd.21、把下列各数及它们的相反数在数轴上表示出来,并用“<”把所有数都连接起来. 2 ,﹣1.5,0,﹣4.22、如果与|y+1|互为相反数,求x﹣y的平方根.答案解析部分一、单选题1、【答案】C【考点】相反数,有理数的加减混合运算【解析】【解答】解:﹣(﹣)的相反数是﹣,故选C【分析】原式计算后,利用相反数定义判断即可.2、【答案】B【考点】相反数【解析】【解答】解:因为﹣(﹣2)=2,﹣|﹣7|=﹣7,|﹣|= ,﹣(+ )=﹣.所以负有理数有﹣,﹣|﹣7|,﹣(+ )共三个.故选B.【分析】先对各数进行化简,根据化简后的结果再确定负有理数的个数.3、【答案】B【考点】相反数,绝对值【解析】【解答】解:A、a既是正数,也可能是负数,还可能是0,故本选项错误;B、,绝对值最小的数是0;故本选项正确;C、相反数等于自身的数是0,故本选项错误;D、绝对值等于自身的数是非负数,故本选项错误.故选B.【分析】根据绝对值的性质,以及相反数的定义对各选项举反例验证即可得解.4、【答案】A【考点】相反数【解析】【解答】解:﹣2017的相反数是2017,故选:A.【分析】根据相反数的定义,可得答案.5、【答案】D【考点】相反数【解析】【解答】解:设这个数为a,根据题意,有﹣a≤a,所以a≥0.故选D.【分析】设这数是a,得到a的不等式,求解即可;也可采用特殊值法进行筛选.6、【答案】D【考点】相反数【解析】【解答】解:∵一个数的相反数是非负数,∴这个数是非正数,故选D.【分析】非负数包括正数和0,再根据相反数的定义得出即可.7、【答案】C【考点】相反数【解析】【解答】解:A、2与是互为倒数,故本选项错误;B、﹣2和相等,是互为负倒数,故本选项错误;C、2 和﹣2.375互为相反数,正确;D、∵+(﹣2)=﹣2,∴+(﹣2)与﹣2相等,不是互为相反数,故本选项错误.故选C.【分析】根据相反数的定义,只有符号不同的两个数是互为相反数解答.8、【答案】A【考点】相反数【解析】【解答】解:∵0的相反数等于0,故选:A.【分析】根据只有符号不同的两个数互为相反数,一个数的相反数等于它本身,可得这个数.9、【答案】B【考点】正数和负数,相反数,绝对值,倒数【解析】【解答】解:(﹣1)2017=﹣1,|﹣2|=2,﹣(﹣1.5)=1.5,﹣32=﹣9,﹣3的倒数是﹣.故正数的个数有2个.故选:B.【分析】根据有理数的乘方求出(﹣1)2007和﹣32,根据绝对值的性质求出|﹣2|,根据相反数的定义求出﹣(﹣1.5),根据倒数的定义求出﹣3的倒数的值即可作出判断.10、【答案】C【考点】正数和负数,相反数,绝对值【解析】【解答】解:﹣|﹣2|=﹣2,|﹣(﹣2)|=2,﹣(+2)=﹣2,﹣(﹣)= ,﹣[+(﹣2)]=2,+[﹣(+ )]=﹣,负数有:﹣|﹣2|,﹣(+2),+[﹣(+ )],共3个.故选C.【分析】负数是小于0的数,结合所给数据进行判断即可.11、【答案】C【考点】相反数,整式的加减【解析】【解答】解:∵果a,b互为相反数,∴a+b=0,∴(6a2﹣12a)﹣6(a2+2b﹣5)=6a2﹣12a﹣6a2﹣12b+30=﹣12a﹣12b+30=﹣12(a+b)+30=﹣12×0+30=30,故选C.【分析】根据a,b互为相反数,然后对题目中所求式子化简,即可解答本题.12、【答案】D【考点】相反数【解析】【解答】解:﹣2与+(﹣2)不是相反数,+(+3)与﹣3互为相反数,﹣(﹣)与+(﹣)互为相反数,﹣(﹣12)与+(+12)是同一个数,﹣(+1)与﹣(﹣1)互为相反数,故选:D.【分析】根据相反数的意义,只有符号不同的数为相反数.二、填空题13、【答案】4【考点】相反数,解一元一次方程【解析】【解答】解:根据题意得:2x+1﹣3x+2=0,移项合并得:﹣x=﹣3,解得:x=3,则原式=9﹣6+1=4,故答案为:4【分析】利用互为相反数两数之和为0列出方程,求出方程的解得到x的值,代入原式计算即可得到结果.14、【答案】;﹣3;;3.14﹣π【考点】相反数,绝对值,平方根【解析】【解答】解:±= ;=﹣3;|﹣|= ;π﹣3.14的相反数是3.14﹣π,故答案为:,﹣3,,3.14﹣π.【分析】根据平方根的意义,立方根的意义,绝对值的性质,相反数的意义,可得答案.15、【答案】3﹣;【考点】相反数,绝对值【解析】【解答】解:根据相反数的概念有的相反数是﹣(),即3﹣;根据绝对值的定义:的绝对值是.【分析】分别根据相反数、绝对值的概念即可求解.16、【答案】﹣;5.6;﹣2;﹣7;﹣4【考点】相反数,绝对值,有理数的加减混合运算【解析】【解答】解:原式=﹣;原式=5.6;原式=﹣2;原式=﹣7;原式=﹣1﹣3=﹣4,故答案为:﹣;5.6;﹣2;﹣7;﹣4【分析】原式利用减法法则,绝对值的代数意义计算即可得到结果.17、【答案】【考点】相反数,一元一次方程的应用【解析】【解答】解:∵代数式与x﹣3的值互为相反数,∴+x﹣3=0,解得:x= .故填.【分析】紧扣互为相反数的特点:互为相反数的和为0.三、解答题18、【答案】解:由题意知:a+b=0,cd=1,m=﹣2.原式=2(a+b)﹣(cd)2007﹣3m=2×0﹣1﹣3×(﹣2)=5【考点】相反数,绝对值,倒数,代数式求值【解析】【分析】先依据相反数、倒数、绝对值的性质得到a+b、c d、m的值,然后代入计算即可.19、【答案】解:这几个数分别为,2.5,﹣2.5,0,+3.5,﹣3.5,1 ,﹣1 ,根据负数的绝对值越大则负数的值越小可得:﹣3.5<﹣2.5<﹣1 <0<1 <2.5<3.5【考点】数轴,相反数,有理数大小比较【解析】【分析】负数的绝对值越大则负数的值越小,由此可得出答案.20、【答案】解:∵a、b互为相反数,c、d互为倒数,x的绝对值是3,∴a+b=0,cd=1,x=±3.当x=3时,原式=32﹣(0+1)×3﹣1=9﹣3﹣1=5;当x=﹣3时,原式=(﹣3)2﹣(0+1)×(﹣3)﹣1=9+3﹣1=11【考点】相反数,绝对值,倒数,代数式求值【解析】【分析】根据题意可知a+b=0,cd=1,x=±3,然后代入计算即可.21、【答案】解:﹣4<﹣2 <﹣1.5<0<1.5<2 <4【考点】数轴,相反数,有理数大小比较【解析】【分析】先在数轴上表示各个数和相反数,再比较即可.22、【答案】解:∵与|y+1|互为相反数,∴x﹣3=0,y+1=0,解得,x=3,y=﹣1,∴,即x﹣y的平方根是±2.【考点】相反数,二次根式的非负性,绝对值的非负性【解析】【分析】根据非负数的性质和题目中与|y+1|互为相反数,可以得到x、y的值,从而可以求得x﹣y的平方根.。
1.2.3 相反数(同步练习)人教版(2024)数学七年级上册
1.2.3相反数课后·知能演练一、基础巩固1.-2 024的相反数是()A.-2 024B.2 024C.-12024D.120242.在下列各组数中,互为相反数的是()A.-12与-2 B.-1与-(+1)C.-(-3)与-3D.2与123.如图,数轴上A,B两点表示的数互为相反数,且点A与点B之间的距离为4个单位长度,则点A表示的数是________.4.化简:-(-312)=________;+(-415)=________________;-[-(-35)]=________________;-[-(+3)]=________.二、能力提升5.数学课上,李老师和同学们玩一个找原点的游戏.(1)如图1,在数轴上标有A,B两点,已知A,B两点所表示的数互为相反数.图1①如果点A所表示的数是-5,那么点B所表示的数是________;②请在图1中标出原点O的位置;(2)图2是小敏所画的数轴,请你帮她标出隐藏的原点O的位置,此时点C表示的数是________.图2三、思维拓展6.小明在一张纸上画了一条数轴(原点未标出),有理数a,b,c在数轴上的位置如图所示.表示数a的点与表示数c的点到原点的距离相等,表示数b与-b 的点相距30个单位长度,若表示数a的点与原点的距离是表示数b的点与,则c的值为()原点距离的13A.-2B.-10C.-6D.-5【课后·知能演练】1.B2.C3.-24.312 -415 -35 35.解:(1)①5②如图所示.(2)原点O 的位置如图所示.点C 所表示的数是4.6.D 解析:由表示数a 的点与表示数c 的点到原点的距离相等,知a 与c 互为相反数,即原点在数a 和数c 对应的点中间,如图所示.由b 与-b 互为相反数,且表示数b 与数-b 的点相距30个单位长度,知表示数b 的点到原点的距离为15,表示数a 的点与原点的距离是表示数b 的点与原点距离的13,故a=13×15=5,故c=-5.。
人教版七年级数学上册:1.2.3相反数--同步测试题
一.选择题
1.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是( )
A. B. C. D.
2.2的相反数是( )
A.− B. C.−2 D.2
3.− 的相反数是( )
A.3 B.−3 C. D.−
4.下列各组 数中,互为相反数是( )
A.3和 B.3和−3 C.3和− D.− 3和−
9.已知a与b互为相反数,b与c互为相反数,且c=−2,则a=.
10.化简:−[−(−4)]=.
三.解答题
11.写出下列各数的相反数,并把所有的数(包括相反数)在数轴上表示出来.
4,− ,−(− ),+(−4.5),0,−(+3)
12 . 化简:
(1)+(−0.5);(2)−(+10.1);(3)+(+7)
− 的相反数是 ;
−(− ) 的相反数是− ;
+(−4.5)的相反 数是4.5;
0的相反数是0;
−(+3)的相反数是3;
12.解:(1)+(−0.5)=−0.5;
(2)−(+10.1)=−1 0.1;
(3)+(+7)=7;
(4)−(−20)=20;
(5)+
5. 计算−(−2016)的结果是( )
A.−2016 B.2016 C.− D.
6.下列各组数中互为相反数的是( )
A.+(+5)与−(−5) B.+(−5)与−(+5) C.+(+5)与−(− ) D.+(−5)与−(−5)
二.填空题
7.− 的相反数是,−(+20)是的相反数.
