含参数的二次函数最值问题
二次函数相关的定义域与最值问题
二次函数相关的定义域与最值问题一.定义域为R的含参不等式题型例1.函数y=xkx2+kx+1的定义域为R,则实数k的取值范围为( )A.k<0或k>4 B.0≤k<4C.0<k<4 D.k≥4或k≤0变式:函数y=√ax²+ax+2的定义域为R,则实数a的取值范围为练习:1.函数f(x)=1ax2+4ax+3的定义域为R,求实数a的取值范围。
2.不等式ax²-2ax+3≥0的解集为R,求实数a的取值范围。
二.求二次函数在某一闭区间上的最值(定轴定区间型)例2.求函数y=x²-2x-3在x∈[-2,2]上的最大值与最小值。
练习:(1)求函数y=x²-6x+1在[0,4]的最值。
(2)求函数y=-2x²-4x+7在下列范围内的最值①x∈[-3,0]② x∈[0,4]三.含参二次函数在某一闭区间上的最值(动轴定区间型)二次函数随着参数的变化而变化,即其图像是运动的,但定义域区间是固定的,我们称这种情况为“动二次函数在定区间上的最值”例3.求函数f(x)=x²-2a x+3在x∈[0,4]上的最值变式:已知函数f(x)=-x²+2a x+1-a,在x∈[0,1]上的最大值为2,求实数a的值。
练习:求函数f(x)=-2x²+2ax+1在x∈[-1,1]上的最大值四.二次函数在动闭区间上的最值(定轴动区间型)二次函数是确定的,但它的定义域区间是随着参数的变化而变化的,我们称这种情况是“定函数在动区间上的最值”例4.求函数f(x)=x²-2x-5在x∈[t,t+1]上的最小值(其中t为常数)练习:求函数f(x)=x²-2x+3在x∈[a,a+3]上的最值课后练习1.函数f(x)的图象如图,则其最大值、最小值分别为( )A.f32,f −32B.f(0),f32C.f −32,f(0) D.f(0),f(3)2.若函数f(x)=2x+6,x∈[1,2],x+7,x∈[−1,1),则f(x)的最大值为,最小值为.3.若不等式a≤x2-4x对任意x∈[0,4]恒成立,则a的取值范围为.4.设函数y=f(x)是定义在(0,+∞)上的减函数,并且满足f(xy)=f(x)+f(y),f13=1.(1)求f(1)的值.(2)若存在实数m,使得f(m)=2,求m的值.(3)若f(x-2)>2,求x的取值范围.。
含参二次函数的最值问题
5a x
(2)当1 a 5时
f (x)min =f(1)=-4 f (x)max =f(-3)=12
(3)当a 5时
f (x)min=f(1)=-4 f (x)max =f(a)= a2-2a-3
小结:
本节课讨论了两类含参数的二次函数最 值问题:
(1)轴动区间定 (2)轴定区间动 核心思想仍然是判断对称轴与区间的 相对位置,从中体会到数形结合思想、分类 讨论思想。
❖第2类:函数对称轴固定,动区间 例2:
求函数f (x) x2 2x 5在区间t,t 2上的最大值
对称轴:x=1
(1)t+2≤1时,即:t ≤ -1时, 函数f(x)在区间[t,t+2]上单调递 增当x=t+2时,y有最大值, y max = f(t+2)= -t2-2t+5
(2)t<1<t+2,即-1<t<1时 当x=1时,y有最大值, y max = f(1)= 6
若0 a 2,则函数f(x)的最小值为f (a) a2 1
若 a 2 ,则函数f(x)的最小值为f(2)=3—4a.
所以,
1, (a 0) f (x)min a2 1, (0 a 2)
3 4a, (a 2)
变式作业上第9题
已知函数f(x)=-x2+2ax+1-a在区间[0,1]上有最大值 23:求二次函数f(x)=x2-2x-3 在[-3,a] (a>-3)上的最值
y
a -3 o 1
(1)当 3 a 1时
f (x)min=f(a)=a2-2a-3 x f (x)max =f(-3)=12
f(x)=x2-2x-3,x∈[-3,a] (a>-3)
“有限区间上含参数的二次函数最值问题”一课的教学策略研究
“有限区间上含参数的二次函数最值问题”一课的教学策略研究上海市桐柏高级中学刘国友一、本课例教学策略的设计背景(一)以往课堂教学的弊病我国的课堂教学长期以来形成的特点是:以教师的教为本位,教师讲,学生练,学生围绕教师转,学生失去了学习过程中的自主性和主动性;以书本知识为本位,学生死记数学定理、公式,机械地模仿教科书上解决问题的方法,忽视了师生之间、生生之间应有的合作学习与情感交流,丧失了学习过程中的情感性和发展性;以静态教案为本位,教师对教材、教案的认识过程代替了学生对学习内容的认知过程,学生只能被动适应,丧失了学习过程中的能动性和创造性。
(二)时代对教师教学理念转变的要求心理学、教育学、社会学、时代的发展,要求数学教育注重让学习者根据自己的经验基础进行建构来学习数学。
同样,数学教师不但要向学习者传授正规的外在知识,更重要的是激发学生主动学习,更应该为学生设计一种动态的、能够探索的、实验和体验的数学情境。
我们的原则应该是:第一,我们必须非常细心的对待研究中的结论,不要随意跳过结论对学生学习过程和结果作错误的推断。
第二,我们应该精心设计教学内容,为学生真正理解或应用这些内容提供丰富的平台。
我们应该认识到,不存在任何内容能保证学生将知识或能力,从一种情境迁移到另一种情境,学生必须有效的积累那些知识或能力。
上海二期课改不断深入,新课程标准提出“以人为本,以学生发展为本”的教学理念,突出了学生学习的自主性、创新精神、实践能力以及终身学习的能力的培养。
身处改革大潮的我们急需转变自己的教学理念,要为学生今天的学习服务,又要为学生明天的可持续发展奠基。
(三)按照“三个阶段、两次反思”的“行动教育”模式开展课堂教学策略研究我们在日常教学实践中往往会遇到各种各样的问题或困惑,尤其是新理念与学生实际之间的差距。
我们迫切需要更加广泛的、深入的沟通与交流,需要对课堂教学进行现场指导和帮助,需要通过具体的教学设计案例,让专家、教研员与我们共同参与校本教研。
二次函数求最值的六种考法(含答案)
二次函数与最值的六种考法-重难点题型【题型1 二次函数中的定轴定区间求最值】【例1】(2021春•瓯海区月考)已知二次函数y=﹣x2+2x+4,关于该函数在﹣2≤x≤2的取值范围内,下列说法正确的是()A.有最大值4,有最小值0B.有最大值0,有最小值﹣4C.有最大值4,有最小值﹣4D.有最大值5,有最小值﹣4【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据﹣2≤x≤2,即可得到相应的最大值和最小值,从而可以解答本题.【解答过程】解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该函数的对称轴是直线x=1,函数图象开口向下,∴当﹣2≤x≤2时,x=1时取得最大值5,当x=﹣2时,取得最小值﹣4,故选:D.【变式1-1】(2020秋•龙沙区期中)当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣3x+m=(x−32)2+m−94,∴该函数开口向上,对称轴为x=3 2,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.【变式1-2】(2021•哈尔滨模拟)已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,则a﹣b的值为.【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到自变量满足﹣1≤x≤3时,x=﹣1时取得最大值,x=2时取得最小值,然后即可得到a、b的值,从而可以求得a﹣b的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴a=1+4+3=8,b=﹣1,∴a﹣b=8﹣(﹣1)=8+1=9,故答案为:9.【变式1-3】(2020秋•番禺区校级期中)若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.【解题思路】根据题意画出函数图象,即可由此找到m 和M 的值,从而求出M ﹣m 的值. 【解答过程】解:原式可化为y =(x ﹣3)2﹣4, 可知函数顶点坐标为(3,﹣4), 当y =0时,x 2﹣6x +5=0, 即(x ﹣1)(x ﹣5)=0, 解得x 1=1,x 2=5. 如图:m =﹣4,当x =6时,y =36﹣36+5=5,即M =5. 则M ﹣m =5﹣(﹣4)=9.故答案为9.【题型2 二次函数中的动轴定区间求最值】【例2】(2021•雁塔区校级模拟)已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( ) A .3B .﹣3或38C .3或−38D .﹣3或−38【解题思路】先求出对称轴为x =﹣1,分m >0,m <0两种情况讨论解答即可求得m 的值. 【解答过程】解:∵二次函数y =mx 2+2mx +1=m (x +1)2﹣m +1, ∴对称轴为直线x =﹣1, ①m >0,抛物线开口向上,x =﹣1时,有最小值y =﹣m +1=﹣2, 解得:m =3;②m <0,抛物线开口向下,∵对称轴为直线x =﹣1,在﹣2≤x ≤2时有最小值﹣2, ∴x =2时,有最小值y =4m +4m +1=﹣2,解得:m =−38; 故选:C .【变式2-1】(2021•瓯海区模拟)已知二次函数y =ax 2﹣4ax ﹣1,当x ≤1时,y 随x 的增大而增大,且﹣1≤x ≤6时,y 的最小值为﹣4,则a 的值为( ) A .1B .34C .−35D .−14【解题思路】根据二次函数y =ax 2﹣4ax ﹣1,可以得到该函数的对称轴,再根据当x ≤1时,y 随x 的增大而增大,可以得到a 的正负情况,然后根据﹣1≤x ≤6时,y 的最小值为﹣4,即可得到a 的值. 【解答过程】解:∵二次函数y =ax 2﹣4ax ﹣1=a (x ﹣2)2﹣4a ﹣1, ∴该函数的对称轴是直线x =2, 又∵当x ≤1时,y 随x 的增大而增大, ∴a <0,∵当﹣1≤x ≤6时,y 的最小值为﹣4, ∴x =6时,y =a ×62﹣4a ×6﹣1=﹣4, 解得a =−14, 故选:D .【变式2-2】(2021•章丘区模拟)已知二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且﹣2≤x ≤1时,y 的最小值为15,则a 的值为( ) A .1或﹣2B .−√2或√2C .﹣2D .1【解题思路】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向下a <0,然后由﹣2≤x ≤1时,y 的最小值为15,可得x =1时,y =15,即可求出a . 【解答过程】解:∵二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量), ∴对称轴是直线x =−4a2×2a=−1, ∵当x ≥2时,y 随x 的增大而减小, ∴a <0,∵﹣2≤x ≤1时,y 的最小值为15, ∴x =1时,y =2a +4a +6a 2+3=15, ∴6a 2+6a ﹣12=0, ∴a 2+a ﹣2=0,∴a =1(不合题意舍去)或a =﹣2. 故选:C .【变式2-3】(2021•滨江区三模)已知二次函数y =12(m ﹣1)x 2+(n ﹣6)x +1(m ≥0,n ≥0),当1≤x ≤2时,y 随x 的增大而减小,则mn 的最大值为( ) A .4B .6C .8D .494【解题思路】由二次函数解析式求出对称轴直线方程,分类讨论抛物线开口向下及开口向上的m ,n 的取值范围,将mn 转化为含一个未知数的整式求最值.【解答过程】解:抛物线y =12(m ﹣1)x 2+(n ﹣6)x +1的对称轴为直线x =6−nm−1, ①当m >1时,抛物线开口向上, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≥2,即2m +n ≤8.解得n ≤8﹣2m , ∴mn ≤m (8﹣2m ),m (8﹣2m )=﹣2(m ﹣2)2+8, ∴mn ≤8.②当0≤m <1时,抛物线开口向下, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≤1,即m +n ≤7,解得m ≤7﹣n , ∴mn ≤n (7﹣n ),n (7﹣n )=﹣(n −72)2+494, ∴mn ≤494, ∵0≤m <1, ∴此情况不存在.综上所述,mn 最大值为8. 故选:C .【题型3 二次函数中的定轴动区间求最值】【例3】(2020秋•马鞍山期末)当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为.【解题思路】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答过程】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式3-1】(2021•济南模拟)函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,则m的取值范围是()A.0≤m<2B.0≤m≤5C.m>5D.2≤m≤5【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的取值范围.【解答过程】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数图象开口向下,对称轴是直线x=2,顶点坐标为(2,1),∴x=﹣1和x=5对应的函数值相等,∵当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,当x=﹣1时,y=﹣8,∴2≤m≤5,故选:D.【变式3-2】(2021•宁波模拟)若二次函数y=ax2﹣x+2的图象经过点(2,﹣1),当t≤x≤2时,y有最大值3,最小值﹣1,则t的取值范围应是()A.﹣6≤t≤2B.t≤﹣2C.﹣6≤t≤﹣2D.﹣2≤t≤2【解题思路】根据二次函数y=ax2﹣x+2的图象经过点(2,﹣1),可以求得a的值,然后即可得到该函数的解析式,再根据二次函数的性质和当t≤x≤2时,y有最大值3,最小值﹣1,即可得到t的取值范围.【解答过程】解:∵二次函数y=ax2﹣x+2的图象经过点(2,﹣1),∴﹣1=a×22﹣2+2,解得a=−1 4,∴y=−14x2﹣x+2=−14(x+2)2+3,∴该函数的图象开口向下,对称轴是直线x=﹣2,当x=﹣2时,该函数取得最大值3,∵当t≤x≤2时,y有最大值3,最小值﹣1,当x=2时,y=﹣1,∴﹣6≤t≤﹣2,故选:C.【变式3-3】(2021•莱芜区二模)已知二次函数y=(x+1)2﹣4,当a≤x≤b且ab<0时,y的最小值为2a,最大值为2b,则a+b的值为()A.2√3B.−72C.√3−2D.0【解题思路】根据a的取值范围分﹣1≤a<0,﹣b﹣2≤a<﹣1,a<﹣b﹣2三种情况讨论,求出满足题目条件的情况即可.【解答过程】解:∵a≤x≤b且ab<0,∴a,b异号,∴a<0,b>0,由二次函数的对称性,b关于对称轴的对称点为﹣b﹣2,若﹣1≤a<0,则(a+1)2﹣4=2a,解得a=−√3(舍),若﹣b﹣2≤a<﹣1,则﹣4=2a,a=﹣2,且(b+1)2﹣3=2b,解得b=√3,∴a+b=√3−2,若a<﹣b﹣2,则2a=﹣4,a=﹣2,2b=(a+1)2﹣4=﹣3,∴b=−32(舍),故选:C.【题型4 二次函数中求线段最值】【例4】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【解题思路】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ=t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答过程】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B(﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得{−4k+b=0b=4,解得{k=1b=4,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【变式4-1】(2020秋•镇平县期末)如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=−38x 2+34x +3经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为 .【解题思路】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【解答过程】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,−38m 2+34m +3),点M 的坐标是(m ,−34m +3),∴EM =−38m 2+34m +3﹣(−34m +3)=−38m 2+32m =−38(m 2﹣4m )=−38(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32,故答案为32.【变式4-2】(2021•埇桥区模拟)对称轴为直线x =﹣1的抛物线y =x 2+bx +c ,与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标.(2)点C 是抛物线与y 轴的交点,点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【解题思路】(1)利用二次函数对称性即可得出B 点坐标;(2)首先利用待定系数法求二次函数解析式,进而求出直线AC 的解析式,再利用QD =﹣x ﹣3﹣(x 2+2x ﹣3)进而求出最值.【解答过程】解:(1)∵点A (﹣3,0)与点B 关于直线x =﹣1对称, ∴点B 的坐标为(1,0). (2)∵a =1,∴y =x 2+bx +c .∵抛物线过点(﹣3,0),且对称轴为直线x =﹣1, ∴{9−3b +c =0−b2=−1∴解得:{b =2c =−3,∴y =x 2+2x ﹣3,且点C 的坐标为(0,﹣3). 设直线AC 的解析式为y =mx +n , 则{−3m +n =0n =−3, 解得:{m =−1n =−3,∴y =﹣x ﹣3如图,设点Q 的坐标为(x .y ),﹣3≤x ≤0.则有QD =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x 2﹣3x =﹣(x +32)2+94∵﹣3≤−32≤0,∴当x =−32时,QD 有最大值94.∴线段QD 长度的最大值为94.【变式4-3】(2020秋•滨海新区期末)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +52与x 轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)若点M是抛物线的顶点,连接AM,CM,求△ACM的面积;(Ⅲ)若点P是抛物线上的一动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解题思路】(Ⅰ)用待定系数法即可求解;(Ⅱ)△AMC的面积=S△MHC+S△MHA=12×MH×OA,即可求解;(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答过程】解:(Ⅰ)令x=0,则y=52,即C(0,52)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:52=a(0﹣5)(0+1),解得a=−1 2,故抛物线的表达式为y=−12(x﹣5)(x+1)=−12x2+2x+52;(Ⅱ)由抛物线的表达式得顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC 的表达式为y =kx +t ,则{t =520=5k +t, 解得{k =−12t =52, 故直线AC 的表达式为y =−12x +52,当x =2时,y =32,则MH =92−32=3,则△AMC 的面积=S △MHC +S △MHA =12×MH ×OA =12×3×5=152; (Ⅲ)点D 在直线AC 上,设点D (m ,−12m +52),由题意得,四边形OEDF 为矩形,故EF =OD ,即当线段EF 的长度最短时,只需要OD 最短即可,则EF 2=OD 2=m 2+(−12m +52)2=54m 2−52m +254,∵54>0,故EF 2存在最小值(即EF 最小),此时m =1, 故点D (1,2),∵点P 、D 的纵坐标相同,故2=−12x 2+2x +52,解得x =2±√5,故点P 的坐标为(2+√5,2)或(2−√5,2).【题型5 二次函数中求线段和最值】【例5】(2020秋•安居区期末)如图,在抛物线y =﹣x 2上有A ,B 两点,其横坐标分别为1,2,在y 轴上有一动点C ,当BC +AC 最小时,则点C 的坐标是( )A .(0,0)B .(0,﹣1)C .(0,2)D .(0,﹣2)【解题思路】利用二次函数图象上点的坐标特征可求出点A ,B 的坐标,作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,由点B 的坐标可得出点B ′的坐标,由点A ,B ′的坐标,利用待定系数法可求出直线AB ′的解析式,再利用一次函数图象上点的坐标特征,即可求出点C 的坐标.【解答过程】解:当x =1时,y =﹣12=﹣1,∴点A 的坐标为(1,﹣1);当x =2时,y =﹣22=﹣4,∴点B 的坐标为(2,﹣4).作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,如图所示.∵点B 的坐标为(2,﹣4),∴点B ′的坐标为(﹣2,﹣4).设直线AB ′的解析式为y =kx +b (k ≠0),将A (1,﹣1),B (﹣2,﹣4)代入y =kx +b 得:{k +b =−1−2k +b =−4, 解得:{k =1b =−2, ∴直线AB ′的解析式为y =x ﹣2.当x =0时,y =0﹣2=﹣2,∴点C 的坐标为(0,﹣2),∴当BC +AC 最小时,点C 的坐标是(0,﹣2).故选:D .【变式5-1】(2021•铁岭模拟)如图,已知抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,过其顶点M 的一条直线y =kx +b 与该抛物线的另一个交点为N (﹣1,1).要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( )A .(0,2)B .(43,0)C .(0,2)或(43,0)D .以上都不正确【解题思路】首先,求得抛物线的解析式,根据抛物线解析式求得M 的坐标;欲使△PMN 的周长最小,MN 的长度一定,所以只需(PM +PN )取最小值即可.然后,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P (如图1);过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (如图2).【解答过程】解:如图,∵抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,点N (﹣1,1)是抛物线上的一点, ∴{−p −2=−31=−1−p +q, 解得{p =−6q =−4. ∴该抛物线的解析式为y =﹣x 2﹣6x ﹣4=﹣(x +3)2+5,∴M (﹣3,5).∵△PMN 的周长=MN +PM +PN ,且MN 是定值,所以只需(PM +PN )最小.如图1,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P .则M ′(3,5).设直线M ′N 的解析式为:y =ax +t (a ≠0),则{5=3a +t 1=−a +t, 解得{a =1t =2, 故该直线的解析式为y =x +2.当x =0时,y =2,即P (0,2).同理,如图2,过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (−43,0).如果点P 在y 轴上,则三角形PMN 的周长=4√2+MN ;如果点P 在x 轴上,则三角形PMN 的周长=2√10+MN ;所以点P 在(0,2)时,三角形PMN 的周长最小.综上所述,符合条件的点P 的坐标是(0,2).故选:A .【变式5-2】(2021•包头)已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点D (4,y )在抛物线上,E 是该抛物线对称轴上一动点,当BE +DE 的值最小时,△ACE 的面积为 .【解题思路】解方程x 2﹣2x ﹣3=0得A (﹣1,0),B (3,0),则抛物线的对称轴为直线x =1,再确定C (0,﹣3),D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,利用两点之间线段最短可判断此时BE +DE 的值最小,接着利用待定系数法求出直线AD 的解析式为y =x +1,则F (0,1),然后根据三角形面积公式计算.【解答过程】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0), 抛物线的对称轴为直线x =1,当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),当x =4时,y =x 2﹣2x ﹣3=5,则D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,∵BE +DE =EA +DE =AD ,∴此时BE +DE 的值最小,设直线AD 的解析式为y =kx +b ,把A (﹣1,0),D (4,5)代入得{−k +b =04k +b =5,解得{k =1b =1, ∴直线AD 的解析式为y =x +1,当x =1时,y =x +1=2,则E (1,2),当x =0时,y =x +1=1,则F (0,1),∴S △ACE =S △ACF +S △ECF =12×4×1+12×4×1=4. 故答案为4.【变式5-3】(2021•涪城区模拟)如图,抛物线y =53x 2−203x +5与x 轴分别交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C ,在其对称轴上有一动点M ,连接MA 、MC 、AC ,则当△MAC 的周长最小时,点M 的坐标是 .【解题思路】点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,即可求解.【解答过程】解:点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,理由:连接AC ,由点的对称性知,MA =MB ,△MAC 的周长=AC +MA +MC =AC +MB +MC =CA +BC 为最小,令y =53x 2−203x +5=0,解得x =1或3,令x =0,则y =5,故点A 、B 、C 的坐标分别为(1,0)、(3,0)、(0,5),则函数的对称轴为x =12(1+3)=2,设直线BC 的表达式为y =kx +b ,则{0=3k +b b =5,解得{k =−53b =5, 故直线BC 的表达式为y =−53x +5,当x =2时,y =−53x +5=53,故点M 的坐标为(2,53). 【题型6 二次函数中求面积最值】【例6】(2020秋•盐城期末)如图,抛物线y =x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,过点A 的直线l 交抛物线于点C (2,m ),点P 是线段AC 上一个动点,过点P 做x 轴的垂线交抛物线于点E .(1)求抛物线的解析式;(2)当P 在何处时,△ACE 面积最大.【解题思路】(1)利用交点式写出抛物线解析式;(2)先利用二次函数解析式确定C (2,﹣3),再利用待定系数法求出直线AC 的解析式为y =﹣x ﹣1,设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),利用三角形面积公式得到△ACE 的面积=12×(2+1)×PE =32(﹣t 2+t +2),然后根据二次函数的性质解决问题.【解答过程】解:(1)抛物线解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)把C (2,m )代入y =x 2﹣2x ﹣3得m =4﹣4﹣3=﹣3,则C (2,﹣3),设直线AC 的解析式为y =mx +n ,把A (﹣1,0),C (2,﹣3)代入得{−m +n =02m +n =−3,解得{m =−1n =−1, ∴直线AC 的解析式为y =﹣x ﹣1;设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),∴PE =﹣t ﹣1﹣(t 2﹣2t ﹣3)=﹣t 2+t +2,∴△ACE 的面积=12×(2+1)×PE=32(﹣t 2+t +2)=−32(t −12)2+278,当t =12时,△ACE 的面积有最大值,最大值为278,此时P 点坐标为(12,−32). 【变式6-1】(2021春•金塔县月考)如图,已知抛物线经过A (4,0),B (1,0),C (0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC 上方的该抛物线上是否存在一点D ,使得△DCA 的面积最大,若存在,求出点D 的坐标及△DCA 面积的最大值;若不存在,请说明理由.【解题思路】(1)根据题意设出抛物线的交点式,用待定系数法求解即可;(2)根据题意作出相关辅助线,用待定系数法求得直线AC解析式为y=12x﹣2,因为点D在抛物线上,所以可设其坐标为(x,−12x2+52x﹣2),点E在直线AC上则设点E坐标为(x,12x﹣2),由图形可知S△DCA=S△DCE+S△DAE,将相关坐标及线段的长度代入求解,再根据二次函数的性质即可得出△DCA面积的最大值.【解答过程】(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=−1 2,∴y=−12(x﹣4)(x﹣1)=−12x2+52x﹣2,故该抛物线的解析式为:y=−12x2+52x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:{0=4k+b−2=b,解得{k=12b=−2,∴直线AC:y=12x﹣2,设点D坐标为(x,−12x2+52x﹣2),则点E坐标为(x,12x﹣2),S△DCA=S△DCE+S△DAE=12×DE×x E+12×DE×(x A﹣x E)=12×DE×x A=12×DE×4=2DE,∵DE=(−12x2+52x﹣2)﹣(12x﹣2)=−12x2+2x,∴S△DCA=2DE=2×(−12x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,y=−12x2+52x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.