人教版七年级上册数学相反数同步练习
人教版七年级上册数学1.2.3相反数同步练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.若x 与3互为相反数,则x 等于( )A .0B .﹣13C .﹣3D .3 2.下列各组数中,互为相反数的是( )A .-2020与+(-2020)B .-(-2020)与2020C .-(+2020)与+(-2020)D .-2020与-(-2020) 3. 3.14π-的相反数是( )A .0B . 3.14π--C . 3.14π+D .3.14π- 4.如图,点A 、B 表示的实数互为相反数,则点B 表示的实数是( )A .2B .-2C .12D .12- 5.如图,数轴上的整数a 被“冰墩墩”遮挡,则a 的相反数是( )A .-1B .-2C .1D .2 6.如图,数轴上的点B 表示实数b ,若实数a 满足不等式b a b <<-,则a 可能为( )A .1-B .2-C .2D .3 7.如图,数轴的单位长度为1,若A 、C 两点表示一对相反数,则点B 表示的数为( )A .负分数B .正分数C .负整数D .正整数 8.一只蚂蚁从数轴上A 点出发爬了4个单位到了相反数B 点所在的位置,则点A 所表示的是( )A .﹣2或2B .﹣2C .2D .4或﹣4二、填空题 9.如图,数轴上有三个点A ,B ,C ,若点A ,B 表示的数互为相反数,且AB =4,则点C 表示的数是_____.10.若a 与b 互为相反数,则1a b ++=________.11.a 的相反数是2022,则=a ___________.12.数轴上,若A 、B 两点的距离为8,并且点A 、B 表示的数是互为相反数,则这两点所表示的数分别是_____.13.若a 、b 互为相反数,则a +(b ﹣4)的值为 _____.14.在① +(+2)与﹣(﹣2);① +(﹣2)与﹣(+2);① +(+2)与+(﹣2);① +(+2)与﹣(+2);① +(﹣2)与﹣(﹣2);①﹣(﹣2)与﹣(+2)这六对数中,它们是互为相反数的有________组.15.只有________不同的两个数叫做互为相反数.一般地,a 和a -互为________.特别地,0的相反数是_________.互为相反数的两数之和是_________.16.已知23n -与5-互为相反数,则n 是_______.三、解答题17.将下列各数及它们的相反数在数轴上表示出来,并用“ < ”把这些数连接起来,它们分别:4,3? 2?,0.2,5,-1.18.判断下列说法是否正确:(1)3-是相反数; (2)3+是相反数;(3)3是3-的相反数; (4)3-与3+互为相反数.19.化简下列各数:(1)( 2.7)-+; (2)14⎛⎫-- ⎪⎝⎭; (3)(701)+-; (4)[(2)]-+-; (5){[(2)]}----; (6){[(2)]}-+--20.如图所示,已知A,B,C,D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数,则原点为;(2)若点B和点D表示的数互为相反数,则原点为;(3)若点A和点D表示的数互为相反数,则在数轴上表示出原点O的位置.。
七年级数学上册1.2.3 相反数-相反数的应用 选择题专项练习一(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.3 相反数-相反数的应用1.若0a b+<且0ab<,那么()A.0a<,0b>B.0a<,0b<C.0a>,0b<D.a,b异号,且负数绝对值较大2.x2-4x与2x-3的值互为相反数,则x的值是( )A.-1 B.3 C.-1或3 D.以上都不对3.有下列各数:0.01,10,13-,2--,90-,()3.5--其中属于负数的共有()A.2个B.3个C.4个D.5个4.互为相反数的两个数的和是:()A.0 B.1 C.±1D.π5.互为相反数的两个数的和是()A.0 B.1 C.D.6.下列说法错误的是:()A.互为相反数的两数的和为0 B.互为相反数的两数的商为-1 C.互为相反数的两数的平方相等 D.互为相反数的两数的绝对值相等7.若a,b互为相反数,则下面四个等式中一定成立的是()A.a+b=0B.a+b=1C.|a|+|b|=0D.|a|+b=08.下列说法正确的是()A.25-的相反数是5 B.-5是相反数C.14-和15是相反数D.2345-和2345是相反数9.如下图,数轴上的点A、B、C、D中,表示互为相反数的两个点是()A .点A 和点DB .点A 和点C C .点B 和点CD .点B 和点D10.若a 与b 互为相反数,则a+b 等于( )A .0B .-2aC .2aD .-211.如图,数轴上的单位长度为1,有三个点A 、B 、C ,若点A 、C 表示的数互为相反数,则图中点B 对应的数是( )A .-1B .0C .1D .312.已知0m n +=,0n p +=,0m q -=.则( )A .p 与g 相等B .m 与g 互为相反数C .m 与n 相等D .p 与n 相等13.若37m -和9m -互为相反数,则m 的值是( )A .4B .1C .1-D .4-14.已知9,a -=那么a -+a=( )A .9B .-9C .0D .115.已知a 、b 互为相反数,下列各式成立的是( )A .ab <0B .a ﹣|b|=0C .a+b =0D .|a ﹣b|=|a|+|b|16.a b ,是有理数,它们在数轴上的对应点位置如图所示,把a a b b --,,,按照从小到大的顺序排列,正确的是( )A .b a a b -<-<<B .a b a b -<-<<C . b a a b -<<-<D .a b b a -<<-< 17.若代数式72x -和5x -互为相反数,则x 的值为( )A .2B .-4C .4D .018.如果a 与﹣2互为相反数,那么a 等于( )A .﹣2B .2C .﹣12D .12 19.如图,数轴上有三个点A 、B 、C ,若点A 与B 表示的数互为相反数,则点C 表示数是( )A.1-B.1 C.2-D.220.若式子x42-的值与1互为相反数,则x=( )A.1 B.2 C.-2 D.4参考答案1.D解析:根据0a b +<且0ab <,可以判断a 、b 的符号和绝对值的大小,从而可以解答本题. 详解:解:0a b +<且0ab <,0a ∴>,0b <且a b <或0a <,0b >且a b >,即a ,b 异号,且负数绝对值较大,故选:D .点睛:本题考查有理数的乘法和加法,解题的关键是明确题意,可以根据有理数的加法和乘法,判断a 、b 的正负和绝对值的大小.2.C解析:分析:由两个互为相反数的和为0,可得列出关于x 的方程,解此方程,即可得到答案.详解:∵x²-4x 与2x-3互为相反数,∴x²-4x+2x-3=0解得:x=-1或3.故选c点睛:本题主要考查了相反数的应用以及一元二次方程的解法,解题的关键是根据两个互为相反数的和为0,得出关于x 的一元二次方程,解此方程,即可.3.B解析:分析:先对函绝对值、括号的式子进行化简,再根据负数的定义来判断是否为负数; 解:因为2--=-2,()3.5--=3.5,所以0.01,10,13-,2--,90-,()3.5--中负数有13-、2--和90-共3个;故选B .4.A解析:分析:本题考查的是互为相反数的两个数的和为0.解析:互为相反数的两个数的和是0.故选A5.A解析:根据相反数的概念可得:互为相反数的两个数的和是为0;故选A.6.B解析:A选项:互为相反数的两数的和是0,正确,不符合题意;B选项:互为相反数的两数0,0,没有商,错误,符合题意;C选项:互为相反数的两数的平方相等,正确,不符合题意;D选项:互为相反数的两数的绝对值相等,正确,不符合题意.故选B.点睛:只有符号不同的两个数叫做互为相反数,0的相反数是0.注意:相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.7.A解析:a,b互为相反数0⇔+=,易选B.a b8.D解析:根据相反数的定义解答即可.详解:∵只有符号不同的两个数互为相反数,其中一个数是另一个数的相反数,∴选项A、B、C错误,选项D正确.故选D.点睛:本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.9.B解析:解:A,C这两个点分别在原点的左右两旁,到原点的距离相等,所以它们表示的两个数互为相反数.故选B10.A解析:依据相反数的定义可得到b=-a,然后代入计算即可.详解:∵a与b互为相反数,∴b=−a.∴a+b=a+(−a)=0.故选:A.点睛:本题考查的知识点是相反数和有理数的加法,解题关键是熟记相反数的性质.11.C解析:根据点A、C表示的数互为相反数得到数轴原点的位置,读出点B表示的数即可求解. 详解:解:根据点A、C表示的数互为相反数,可得图中点D为数轴原点,,∴点B对应的数是1,故选:C.点睛:本题考查数轴上表示的数,根据相反数在数轴上的位置确定原点的位置是解题的关键.12.D解析:根据相反数性质,可分析出各个数的大小关系.详解:m+n=0 推出 m=-nn+p=0 推出 n=-p,所以m=pm-q=0 推出 m=q,所以q=p所以m=p=q=-n故选D点睛:考核知识点:相反数性质.理解相反数性质是关键.13.C解析:根据相反数的性质得出关于m的方程3790-+-=,解之可得.m m详解:由题意知3790-+-=,m m则379-=-,m mm=-,22m=-,1故选C.点睛:本题主要考查相反数的性质,解题的关键是熟练掌握相反数的性质和解一元一次方程的基本步骤.14.C解析:a与-a互为相反数,互为相反数的两数相加得0.详解:a与-a互为相反数,互为相反数的两数相加得0.故选C.点睛:本题考查相反数的定义,熟练掌握“互为相反数的两数相加得0”是解题关键.15.C解析:由互为相反数的两个数之和为0,可得出答案.详解:解:∵a、b互为相反数,∴a+b=0,故选:C.点睛:本题考查相反数的性质,掌握相反数的性质是关键.16.D解析:根据数轴和相反数的定义比较即可.详解:因为从数轴可知:b<0<a,|a|>|b|,所以﹣a<b<﹣b<a.故选:D.点睛:本题考查了数轴,相反数,有理数的大小比较的应用,能根据数轴上a、b的位置得出﹣a和﹣b的位置是解答此题的关键.17.C解析:根据互为相反数的两个数和为0列出一元一次方程,求解即可.详解:解:由题意得7250-+-=x x解得4x=故选:C点睛:本题考查了相反数的性质,灵活利用相反数的性质是解题的关键.18.B解析:根据相反数的性质求解即可.详解:∵a与﹣2互为相反数∴20a-=解得2a=故答案为:B.点睛:本题考查了相反数的运算问题,掌握相反数的性质是解题的关键.19.A解析:首先确定原点位置,进而可得C点对应的数.详解:解:如图,∵点A、B表示的数互为相反数,∴原点在线段AB的中点O处,∴点C对应的数是−1.故选:A.点睛:此题主要考查了数轴,关键是正确确定原点位置.20.B解析:根据互为相反数的定义列方程求解即可.详解:∵式子42x-的值与1互为相反数,∴42x-+1=0,解之得x=2.故选B.点睛:本题考查了相反数的定义及一元一次方程的解法,根据题意列出方程是解答本题的关键.。