【变式6-2】(2021春•无为市月考)如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式.(2)若P为直线AB上方的抛物线上一点,且点P的横坐标为m,求四边形BCAP的面积S关于点P横坐标m的函数解析式,并求S的最大值.【解题思路】(1)将点A坐标代入直线解析式可求n的值,可求点B坐标,利用待定系数法可求解;(2)过点P做PE⊥x轴于点E,与直线AB交于点D,求得C的坐标和D的坐标,然后根据S=S△ABC+S △ABP得到S关于m的函数解析式,根据二次函数的性质即可求得结论.【解答过程】解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B (0,3),∵抛物线y =﹣x 2+bx +c 经过点A ,B ,∴{c =3−9+3b +c =0, ∴{b =2c =3, ∴抛物线的解析式为:y =﹣x 2+2x +3;(2)如图,过点P 做PE ⊥x 轴于点E ,与直线AB 交于点D ,∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+2m +3),∵点D 在直线AB 上,∴点D 的坐标为(m ,﹣m +3),∴PD =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,在y =﹣x 2+2x +3中.令y =0.则﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,∴点C 的坐标为(﹣1,0),∴S =S △ABC +S △ABP =12×4×3+12(﹣m 2+3m )×3=−32(m −32)2+758, ∴当m =32时,S 最大,最大值为758.【变式6-3】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,﹣3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP 'C .是否存在点P ,使四边形POP 'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC=−32(m−12)2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=3 2,∴E (0,−32),∴点P 的纵坐标为−32,由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, ∴x 2﹣2x ﹣3=−32,∴x =2−√102或x =2+√102,∵点P 在直线BC 下方的抛物线上,∴0<x <3,∴点P (2+√102,−32);(3)如图2,过点P 作PF ⊥x 轴于F ,则PF ∥OC , 由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, 令y =0,则x 2﹣2x ﹣3=0,∴x =﹣1或x =3,∴A (﹣1,0),∴设P (m ,m 2﹣2m ﹣3)(0<m <3),∴F (m ,0),∴S 四边形ABPC =S △AOC +S 梯形OCPF +S △PFB =12OA •OC +12(OC +PF )•OF +12PF •BF =12×1×3+12(3﹣m 2+2m +3)•m +12(﹣m 2+2m +3)•(3﹣m ) =−32(m −32)2+758,∴当m =32时,四边形ABPC 的面积最大,最大值为758,此时,P (32,−154),即点P 运动到点(32,−154)时,四边形ABPC 的面积最大,其最大值为758.。
含参数的二次函数在闭区间上的最值问题
含参数的二次函数在闭区间上的最值问题在数学中,含参数的二次函数在闭区间上的最值问题是一个常见且重要的数学概念。
这个问题涉及到求解一个含参数的二次函数在指定闭区间内的最大值或最小值,并且需要考虑参数对函数图像的影响。
在本文中,我们将深入探讨这个问题,并根据不同的参数取值情况给出具体的解决方法和结论。
1. 含参数的二次函数的一般形式我们来回顾一下含参数的二次函数的一般形式。
一个含参数的二次函数通常可以写成如下形式:\[ f(x) = ax^2 + bx + c \]其中,\(a\)、\(b\) 和 \(c\) 分别是函数的参数,\(x\) 是自变量。
在这个函数中,参数 \(a\) 的取值会对函数的开口方向产生影响,参数 \(b\) 会对函数的位置产生影响,而参数 \(c\) 则会对函数的纵向平移产生影响。
在求解含参数的二次函数在闭区间上的最值问题时,我们需要关注这些参数的取值对函数图像的影响。
2. 含参数的二次函数在闭区间上的最值问题的求解方法接下来,我们将按照从简到繁、由浅入深的方式来讨论含参数的二次函数在闭区间上的最值问题的求解方法。
我们将分析当参数 \(a\) 的取值为正、负和零时,函数图像的特点及最值的情况。
2.1 当参数 \(a\) 的取值为正时当参数 \(a\) 的取值为正时,函数的图像是一个开口向上的抛物线。
在闭区间上,这样的抛物线的最小值一定在抛物线的顶点处取得。
要求解函数在闭区间上的最小值,只需要找到抛物线的顶点,并判断这个顶点是否在给定的闭区间内。
2.2 当参数 \(a\) 的取值为负时当参数 \(a\) 的取值为负时,函数的图像是一个开口向下的抛物线。
同样地,在闭区间上,这样的抛物线的最大值一定在抛物线的顶点处取得。
要求解函数在闭区间上的最大值,也只需要找到抛物线的顶点,并判断这个顶点是否在给定的闭区间内。
2.3 当参数 \(a\) 的取值为零时当参数 \(a\) 的取值为零时,函数退化成一次函数或常数函数,最值情况可以直接通过函数的表达式和给定的闭区间进行分析和判断。
含参数的二次函数在闭区间上的最值问题
含参数的二次函数在闭区间上的最值问题含参数的二次函数在闭区间上的最值问题导语:含参数的二次函数在闭区间上的最值问题是数学中常见的优化问题之一。
通过分析函数的性质和求导,我们可以找到函数在给定闭区间上的最大值或最小值。
本文将从简单到复杂的方式,深入探讨这个主题,并提供一些实际例子来帮助读者更好地理解。
引言: 含参数的二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为实数且a≠0。
在闭区间[a, b]上求函数的最值,可以通过以下步骤进行。
一、函数的性质分析1. 我们可以观察函数的开口方向。
如果a>0,函数开口向上,最值为最小值;如果a<0,函数开口向下,最值为最大值。
这个性质对于我们确定最值的区间非常重要。
2. 我们可以通过求导来确定函数的驻点。
驻点是指函数斜率为零的点,可能是最值点的候选。
对于f(x) = ax^2 + bx + c,求导得到f'(x) =2ax + b。
令f'(x) = 0,解得x = -b/2a。
这个x值就是函数的驻点,我们需要判断它是否在闭区间[a, b]上。
3. 我们可以通过比较函数在闭区间的端点值和驻点值来确定最值。
根据前述观察,如果a>0,我们比较f(x)在[a, b]的端点值和驻点值,取较小的值作为最小值;如果a<0,我们比较f(x)在[a, b]的端点值和驻点值,取较大的值作为最大值。
二、实际例子假设我们要找到函数f(x) = x^2 + bx + c在闭区间[1, 3]上的最小值。
1. 观察函数的开口方向。
由于a=1>0,说明函数开口向上,最值为最小值。
2. 求导。
对函数f(x)求导得f'(x) = 2x + b。
令f'(x) = 0,解得x = -b/2。
这个x值就是函数的驻点。
3. 比较端点值和驻点值。
在闭区间[1, 3]中,我们计算f(1),f(3)和f(-b/2)的值。
含参数二次函数最值问题解法
含参数二次函数最值问题解法作者:温春桃来源:《理科考试研究·高中》2013年第11期引起二次函数最值变化的是对称轴和区间,根据对称轴相对定义域区间的位置,利用分类讨论思想方法。
为做到分类时不重不漏,可画对称轴相对于定义域区间的简图分类,通常分为三类,即对称轴在区间左边,对称轴在区间中间(有时对中间再分两类)及在区间右边。
常见的有以下几种类型:一种是“动区间定轴” 型二次函数求最值。
如:已知f (x)=x2-2x+2在x∈[t,t+1]上的最小值为g(t),求g(t)的表达式。
解f(x)=(x-1)2+1。
(1)当t+1(2)当t≤1≤t+1,即0≤t≤1时,g(t)=f(1)=1。
(3)当t>1时,g(t)=f(t)=t2-2t+2。
综合(1)、(2)、(3)得:g(t)=t2+1,1,t2-2t+2,t0≤t≤1,t>1。
第二种是“动轴定区间”型,如:已知f(x)=x2+ax+3-a,若x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.解f(x)≥0恒成立,等价于f(x)的最小值≥0,即转化为求f(x)在[-2,2]上的最小值.令f(x)的最小值为g(a),则(1)当-21a4,g(a)=f(-2)=7-3a≥0,得a≤713,又a>4,故a不存在。
(2)当-a12∈[-2,2],即-4≤a≤4时,g(a)=f(-a12)=3-a-a214≥0,得-6≤a≤2,又-4≤a≤4,故-4≤a≤2。
(3)当-a12>2,即a综上可得-7≤a≤2。
第三种是“开口不确定,对称轴也变动”的类型。
如:设函数f(x)=ax2-2x+2,对于满足10,求实数a的取值范围.解当a>0时,f(x)=(x-11a)2+2-11a。
所以11a≤1,f(1)=a-2+2≥0,或1f(11a)=2-11a>0,或11a≥4,f(4)=16a-8+2≥0。
所以a≥1,a≥0,或114a>112,或a≤114,a≤318。
求解含参二次函数最值问题的步骤
解题宝典∴椭圆离心率:e =c a=,∴正确答案为选项C .该题是与弦中点有关的圆锥曲线离心率问题,需首先设出交点A 和B 的坐标,将其代入椭圆的方程中并作差,求得直线的斜率的表达式,便可根据中点的坐标建立关于a 、b 的等式,求得椭圆的离心率.运用点差法解答中点弦问题,关键是将两个交点的坐标代入圆锥曲线的方程中,并作差,据此建立关系式.三、弦长问题直线与圆锥曲线的弦长问题比较常见,通常要利用弦长公式求解.若斜率为k (k ≠0)的直线l 与圆锥曲线的交点为A ()x 1,y 1,B (x 2,y 2),则弦AB 的长|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=|y 1-y 2|=(y 1+y 2)2-4y 1y 2,这就是弦长公式.运用弦长公式求弦长,通常要将直线与圆锥曲线的方程联立,构造一元二次方程,利用韦达定理来求得x 1+x 2和y 1+y 2.例3.已知椭圆M :x 2a 2+y 2b2=1(a >b >0)的离心率为,焦距为22.一条斜率为k 的直线l 与椭圆M 交于A 、B 两点.(1)求椭圆M 的方程;(2)若k =1,试求|AB |的最大值.解:(1)椭圆M 的方程为:x 23+y 2=1(过程略);(2)设直线l 的方程为y =x +m ,A ()x 1,y 1,B (x 2,y 2),由ìíîïïy =x +m ,x 23+y 2=1,消去y 可得4x 2+6mx +3m 2-3=0,则x 1+x 2=-3m 2,x 1x 2=3m 2-34,可得||AB =()x 2-x 12+()y 2-y 122()x 2-x 12=2[]()x 2-x 12-4x 1x 2=.当m =0,即直线l 过原点时,||AB 最大,故||AB 的最大值为6.求直线l 被椭圆所截的弦长的最值,关键要求||AB 的表达式.联立直线与椭圆的方程,消去y 得到一元二次方程后,便可运用弦长公式求得||AB 的表达式,根据二次函数的性质即可求得|AB |的最大值.综上可见,无论是求直线的斜率、解答中点弦问题,还是解答弦长问题,都需重点研究直线与圆锥曲线的方程,可将两个方程联立,构造一元二次方程,也可将交点的坐标代入圆锥曲线的方程,并将两个方程作差.(作者单位:江苏省徐州市铜山区夹河中学)含参二次函数最值问题比较常见,通常要求求含参二次函数在给定区间或实数集R 上的最值.由于问题中涉及参数,所以解答此类问题通常需要利用分类讨论思想来对参数进行分类讨论,进而求得函数的最值.对于二次函数f ()x =ax 2+bx +c (x ∈R ,a ≠0),当a >0时,在对称轴x =-b2a左侧的函数单调递减,在对称轴x =-b2a 右侧的函数单调递增;当a <0时,在对称轴x =-b2a左侧的函数单调递增,在对称轴x =-b 2a右侧的函数单调递减.根据函数的定义域和单调性即可求得函数的最值.而对于含参二次函数在给定区间上的最值问题,需要讨论函数图象的对称轴与定义域的位置关系,以便利用二次函数的单调性求函数的最值.求二次函数f ()x =ax 2+bx +c (a ≠0)在区间[]m ,n 上的最值的步骤如下:1.根据函数的解析式求得函数图象的对称轴x =-b 2a,并判断a 的符号;2.判断-b2a 与m 、n 之间的大小关系,即确定函数的对称轴x =-b2a 在[]m ,n 内、在[]m ,n 左侧、在[]m ,n 右侧;3.画出相应的函数图象,结合图象寻找取得最值的点,并求得最值.(1)若a >0,则函数图象的开口向上,(ⅰ)当-b2a ∈[]m ,n 时,函数图象的对称轴在所给李令军41解题宝典区间内,由二次函数的性质可知f()x的最小值在对称轴处取得,其值是fæèöø-b2a=4ac-b24a,f()x的最大值在离对称轴较远的端点处取得,即f()m、f()n中的较大者,如上图;(ⅱ)当-b2a<m时,对称轴在给定区间的左侧,f()x在区间[]m,n上单调递增,此时f()x的最小值是f()m,最大值是f()n;(ⅲ)当n<-b2a时,对称轴在给定区间的右侧,f()x在区间[]m,n上单调递减,此时f()x的最小值是f()n,最大值是f()m.(1)若a<0,则函数图象的开口向下,(ⅰ)当-b2a∈[]m,n时,函数图象的对称轴在所给区间内,由二次函数的性质可知f()x的最大值在对称轴处取得,其值是fæèöø-b2a=4ac-b24a,f()x的最小值在离对称轴较远的端点处取得,即f()m、f()n中的较小者;(ⅱ)当-b2a<m时,对称轴在给定区间的左侧,f()x在区间[]m,n上单调递减,此时f()x的最大值是f()m,最小值是f()n;(ⅲ)当n<-b2a时,对称轴在给定区间的右侧,f()x在区间[]m,n上单调递增,此时f()x的最大值是f()n,最小值是f()m.下面举例说明.例1.求f()x=ax2-2x在0≤x≤1上的最小值.解:(1)当a=0时,f()x=-2x为一次函数,在[]0,1上单调递减,所以f()x min=f()1=-2,即函数的最小值为-2.(2)当a>0时,函数f()x=ax2-2x图象的开口向上,且对称轴为x=1a>0.①当1a≤1,即a≥1时,函数f()x=ax2-2x图象的对称轴x=1a在[]0,1内,由函数的图象可知f()x在éëùû0,1a上单调递减,在éëùû1a,1上单调递增,所以f()x min=fæèöø1a=-1a,即函数的最小值为-1a.