七年级数学上册1.2.3 相反数-相反数的定义 填空题专项练习一(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.3 相反数-相反数的定义1.﹣3.5的相反数是 _______,2.若a与4互为相反数,则a=_________________.3.若21a+与1互为相反数,则2019a=___________.4.3-互为相反数,则m=__________.m+与12m5.-1的相反数是____,-3的倒数是____,绝对值等于5的数是_____.6.已知|m﹣n+4|和(n﹣3)2互为相反数,则m2﹣n2﹦__________.7.7的相反数是______.8.()6--的相反数是__________.9.若x、y互为相反数,则x+y=__________10.2020的相反数是__________.11.数轴上在原点左侧与表示数1的点的距离为3的数是a,则a的相反数是_________.____.12.131的相反数是_____.143的相反数是_______ .15.若一个数的相反数是它本身,则这个数是__.16.若m的相反数是3,那么m=________.17.数轴上的两点A与B表示的是互为相反数的两个数,且点A在点B的右边,A、B的两点间的距离为12个单位长度,则点A表示的数是___.18.﹣9的相反数是________.19.3-的相反数是________,数a的相反数是________.420.__________.参考答案1.3.5解析:由相反数的定义直接得到答案.详解:解:﹣3.5的相反数是3.5.故答案为:3.5.点睛:本题考查的是相反数的定义,掌握相反数的定义是解题的关键.2.−4解析:根据a的相反数是−a得出即可.详解:∵a与4互为相反数,∴a=−4,故答案为:−4.点睛:本题考查了相反数的应用,注意:a的相反数是−a.3.-1解析:两数互为相反数,则和为0.列方程求解.详解:根据题意得(2a+1)+1=0.解之得 a=−1.∴2019a =(-1)2019=-1故答案为−1.点睛:此题考查列方程、解方程,属基础题.4.4解析:根据相反数得出方程,求出方程的解即可.详解:∵m+3与1−2m 互为相反数,∴m+3+1−2m =0,m =4,故答案为:4.点睛:本题考查了解一元一次方程,相反数的应用,能根据题意得出方程是解此题的关键.5.1 13- ±5 解析:根据相反数,倒数,绝对值的定义及计算方法即可求解,注意互为相反数的两数绝对值相等.详解:-1的相反数是(1)1--=;-3的倒数是11(3)3=--;因为到原点距离为5的点分别是5和-5,所以绝对值等于5的数是±5. 故答案为:1;13-;±5.点睛:本题主要考查了相反数,倒数,绝对值的相关基础计算,熟练掌握相反数,倒数,绝对值的相关定义及计算方法式解决本题的关键.6.-8解析:根据相反数的定义,得到24(3)0m n n-++-=,由非负数的性质得到m、n的值,然后求出答案.详解:解:∵|m﹣n+4|和(n﹣3)2互为相反数,∴24(3)0m n n-++-=,∴4030m nn-+=⎧⎨-=⎩,解得:13mn=-⎧⎨=⎩,∴2222(1)3198m n-=--=-=-;故答案为:8-.点睛:本题考查了相反数的定义和非负数的性质,解题的关键是正确求出m、n的值. 7.-7解析:根据相反数的定义即可求解.详解:7的相反数是-7故答案为:-7.点睛:此题主要考查相反数,解题的关键是熟知相反数的定义.8.-6解析:根据正负数的意义先化简()6--,然后根据相反数的定义即可得出结论.详解:解:()66--=,6的相反数为-6∴()6--的相反数是-6故答案为:-6.点睛:此题考查的是正负数的意义和求一个数的相反数,掌握正负数的意义和相反数的定义是解决此题的关键.9.0解析:依据互为相反数两数之和为零求解即可.详解:解:∵x与y互为相反数,∴x+y=0.故答案为:0.点睛:本题主要考查的是相反数的性质,熟练掌握相反数的性质是解题的关键.10.-2020解析:根据相反数的代数意义:只有符号不同的两个数互为相反数,即可解答.详解:解:2020的相反数是-2020故答案为:-2020.点睛:此题考查的是求一个数的相反数,掌握相反数的代数意义是解决此题的关键.11.2解析:数轴上在原点左侧即是负数,结合与表示数1的点的距离为3的数,即可得到a表示的数是-2,再根据相反数的定义解题.详解:数轴上在原点的左侧且距离数1为3的数是-2,故-2的相反数为2,故答案为:2.点睛:本题考查数轴上的点表示有理数、相反数等知识,是基础考点,难度较易,掌握相关知识是解题关键.12解析:直接根据相反数的概念即可得出答案.详解:点睛:本题主要考查相反数,掌握相反数的概念是解题的关键.13.解析:根据只有符号不同的两个数叫做互为相反数解答.详解:1的相反数是1故答案为:1点睛:本题考查了相反数,是基础题,熟记概念是解题的关键.14.3解析:根据相反数的定义进行填空即可.详解:3的相反数是3故答案为:3点睛:本题考查了相反数,掌握相反数的定义是解题的关键.15.0解析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.详解:解:0的相反数是0,故答案为:0.点睛:本题考查了相反数,注意:只有0的相反数是0.16.-3解析:根据相反数的定义求解.详解:解:由题意可知m是3的相反数,所以m=-3,故答案为-3.点睛:本题考查相反数的定义,熟练掌握相反数的定义是解题关键.17.6解析:先由条件判定这两个数是6和-6,然后根据点A在点B的右边即可确定点A表示的数.详解:解:∵A,B之间的距离是12,且A与B表示的是互为相反数的两个数,∴这两个数是6和-6,∵点A在点B的右边,∴点A表示的数是6.故答案是:6.点睛:本题考查了相反数及数轴上两点间的距离,只有符号不同的两个数叫做互为相反数.18.9解析:根据相反数的定义即可求解.详解:﹣9的相反数是9故答案为:9.点睛:此题主要考查相反数的求解,解题的关键是熟知有理数的性质.19.3-a4解析:互为相反数的两个数符号不同,也就是说一个数的相反数就是在这个数前面添上-号,由此求出各个数的相反数.详解: 解:34-的相反数是34,数a 的相反数是-a , 故答案为:34,-a .点睛:本题主要考查互为相反数的概念.只有符号不同的两个数互为相反数,难度较小.20解析:根据相反数的定义:只有符号不同的两个数互为相反数解答即可. 详解:点睛: 本题考查的是相反数的概念,掌握互为相反数的两个数只有符号不同是关键.。
人教版七年级数学上册课课练1.2.3相反数 (含答案)
人教版七年级数学上册课课练1.2.3相反数(含答案)一、单选题1.-6的相反数是()A. -6B. 6C. ±6D. 162.若a与1互为相反数,那么a+1=()A. −1B. 0C. 1D. −23.﹣|﹣2021|的相反数为()A.﹣2021B.2021C.﹣12021D.120214.若实数a的相反数是-2,则a等于( )A.2B.-2C.12D.05.若x的相反数是3,则x的值是()A.-3B.−13C.3D.±36.一个数的相反数比它的本身小,则这个数是()A. 正数B. 负数C. 0D. 负数和0二、填空题7.−134的相反数是________.8.若a与4互为相反数,则a=________.9.如图,点A表示的数的相反数是________.10.|−13|的相反数________.11.已知2x+1与x+5互为相反数,则x=________.12.﹣8的相反数是________.如果﹣a=2,则a=________.13.在数轴上对应的点与它的相反数对应的点之间的距离为________.14.如果2x+3的值与31−x的值互为相反数,那么x等于________.15.若a,b互为相反数,c,d互为倒数,e的绝对值等于3,则2e﹣3cd+(a+b)2=________.16.一个数的倒数为﹣2,则这个数的相反数是________.17.互为相反数的两数在数轴上的两点间的距离为11,这两个数为________ .三、解答题18.、为有理数,在数轴上的对应点位置如图所示,把、、、按从小到大的顺序排列.19.与–7互为相反数,求的值.20.已知与互为相反数,且,求代数式的值.答案一、单选题1. B2. B3. B4. A5. A6. A二、填空题7. 1348. −49. -210. −1311. ﹣212. 8;﹣213. 714. -3415. 3或-916. 1217. 5.5与-5.5三、解答题18. 、、、按从小到大的顺序排列为:19. 因为与–7互为相反数,所以即.20. 因为,所以,又因为与互为相反数,所以,所以.。
《1.2.3 相反数》教案、同步练习(附导学案)
《1.2.3 相反数》教案个点.A.1个B.2个C.3个D.4个 4.-(+5)和-(-5)分别表示什么意思?你能化简它们吗?小结与作业课堂小结今天你获得了哪些知识?归纳:①相反数的概念及表示方法. ②相反数的代数意义和几何意义. ③符号的化简.作业1.2 有理数《1.2.3 相反数》同步练习1、下列说法中正确的是( )A 、正数和负数互为相反数B 、任何一个数的相反数都与它本身不相同C 、任何一个数都有它的相反数D 、数轴上原点两旁的两个点表示的数互为相反数2、下列结论正确的有( )①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b 互为相反数,那么a+b=0;⑤若有理数a,b 互为相反数,则它们一定异号。
A 、2个B 、3个C 、4个D 、5个 3、 ﹣5的相反数是( )A 、51B 、51C 、-5D 、54、如果a+b=0,那么a,b 两个有理数一定是( )A 、都等于0B 、一正一负C 、互为相反数D 、互为倒数 (原题是“那么两个实数一定是”此处改为“两个有理数是”) 5、﹣(+5)表示 的相反数,即﹣(+5)= ; ﹣(﹣5)表示 的相反数,即﹣(﹣5)= 。
6、﹣2的相反数是 ;75的相反数是___;0的相反数是 。
7、化简下列各数:﹣(﹣68)= ﹣(+0.75)= ﹣(﹣53)=﹣(+3.8)= +(﹣3)= +(+6)= 阅读下面的文字,并回答问题8、1的相反数是﹣1,则1+(﹣1)=0;0的相反数是0,则0+0=0;2的相反数是﹣2,则2+(﹣2)=0,故a,b 互为相反数,则a+b=0;若a+b=0,则a,b 互为相反数。
说明了 ;相反, (用文字叙述)9、已知数轴上A 、B 表示的数互为相反数,并且两点间的距离是6,点A 在点B 的左边,则点A 、B 表示的数分别是 。
10、已知a 与b 互为相反数,b 与c 互为相反数,且c=﹣6,则a= 。
人教版数学七年级上册1.2.3《相反数》训练习题(有答案)
《相反数》基础训练知识点1(相反数的意义)1.[2019四川广元中考]﹣15的相反数是()A.﹣5B.5C.﹣15D.152.给出下列说法:①﹣2是相反数;②2是相反数;③﹣2是2的相反数;④﹣2和2互为相反数.其中正确的有()A.1个B.2个C.3个D.4个3.[2019贵州贵阳中考]在1,﹣1,3,﹣2这四个数中,互为相反数的是()A.1与﹣1B.1与﹣2C.3与﹣2D.﹣1与﹣24.[2019河北唐山开平区期中]如图,表示互为相反数的点是()A.点A和点DB.点B和点CC.点A和点CD.点B和点D5.[2019重庆北碚区兼善教育集团联考]若一个数的相反数比它本身大,则这个数一定是()A.正数B.整数C.负数D.非负数6.(1)若a与﹣2互为相反数,则a= ;(2)若a的相反数是12018,则a= .7.给出下列说法:①只有符号不同的两个数一定互为相反数;②一个数的相反数一定是负数;③若两个数互为相反数,则这两个数一定一正一负.其中正确说法的序号为.8.给出下列说法:①如果两个数互为相反数,则它们的相反数也互为相反数;②在任何一个数前面添加“﹣”号,就变成原数的相反数;③+115与﹣2.2互为相反数;④﹣19与0.1互为相反数.其中错误说法的序号是.9.若A、B两点表示的数互为相反数,且这两点相距8个单位长度,B在A的左边,在数轴上标出A、B两点,并指出A、B两点表示的数.知识点2(多重符号的化简)10.下面两个数互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣0.5与﹣(+0.5)C.﹣1.25与45D.+(﹣0.01)与﹣(﹣1100)11.观察下列各对有理数:①﹣(﹣5)与﹣(+5);②0与0;③﹣(﹣12)与﹣(﹣2);④23与32;⑤﹣1与﹣(﹣1).其中互为相反数的有. (填序号)12.﹣(﹣13)的相反数是.13.化简下列各数:(1)﹣(﹣6);(2)﹣(﹢2.5);(3)﹢(﹢1.8);(4)﹢(﹣12)(5)﹢[﹣(﹢7)];(6)﹣[﹢(﹣1)] (7)﹣[﹣(﹣2)];(8)﹣{﹣[﹢(﹣3)]} 参考答案1.D【解析】15与﹣15只有符号不同,它们是一对相反数,所以﹣15的相反数是15故选D.2.B【解析】相反数是成对出现的,单独的一个数不能说是相反数,所以①②错误,③④正确.故选B.3.A【解析】在1,﹣1,3,﹣2这四个数中,1与﹣1只有符号不同,所以1与﹣1互为相反数.故选A.4.B【解析】观察题中数轴,可知点B表示的数是2,点C表示的数是﹣2,因为2与﹣2互为相反数,所以表示互为相反数的点是点B和点C.故选B.5.C【解析】正数的相反数是负数,所以正数的相反数小于它本身;0的相反数为0,所以0的相反数等于它本身;负数的相反数是正数,所以负数的相反数大于它本身.结合本题条件,可知这个数一定是负数.故选C.6. (1)2;(2)﹣1 20187.①【解析】①的说法符合互为相反数的概念,所以①正确;因为0的相反数是0,而0没有正负之分,所以②③都错误.8.④【解析】在①中,两个数互为相反数,则它们的相反数也满足仅有符号不同.所以它们的相反数也互为相反数,所以①正确;在②中,在任何一个数前面添加“﹣”号,得到的新数和原数仅有符号不同,满足互为相反数的概念,所以②正确;在③中,因为+115=+2.2,+2.2与﹣2.2互为相反数,所以115与﹣2.2互为相反数,所以③正确;在④中,因为0.1=110,﹣19与110不互为相反数,所以﹣19与0.1不互为相反数,所以④错误.9.【解析】因为A,B两点表示的数互为相反数,且这两点相距8个单位长度,所以A,B两点到原点的距离都是4,又数轴上B在A的左边,在数轴上标出A,B两点,如图所示:点4表示的数是4,点B表示的数是﹣4.10.D【解析】选项A,因为﹣(+7)=﹣7,+(﹣7)=﹣7,所以﹣(+7)=+(﹣7),因此﹣(+7)与+(﹣7)不互为相反数,所以A不符合题意;选项B,因为﹣(+0.5)=﹣0.5,所以﹣0.5与﹣(+0.5)不互为相反数,所以B不符合题意;选项C,因为45=0.8. 1.25与0.8不互为相反数,所以C不符合题意;选项D,因为+(﹣0.01)=﹣0.01,﹣(﹣1100)=0.01,﹣0.01与0.01互为相反数,所以D符合题意.故选D.11.①②⑤【解析】因为﹣(﹣5)=5,﹣(+5)=﹣5,5与﹣5互为相反数,所以﹣(﹣5)与﹣(+5)互为相反数;0的相反数是它本身;因为﹣(﹣12)=12,﹣(﹣2)=2,1 2与2不互为相反数,所以﹣(﹣12)与﹣(﹣2)不互为相反数;因为23与32是两个不同的正数,所以23与32不互为相反数;因为﹣(﹣1)=1,﹣1与1互为相反数,所以﹣1与﹣(﹣1)互为相反数.因此互为相反数的有①②⑤.12.﹣13【解析】因为﹣(﹣13)=13,13的相反数是﹣13,所以﹣(﹣13)的相反数是﹣1 3 .13.【解析】(1)﹣(﹣6)=6.(2)﹣(+2.5)=﹣2.5.(3)﹢(﹢1.8)=1.8.(4)+(﹣12)=﹣12⑸+[﹣(+7)]=﹣7.(6)﹣[+(﹣1)]=1.(7)﹣[﹣(﹣2)]=﹣2.(8)﹣{﹣[+(﹣3)]}=﹣3.《相反数》提升训练1.[2019河北保定十三中课时作业]给出下列各数:+(﹣10),﹣(+15),﹣(﹣7),﹣[+(﹣9)],:﹣[﹣(﹣20)].其中负数有()A.0个B.2个C.3个D.4个2.[2019江西师大附中课时作业]下列说法正确的是()A.正数和负数互为相反数B.a的相反数是负数C.相反数等于它本身的数只有0D.﹣a的相反数是正数3.[2019吉林九中课时作业]下列说法正确的有()①π的相反数是﹣3.14;②符号相反的两个数互为相反数;③﹣(﹣3.8)的相反数是3.8;④一个数和它的相反数不可能相等.A.0个B.1个C.2个D.3个4.[2019重庆巴蜀中学课时作业]如果一个数在数轴:上的对应点与它的相反数在数轴上的对应点的距离是5个单位长度,那么这个数是()A.5或﹣5B.52或﹣52C.5或﹣52D.﹣5或525.[2019湖北襄阳四中课时作业]如图,数轴上一动点;A向左移动2个单位长度到达点B,再向右移动5个;单位长度到达点C.若点C表示的数为1,则与点A 表示的数互为相反数的是();A.﹣7B.3C.﹣3D.26.[2019山西大同二中课时作业](1)若a=2.5,则﹣a= ;(2)若﹣a=14,则a= ;(3)若﹣(﹣a)=10,则﹣a= ;(4)若a=﹣(+5),则﹣a= .7.[2019陕西咸阳彩虹中学课时作业]数轴上点A表示﹣3,B,C两点所表示的数互为相反数,且点B与点A的距离为3,则点C所表示的数是.8.[2019江西吉安一中课时作业]如图,已知A,B,C,D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数,则原点为;(2)若点B和点D表示的数互为相反数,则原点为;(3)若点A和点D表示的数互为相反数,请在数轴上标出原点O的位置.9.[2019河南郑州五十七中课时作业]小明在做题时,画了一个数轴,在数轴上原有一点A其表示的数是﹣3,由于粗心,小明把数轴的原点标错了位置,使点A 正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?10.[2019安徽合肥三十八中课时作业]已知表示数a的点在数轴上的位置如图所示.(1)在数轴上标出表示数a的相反数的点的位置;(2)若数a与其相反数相距20个单位长度,则a的值是多少?(3)在(2)的条件下,若表示数6的点与表示数a的相反数的点相距5个单位长度,则6的值是多少?参考答案1.C【解析】因为+(﹣10)=﹣10,﹣(+15)=﹣15,﹣(﹣7)=7,﹣[+(﹣9)]=9,﹣[﹣(﹣20)]=﹣20,所以负数有3个.故选C.2.C【解析】选项A,正数和负数不一定互为相反数,如1与﹣2不互为相反数,所以A错误;选项B,a的相反数不一定是负数,如a表示负数,则它的相反数是正数,所以B错误;选项D,若﹣a表示正数,则它的相反数是负数,所以D 错误.故选C.3.A【解析】①π的相反数是﹣π,故①错误;②符号相反的两个数不一定互为相反数,如+2与﹣3不互为相反数,故②错误;③﹣(﹣3.8)=3.8,3.8的相反数是﹣3.8,故③错误;④0的相反数等于0,故④错误.因此正确的说法有0个.故选A.4.B【解析】52与﹣52在数轴上对应点的距离是5个单位长度,且它们互为相反数.故选B.5.D【解析】因为点C表示的数为1,所以点S表示的数为﹣4,所以点4表示的数为所以与点4表示的数互为相反数的是2.故选D.6.(1)﹣2.5;(2)﹣14;(3)﹣10;(4)5【解析】(1)因为a与﹣a互为相反数,a=2.5,所以﹣a=﹣2.5.(2)因为﹣a=14,所以a=﹣14(3)因为﹣(﹣a)=10,所以a=10,所以﹣a=﹣10.(4)因为a=﹣(+5)=﹣5,所以﹣a=5.7.0或6【解析】数轴上点A表示﹣3,点B与点A的距离为3,所以点B所表示的数是0或﹣6.因为B,C两点所表示的数互为相反数,所以点C所表示的数是0或6.8.【解析】(1)点B(2)点C(3)原点O的位置如图所示.9.【解析】由题意知,当原点标错时,点4所表示的数是3,当原点标正确时,点4表示的数是﹣3,所以应将原点向右移动6个单位长度.10.【解析】(1)如图所示.(2)因为数a与其相反数相距20个单位长度,所以表示数a与﹣a的点到原点的距离都等于10.因为a是负数,所以a的值是﹣10.(3)由(2)知a=﹣10,所以数a的相反数为10.当表示数b的点在表示10的点的左侧时,b的值为5;当表示数b的点在表示10的点的右侧时,b的值为15,所以b的值是5或15.《相反数》典型例题相反数是只有符号不同的两个数.(1)从数轴上看,表示互为相反数的两个点,它们分别在原点的两旁且与原点的距离相等.(2)相反数是成对出现的,不能单独存在.(3)“+a”和“-a”互为相反数.这里a可以是正数、负数、也可以是0.我们来看看相反数的两种题型:知识点一:相反数的概念【例1】(1)2(1)7--的相反数是;(2)如果- a=+(-80.5),那么a= .【分析】(1)因为2(1)7--=217,所以此题就是求217的相反数;(2)已知a的相反数求原数的问题.【解】(1)因为2(1)7--=217,所以2(1)7--的相反数是-217.(2)因为-a=+(-80.5)= -80.5,所以a=80.5.变式练习:写出下列各数的相反数:4.5,-3,0,35,58-,-0.03,+7.参考答案:-4.5,3,0,35-,58,0.03,-7.知识点二:利用相反数的概念简化数的符号【例2】化简下列各数:(1)-(+3)(2)-(-2)(3)-(a)(4)+(-a).【分析】在一个数前面加上“+”号,所得数还是原来的数;在一个数前面加上“-”号,表示求这个数的相反数.如:(1)题表示求+3的相反数;(2)、(3)题表示求-2和a的相反数;(4)题表示仍为-a自身.【解】(1)-(+3)= -3;(2)-(-2)=+2;(3)-(a)= -a;(4)+(-a)= -a. 【说明】所谓简化一个数的符号,就是把多重符号化成单一符号,结果是正号则可省略不写.变式练习:化简下列各数:-(-68),-(+0.75),-(35-),-(+3.8).参考答案:68,-0.75,35,-3.8.。
人教版七年级上册数学 1 2 3相反数同步练习 (含答案)
(1)-4是相反数;
(2)9是相反数;
(3)1.3是-1.3的相反数;
(4)-5 与+5 互为相反数.
13.化简下列各数:
(1) ;
(2) ;
(3) ;
(4) ;
(5) ;
(6)
14.如图,A表示﹣3,指出B、C所表示的相反数.
15.在数轴上标出下列各数及其相反数,并把它们用“<”连接起来
1.2.3相反数 同步练习
一、单选题
1.-(-3)的相反数是()
A.3B.-3C. D.3
2.下列各数的相反数是正整数的是()
A.8B. C.0D.-7
3.数轴上表示互为相反数的两个点之间的距离为10,则这两个点表示的数为()
A.10B.±10C.5D.±5
4.如图,O为原点,数轴上A,B,O,C四点,表示的数与点A所表示的数是互为相反数的点是()
7. 的相反数是; 的相反数是.