②当1a>1,即0<a<1时,函数f()x=ax2-2x图象的对称轴在[]0,1的右侧,所以f()x在[]0,1上单调递减,所以f()x min=f()1=a-2,即函数的最小值为a-2.(3)当a<0时,f()x=ax2-2x图象的开口向下,且对称轴x=1a<0,在y轴的左侧,所以f()x=ax2-2x在[]0,1上单调递减,所以f()x min=f()1=a-2,即函数的最小值为a-2.综上所述,f()x min=ìíîïïa-2,a<1,-1a,a≥1.本题中a为参数,需利用分类讨论思想,分a=0、a>0、a<0三种情况进行讨论.尤其要注意a=0的情形,此时函数为一次函数,需利用一次函数的单调性来求最值.当a>0、a<0时,函数为二次函数,再利用分类讨论思想讨论对称轴与定义域[]0,1的位置关系,结合二次函数的图象,即可判断出函数的单调性,根据函数的单调性便能求得函数的最值.例2.已知函数f()x=ax2+2ax+1在区间[]-1,2上有最大值4,求实数a的值.解:f()x=ax2+2ax+1=a()x+12+1-a.可知其图象的对称轴为x=-1,在[]-1,2的左侧,(1)当a=0时,f()x=1,函数无最大值,所以a=0不符合题意,舍去;(2)当a>0时,函数f()x图象的开口向上,在区间[]-1,2上单调递增,所以函数的最大值为f()2=8a+1=4,解得a=38;(3)当a<0时,函数f()x图象的开口向下,在区间[]-1,2上单调递减,所以函数f()x最大值为f()-1=1-a=4,解得a=-3.综上可知,a的值为38或-3.本题中函数的对称轴和定义域固定,而函数的开口方向不确定,所以只需讨论a>0,a<0时函数的单调性,即可解题.若函数的定义域中含有参数,则需根据参数的取值确定定义域端点值的大小,进而将其与函数图象的对称轴进行比较,以确定定义域与函数图象的对称轴的位置关系,判断函数的单调性.可见,解答含参二次函数最值问题,往往要灵活运用分类讨论思想和数形结合思想,这样能有效地提升解题的效率.在运用分类讨论思想解题时,要注意两点:一是对二次项的系数进行讨论;二是要对对称轴与定义域的位置关系进行讨论.而结合二次函数的图象来分析函数的对称轴与所给区间之间的位置关系,往往能达到事半功倍的效果.(作者单位:扬州大学附属中学)42。
含参数二次函数分类讨论的方法总结
二次函数求最值参数分类讨论的方法题型一:“动轴定区间”型的二次函数最值例1、求函数2()23f x x ax =-+在[0,4]x ∈上的最值。
分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。
解:222()23()3f x x ax x a a =-+=-+-∴此函数图像开口向上,对称轴x=a①、当a <0时,0距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=0时,min y =3,x=4时,max y =19-8a②、当0≤a<2时,a 距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=4时,max y =19-8a③、当2≤a<4时,a 距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=0时,max y =3④、当4≤a 时,4距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=4时,min y =19-8a ,x=0时,max y =3例2、已知函数2()(21)3f x ax a x =+--在区间3[,2]2-上最大值为1,数a 的值 分析:取a=0,a ≠0,分别化为一次函数与二次函数,根据一次函数、二次函数的性质分类讨论.解:1)若a=0,则f(x)=-x-3,而f(x)在3[,2]2-上取不到最大值为1,∴a ≠0 2)若a ≠0,则2()(21)3f x ax a x =+--的对称轴为0122a x a-=(Ⅰ)若3()12f -=,解得103a =-,此时0233[,2]202x =-∈-a<0, 0()f x 为最大值,但23()120f -≠(Ⅱ) 若(2)1f =解得34a =此时013[,2]32x =-∈-0310,43a x =>=-距右端点2较远,(2)f 最大值符合条件(Ⅲ) 若0()1f x =解得32a -±=当0a =<时034[,2]2x =-∉-当302a --=<时034[,2]2x =∈-综收所述34a =或32a --=评注:此类题属于“动轴定区间”型的二次函数最值,解决此类问题的关键是讨论对称轴相对于定义域区间的位置,讨论时做到不重不漏。
微专题13 含参数二次函数的最值问题(解析版)
微专题13 含参数二次函数的最值问题【方法技巧与总结】1、定轴定区间型:即定二次函数在定区间上的最值,其区间和对称轴都是确定的,要将函数配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值(可结合图象);2、动轴定区间型:即动二次函数在定区间上的最值,其区间是确定的,而对称轴是变化的,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分类讨论,再利用二次函数的示意图,结合其单调性求解;3、定轴动区间型:即定二次函数在动区间上的最值,其对称轴确定而区间在变化,只需对动区间能否包含抛物线的定点横坐标进行分类讨论;4、动轴动区间型:即动二次函数在动区间上的最值,其区间和对称轴均在变化,根据对称轴在区间的左、右两侧和穿过区间这三种情况讨论,并结合图形和单调性处理。
【题型归纳目录】 题型一:定轴定区间型 题型二:动轴定区间型 题型三:定轴动区间型 题型四:动轴动区间型题型五:根据二次函数的最值求参数 【典型例题】 题型一:定轴定区间型例1.(2022·全国·高一专题练习)函数()232f x x x =++在区间[] 55-,上的最大值、最小值分别是( ) A .1124-,B .212,C .1424-, D .最小值是14-,无最大值【答案】C【解析】22313224y x x x ⎛⎫=++=+- ⎪⎝⎭,抛物线的开口向上,对称轴为32x =-,∴在区间[]55-,上,当32x =-时,y 有最小值14-;5x =时,y 有最大值42,函数()232f x x x =++在区间[]55-,上的最大值、最小值分别是:42,14-. 故选:C .例2.(2022·全国·高一课前预习)函数y =x 2-2x +2在区间[-2,3]上的最大值、最小值分别是( ) A .10,5 B .10,1 C .5,1 D .以上都不对【答案】B【解析】因为y =x 2-2x +2=(x -1)2+1,且x ∈[-2,3],所以当x =1时,ymin =1,当x =-2时,ymax =(-2-1)2+1=10. 故选:B.例3.(2022·陕西·榆林市第十中学高一期中)若二次函数()()()24f x a x x =+-的图像经过点()0,4-,则函数()f x 在[]4,2-上的最小值为___________. 【答案】92-【解析】由题知,()()()002044f a =+-=-,解得12a = 则()()()211924(1)222f x x x x =+-=--,所以当1x =时,()f x 有最小值9(1)2f =-.故答案为:92-例4.(2022·全国·高一专题练习)已知函数242y x x =-+-,当14x ≤≤上时y 的最小值是________ 【答案】-2 【解析】2242(2)2y x x x =-+-=--+,则二次函数在(),2-∞上单调递增,在()2,+∞上单调递减, ∴在14x ≤≤上,当4x =时有最小值-2,故答案为:-2.例5.(2022·广西南宁·高一期末)已知函数2()25,[1,5]f x x x x =-+∈-.则函数的最大值和最小值之积为______ 【答案】80【解析】因为22()25(1)4f x x x x =-+=-+,所以当1x =时,min ()(1)4f x f ==,当5x =时,2max ()(5)(51)420f x f ==-+=,所以最大值和最小值之积为42080⨯=.故答案为:80题型二:动轴定区间型例6.(2022·全国·高一课时练习)已知函数()()20f x x mx m =->在区间[]0,2上的最小值为()g m .(1)求函数()g m 的解析式. (2)定义在()(),00,∞-+∞上的函数()h x 为偶函数,且当0x >时,()()h x g x =.若()()4h t h <,求实数t 的取值范围.【解析】(1)因为()()222024m m f x x mx x m ⎛⎫=-=--> ⎪⎝⎭,所以当04m <≤时,022m <≤,此时()224m m g m f ⎛⎫==- ⎪⎝⎭;当4m >时,22m >,此时函数()2224m m f x x ⎛⎫=-- ⎪⎝⎭在区间[]0,2上单调递减,所以()()242g m f m ==-.综上,()2,04442,4m m g m m m ⎧-<≤⎪=⎨⎪->⎩(2)因为0x >时,()()h x g x =,所以当0x >时,()2,04442,4x x h x x x ⎧-<≤⎪=⎨⎪->⎩,易知函数()h x 在()0,∞+上单调递减,因为定义在()(),00,∞-+∞上的函数()h x 为偶函数,且()()4h t h ≥,所以04t<<,解得40t -<<或04t <<,所以实数t 的取值范围为()()4,00,4-.例7.(2022·全国·高一单元测试)已知函数2()2(f x x mx m m =-++∈R).当[1,1]x ∈-时,设()f x 的最大值为M ,则M 的最小值为( ) A .14B .0C .14-D .1-【答案】C【解析】由22()()f x x m m m =--++,故()f x 在(,)m -∞上递增,在(,)m +∞上递减, 当1m ≤-,则[1,1]x ∈-上递减,故最大值(1)10M f m =-=--≥,当11m -<<,则最大值22111()()[,2)244M f m m m m ==+=+-∈-,当m 1≥,则[1,1]x ∈-上递增,故最大值(1)312M f m ==-≥, 综上,M 的最小值为14-.故选:C例8.(2022·全国·高一单元测试)已知函数()()2213f x x k x =-++.(1)若函数()f x 为偶函数,求实数k 的值;(2)若函数()f x 在区间[]1,3-上具有单调性,求实数k 的取值范围;(3)求函数()f x 在区间[]22-,上的最小值. 【解析】(1)因为定义在R 上的函数2()2(1)3f x x k x =-++为偶函数,所以R x ∀∈,都有()()f x f x -=成立,即R x ∀∈,都有222(1)32(1)3x k x x k x +++=-++成立,解得1k =-.(2)因为函数2()2(1)3f x x k x =-++图象的对称轴为1x k =+, 所以要使函数()f x 在[]1,3-上具有单调性, 则13k +≥,或11k +≤-,即2k ≥或2k ≤-, 则k 的取值范围为(][),22,-∞-+∞.(3)①若函数()f x 在[]22-,上单调递减,则12k +≥,即1k,此时函数()f x 在区间[]22-,上的最小值为()234f k=-.②若函数()f x 在[]22-,上单调递增,则12k +≤-,即3k ≤-,此时函数()f x 在区间[]22-,上的最小值为()2114f k -=+.③若函数()f x 在[]22-,上不单调,则212k -<+<,即31k -<<,此时函数()f x 在区间[]22-,上的最小值为2(1)22f k k k +=--.综上所述,函数()f x 在区间[]22-,上的最小值为2min 34,1()22,31114,3k k f x k k k k k -≥⎧⎪=---<<⎨⎪+≤-⎩. 例9.(2022·全国·高一专题练习)已知函数()221f x x mx =++.(1)若1m =,求()f x 在13x -≤≤上的最大值和最小值; (2)求()f x 在22x -≤≤上的最小值;(3)在区间12x -≤≤上的最大值为4,求实数m 的值. 【解析】(1)1m =时,()()22211f x x x x =++=+,结合函数图像得:()f x 在13x -≤≤上的最大值是316f =(),最小值是()10f -=;(2)()221f x x mx =++的对称轴是x m =-,①当2-<-m ,即2m >时,函数在22x -≤≤上递增, 当2x =-时,取到最小值()245f m -=-+;②当22m -≤-≤,即22m -≤≤时,函数在22x -≤≤上先递减后递增,当x m =-时,取到最小值()21f m m -=-+;③当2m ->,即2m <-时,函数在22x -≤≤上递减, 当2x =时,取到最小值()245f m =+,综上所得,当2m >时,最小值()245f m -=-+;当22m -≤≤时,取到最小值()21f m m -=-+;当2m <-时,取到最小值()245f m =+.(3)由(2)的讨论思路结合函数图像在12x -≤≤内的 可能情况知()1f -,2f ()中必有一个是最大值;若()12241f m m -=-==-,,代回验证: ()()22211f x x x x =-+=-,符合()1f -最大;若2544f m =+=(),14m =-,代回验证: ()2211151()2416f x x x x =-+=-+,符合2f ()最大;1m ∴=-或14-.例10.(2022·广东湛江·高一期末)已知函数()()f x x x a =-.其中a R ∈,且0a >. (1)求函数()f x 的单调区间; (2)求函数()f x 在1,12⎡⎤-⎢⎥⎣⎦上的最小值.【解析】(1)由题知,函数22,0()(),0x ax x f x x x a x ax x ⎧-≥⎪=-=⎨-+<⎪⎩,其中0a > 当0x ≥时,222()()24a a f x x ax x =-=--则函数()f x 在区间(0,)2a 单调递减,在区间(,)2a+∞单调递增; 当0x <时,222()()24a a f x x ax x =-+=--+,则函数()f x 在区间(,0)-∞递增∴综上,函数()f x 的单调递增区间为(,0)-∞,(,)2a +∞,单调递减区间为(0,)2a.(2)因为0a >,所以当12a ≥即2a ≥时,函数()f x 在1[,0]2-递增,在(0,1]递减且 11()242af -=--,(1)1f a =-,若1()(1)2f f -≥,即52a ≥时,min ()(1)1f x f a ==-,若1()(1)2f f -<,即522a ≤<时,min 11()()242a f x f =-=--,当012a <<即02a <<时,函数()f x 在1[,0]2-递增,在(0,]2a 递减,在(,1]2a 递增,且11()242a f -=--, 2()24a a f =-,而02a <<时,21424a a --<-,即1()()22a f f -<,所以02a <<时,min 11()()242af x f =-=--,∴综上所述,当502a ≤<时,min 1()42a f x =--;当52a ≥时, min ()1f x a =-.例11.(2022·上海师大附中高一期末)已知函数2(1)h x ax x=+(常数a R ∈). (1)当2a =时,用定义证明()y h x =在区间[]1,2上是严格增函数; (2)根据a 的不同取值,判断函数()y h x =的奇偶性,并说明理由;(3)令1()()2f x h x x a x=--+,设()f x 在区间[]1,2上的最小值为()g a ,求()g a 的表达式.【解析】(1)当2a =时,函数21()2f x x x =+,设[]12,1,2x x ∈且12x x <,则222221212121211111()()222()()f x f x x x x x x x x x -=+--=-+- 1221212121121212()()()[2()]x x x x x x x x x x x x x x -=-++=-+-, 因为12x x <,可得210x x -> 又由[]12,1,2x x ∈,可得()2111124,1x x x x +><,所以211112()0x x x x +->所以21()()0f x f x ->,即12()()f x f x <, 所以函数()y f x =是[]1,2上是严格增函数.(2)由函数21()f x ax x=+的定义域为(,0)(0,)-∞+∞关于原点对称, 当0a =时,函数1()f x x =,可得11()()f x f x x x-==-=--,此时函数()f x 为奇函数; 当0a ≠时,2211()()f x a x ax x x-=⋅-+=--,此时()()f x f x -≠-且()()f x f x -≠, 所以0a ≠时,函数()y f x =为非奇非偶函数.(3)2211()()2221f x h x x a ax x a ax x a x x x=--+=+--+=-+,当0a =时, ()f x x =-,函数()f x 在区间[1,2]的最小值为(2)2f =-; 当0a >时,函数的对称轴为:12x a=. 若112024a a ≥⇒<≤,()f x 在区间[1,2]的最小值为(2)62,()62f a g a a =-∴=-; 若11112242a a <<⇒<<,()f x 在区间[1,2]的最小值为 111()2,()2244f a g a a a a a=-+∴=-+; 若11122a a ≤⇒≥,()f x 在区间[1,2]的最小值为(1)31,()31f a g a a =-∴=-;当0a <时, 102x a=<,()f x 在区间[1,2]的最小值为(2)62,()62f a g a a =-∴=-. 综上所述:162,4111()2,442131,2a a g a a a aa a ⎧-≤⎪⎪⎪=-+<<⎨⎪⎪-≥⎪⎩;例12.(2022·全国·高一专题练习)已知函数()21f x x x a x R a R =+-+∈∈,,. (1)当1a =时,求函数()f x 的最小值 (2)求函数()f x 的最小值为()g a .【解析】(1)()22211121x x x f x x x x x x ⎧+≥=+-+=⎨-+<⎩,,, 由()()()2211124f x x x f x x x ⎛⎫=+⇒=+-≥ ⎪⎝⎭,可知()2f x ≥;由()()22172(1)24f x x x f x x x ⎛⎫=-+⇒=-+< ⎪⎝⎭,可知()74f x ≥.所以()min 1724f x f ⎛⎫== ⎪⎝⎭.(2)()2211x x a x af x x x a x a ⎧+-+≥=⎨-++<⎩,,,1)当12a ≥,()f x 在12⎛⎫-∞ ⎪⎝⎭,单调递减,在12a ⎛⎫ ⎪⎝⎭,单调递增,故()min 1324f x f a ⎛⎫==+ ⎪⎝⎭;2)当1122a -<<,()f x 在()a -∞,单调递减,在()a ∞+,单调递增,()()2min 1f x f a a ==+ , 3)当12a ≤-,()f x 在12⎛⎫-∞ ⎪⎝⎭,-单调递减,在12⎛⎫+∞ ⎪⎝⎭-,单调递增,()min 1324f x f a ⎛⎫=-=- ⎪⎝⎭;所以()23142111223142a a g a a a a a ⎧+≥⎪⎪⎪=+-<<⎨⎪⎪-≤-⎪⎩,,, 例13.(2022·全国·高一课时练习)已知函数()f x 是定义在R 上的偶函数,且当0x ≤时,()22f x x x =+,现已画出函数()f x 在y 轴左侧的图象,如图所示,请根据图象.(1)补充完整图象并写出函数()()f x x R ∈的增区间; (2)写出函数()()f x x R ∈的解析式;(3)若函数()()[]()211,2g x f x ax x =-+∈,求函数()g x 的最小值. 【解析】(1)因为函数()f x 是定义在R 上的偶函数,所以函数()f x 的图象关于y 轴对称,由对称性即可补充完整图象,如图所示:由图可知,函数()f x 的递增区间为(1,0)-和(1,)+∞;(2)根据题意,当0x >时,0x -<,所以22()()22f x x x x x -=--=-, 因为函数()f x 是定义在R 上的偶函数,所以()2()()20f x f x x x x =-=->,所以222,0()2,0x x x f x x x x ⎧+=⎨->⎩,(3)当[]1,2x ∈时,222()221(1)2g x x x ax x a a a =--+=----,对称轴为1x a =+,当11a +,即0a 时,()g x 在[]1,2上递增,所以()min ()12g x g a ==-; 当12a +,即1a 时,()g x 在[]1,2上递减,所以()min ()214g x g a ==-; 当112a <+<,即01a <<时,()g x 在[]1,1a +上递减,在[]1,2a +上递增,所以m n 2i ()(1)2g x a a g a =+=--,综上,函数()g x 的最小值2min2,0()2,0114,1a a g x a a a a a -⎧⎪=--<<⎨⎪-⎩. 例14.(2022·安徽·合肥市第十中学高一期中)设函数2()43f x x ax =-+ (1)函数f (x )在区间[1,3]有单调性,求实数a 的取值范围; (2)求函数f (x )在区间[1,3]上的最小值h (a ).【解析】(1)22()(2)34f x x a a =-+-,()f x 在区间[1,3]上单调,则21a ≤或23a ≥,所以12a ≤或32a ≥; (2)12a ≤时,21a ≤,()f x 在[1,3]上是增函数,()(1)44h a f a ==-, 1322a <<时,2()(2)34h a f a a ==-, 32a ≥时()f x 在[1,3]上是减函数,()(3)1212h a f a ==-, 综上,2144,213()34,2231212,2a a h a a a a a ⎧-≤⎪⎪⎪=-<<⎨⎪⎪->⎪⎩,题型三:定轴动区间型例15.(2022·全国·高一单元测试)已知函数()22f x x mx n =++的图象过点(0,1)-,且满足()()12f f -=.(1)求函数()f x 的解析式;(2)求函数()f x 在[],2a a +上的最小值;【解析】(1)因为函数2()2f x x mx n =++的图象过点(0,1)-,所以1n =- 又(1)(2)f f -=, 所以1224m-+=-, 解得2m =-,所以2()221f x x x =--;(2)2213()221222f x x x x ⎛⎫=--=--⎪⎝⎭,[,2]x a a ∈+,当122a +≤时,即32a ≤-时,函数()f x 在[],2a a +上单调递减,所以2min [()](2)263f x f a a a =+=++,当122a a <<+时,即3122a -<<时,函数()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在1,22a ⎡⎤+⎢⎥⎣⎦单调递增,所以min 13[()]22f x f ⎛⎫==- ⎪⎝⎭;当12a ≥时,函数()f x 在[],2a a +上单调递增, 所以2min [()]()221f x f a a a ==--.综上:2min23263,,2331[()],,2221221,.2a a a f x a a a a ⎧++≤-⎪⎪⎪=--<<⎨⎪⎪--≥⎪⎩例16.(2022·江苏·高一单元测试)二次函数()f x 满足()()12f x f x x +-=且()01f =. (1)求()f x 的解析式;(2)当[]11x ∈-,时,不等式()2f x x m >+恒成立,求实数m 的取值范围.(3)设函数()f x 在区间[]1a a +,上的最小值为()g a ,求()g a 的表达式. 【解析】(1)设()2f x ax bx c=++,0a ≠.则()()21(1)1f x a x b x c +=++++.从而,()()()(()221[1)12f x f x a x b x c ax bx c ax a b ⎤+-=++++-++=++⎦,又()()12f x f x x +-=,22101a a a b b ==⎧⎧∴⇒⎨⎨+==-⎩⎩, 又()01f c ==,()21f x x x ∴=-+.(2)因为当[]11x ∈-,时,不等式()2f x x m >+恒成立, 所以231m x x <-+在[]11x ∈-,上恒成立. 令()231g x x x =-+,[]11x ∈-,, ()min m g x ∴<.当[]11x ∈-,时,()231g x x x =-+单调递减,∴当1x =时,()()11min g x g ==-,所以1m <-. (3)当112a +≤,即12a ≤-时,()f x 在[]1a a +,单调递减,()2min ()11f x f a a a ∴=+=++;当112a a <<+,即1122a -<<时,则()f x 在12a ⎡⎤⎢⎥⎣⎦,单调递减,112a ⎛⎤+ ⎥⎝⎦,单调递增, min 13()24f x f ⎛⎫∴== ⎪⎝⎭;当12a ≥时,则()f x 在[]1a a +,单调递增, ()2min ()1f x f a a a ∴==-+.()2211,2311,42211,2a a a g a a a a a ⎧++≤-⎪⎪⎪∴=-<<⎨⎪⎪-+≥⎪⎩.例17.(2022·全国·高一期中)已知二次函数2()(0)f x ax bx c a =++≠,且满足(0)2f =,(1)()21f x f x x +-=+.(1)求函数()f x 的解析式;(2)当[,2]x t t ∈+(R t ∈)时,求函数()f x 的最小值()g t (用t 表示).【解析】(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)2f =,(1)()21f x f x x +-=+, 所以2c =,且22(1)(1)()21a x b x c ax bx c x ++++-++=+,由22(1)(1)()21a x b x c ax bx c x ++++-++=+,得221ax b a x ++=+,所以221a b a =⎧⎨+=⎩,得10a b =⎧⎨=⎩,所以2()2f x x =+.(2)因为2()2f x x =+是图象的对称轴为直线0x =,且开口向上的二次函数,当0t ≥时,2()2f x x =+在[,2]x t t ∈+上单调递增,则2min ()()2f x f t t ==+;当20t +≤,即2t ≤-时,2()2f x x =+在[,2]x t t ∈+上单调递减,则22min ()(2)(2)246f x f t t t t =+=++=++;当01t t <<+,即20t -<<时,min ()(0)2f x f ==,综上222,0()2,2046,2t t g t t t t t ⎧+≥⎪=-<<⎨⎪++≤-⎩例18.(2022·全国·高一专题练习)已知函数()222f x x ax =++.(1)当1a =时,求函数()f x 在区间[)23-,上的值域; (2)当1a =-时,求函数()f x 在区间[]1t t +,上的最大值;(3)求()f x 在[]55-,上的最大值与最小值. 【解析】(1)当1a =时,()()222211f x x x x =++=++,函数在[)21-,-上单调递减,在()1,3-上单调递增, ()()min 11317x f x f ∴===-,,,∴函数()f x 在区间[)23-,上的值域是[)1,17;(2)当1a =-时,()()222211f x x x x =-+=-+,12t ,函数()f x 在区间[]1t t +,上的最大值()()211f t t =-+; 12t ≥,函数()f x 在区间[]1t t +,上的最大值()211f t t +=+; ∴函数()f x 在区间[]1t t +,上的最大值221(1)12112t t t t ⎧-+<⎪⎪⎨⎪+≥⎪⎩,,;(3)函数()()222222f x x ax x a a =++=++- 的对称轴为x a =-,①当5a -<-,即5a >时,函数y 在[]55-,上是增函数, 当5x =-时,函数y 取得最小值为2710a -;当5x =时,函数y 取得最大值为2710a +. ②当50a -≤<,即05a <≤时,当x a =-时,函数y 取得最小值为22-a ;当5x =时,函数y 取得最大值为2710a +. ③当05a ≤≤-,即50a ≤≤-时,x =-a 时,函数y 取得最小值为22a -;当5x =-时,函数y 取得最大值为2710a -.④当5a >-,即5a <-时,函数y 在[]55-,上是减函数, 故当5x =-时,函数y 取得最大值为2710a -;当5x =时,函数y 取得最小值为2710a +. 综上,当5a >时,函数的最大值为2710a +,最小值为2710a -,当05a <≤时,函数的最大值为2710a +,最小值为22-a ,当50a ≤≤-时,函数的最大值为2710a -,最小值为22a -,当5a <-时,函数的最大值为2710a -,最小值为2710a +例19.(2022·江苏南通·高一开学考试)已知关于x 的函数22 4.y x mx =-+ (1)当23x -≤≤时,求函数224y x mx =-+的最大值; (2)当23x -≤≤时,若函数最小值为2,求m 的值.【解析】(1)因为22224()4y x mx x m m =-+=-+-,对称轴为x m =,开口向上,若12m <,则当3x =时,函数224y x mx =-+有最大值为136m -, 若12m ≥,则当2x =-时,函数224y x mx =-+有最大值为84.m + (2)若2m <-,则当2x =-时函数224y x mx =-+有最小值为84m +,即842m +=,32m =-,不符合条件;若23m -≤≤,则当x m =时函数224y x mx =-+有最小值为242m -=, 可得2m =若3m >,则当3x =时函数224y x mx =-+有最小值为136m -, 即1362m -=,解得1136m =<,不符合条件; 综上,m 的值为 2.±例20.(2022·全国·高一专题练习)已知()f x 是二次函数,不等式()0f x <的解集是()05,,且()f x 在区间[]2-,4上的最大值是28. (1)求()f x 的解析式;(2)设函数()f x 在[]1x t t ∈+,上的最小值为()g t ,求()g t 的表达式. 【解析】(1)()f x 是二次函数,且()0f x <的解集是()05,,∴可设()()5(0)f x ax x a =>-,对称轴为 2.5x =,()f x ∴在区间[]24-,上的最大值是()214f a -=.