8.化简:(1)+(+6)=;(2)﹣(﹣11)=;(3)﹣[+(﹣7)]=.
9.在 ,3.12,-13, ,-(-6.7)中,负数的个数有个.
10.一个数a的相反数是非负数,那么这个数a与0的大小关系是a0.
三、解答题
11.如果 ,那么表示 的点在数轴上的什么位置?
A.点BB.点OC.点AD.点C
5.如图,四个有理数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若 ,则m,n,p,q四个数中负数有()个.
A.1B.2C.3D.4
6.若m,n互为相反数,则下列各组数中不是互为相反数的是( )
A.﹣m和﹣nB.m+1和n+1C.m+1和n﹣1D.5m和5n
人教版 七年级数学上册 第一章 相反数 同步训练(含答案)
人教版数学2021-2022学七年级上册第一章-1.2.3《相反数》同步训练一、选择题1.下列各组数中,互为相反数的是( )A .2和-2B .-2和12 C .-2和12- D .12和2 2.下列说法正确的是( )A .符号不相同的两个数互为相反数B .1.5的相反数是32-C .π的相反数是-3.14D .互为相反数的两个数必然一个是正数,一个是负数 3.如果一个数的相反数是负数,那么这个数一定是( )A .正数B .负数C .零D .正数、负数、零都有可能 4.a -b 的相反数是( )A .a +bB .-(a +b )C .b -aD .-a -b5.下列说法错误的是( )A .如果m n >,那么m <n --B .如果a -是正数,那么a 是负数C .如果x 是大于1的数,那么x -是小于-1的数D .一个数的相反数不是正数就是负数6.下列说法不正确的是( )A .所有的有理数都有相反数B .正数与负数互为相反数C .在一个数的前面添上“-”,就得到它的相反数.D .在数轴上到原点距离相等的两个点所表示的数是互为相反数7.下列各对数中互为相反数的是( )A .-5与-(+5)B .-(-7)与+(-7)C .-(+2)与+(-2)D .13-与-(-3) 8.如果x +y =0,那么x ,y 两个数一定是( )A .x =y =0B .一正一负C .x 与y 互为相反数D .x 与y 互为倒数二、填空题9.一个数的相反数大于它本身,这个数是___.10.互为相反数的两数在数轴上的两点间的距离为11,这两个数为________ .11.若2x -=,则[]()x ---= _____.12.已知a 与b 互为相反数,b 与c 互为相反数,且c=-6,则a=______.13.相反数等于本身的数有__个,是__.14.一个数a 的相反数是非负数,那么这个数a 与0的大小关系是a______0.15.(1)相反数是成对出现的,不能说某个数是相反数,一般的,a 和___互为相反数.(2)互为相反数的两个数只有______不同,其他的部分都是相同的.因此,求一个数的相反数只需要把这个数的前面的______改变,其他部分不变.(3)正数的相反数是负数,负数的相反数是______,特别地,0的相反数是______.三、解答题16.如果,那么表示的点在数轴上的什么位置?17.在数轴上画出表示-1.5 ,2,-1,-及它们的相反数的点.18.若a+12与-8+b 互为相反数,求a 与b 的和.19.已知不相等的两数,a b 互为相反数,,c d 互为倒数,3m =,求a+b-cd-m 的值.20.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C表示的数是正数还是负数,图中表示的5个点中,哪一个点表示的数的绝对值最小,最小的绝对值是多少?参考答案1.A【详解】解答:解:A 、2和-2只有符号不同,它们是互为相反数,选项正确;B 、-2和12除了符号不同以外,它们的绝对值也不相同,所以它们不是互为相反数,选项错误; C 、-2和-12符号相同,它们不是互为相反数,选项错误; D 、12和2符号相同,它们不是互为相反数,选项错误. 故选A .2.B解:A . 只有符号不相同的两个数互为相反数,故A 错误;B . 1.5的相反数是32-,正确.C . π的相反数是-π,故C 错误;D . 互为相反数的两个数必然一个是正数,一个是负数,还有0的相反数是0,故D 错误.故选B .3.A解:一个数的相反数为负数,则这个数一定为正数,故选A .点睛:此题主要考查了相反数,关键是掌握相反数的定义.4.C解:a -b 的相反数是-(a -b ).故选C .5.D解:A . 如果m n >,那么m n -<-,正确;B . 如果a -是正数,那么a 是负数,正确;C . 如果x 是大于1的数,那么x -是小于-1的数,正确;D . 0的相反数是0.故D 错误.故选D .6.B解:A . 所有的有理数都有相反数,正确;B . 只有符号不同的两个数互为相反数,故B 错误;C . 在一个数的前面添上“-”,就得到它的相反数,正确;D . 在数轴上到原点距离相等的两个点所表示的数是互为相反数,正确.故选B .点睛:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数,只有符号不同的两个数互为相反数.7.B解:A . -5与-(+5) 相等;B . -(-7)与+(-7)互为相反数;C . -(+2)与+(-2)相等;D . 13-与-(-3)互为负倒数. 故选B .8.C解:∵x +y =0,∴x 与y 互为相反数,故选C .9.负数解:设这个数是x ,则-x >x ,解得:x <0,故答案为负数.10.5.5与-5.5解:设一个正数为x ,则x -(-x )=11,解得,x =5.5,∴-x =-5.5,故答案为5.5和-5.5.点睛:本题考查数轴、相反数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数轴和相反数的知识解答.11.2解:()x ⎡⎤---⎣⎦=x -=2.故答案为2.12.-6【分析】先根据b 与c 互为相反数求出b ,再根据a 与b 互为相反数即可求出【详解】b 与c 互为相反数,且c=-6,∴b=6 a 与b 互为相反数,∴a=-6【点睛】本题考查的是相反数的定义,熟练掌握定义是解题的关键.13.1; 0【解析】相反数等于本身的数有1个,是0.14.≤【分析】根据一个数a的相反数是非负数,那么这个数a是非正数,据此作答.【详解】a的相反数是非负数,∴a是非正数,即a≤0.【点睛】本题考查了相反数的意义,熟练掌握相反数的定义是解题的关键.-符号符号正数015.a【详解】略16.原点处【分析】根据相反数等于本身的数为0即可得到结果.【详解】a=-a表示有理数a的相反数是它本身,那么这样的有理数只有0,所以a=0,表示a的点在原点处.【点睛】本题考查的是相反数的定义,熟练掌握0的相反数是它本身是解题的关键. 17.【解析】考点:数轴;相反数.分析:先根据相反数的定义分别求出这四个数的相反数,再在数轴上找出对应的点即可.解答:如图所示:.点评:本题主要考查了相反数的定义及在数轴上表示点.18.-4【分析】互为相反数的两个数和为0,直接联立等式,使(a+12)+(-8+b)=0,得到a与b的和.【详解】∵a+12与-8+b互为相反数∴(a+12)+(-8+b)=0即a+12-8+b=0,即a+b=-4故答案为-4【点睛】本题考查的是相反数的概念,务必清楚互为相反数的两个数和为0.19.-4或2【分析】根据相反数之和为0,倒数之积等于1,可得a+b=0,cd=1,再根据绝对值的性质可得m=±3,然后代入计算即可.解:由题意可得:a+b=0,cd=1,m=±3,当m=3时,a+b-cd-m=0-1-3=-4,当m=-3时,a+b-cd-m=0-1-(-3)=2.【点睛】此题主要考查了代数式求值,关键是掌握相反数之和为0,倒数之积等于1.20.(1)﹣1,(2)正数,点C表示的数的绝对值最小,最小的绝对值是0.5.【分析】(1)根据相反数的概念,互为相反数的两个数到原点的距离相等,确定原点求解即可.(2)根据相反数的概念,互为相反数的两个数到原点的距离相等,确定原点求解即可.解:(1)因为点A、B表示的数是互为相反数,原点就应该是线段AB的中点,即在C点右边一格,C点表示数﹣1;(2)如果点D、B表示的数是互为相反数,那么原点在线段BD的中点,即C点左边半格,点C表示的数是正数;点C到原点的距离最近,点C表示的数的绝对值最小,最小的绝对值是0.5.。
同步练习册数学七年级上册答案必备
同步练习册数学七年级上册答案必备七年级上册数学同步练习册参考答案人教版§1.2.2数轴一、1. D 2. C 3. C二、1. 右 5 左 3 2. 3. -3 4. 10三、1. 略 2.(1)依次是-3,-1,2.5,4 (2)1 3. ±1,±3§1.2.3相反数一、1. B 2. C 3. D二、1. 3,-7 2. 非正数 3. 3 4. -9三、1. (1) -3 (2) -4 (3) 2.5 (4) -62. -33. 提示:原式= =§1.2.4绝对值一、1. A 2. D 3. D二、1. 2. 3. 7 4. ±4三、1. 2. 20 3. (1)|0|<|-0.01| (2) >§1.3.1有理数的加法(一)一、1. C 2. B 3. C二、1. -7 2.这个数 3. 7 4. -3,-3.三、1. (1) 2 (2) -35 (3) - 3.1 (4) (5) -2 (6) -2.75;2.(1) (2) 190.七年级上册数学同步练习答案沪教版基础检测:1.2.5,,106; 1, 1.732, 3.14,拓展提高4. 两个,±55. -2,-1,0,1,2,36. 74362, 1 757.-3,-1 8.11.2.3相反数基础检测1、5,-5,-5,5;2、2,2.-3, 0.3.相反4.解:2010年我国全年平均降水量比上年的增长量记作-24㎜2009年我国全年平均降水量比上年的增长量记作+8㎜2008年我国全年平均降水量比上年的增长量记作-20㎜拓展提高:5.B6.C7.-32m ,808.18 22℃9. +5m表示向左移动5米,这时物体离它两次前的位置有0米,即它回到原处。
1.2.1有理数测试基础检测1、正整数、零、负整数;正分数、负分数;正整数、零、负整数、正分数、负分数; 正有理数、零;负有理数、零;负整数、零;正整数、零;有理数;无理数。
人教版数学七年级上册1.2.3相反数 作业设计(含解析)
人教版数学七年级上册1.2.3相反数作业设计(含解析)1.2.3相反数一、选择题1.(2022上海中考)8的相反数是()A.8B.C.-8D.-2.(2022山东威海中考)-5的相反数是()A.-5B.5C.D.-3.化简-(+2)的结果是()A.-2B.2C.±2D.04.(2022河南商丘柘城期末)下列表示-5的“相反数”的是()A.-(-5)B.-(+5)C.-[-(-5)]D.-[+(+5)]5.(2023山东德州禹城期中)在-2和它的相反数之间的整数个数为()A.3B.4C.5D.66.(2023山东德州平原期中)下面说法正确的有()①π的相反数是-3.14;②符号相反的两数互为相反数;③-(-3.8)的相反数是3.8;④一个数和它的相反数不可能相等.A.0个B.1个C.2个D.3个7.(2023福建泉州永春期中)下面两个数互为相反数的是()A.+30和-(-30)B.-0.2和-(+0.2)C.-2.5和-D.+(-0.1)和-8.一个数的相反数是它本身,则该数为()A.0B.1C.-1D.±1二、填空题9.(2023湖南衡阳期中)化简:-[+(-6)]=.10.(2023湖北武汉江岸月考)数轴上,若点A、B表示的数互为相反数,A 在B的右侧,并且这两点的距离为8,则A、B表示的数分别是和.11.若a=+2.3,则-a=;若a=-,则-a=;若-a=1,则a=;若-a=-21,则a=;若a=-a,则a=.12.(2022山东泰安东平期末)数轴上点A表示-3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数是.三、解答题13.(2023山东日照月考)若a-5和-7互为相反数,求a的值.14.如图所示的数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数互为相反数,那么点C表示的数是多少(2)如果点D、B表示的数互为相反数,那么点C、D表示的数分别是多少答案全解全析一、选择题1.答案C8的相反数为-8.2.答案B-5的相反数是5.3.答案A根据相反数的定义知-(+2)=-2.4.答案A A.-(-5)=5,是-5的相反数;B.-(+5)=-5;C.-[-(-5)]=-5;D.-[+(+5)]=-5.故选A.5.答案C-2的相反数为2,它们之间的整数有-2,-1,0,1,2,共5个.6.答案A①π的相反数是-π,故原说法错误;②符号相反的两数不一定互为相反数,如1和-3的符号相反,但1和-3不互为相反数,故原说法错误;③-(-3.8)=3.8,3.8的相反数是-3.8,故原说法错误;④0的相反数等于0,故原说法错误.综上,正确的说法有0个,故选A.7.答案D A.-(-30)=30,所以两数相等;B.-(+0.2)=-0.2,所以两数相等;C.-=-2.5,所以两数相等;D.+(-0.1)=-0.1,-=0.1,所以两数互为相反数.故选D.8.答案A因为0的相反数是0,所以若一个数的相反数是它本身,则该数为0.故选A.二、填空题9.答案6解析-[+(-6)]=-(-6)=6.10.答案4;-4解析因为点A、B表示的数互为相反数,且A、B两点的距离为8,所以点A、B到原点的距离均是4,因为A在B的右侧,所以A、B表示的数分别是4和-4.11.答案-2.3;;-1;21;012.答案1或5解析因为点B到点A的距离是2,所以点B表示的数为-1或-5,因为B、C两点表示的数互为相反数,所以点C表示的数是1或5.三、解答题13.解析由题意可知a-5=7,所以a=12.14.解析(1)如图,点O为原点,点C表示的数是-1.(2)如图,点O为原点,点C表示的数是1,点D表示的数是-5.。
人教版七年级上册数学1.2.3相反数练习题
初中数学组卷参考答案与试题解析一.选择题(共46小题)1.﹣的相反数是()A.2 B.﹣2 C.D.±【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:实数﹣的相反数是.故选C.【点评】本题考查了实数的性质,熟记相反数的定义是解题的关键.2.﹣2的相反数是()A.2 B.﹣2 C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.3.的相反数是()A.B.﹣ C.2 D.﹣2【分析】根据相反数的概念解答即可.【解答】解:的相反数是﹣,添加一个负号即可.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.4.﹣2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2017的相反数是2017,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.5.2017的相反数是()A.﹣2017 B.2017 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.6.﹣的相反数是()A.B.﹣C.2017 D.﹣2017【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:A.【点评】此题主要考查了相反数的定义,正确把握相反数的定义是解题关键.7.﹣的相反数是()A.B.C.D.﹣【分析】直接根据相反数的定义即可得出结论.【解答】解:∵﹣与是只有符号不同的两个数,∴﹣的相反数是.故选C.【点评】本题考查的是相反数的定义,熟知只有符号不同的两个数叫互为相反数是解答此题的关键.8.中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A.0.5 B.±0.5 C.﹣0.5 D.5【分析】根据相反数的定义求解即可.【解答】解:﹣0.5的相反数是0.5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.9.在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣2【分析】根据相反数的概念解答即可.【解答】解:1与﹣1互为相反数,故选A.【点评】本题考查了相反数的概念:只有符号不同的两个数叫做互为相反数.10.若a的相反数是﹣3,则a的值为()A.1 B.2 C.3 D.4【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:a的相反数是﹣3,则a的值为3,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.11.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D【分析】相反数的定义:符号不同,绝对值相等的两个数叫互为相反数.根据定义,结合数轴进行分析.【解答】解:∵表示2的相反数的点,到原点的距离与2这点到原点的距离相等,并且与2分别位于原点的左右两侧,∴在A,B,C,D这四个点中满足以上条件的是A.故选A.【点评】本题考查了互为相反数的两个数在数轴上的位置特点:分别位于原点的左右两侧,并且到原点的距离相等.12.已知﹣2的相反数是a,则a是()A.2 B.﹣ C.D.﹣2【分析】根据相反数的概念解答即可.【解答】解:∵﹣2的相反数是2,∴a=2.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.13.若实数a、b互为相反数,则下列等式中成立的是()A.a﹣b=0 B.a+b=0 C.ab=1 D.ab=﹣1【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:∵实数a、b互为相反数,∴a+b=0.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.14.下列各对数互为相反数的是()A.4和﹣(﹣4)B.﹣3和 C.﹣2和﹣D.0和0【分析】根据只有符号不同的两个数叫做相反数对各选项分析判断即可得解.【解答】解:A、4和﹣(﹣4)=4,是相同的两个数,不是互为相反数,故本选项错误;B、﹣3和,不是互为相反数,故本选项错误;C、﹣2和﹣,不是互为相反数,故本选项错误;D、0和0是互为相反数,故本选项正确.故选D.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.15.a与﹣2互为相反数,则a为()A.﹣2 B.2 C.D.【分析】根据相反数的几何意义可知:互为相反数的两数之和为0,列出关于a 的方程,求出方程的解即可得到a的值.【解答】解:根据题意得:a+(﹣2)=0,解得:a=2.故选B【点评】此题考查了相反数的定义,认识相反数应从两个角度出发:1、除0以外,相反数总是一正一负,成对出现;2、在数轴上表示互为相反数(除0外)的两个点分别在原点的两边,且到原点的距离相等.16.与﹣3的和为0的数是()A.3 B.﹣3 C.D.【分析】依据互为相反数的两数之和为0求解即可.【解答】解:﹣3+3=0,∴与﹣3的和为0的数是3.故选:A.【点评】本题主要考查的是相反数的性质,掌握互为相反数的两数之和为0是解题的关键.17.若x=﹣7,则﹣x的相反数是()A.+7 B.﹣7 C.±7 D.【分析】先根据x=﹣7求得﹣x=7,然后再来求7的相反数即可.【解答】解:﹣x的相反数是:﹣(﹣x)=x=﹣7.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.18.如果a与3互为相反数,那么a等于()A.3 B.﹣3 C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:如果a与3互为相反数,那么a等于﹣3,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.19.若2(a+3)的值与4互为相反数,则a的值为()A.B.﹣5 C.﹣ D.﹣1【分析】依据相反数的定义列出关于a的方程求解即可.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)=﹣4,解得:a=﹣5.故选:B.【点评】本题主要考查的是相反数的定义,依据相反数的定义列出关于a的方程是解题的关键.20.如果a与8互为相反数,那么a是()A.B.﹣ C.8 D.﹣8【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:因为﹣8与8互为相反数,所以a为﹣8,故选D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.21.与﹣1的和等于零的数是()A.﹣1 B.0 C.1 D.【分析】依据互为相反数的两数之和为零求解即可.【解答】解:1与﹣1互为相反数,∴1与﹣1的和为零.故选:C.【点评】本题主要考查的是相反数的性质,掌握互为相反数的两数之和为0是解题的关键.22.若a与﹣2互为相反数,则a﹣1的值为()A.﹣3 B.﹣ C.﹣ D.1【分析】先依据相反数的定义求得a的值,然后再依据有理数减法法则计算即可.【解答】解:∵a与﹣2互为相反数,∴a=2,∴a﹣1=2﹣1=1.故选:D.【点评】本题主要考查的是相反数的定义,依据相反数的定义求得a的值是解题的关键.23.a与互为相反数,则a=()A.﹣2 B.2 C.D.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:∵a与互为相反数,∴a=﹣.故选C.【点评】本题考查了相反数,是基础题,熟记概念是解题的关键.24.若一个数的相反数是x﹣y,则这个数是()A.x﹣y B.x+y C.﹣x﹣y D.﹣x+y【分析】根据互为相反数的两数之和为0,即可得出答案.【解答】解:设这个数为A,则根据题意得:x﹣y+A=0,解得:A=﹣x+y.故选D.【点评】本题考查相反数的知识,比较简单,注意掌握互为相反数的两数之和为0.25.下列说法中正确的是()A.+(﹣3)的相反数是﹣3 B.﹣(+6)的相反数是﹣6C.整数的相反数一定是整数D.0没有相反数【分析】利用相反数的定义分别分析得出即可.【解答】解:A、+(﹣3)的相反数是3,故此选项错误;B、﹣(+6)的相反数是6,故此选项错误;C、整数的相反数一定是整数,正确;D、0的相反数是0,故此选项错误;故选:C.【点评】此题主要考查了相反数的定义,正确利用相反数的定义分析是解题关键.26.关于相反数的叙述错误的是()A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零【分析】根据相反数的概念解答即可.【解答】解:A、两数之和为0,则这两个数为相反数,故选项正确;B、如果两数所对应的点到原点的距离相等,这两个数互为相反数,故选项正确;C、符号相反的两个数,一定互为相反数,如5和﹣4,符号相反,它们不是相反数,故选项错误;D、零的相反数为零,故选项正确.故选C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.27.不等于0的两个数互为相反数,则它们()A.积为﹣1 B.积为1 C.商为﹣1 D.商为1【分析】根据相反数的性质求解即可.【解答】解:不等于0的两个数互为相反数,即a=﹣a,则a除以﹣a=﹣1,所以不等于0的两个数互为相反数,则它们商为﹣1.故选C【点评】本题主要考查互为相反数与互为倒数的概念.只有符号不同的两个数互为相反数;乘积是1的两个数互为倒数.28.下面各组数,互为相反数的是()A.B.3.14与﹣πC.D.3与|﹣3|【分析】根据相反数的定义对各项进行逐一分析即可.