由已知得14282a a =∴=,, ()()()225210f x x x x x x ∴=-=∈-R .(2)由(1)得()()22 2.512.5f x x =--,函数图象的开口向上,对称轴为 2.5x =(讨论对称轴 2.5x =与闭区间[] 1t t +,的相对位置) ①当1 2.5t +≤时,即 1.5t ≤时,()f x 在[] 1t t +,上单调递减,(对称轴在区间右侧) 此时()f x 的最小值()()()()22121101268g t f t t t t t =+=+-+=--;②当 2.5t ≥时,()f x 在[] 1t t +,上单调递增,(对称轴在区间左侧)此时()f x 的最小值()()2210g t f t t t ==-;③当1.5 2.5t <<时,函数()y f x =在对称轴处取得最小值(对称轴在区间中间)此时,()()2.512.5g t f ==-综上所述,得()g t 的表达式为:()22268 1.512.51.5 2.5210 2.5t t t g t t t t t ⎧--≤⎪=-<<⎨⎪-≥⎩,,,. 题型四:动轴动区间型例21.(2022·江苏·楚州中学高一期中)已知函数2()2(0)f x x ax a =-> (1)当2a =时,解关于x 的不等式3()5f x -<<(2)函数()y f x =在[],2t t +的最大值为0,最小值是-4,求实数a 和t 的值.【解析】(1)不等式为2345x x -<-<,即22450430x x x x ⎧--<⎨-+>⎩,由2450x x --<可得15x -<<;由2430x x -+>可得1x <或3x >, 故原不等式解集为()()1,13,5-⋃. (2)因为()()2222f x x ax x a a =-=--由于(0)(2)0f f a ==,由题意0=t 或22t a +=,若0t =时, 则1a t ≥+,且()()min 4f x f a ==-或()()min 24f x f ==-,当()24f a a =-=-时,2a =±,2a =-不满足题意,舍去;当()2444f a =-=-时,2a =;若22t a +=,则1a t ≤+,且()()min 4f x f a ==-或()()min 224f x f a =-=-当()24f a a =-=-时,2a =±,当2,2a t ==,符合题意; 当2a =-,与题设矛盾,故舍去;当()()()222222224f a a a a -=---=-时,2,2a t ==; 综上所述:2,0a t ==或2,2a t ==,符合题意.例22.(2022·贵州毕节·高一期末)已知函数2()2(0)f x x ax a =->. (1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值. 【解析】(1)当3a =时,不等式5()7f x -<<, 即为2567x x -<-<,即226756⎧-<⎪⎨-<-⎪⎩x x x x,所以171,5或-<<⎧⎨<>⎩x x x , 所以11x -<<或57x <<,所以原不等式的解集为(1,1)(5,7)-⋃. (2)(0)(2)0f f a ==,由题意0=t 或22t a +=,这时24a -≤-解得2a ≥, 若0=t ,则2t a +≤,所以()()2242f t f a +==-⇒=;若22t a +=,即22t a a =-≥, 所以()()422f t f a =-=-,则2a =,综上,0,2t a ==或2,2t a ==.例23.(2022·四川巴中·高一期中)已知a R ∈,函数()f x x x a =-. (1)设1a =,判断函数()f x 的奇偶性,请说明理由;(2)设0a ≠,函数()f x 在区间(),m n 上既有最大值又有最小值,请分别求出m ,n 的取值范围.(只要写出结果,不需要写出解题过程)【解析】(1)当1a =时,()22,11,1x x x f x x x x x x ⎧-≥=-=⎨-+<⎩,其图象如图所示:由图象知:函数()f x 既不是奇函数也不偶函数;(2)()22,,x ax x af x x x a x ax x a ⎧-≥=-=⎨-+<⎩,当0a >时,由()224a x ax x a -=≥,解得12x +=,因为函数()f x 在区间(),m n 上既有最大值又有最小值, 如图所示:所以02a m ≤<,12a n +<≤, 当0a <时,由()224a x ax x a -+=-<,解得12x +=,因为函数()f x 在区间(),m n 上既有最大值又有最小值, 如图所示:12m a +≤<,02a n <≤.例24.(2022·江苏苏州·高一期末)已知函数f (x )=x |x ﹣m |+n . (1)当f (x )为奇函数,求实数m 的值;(2)当m =1,n >1时,求函数y =f (x )在[0,n ]上的最大值. 【解析】(1)因为f (x )为奇函数,所以f (﹣0)=﹣f (0), 所以f (0)=0,即n =0,所以f (x )=x |x ﹣m |, 又f (﹣1)=﹣f (1),所以|1﹣m |=|1+m |,解得m =0, 此时f (x )=x |x |,对∀x ∈R ,f (﹣x )=﹣x |x |=﹣f (x ), 所以f (x )为奇函数,故m =0.(2)f (x )=x |x ﹣1|+n =22,1,1x x n x x x n x ⎧-++⎨-+>⎩所以f (x )在10,2⎡⎤⎢⎥⎣⎦和[1,n ]上单调递增,在1,12⎡⎤⎢⎥⎣⎦上单调递减,其中211(),()24f n f n n =+=,2111212()()(24f n f n n n n +--=--=,令214n n >+得,12n +>12n +>1()()2f n f >,2max ()f x n =.121n +<≤时1()()2f n f ≤,所以max 1()4f x n =+,因此y =f (x )在[0,n ]上的最大值为2112,14212,n n n n ⎧++⎪⎪⎨+⎪⎪⎩.例25.(2022·浙江·磐安县第二中学高一开学考试)已知R a ∈,函数()f x x x a =-,(1)当2a =时,写出函数()y f x =的单调递增区间; (2)当2a >时,求函数()f x 在区间[]1,2上的最小值;(3)设0a ≠,函数()f x 在(),m n 上既有最大值又有最小值,请分别求出,m n 的取值范围(用a 表示)【解析】(1)当2a =时,(2),2()2(2),2x x x f x x x x x x -⎧=-=⎨-<⎩由二次函数的性质知,单调递增区间为(-∞,1],[2,)∞+.(2)因为2a >,[1x ∈,2]时,所以222()()()24a a f x x a x x ax x =-=-+=--+当3122a <,即23a <时,()min f x f =(2)24a =-当322a >,即3a >时,()min f x f =(1)1a =-∴24,23()1,3min a a f x a a -<⎧=⎨->⎩ (3)(),()(),x x a x a f x x a x x a -⎧=⎨-<⎩①当0a >时,图象如上图左所示由24()a y y x x a ⎧=⎪⎨⎪=-⎩得(21)a x +=02a m <,212a n a +<②当0a <时,图象如上图右所示由24()a y y x a x ⎧=-⎪⎨⎪=-⎩得(12)x +=∴12m a +<,02a n < 例26.(2022·全国·高一课时练习)已知函数()()2222f x x a x a =-++,()()22228g x x a x a =-+--+.设()()(){}1max ,H x f x g x =,()()(){}2min ,H x f x g x =.记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=______.【答案】16-【解析】()()2244f x x a a =-+--⎡⎤⎣⎦,()()22124g x x a a =---+-⎡⎤⎣⎦, 令()()f x g x =,得2x a =+或2=-x a .因为()()(){}1max ,H x f x g x =,()()(){}2min ,H x f x g x =,所以()1H x 的最小值(2)44A f a a =+=--,()2H x 的最大值(2)124B g a a =-=-, 所以()()4412416A B a a -=----=-. 故答案为:16-.例27.(2022·浙江·温州市第二十二中学高一开学考试)函数()f x x x a =-, (1)若()f x 在R 上是奇函数,求a 的值;(2)当2a =时,求()f x 在区间(0,4]上的最大值和最小值;(3)设0a >,当m x n <<时,函数()f x 既有最大值又有最小值,求m n 、的取值范围(用a 表示) 【解析】(1)因为()f x 在R 上是奇函数,所以()()f x f x -=-恒成立,即x x a x x a -+=--恒成立.所以x a x a +=-恒成立, 所以0a =.(2)当2a =时,()()222,(02)22,24x x x f x x x x x x ⎧-+<≤⎪=-=⎨-<≤⎪⎩ 函数22y x x =-+在()0,1上单调递增,在()1,2上单调递减,所以22y x x =-+在(]0,2上的值得范围为[]0,1,其中2x =时,()0f x =, 函数22y x x =-在(]2,4上单调递增,所以函数22y x x =-在(]2,4上的值域为(]0,8,其中当4x =时,()8f x =; 所以当4x =时,max ()8f x =,当2x =时,min ()0f x =.(3)()()()22,,x ax x a f x x x a x ax x a ⎧-+≤⎪=-=⎨->⎪⎩ 因为0a >,所以函数2y x ax =-+在,2a ⎛⎫-∞ ⎪⎝⎭上单调递增,在,2a a ⎛⎫⎪⎝⎭上单调递减,函数2y x ax =-在(),a +∞上单调递增,当2a x =时,24a y =当x a >时,令224a x ax -=,可得12x +=因为当0a >,m x n <<时,函数()f x 既有最大值又有最小值, 所以120,2m a a n +<<≤≤. 题型五:根据二次函数的最值求参数例28.(2022·全国·高一专题练习)已知抛物线2y x bx c =-++与x 轴的一个交点为(1,0)-,且经过点(2,)c .(1)求抛物线与x 轴的另一个交点坐标.(2)当2t x t ≤≤-时,函数的最大值为M ,最小值为N ,若3M N -=,求t 的值. 【解析】(1)方法一:∵抛物线经过(2,c )和(0,c ), ∴抛物线的对称轴为直线1x =, ∴(-1,0)的对称点为(3,0),即抛物线与x 轴的另一个交点坐标为(3,0);方法二:将(-1,0),(2,c )分别代入2y x bx c =-++得0142b c c b c =--+⎧⎨=-++⎩,解得23b c =⎧⎨=⎩, ∴抛物线的表达式为2y x 2x 3=-++,令0y =得,2023x x =-++,解得11x =-,23x =, ∴抛物线与x 轴的另一个交点坐标为(3,0). (2)∵2t t ≤-,∴1t ≤,21t -≥,∴当2t x t ≤≤-时,当1x =时取得最大值4,即4M =,当x t =或2x t =-时取得最小值N , ∵3M N -=,∴1N =,令1y =得,2123x x =-++,解得131x =(舍去),231x =-, ∴31t =-.例29.(2022·全国·高一专题练习)若函数f (x )=ax 2+2ax +1在[-1,2]上有最大值4,则a 的值为( ) A .38B .-3C .38或-3D .4【答案】C【解析】由题意得f (x )=a (x +1)2+1-a .①当a =0时,函数f (x )在区间[-1,2]上的值为常数1,不符合题意,舍去;②当a >0时,函数f (x )在区间[-1,2]上是增函数,最大值为f (2)=8a +1=4,解得38a =;③当a <0时,函数f (x )在区间[-1,2]上是减函数,最大值为f (-1)=1-a =4,解得a =-3. 综上可知,a 的值为38或-3. 故选:C .例30.(2022·全国·高一课时练习)函数()f x x x a =-在区间()0,1上既有最大值又有最小值,则实数a 的取值范围是( ) A .)222,0⎡-⎣B .()0,222C .2⎡⎫⎪⎢⎪⎣⎭D .)222,1⎡⎣【答案】D【解析】易得函数()22,,x ax x af x x x a x ax x a ⎧-≥=-=⎨-+<⎩,若0a =,则()22,0,0x x f x x x ⎧≥=⎨-<⎩,且函数()f x 在()0,1上单调递增,所以函数()f x 在()0,1上无最值.若0a <,作出函数()f x 的大致图像,如图1所示,易得函数()f x 在区间()0,1上无最值.若0a >,作出函数()f x 的大致图像,如图2所示,要使函数()f x 在区间()0,1上既有最大值又有最小值,则()0112a a f f <<⎧⎪⎨⎛⎫≤ ⎪⎪⎝⎭⎩,即2201122a a a a <<⎧⎪⎨⎛⎫-≤-+ ⎪⎪⎝⎭⎩,解得:2221a ≤<. 综上,实数a 的取值范围是)222,1⎡⎣.故选: D.例31.(2022·上海交大附中高一阶段练习)已知二次函数[]224,0,y x x x m =-+∈的最小值是3,最大值是4,则实数m 的取值范围是___________. 【答案】[]1,2【解析】二次函数()2224133y x x x =-+=-+≥, 由2244x x -+=解得0x =或2x =,画出二次函数()2240y x x x =-+≥的图象如下图所示,由图可知,m 的取值范围是[]1,2. 故答案为:[]1,2例32.(2022·湖北黄石·高一期末)已知函数21()2f x x x =-+.若()f x 的定义域为[,]m n ,值域为[2,2]m n ,则m n +=__________. 【答案】2-【解析】因为()22111()1222f x x x x =-+=--+,对称轴为1x =,当1m n ≤<时:()f x 在[,]m n 上单调递减,所以221()221()22f m m m n f n n n m⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,无解;当1m n <≤时:()f x 在[,]m n 上单调递增,所以221()221()22f m m m m f n n n n⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,解得:2m =-或0m =,2n =-或0n =,又1m n <≤,所以2m =-,0n =; 当1m n <<时:()f x 在[,1]m 上单调递增,在[1,]n 上单调递减,此时111(1)12224f n n =-+==⇒=,与1n >矛盾;综上所述:2m =-,0n =,此时2m n +=- 故答案为:2-. 【过关测试】 一、单选题1.(2022·甘肃·民勤县第一中学高一阶段练习)有如下命题:①若幂函数()y f x =的图象过点12,2⎛⎫⎪⎝⎭,则()132f >; ②函数()()110,1x f x a a a -=+>≠的图象恒过定点()1,2; ③函数()1221log f x x x =--有两个零点; ④若函数()224f x x x =-+在区间[]0,m 上的最大值为4,最小值为3,则实数m 的取值范围是[]1,2.