【解答】解:A、∵﹣0.25=﹣,∴与﹣0.25互为相反数,故本选项正确;B、∵﹣π≈3.14159…,∴3.14与﹣π不互为相反数,故本选项错误;C、∵﹣(﹣2)=2,+(﹣)=﹣,∴﹣(﹣2)与+(﹣)不互为相反数,故本选项错误;D、∵|﹣3|=3,∴3与|﹣3|不互为相反数,故本选项错误.故选A.【点评】本题考查的是相反数的定义,比较简单.29.下列化简错误的是()A.﹣(﹣5)=﹣5 B.﹣(+3.6)=﹣3.6 C.﹣[﹣(﹣4)]=﹣4 D.【分析】根据相反数的定义得到﹣5的相反数为5,即﹣(﹣5)=5;同理有﹣(+3.6)=﹣3.6;﹣[﹣(﹣4)]=﹣(+4)=﹣4;把+(﹣)写成简写形式为﹣.【解答】解:∵﹣(﹣5)=5;﹣(+3.6)=﹣3.6;﹣[﹣(﹣4)]=﹣(+4)=﹣4;+(﹣)=﹣,∴A选项中的化减简是错误的.故选A.【点评】本题考查了相反数:a的相反数为﹣a.30.有下列的表述:①与﹣0.5互为相反数;②1+与1﹣互为相反数;③﹣|+5|与+|﹣5|互为相反数;④0没有相反数;⑤正数的相反数是负数;其中说法正确的有()A.0个 B.1个 C.2个 D.3个【分析】只有符号不同的两个数,我们就说其中一个是另一个的相反数,根据相反数的定义,①③⑤是正确的.【解答】解:①=0.5,0.5与﹣0.5互为相反数;故正确.②1+=,1=,不是的相反数;故错误.③﹣|+5|=﹣5,+|+5|=5,所以﹣|+5|与+|﹣5|互为相反数;故正确.④0的相反数是0;故错误.⑤正数的相反数是负数;故正确.故选D.【点评】本题考查了相反数的定义,0的相反数是0;一般地,任意的一个有理数a,它的相反数是﹣a,a本身既可以是正数,也可以是负数,还可以是零.31.如图,在数轴上点A所表示的数的相反数是()A.﹣2 B.2 C.0.5 D.﹣0.5【分析】先根据图示的内容求出A表示的数的值,再求出其相反数即可.【解答】解:由题意可知,A=2,所以A的相反数为﹣2.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.32.下列各对数中,属于互为相反数的是()A.﹣2和B.2和C.2和|﹣2|D.2和﹣2【分析】相反数是只有符号不同的两个数,根据概念可找到答案.【解答】解:只要符号不同的两个数叫做相反数.2和﹣2互为相反数.故选D.【点评】本题考查相反数的概念,关键知道只有符号不同的两个数叫做相反数.33.若2与m互为相反数,则下列结论正确的是()A.2﹣m=0 B.C.2m=4 D.2+m=4【分析】此题只需先由2与m互为相反数求得m的值,然后再代入各式判断是否成立.【解答】解:由于2与m互为相反数,则2+m=0,m=﹣2.因此,2﹣m=4;;2m=﹣4;2+m=0.故选B.【点评】本题考查了相反数的定义及求解,关键是先求得m的值,再代入验证即可.34.已知a的相反数是4,则a﹣3的值为()A.﹣5 B.﹣7 C.1 D.【分析】根据相反数的定义求出a的值,然后代入进行计算即可求解.【解答】解:∵a的相反数是4,∴a=﹣4,∴a﹣3=﹣4﹣3=﹣7.故选B.【点评】本题主要考查了相反数的定义,有理数的加法运算,求出a的值是解题的关键.35.﹣5的相反数是a,则a是()A.5 B.C.D.﹣5【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣5的相反数为﹣(﹣5)=5,故a=5.故选A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.36.已知a、b、c均为有理数,则a+b+c的相反数是()A.b+a﹣c B.﹣b﹣a﹣c C.﹣b﹣a+c D.b﹣a+c【分析】根据只有符号不同的数是互为相反数进行解答.【解答】解:a+b+c的相反数是﹣a﹣b﹣c.故选B.【点评】本题主要考查了相反数的定义,熟记概念,只有符号不同的两个数是互为相反数是解题的关键.37.若a,b互为相反数,则下列各对数中不是互为相反数的是()A.﹣2a和﹣2b B.a+1和b+1 C.a+1和b﹣1 D.2a和2b【分析】若a,b互为相反数,则a+b=0,根据这个性质,四个选项中,两个数的和只要不是0的,一定不是互为相反数.【解答】解:∵a,b互为相反数,∴a+b=0.A中,﹣2a+(﹣2b)=﹣2(a+b)=0,它们互为相反数;B中,a+1+b+1=2≠0,即a+1和b+1不是互为相反数;C中,a+1+b﹣1=a+b=0,它们互为相反数;D中,2a+2b=2(a+b)=0,它们互为相反数.故选B.【点评】本题考查了互为相反数的意义和性质:只有符号不同的两个数互为相反数,0的相反数是0;一对相反数的和是0.38.如果a与﹣2互为相反数,那么﹣1的值是()A.﹣2 B.﹣l C.0 D.1【分析】首先算出﹣2的相反数,然后用代入法求出﹣1的值.【解答】解:∵a与﹣2互为相反数.∴a=2,把a=2代入代数式得.故选C.【点评】本题主要考查相反数的定义和性质.39.数轴上表示互为相反数的两点之间的距离是4,这两个数是()A.0和4 B.0和﹣4 C.2和﹣2 D.4和﹣4【分析】根据互为相反数的两个数的绝对值相等求解即可.【解答】解:4÷2=2,所以,这两个数是2和﹣2.故选C.【点评】本题考查了相反数的定义,数轴的知识,熟记互为相反数的两个数的绝对值相等是解题的关键.40.已知2x+4与﹣x﹣8互为相反数,则x的值为()A.4 B.﹣4 C.0 D.﹣8【分析】先根据2x+4与﹣x﹣8互为相反数可得出关于x的方程,求出x的值即可.【解答】解:∵2x+4与﹣x﹣8互为相反数,∴2x+4=﹣(﹣x﹣8),解得x=4.故选A.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.41.下列各对数中,不是相反数的是()A.﹣5.2与﹣[+(﹣5.2)]B.﹣14与(﹣1)4C.﹣(﹣8)与﹣|﹣8| D.+(﹣3)与﹣[﹣(﹣3)]【分析】根据相反数的定义对各选项进行逐一分析即可.【解答】解:A、∵﹣[+(﹣5.2)]=5.2,∴﹣5.2与﹣[+(﹣5.2)]互为相反数,故本选项错误;B、∵﹣14,=﹣1,(﹣1)4,=1,∴14与(﹣1)4互为相反数,故本选项错误;C、∵﹣(﹣8)=8,﹣|﹣8|=﹣8,8与﹣8为相反数,故本选项错误;D、∵+(﹣3)=﹣3,﹣[﹣(﹣3)]=﹣3,∴+(﹣3)与﹣[﹣(﹣3)]不互为相反数,故本选项正确.故选D.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.42.在+[﹣(﹣10)]、﹣(+0.1),+(+7)中,相反数为负数的个数是()A.1个 B.2个 C.3个 D.0个【分析】先化简,再根据互为相反数的定义找出相反数是负数的数即可.【解答】解:+[﹣(﹣10)]=10,相反数是﹣10是负数,﹣(+0.1)=﹣0.1,相反数是0.1,是正数,+(+7)=7,相反数是﹣7,是负数,所以,相反数为负数的个数是2.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.43.一个数在数轴上所对应的点向左移2008个单位后,得到它的相反数对应的点,则这个数是()A.2008 B.﹣2008 C.1004 D.﹣1004【分析】设这个数是x,根据向左移减表示出它的相反数,然后列方程求解即可.【解答】解:设这个数是x,根据题意得,x﹣2008=﹣x,解得x=1004.故选C.【点评】本题考查了相反数的定义,以及数轴上的点向左移用减,列出方程是解题的关键.44.若2m﹣1与﹣m+3互为相反数,则m的值是()A.﹣2 B.C.﹣3 D.【分析】根据相反数的定义得到2m﹣1+(﹣m+3)=0,然后解关于m的方程即可.【解答】解:∵2m﹣1与﹣m+3互为相反数,∴2m﹣1+(﹣m+3)=0,即2m﹣1﹣m+3=0,∴m=﹣2.故选A.【点评】本题考查了相反数:a的相反数为﹣a;0的相反数为0.45.下列各组代数式中互为相反数的有()(1)a﹣b与﹣a﹣b;(2)a+b与﹣a﹣b;(3)a+1与1﹣a;(4)﹣a+b与a﹣b.A.(1)(2)(4)B.(2)与(4)C.(1)(3)(4)D.(3)与(4)【分析】互为相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:(1)中,﹣a﹣b=﹣(a+b),它和a﹣b不是互为相反数,错误;(2)中,﹣a﹣b=﹣(a+b),它和a+b是互为相反数,正确;(3)中,1﹣a=﹣(a﹣1),它和a+1不是互为相反数,错误;(4)中,﹣a+b=﹣(a﹣b),它和a﹣b互为相反数,正确.所以互为相反数的有(2)与(4).故选B.【点评】本题主要考查两个代数式互为相反数的条件:一个多项式的各项分别和另一个多项式的各项互为相反数,则这两个代数式也互为相反数.46.在+|﹣3|与﹣3、﹣(+2)与+2、﹣|﹣5|与+(﹣5)、﹣(+7)与+(﹣7)、+(+7)与+(﹣7).这几对数中,互为相反数的有()A.6对 B.5对 C.4对 D.3对【分析】先将各数化简,然后根据相反数的定义,进行判断即可.【解答】解:+|﹣3|=3,3与﹣3互为相反数;﹣(+2)=﹣2,﹣2与+2互为相反数;﹣|﹣5|=﹣5,+(﹣5)=﹣5,﹣5与﹣5不是相反数;﹣(+7)=﹣7,+(﹣7)=﹣7,﹣7与﹣7不是相反数;+(+7)=7,+(﹣7)=﹣7,7与﹣7是相反数.综上可得互为相反数的有3对.故选D.【点评】本题考查了相反数的定义,注意互为相反数的两数之和为0.。
人教版七年级数学上册 1.2.3相反数 课后练习(含答案)
第1章 有理数 1.2.3相反数一、选择题1.有理数-13的相反数为( ) A .-3 B .-13 C.13 D .32.在1,-1,3,-2这四个数中,互为相反数的是( )A .1与-1B .1与-2C .3与-2D .-1与-23.-(-2)等于( )A .-2B .2 C.12 D .±24.A ,B 是数轴上的两点,线段AB 上的点表示的数中,有互为相反数的是( )5.下列关于相反数的说法正确的是( )A .-15和0.2不互为相反数 B .相反数一定是不相等的两个数C .任何一个有理数都有相反数D .正数与负数互为相反数6.下列各组数中,不相等的是( )A .-(+8)和+(-8)B .-5和-(+5)C .+(-7)和-7D .+(-23)和+23二、填空题7.点A ,B ,C ,D 在数轴上的位置如图所示,其中-2的相反数所对应的点是________.8.(1)-5.4的相反数是________;(2)-(-8)的相反数是________;(3)若a =-a ,则a =________.9.a 的相反数是-9,则a =________.10.若x-1与-5互为相反数,则x的值为________.11.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为4个单位长度,则这个数为________.12.化简下列各数:(1)-(+3)=________;(2)-(-3)=________;(3)+(+3)=________;(4)+(-3)=________;(5)-[-(+3)]=________;(6)-[-(-3)]=________.三、解答题13.如图,数轴上每相邻两刻度之间的距离为1个单位长度,请回答下列问题:(1)如果点A,B表示的数互为相反数,那么点C表示的数是多少?(2)如果点E,B表示的数互为相反数,那么点C表示的数是多少?图中其他点表示的数分别是多少?链接听P4例2归纳总结14.规律探索化简下列各数:(1)-(-2);(2)+(-15 );(3)-[-(-4)];(4)-[-(+3.5)];(5)-{-[-(-5)]};(6)-{-[-(+5)]}.问题:当+5前面有2019个负号时,化简后的结果是多少?当-5前面有2020个负号时,化简后的结果是多少?你能总结出什么规律?参考答案1.C 2.A 3.B 4.B5.C 6.D 7.点B8.(1)5.4 (2)-8 (3)09.910.6 [解析] 因为x -1与-5互为相反数,由于-5的相反数是5,所以x -1=5,解得x =6.11.2或-2 [解析] 由题意知这个数到原点的距离为2,所以这个数为2或-2.12.(1)-3 (2)3 (3)3 (4)-3 (5)3(6)-3[解析] “-”号不仅是运算符号、性质符号,还可理解为“相反”的意义,如-(+3)表示+3的相反数.13.解:(1)若点A ,B 表示的数互为相反数,则到A ,B 两点距离相等的点O 是原点,如图.故点C 表示的数是-1.(2)如果点E ,B 表示的数互为相反数,那么到E ,B 两点距离相等的点C 是原点,故点C 表示的数是0,点D 表示的数是-5,点E 表示的数是-4,点A 表示的数是-2,点B 表示的数是4.14.解:(1)-(-2)=2;(2)+(-15)=-15; (3)-[-(-4)]=-4;(4)-[-(+3.5)]=3.5;(5)-{-[-(-5)]}=5;(6)-{-[-(+5)]}=-5.当+5前面有2019个负号时,化简后的结果是-5;当-5前面有2020个负号时,化简后的结果是-5.规律:在一个数的前面有偶数个负号时,化简后的结果是它本身;在一个数的前面有奇数个负号时,化简后的结果是它的相反数.。
人教版七年级上册数学相反数同步练习
七年级上册数学1.2.3 相反数同步练习一.选择题1.﹣7的相反数是()A.7B.﹣C.D.﹣72.若一个数的相反数等于它本身,那么这个数一定是()A.0B.1C.﹣1D.3.下面每组中的两个数互为相反数的是()A.﹣和5B.﹣2.5和C.8和﹣(﹣8)D.和0.3334.﹣(﹣3)等于()A.﹣3B.3C.±3D.都不是5.下面两个数互为相反数的是()A.﹣和﹣0.5B.和3C.﹣a和﹣(﹣a)D.﹣(+a)和+(﹣a)6.如图,表示互为相反数的两个点是()A.M与Q B.N与P C.M与P D.N与Q二.填空题7.x的相反数是5,则x=.8.﹣(+4)=.9.若一个数的相反数不是正数,则这个数一定是.10.请写出一对互为相反数的数:和.11.一个数在数轴上表示的点距原点2个单位长度,且在原点的左边,则这个数的相反数是.12.若﹣x=﹣2,则x=.三.解答题13.化简下列各数:(1)﹣(+54);(2)﹣(﹣13.2);(3)﹣(+);(4)﹣(﹣3).14.化简下列各对数,并指出哪些互为相反数:(1)+(+3)与﹣3;(2)﹣(﹣5)与+(﹣5);(3)﹣(﹣)与+(+);(4)+[﹣(+4)]与+(﹣4).15.在数轴上标出下列各数与它们的相反数.﹣3,﹣,0,1,2.5.16.已知2x与﹣6互为相反数,求x的值.17.已知﹣2的相反数是x,﹣5的相反数是y,z的相反数是0,求x+y+z的相反数.18.同学们都看过中央电视台《三星智力快车》吧,那可是针对我们中学生的节目,其中有一个小栏目是主持人提出一个问题,然后再给出一些提示性语言,学生根据提示性语言回答出问题.下面我们也来做一个类似的题,根据提示分析相信聪明的你一定能判断出它是一个什么数.(1)它是一个整数;(2)它在数轴上表示的点在原点左边;(3)它的相反数比2小.答:这个数是;请你将这个数及它的相反数在数轴上表示出来.。
七年级数学上册1.2.3 相反数-相反数的定义 选择题专项练习五(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.3 相反数-相反数的定义1.16的相反数是 ( ) A .6B .-6C .16D .16-2.﹣(﹣2)等于( ) A .﹣2B .2C .12D .±23.相反数是12-的数是( ) A .-2B .2C .12D .12-4.34-的相反数是( ) A .43- B .43C .34-D .345.2的相反数是( ) A .B .-C .2D .-26.﹣3的相反数是( ) A .13-B .13C .3-D .37.-2的相反数是( ). A . B .2C .D .8.的相反数是( )A .B .2C .﹣2D .9.-2的相反数是( ) A .2B .-2C .D .-10.﹣15的相反数是( ) A .15B .﹣15C .115D .- 11511.﹣(+2)的相反数是( ) A .2B .12C .﹣12D .﹣212.5的相反数是( ) A .-5B .5C .15D .15-13.以下可以说明a ,b 互为相反数的是( ) A .0,0a b >< B .0ab >C .0a b +=D .1ba =-14.45-的相反数是( ) A .54-B .45C .54D .45-15.2018-的相反数是( ) A .2018B .2018-C .12018D .12018-16.8的相反数是( ) A .8B .8-C .18D .18-17.在0和0,34和34-,13和3这三对数中,互为相反数的有( ) A .3对B .2对C .1对D .0对18.-2018的相反数是( ) A .-2018B .12018-C .2018D .1201819.16-的相反数是( )A .16B .16-C .116D .116-20.16-的相反数是( ). A .﹣6 B .6C .16--D .16参考答案1.D解析:根据相反数的定义解答即可. 详解:根据相反数的定义有:16的相反数是16-.故选D . 点睛:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 2.B解析:分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数. 详解:﹣(﹣2)=2, 故选B .点睛:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数. 3.C解析:根据相反数的定义:相反数指数值相反的两个数,其中一个数是另一个数的相反数,即可得解. 详解: 由题意,得 相反数是12-的数是12,故选:C.点睛:此题主要考查对相反数的理解,熟练掌握,即可解题.4.D解析:考查相反数的概念及应用,只有符号不同的两个数,叫做互为相反数.3-4 .的相反数是34故选D.5.D解析:试题分析:相反数的定义:只有符号不同的两个数互为相反数,正数的相反数的负数.2的相反数是-2,故选D.考点:本题考查的是相反数的定义点评:本题是基础应用题,只需学生熟练掌握相反数的定义,即可完成. 6.D解析:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.详解:根据相反数的定义可得:-3的相反数是3.故选D.点睛:本题考查相反数,题目简单,熟记定义是关键.7.B解析:试题分析:只有符号不同的两个数,我们称这两个数互为相反数.考点:相反数的定义8.A解析:试题分析:直接利用相反数的定义得出即可.解:的相反数是:.故选A.考点:相反数.9.A解析:根据只有符号不同的两个数互为相反数,由此可得-2的相反数是2,故选:A.10.A解析:根据只有符号不同的两个数互为相反数,可得﹣15的相反数是15,故选A.11.A解析:首先化简已知数的多重符号,再根据相反数的意义解答.详解:解:∵﹣(+2)=﹣2,而﹣2的相反数是2,故选A.点睛:本题考查相反数的意义、求法及有理数多重符号的化简,熟练掌握有关法则和意义是解题关键.12.A解析:根据相反数的定义可直接得出答案. 详解:解:5的相反数是-5, 故选:A. 点睛:本题考查了相反数,正确把握相反数的定义是解题的关键. 13.C解析:根据互为相反数的两个数的和为零即可. 详解:解:若a ,b 互为相反数,则a+b=0,反之,若a+b=0,则a ,b 互为相反数. 故选:C . 点睛:本题考查了相反数,解题的关键是熟知互为相反数的两个数的和为零. 14.B解析:依据相反数的定义求解即可. 详解: 解:45的相反数是45,故选B. 点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键. 15.A解析:解:由只有符号不同的两个数互为相反数知,2018的相反数是2018.16.B解析:根据相反数的意义,可得答案.详解:解:8的相反数是-8,故选:B.点睛:本题考查了相反数的意义,熟悉相关性质是解题的关键.17.B解析:只有符号不同的两个数叫做互为相反数.详解:互为相反数的是: 0和0,34和-34,共有2对,故选: B.点睛:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.18.C解析:直接利用相反数的定义分析得出答案.详解:解:-2018的相反数是: 2018.故选:C.点睛:此题主要考查了相反数,正确把握相反数的定义是解题关键.19.A解析:根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“-”,据此解答即可. 详解:解:-16的相反数是16. 故选:A . 点睛:此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“-”. 20.D解析:试题分析:用相反数数的意义直接确定即可.16 的相反数是16. 故选D .考点:相反数;绝对值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 、 1 )
第一章 有理数
1.2 有理数
1.2.3 相反数
1、下列说法中正确的是(
)
A 、正数和负数互为相反数
B 、任何一个数的相反数都与它本身不相同
C 、任何一个数都有它的相反数
D 、数轴上原点两旁的两个点表示的数互为相反数
2、下列结论正确的有(
)
①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数
的点到原点的距离相等;④若有理数 a,b 互为相反数,那么 a +b=0;⑤若有理数 a,b 互为相
反数,则它们一定异号。
A 、2 个
B 、3 个
C 、4 个
D 、5 个
3、(2009 年,河南)﹣5 的相反数是( )
1 B 、 C 、-5 D 、5
5 5
4、(2009 年,杭州)如果 a+b=0,那么 a,b 两个有理数一定是(
) A 、都等于 0
B 、一正一负
C 、互为相反数
D 、互为倒数
(原题是“那么两个实数一定是”此处改为“两个有理数是” 5、﹣(+5)表示
的相反数,即﹣(+5)=
; ﹣(﹣5)表示
的相反数,即﹣(﹣5)= 。
6、﹣2 的相反数是
;
7、化简下列各数:
5 7
的相反数是___;0 的相反数是 。
﹣(﹣68)=
﹣(+0.75)= ﹣(﹣ 3 5 )= ﹣(+3.8)=
+(﹣3)= +(+6)=
阅读下面的文字,并回答问题
8、1 的相反数是﹣1,则 1+(﹣1)=0;0 的相反数是 0,则 0+0=0;2 的相反数是﹣2,则
2+(﹣2)=0,故 a,b 互为相反数,则 a+b=0;若 a+b=0,则 a,b 互为相反数。
说明了
;相反, (用文字叙述)
9、已知数轴上 A 、B 表示的数互为相反数,并且两点间的距离是 6,点 A 在点 B 的左边,
则点 A 、B 表示的数分别是 。
10、已知a与b互为相反数,b与c互为相反数,且c=﹣6,则a=。
11、一个数a的相反数是非负数,那么这个数a与0的大小关系是a0.
12、数轴上A点表示﹣3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是。
13、如果a=﹣a,那么表示a的点在数轴上的什么位置?
参考答案:
1、C考查相反数的代数意义和几何意义
2、A根据相反数的定义。
3、D
4、C
5、5,﹣5,﹣5,5;
6、2,5
7,0;
7、68,﹣0.75,3
5,﹣3.8,﹣3,6;
8、分析:本题考查互为相反数的性质和互为相反数的判定,通过由特殊到一般的探究,归纳出一般性的结论,这是科学的思维方法的重要内容。
解:互为相反数的两个数的和为零;相反,若两个数的和为零,则这两个数互为相反数。
9、﹣3,3;
10、﹣6;
11、≤;
12、1或5;
13、a=﹣a表示有理数a的相反数是它本身,那么这样的有理数只有0,所以a=0,表示a 的点在原点处。