其中真命题的序号为( ). A .①②B .②④C .①④D .②③【答案】B【解析】①设幂函数为()a f x x =,因为()y f x =的图象过点12,2⎛⎫ ⎪⎝⎭,所以122a=,解得1a =-,则()1f x x =,在(),0∞-上递减,在()0,∞+上递减,所以()()1322f f <=,故错误; ②令10x -=,解得1x =,此时2y =,所以函数()()110,1x f x a a a -=+>≠的图象恒过定点()1,2,故正确; ③令()1221log 0f x x x =--=,得1221log x x -=,在同一坐标系中作出1221,log y x y x =-=的图象,如图所示,由图象知:1221,log y x y x =-=有1个交点,即函数()1221log f x x x =--有1个零点,故错误; ④函数()224f x x x =-+的图象,如图所示:,由图象知:若()f x 在区间[]0,m 上的最大值为4,最小值为3,则实数m 的取值范围是[]1,2,故正确. 故选:B2.(2022·全国·高一专题练习)若函数2()23f x x bx a =-+在区间[0,1]上的最大值是M ,最小值m ,则M m -( )A .与a 无关,且与b 有关B .与a 有关,且与b 无关C .与a 有关,且与b 有关D .与a 无关,且与b 无关【答案】A【解析】函数2()23f x x bx a =-+的图象开口朝上,且对称轴为直线x b =, ①当1b >时,()f x 在[0,1]上单调递减,则(0)3M f a ==,()1123m f b a ==-+, 此时21M m b -=-,故M m -的值与a 无关,与b 有关,②当0b <时,()f x 在[0,1]上单调递增,则(1)123M f b a ==-+,()03m f a ==, 此时12M m b -=-,故M m -的值与a 无关,与b 有关,③当01b ≤≤时,()23m f b a b ==-,若102b ≤≤时,(1)(0)f f ≥,有(1)123M f b a ==-+,221M m b b ∴-=-+,故M m -的值与a 无关,与b 有关, 若12b >时,(1)(0)f f <,有(0)3M f a ==, 2M m b ∴-=,故M m -的值与a 无关,与b 有关, 综上:M m -的值与a 无关,与b 有关. 故选:A.3.(2022·河南·郏县第一高级中学高一开学考试)已知()f x 为奇函数,且当0x >时,2()42f x x x =-+,则()f x 在区间[]4,2--上( ) A .单调递增且最大值为2 B .单调递增且最小值为2 C .单调递减且最大值为-2 D .单调递减且最小值为-2【答案】A【解析】因为2()42f x x x =-+的图象开口向上,且对称轴为2x =,所以()f x 在区间[2,4]上单调递增,最小值为(2)2f =-,最大值为(4)2f =, 又因为()f x 是奇函数,所以()f x 在区间[]4,2--上单调递增,且最小值为-2,最大值为2. 故选:A4.(2022·黑龙江·哈尔滨德强学校高一期中)已知函数()22f x x x a a =-++在区间[0,2]上的最大值是1,则a 的取值范围是( ) A .10,2⎡⎤⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .110,,22⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】将函数()()()22211f x x x a a x a a =-++=-+-+的图象向左平移一个单位,得到函数()21g x x a a =+-+.则()f x 在区间[0,2]上的最大值是1,只需函数()g x 在区间[-1,1]上的最大值是1. 由11x -≤≤,201x ≤≤,当10a -≥,1a ≥时,()22121211g x x a a x a a =+-+=+-≥-≥,此时函数()g x 的最小值为1,不合题意;当11a -≤-,0a ≤时,()()22111g x x a a x =-+-+=-+≤,符合题意;当110a -<-<,01a <<时,()()()22221,011,11x a a x a g x x a a a x ⎧-+-+≤≤-⎪=⎨+-+-<≤⎪⎩,化简得()22221,0121,11x x a g x x a a x ⎧-≤≤-=⎨+--<≤⎩ 又由当201x a ≤≤-时,根据二次函数的性质,()g x 的值域为()()2111a g x --≤≤,当211a x -<≤时,()()21212a a g x a -+-≤≤,必有21a ≤,可得102a <≤. 综上,实数a 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦.故选:B.5.(2022·湖北·恩施土家族苗族高中高一阶段练习)已知函数2y x ax b =++(,R a b ∈)的最小值为0,若关于x 的不等式2x ax b c 的解集为{}|4x m x m <<+,则实数c 的值为( ) A .9 B .8 C .6 D .4【答案】D【解析】∵函数2y x ax b =++(,R a b ∈)的最小值为0, ∴2404b a -=,∴24a b =, ∴函数222224a y x ax b x ax x a ⎛⎫=++=++=+ ⎪⎝⎭,其图像的对称轴为2a x =-.∵不等式2x ax b c 的解集为{}|4x m x m <<+, ∴方程2204a c x ax ++-=的根为m ,4m +,∴4m m a ++=-,解得42a m --=,22a m ∴+=-, 又∵2204a m am c ++-=,∴222442a a c m am m ⎛⎫=++=+= ⎪⎝⎭.故A ,B ,C 错误.故选:D .6.(2022·河南·濮阳一高高一期中(理))已知定义域为R 的函数()f x 满足()()13f x f x +=,且当(]01x ∈,时,()()41f x x x =-,则当(]20x ∈-,时,()f x 的最小值为( ) A .181-B .127-C .19-D .13-【答案】D【解析】当(]01x ∈,时,()()22141444()12f x x x x x x =-=-=--,易知当12x =时,min ()1f x =-, 因为()()13f x f x +=,所以()()113f x f x -=, 所以当()10x ∈-,时,()min 11133y =⨯-=-;当(]21x ∈--,时,()2min 11()139y =⨯-=-,综上,当(]20x ∈-,时,min 13y =-.故选:D .7.(2022·河北省博野中学高一开学考试)已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两个实数根,则(m +2)(n +2)的最小值是( ). A .7 B .11 C .12 D .16【答案】D【解析】∵m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两个实数根, ∴m +n =2t ,mn =t 2﹣2t +4,∴(m +2)(n +2)=mn +2(m +n )+4=t 2+2t +8=(t +1)2+7. ∵方程有两个实数根,∴△=(﹣2t )2﹣4(t 2﹣2t +4)=8t ﹣16≥0, ∴t ≥2,∴(t +1)2+7≥(2+1)2+7=16. 故选:D .8.(2022·陕西商洛·高一期末)若函数()2f x x bx c =++满足()10f =,()18f -=,则下列判断错误的是( ) A .1b c +=-B .()30f =C .()f x 图象的对称轴为直线4x =D .f (x )的最小值为-1【答案】C【解析】由题得1018b c b c ++=⎧⎨-+=⎩,解得4b =-,3c =,所以()()224321f x x x x =-+=--, 因为(1)0,1f b c =∴+=-,所以选项A 正确;所以(3)=0f ,所以选项B 正确;因为min ()1f x =-,所以选项D 正确; 因为()f x 的对称轴为2x =,所以选项C 错误. 故选:C 二、多选题9.(2022·全国·高一课时练习)设函数()21,21,ax x af x x ax x a -<⎧=⎨-+≥⎩,()f x 存在最小值时,实数a 的值可能是( ) A .2 B .-1 C .0 D .1【答案】BC【解析】当x a ≥时,()()222211f x x ax x a a =-+=--+,所以当x a ≥时,()()2min 1f x f a a ==-+,若0a =,则()21,01,0x f x x x -<⎧=⎨+≥⎩,所以此时()min 1f x =-,即()f x 存在最小值, 若0a >,则当x a <时,()1f x ax =-,无最小值, 若0a <,则当x a <时,()1f x ax =-为减函数, 则要使()f x 存在最小值时,则22110a a a ⎧-+≤-⎨<⎩,解得1a ≤-,综上0a =或1a ≤-. 故选:BC.10.(2022·全国·高一课时练习)定义在R 上的奇函数()f x 在(),0∞-上的解析式()()1f x x x =+,则()f x 在[)0,∞+上正确的结论是( ) A .()00f = B .()10f =C .最大值14D .最小值14-【答案】ABC【解析】由题可知,函数()f x 为定义在R 上的奇函数,则()()f x f x -=-, 已知()f x 在(),0∞-上的解析式()()1f x x x =+,则当0x >时,0x -<,则()()()1f x x x f x -=--=-,所以当[)0,x ∈+∞时,()()2211124f x x x x x x ⎛⎫=-=-+=--+ ⎪⎝⎭,可知()00f =,()10f =,且最大值为14,无最小值,所以()f x 在[)0,∞+上正确的结论是ABC. 故选:ABC.11.(2022·浙江省龙游中学高一期中)已知函数()221f x x mx =-+,则下列结论有可能正确的是( )A .()f x 在区间[]1,2上无最大值B .()f x 在区间[]1,2上最小值为()f mC .()f x 在区间[]1,2上既有最大值又有最小值D .()f x 在区间[]1,2上最大值()1f ,有最小值()2f 【答案】BCD【解析】二次函数()f x 图象的对称轴为直线x m =.①当1m 时,函数()f x 在区间[]1,2上单调递增,则()()min 1f x f =,()()max 2f x f =; ②当12m <<时,函数()f x 在区间[)1,m 上单调递减,在区间(],2m 上单调递增,则()()min f x f m =,()()(){}()()max31,22max 1,232,12f m f x f f f m ⎧≤<⎪⎪==⎨⎪<<⎪⎩;③当2m ≥时,函数()f x 在区间[]1,2上单调递减,此时()()max 1f x f =,()()min 2f x f =. 故A 错误,BCD 可能正确. 故选:BCD.12.(2022·全国·高一单元测试)若[]()()11,9f x x x =+∈,()22()()g x f x f x =+,那么( )A .()g x 有最小值6B .()g x 有最小值12C .()g x 有最大值26D .()g x 有最大值182【答案】AC【解析】因为[]()()11,9f x x x =+∈,()22()()g x f x f x =+,所以21919x x ≤≤⎧⎨≤≤⎩,解得13x ≤≤,即函数()g x 的定义域为[]1,3, 所以()22221322222()112g x x x x x x ⎛⎫++=++ ⎪⎝⎭=+++=,所以()213222g x x ⎛⎫=++ ⎪⎝⎭在[]1,3上单调递增,所。
二次函数专题——含参二次函数
含参的二次函数二次函数在初中的时候就比较重要,那么在高中阶段二次函数的考点更加重要,难度也会加大。
高中阶段比较喜欢考含有参数的二次函数,参数就会让函数形成一种动态,随着参数不同,函数是不一样的,这就使得本来简单的二次函数变得复杂起来。
例1. 求2()2f x x ax =-在[2,4]上的最大值和最小值。
解析:这道题因为参数的存在使得函数的本身是动的,在动的情况下考虑这个函数最大值和最小值的问题,这就涉及到高中比较爱考的一类问题,动轴定区间问题。
这道题中对称轴正好是x a =,随着a 不同,这个对称轴在变化,但是在给定区间上问最大值和最小值,那么就会有下面几种情况,在[2,4]这个区间上,有可能(1)这个对称轴不在这个区间里面这个时候的最大值最小值;也有可能(2)这个对称轴就在区间里面,这个时候的最值,还可能(3)对称轴在区间右侧这几个图针对这个函数并不严谨,上面的是一般函数的示意图,这道题中的函数一定是过原点的。
可以感受,随着a 的不同,最大值和最小值是不一样的,所以这种含参的动态的问题往往需要我们做的一个工作就是分类讨论。
那么函数在什么时候取到最大值呢,比如说(1),就会在4的地方取得最大值,(2)在4的地方取得最大值,(3)就会在2的地方取得最大值。
那么在整个函数的区间上,什么时候能取得最大值呢,我们就要看在这个区间上,哪个数离对称轴最远。
那么就有两种情况了,有的时候是2离得比较远,有的时候是4离得比较远,是怎么分界的呢?这个分界线就应该在2和4中间的位置上是3,当对称轴在3x =这条线左边的时候,对称轴离2就比较近,离4就比较远,对称轴在右边的时候,离2就比较近,离4就比较远。
因此这个函数的最大值,经过分类讨论之后,就会得到一个分段函数:max (4)=168(3)()(2)44(3)f a a f x f a a -≤⎧=⎨=->⎩也就是如果这个对称轴在3的左侧,也就是3a ≤的时候,离4远,在4处取得最大值,如果在右侧的话,也就是3a >的时候,离2远,在2处取得最大值。
含参二次函数的最值问题
求函数f (x) x2 2x 5在区间t,t 2上的最大值
对称轴:x=1
(1)t+2≤1时,即:t ≤ -1时, 函数f(x)在区间[t,t+2]上单调递 增当x=t+2时,y有最大值, y max = f(t+2)= -t2-2t+5
二次函数含参问题
求最值
第一类: :函数对称轴不固定,区间固定
例1:求二次函数f(x)=x2-2ax-1在区间
[0,2]上的最小值?
y
分析:对称轴 x=a是个动直线, 有可能位于0的
左侧,有可能位 于0与2之间,有 可能位于2的右 侧
O
x
X=a
解:由题知, 函数f(x)的对称轴为x=a,开口向上
若 a 0 ,则函数f(x)的最小值为f(0)=—1
(2)t<1<t+2,即-1<t<1时 当x=1时,y有最大值, y max = f(1)= 6
(3)t≥1时,函数f(x)在区间 [t,t+2]上单调递减,
当x=t时,y有最大值, y max = f(t)= -t2+2t+5
y
x (2)
y
x
(1)
综上所述:
(1) t ≤ -1时, y max = -t2-2t+5 (2) -1<t<1时, y max = 6 (3) t ≥1时, y max = -t2+2t+5
若0 a 2,则函数f(x)的最小值为f (a) a2 1
若 a 2 ,则函数f(x)的最小值为f(2)=3—4a.
所以,
1, (a 0) f (x)min a2 1, (0 a 2)
含参数二次函数最值问题
针对性练习
练习 3:求f ( x) x 2a 1x 2,x 1,3的最小值 .
2
1当a 1 1,即a 2时,f ( x) min f (3) 6a 13 2当a 1 1,即a 2时,f ( x) min f (1) 1 2a,
典型例题解析
解:对称轴 x 1,图像开口向上 , 1 、当 1 t 1, 即t 2时, f ( x ) max f (t 2) t 2 6t 4 2、当 1 t 1, 即t 2时, f ( x ) max f (t ) t 2 2t 4 所以:f ( x ) min
针对性练习
练习2:求f ( x) x 4ax 2,x 2,1 的最大值 .
2
1当 2a 2,即a 1时,f ( x)在 2,1单调递减,f ( x) max
2 在 2a,1单调递减,f ( x) max f (2a ) 4a 2 2 2
1当a 1时,f ( x)在 1,2单调递增,f ( x) min f (1) 2a 3 2当 1 a 2时,f ( x)在 1, a 单调递减, 在a,2 单调递增,f ( x) min f (a ) a 2 2 3当a 2时,f ( x)在 1,2单调递减,f ( x) min f (2) 2 4a
典型例题解析
例1 :求f ( x) x 2 2 x 3在下列区间上的最小值 ; 1x 2,0, 2x 2,5, 3x 2,2
分析: .定轴定区间,通过对称 轴与区间的位置 关系的分析,确定函数 在区间上的单调性,进 而确定函数在区间上的 最值; b 解:对称轴x 1, a 1 0,图像开口向上 2a 1 f ( x)在 2,0单调递减,f ( x) min f (0) 3
初中含参二次函数的最值问题
初中含参二次函数的最值问题二次函数在数学中是一种比较常见的函数形式,也是我们初中阶段需要掌握的重要知识点之一。
其中,最值问题是二次函数题目中比较典型和常见的一类问题。
在这篇文章中,我将通过一些例题和解题思路的介绍,来帮助大家更好地理解含参二次函数的最值问题。
1. 带参数二次函数的最值问题下面是一个含参数的二次函数的例子:$y=ax^2+bx+c(a>0)$ 。
我们来考虑这个函数的最值问题。
(1)当$a>0$时,这个二次函数的值域为$[q,\infty)$。
其中$q$为$a,b,c$的函数,满足$a>0$时,有如下的公式:$$q=f(\frac{-b}{2a})=\frac{4ac-b^2}{4a}$$那么,这个二次函数的最小值就是$q$,也就是当$x=\frac{-b}{2a}$时,函数取得最小值。
(2)当$a<0$时,这个二次函数的值域为$(-\infty,q]$。
其最大值也是$q$,即当$x=\frac{-b}{2a}$时,函数取得最大值。
可以通过公式来求解含参二次函数的最值问题。
具体来说,找到函数的最小值或最大值所在的$x$坐标,然后代入函数中求出对应的函数值即可。
下面让我们通过一个例题来进一步了解含参二次函数的最值问题。
2. 例题分析【例题】已知函数$y=ax^2+bx+c(a>0)$,并满足:$|x-2|+|x-4|+|x-6|=k(k>0)$求函数$y$的最小值和最大值并确定此时$x$的值。
【解题思路】该题要求我们求解带有约束条件的含参二次函数的最值问题。
实际上,约束条件中的绝对值形式会让我们比较难受,不过我们可以将其转化为分段描述,从而更好地理解这个问题。
具体来说,考虑以下的情况:(1)当$x\leq 2$时,有$|x-2|=2-x$。
(2)当$2<x\leq4$时,有$|x-2|=x-2$、$|x-4|=4-x$。
(3)当$4<x\leq 6$时,有$|x-4|=x-4$、$|x-6|=6-x$。
专题二次函数含参数最值问题(解析版)
培优专题01 二次函数含参数最值问题【题型目录】题型一:定轴动区间问题题型二:定区间动轴问题题型三:含绝对值二次函数问题题型四:定义域为[]n m ,,值域为[]kn km ,求参数问题题型五:二次函数值域包含性问题【典型例题】题型一:定轴动区间问题【例1】已知二次函数满足2()(0)f x ax bx c a =++≠,满足(1)()21f x f x x +-=-,且(0)0f =.(1)求()f x 的解析式;(2)当[]()2R x t t t ∈+∈,时,求函数()f x 的最小值()g t (用t 表示). 【答案】(1)()22f x x x =-(2)()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩【分析】(1)由题意可得0c ,再代入(1)()21f x f x x +-=-到2()(0)f x ax bx a =+≠,化简可求出,a b ,从而可求出()f x 的解析式.(2)求出抛物线的对称轴,然后分1,21t t ≥+≤和11t t <<+三种情况求解函数的最小值.【详解】(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)0f =,(1)()21f x f x x +-=-,所以0c ,()()221121221a x b x ax bx x ax a b x +++--=-⇒++=-,所以221a a b =⎧⎨+=-⎩ ,得12a b =⎧⎨=-⎩. 所以()22f x x x =-.(2)()22f x x x =-是图象的对称轴为直线1x =,且开口向上的二次函数.当1t ≥时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递增,则()()2min 2f x f t t t ==-;当21t +≤即1t ≤-时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递减,则()()()()22min 22222f x f t t t t t =+=+-+=+;当11t t <<+,即11t -<<时,()()()2min 11211f x f ==-=-;综上所述()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩. 【例2】已知定义在R 上的函数()f x ,满足()226f x x x -=--.(1)求()f x 的解析式.(2)若()f x 在区间[]0,m 上的值域为25,44⎡⎤--⎢⎥⎣⎦,写出实数m 的取值范围(不必写过程). (3)若()f x 在区间[],2t t +上的最小值为6,求实数t 的值. 【答案】(1)()234f x x x =--;(2)332m ≤≤;(3)4t =-或5t =. 【分析】(1)利用换元法即得;(2)由题可得()232524f x x ⎛⎫=-- ⎪⎝⎭,可得函数的最小值()254f x =-,结合条件进而即得; (3)分类讨论结合二次函数的性质即得.(1)∵()226f x x x -=--,令2u x =-,则2x u =-,∵()()()222226442634f u u u u u u u u =----=-+-+-=--,所以()234f x x x =--; (2)∵()2299325344424f x x x x ⎛⎫=-+--=-- ⎪⎝⎭, ∵当32x =时,32524f ⎛⎫=- ⎪⎝⎭, 当()4f x =-时,2434x x -=--,解得:0x =或3x =,∵()f x 在区间[]0,m 上的值域为25,44⎡⎤--⎢⎥⎣⎦, ∵332m ≤≤;(3)∵()234f x x x =--,对称轴为32x =, 当322t +<时,则21t <-,函数在[],2t t +上单调递减, 当2x t =+时,函数的最小值()()()2223246f t t t +=+-+-=,解得4t =-或3t =(舍);当322t t ≤≤+时,则1322t -≤≤, 则此时,当32x =时,函数的最小值()2564f x =-≠,不符合题意; 当32t >时,函数在[],2t t +上单调递增, 当x t =时,()2346f t t t =--=,解得:2t =-或5t =,∵32t >, ∵2t =-(舍),故5t =;综上:4t =-或5t =.【例3】对于函数()f x ,若存在0R x ∈,使得00f x x =成立,则称0x 为()f x 的不动点,已知函数2()(2)4f x ax b x =+++的两个不动点分别是-2和1.(1)求,a b 的值及()f x 的表达式;(2)当函数()f x 的定义域是[,1]t t +时,求函数()f x 的最大值()g t .【答案】(1)23a b =-⎧⎨=-⎩,()224f x x x =--+ (2)()225251,43351,844124,4t t t g t t t t t ⎧--+≤-⎪⎪⎪=-<≤-⎨⎪⎪--+>-⎪⎩【分析】(1)根据不动点可列方程求解,a b ,(2)分类讨论定义域与对称轴的位置关系,结合二次函数的单调性即可求解.(1)依题意得()()2211f f -=-⎧⎪⎨=⎪⎩,即()42242241a b a b ⎧-++=-⎨+++=⎩ , 解得23a b =-⎧⎨=-⎩. ()224f x x x ∴=--+.(2)∵当区间[],1t t +在对称轴14x =-左侧时,即114t +≤-,也即54t ≤-时,()f x 在[],1t t +单调递增,则最大值为()21251f t t t +=--+;∵当对称轴14x =-在[],1t t +内时,即114t t <-<+也即5144t -<<-时,()f x 的最大值为13348f ⎛⎫-= ⎪⎝⎭. ∵当[],1t t +在14x =-右侧时,即14t ≥-时,()f x 在[],1t t +单调递减,则最大值为()224f t t t =--+. 所以()225251,43351,844124,4t t t g t t t t t ⎧--+≤-⎪⎪⎪=-<≤-⎨⎪⎪--+>-⎪⎩. 【例4】已知函数()f x 为二次函数,不等式()0f x >的解集是1,5,且()f x 在区间[1,4]-上的最小值为12-.(1)求()f x 的解析式;(2)设函数()f x 在[,1]t t +上的最大值为()g t ,求()g t 的表达式.【答案】(1)()265f x x x =-+-(2)()224,24,2365,3t t t g t t t t t ⎧-+≤⎪=<<⎨⎪-+-≥⎩【分析】(1)根据题意,设()()1(5)f x a x x =--,可得函数的对称轴3x =,再根据函数在[]1,4-上的最小值,求出a ,可得函数()f x 数的表达式;(2)分13t +时、3t 时和23t <<时三种情况,分别讨论函数的单调性,可得相应情况下函数的最大值,最后综合可得()g t 的表达式.(1)解:因为不等式()0f x >的解集是()1,5,所以()0f x =的两根为1和5,且函数开口向下,故可设()()()15f x a x x =--()0a <,所以函数的对称轴为1532x +==,所以当[]1,4x ∈-时,()()min 11212f x f a =-==-,解得1a =-,故()()()15f x x x =---,即()265f x x x =-+-(2)解:因为()()226534f x x x x =-+-=--+,当13t +≤时,即2t ≤时,()f x 在[],1t t +上单调递增,所以 ()()214g t f t t t =+=-+,当31t t <<+时,即23t <<时,()f x 在[],3t 上单调递增,在(]3,1t +上单调递减,所以()()34g t f ==;当3t ≥时,()f x 在[],1t t +上单调递减,所以()()265g t f t t t ==-+-;综合以上得()224,24,2365,3t t t g t t t t t ⎧-+≤⎪=<<⎨⎪-+-≥⎩【例1】已知函数2()f x x mx m =-+-.(1)若函数()f x 在[]1,0-上单调递减,求实数m 的取值范围;(2)若当1x >时,()4f x <恒成立,求实数m 的取值范围;(3)是否存在实数m ,使得()f x 在[]2,3上的值域恰好是[]2,3?若存在,求出实数m 的值;若不存在,说明理由.【答案】(1)2m ≤-;(2)()225-∞+,;(3)存在,6m =. 【分析】(1)根据对称轴和区间端点的相对位置即可求得m 的取值范围.(2)分类讨论当1x >时函数的最大值小于4恒成立即可求得m 的取值范围.(3)分类讨论得函数的值域结合已知条件求得m 的值.【详解】(1)函数()f x 图象开口向下且对称轴是2m x =,要使()f x 在[1,0]-上单调递减,应满足12-≤m ,解得2-≤m .(2)函数()f x 图象的对称轴是2m x =. 当12m ≤时,()4f x <恒成立,故()114f =-<,所以2m ≤; 当12m >时,()4f x <恒成立,故22244160242m m m f m m m ⎛⎫=-+-<⇒--< ⎪⎝⎭; 所以2225m <<+综上所述:m 的取值范围()225-∞+, (3)当22≤m ,即4≤m 时,()f x 在[2,3]上递减, 若存在实数m ,使()f x 在[2,3]上的值域是[2,3],则(2)3,(3)2,f f =⎧⎨=⎩即423,932,m m m m -+-=⎧⎨-+-=⎩,此时m 无解. 当32≥m ,即6≥m 时,()f x 在[2,3]上递增,则(2)2,(3)3,f f =⎧⎨=⎩即422,933,m m m m -+-=⎧⎨-+-=⎩解得6m =. 当232m <<,即46m <<时,()f x 在[2,3]上先递增,再递减,所以()f x 在2m x =处取得最大值,则23222m m m f m m ⎛⎫⎛⎫=-+⋅-= ⎪ ⎪⎝⎭⎝⎭,解得2m =-或6,舍去. 综上可得,存在实数6m =,使得()f x 在[2,3]上的值域恰好是[2,3].【例2】已知二次函数()2f x ax bx c =++的图象过点()0,3,且不等式20ax bx c ++≤的解集为{}13x x ≤≤.(1)求()f x 的解析式:(2)若()()()24g x f x t x =--在区间[]1,2-上有最小值2,求实数t 的值.【答案】(1)()243f x x x =-+;(2)1±【分析】(1)根据题意得()30f c ==,又由一元二次不等式的解可知,1和3是方程230ax bx ++=的两根,利用根与系数的关系即可求参数,写出解析式;(2)由二次函数的开口及对称轴,结合其在闭区间上的最小值,讨论t ≤−1、−1<t <2、t ≥2三种情况下求符合条件的t 值即可.(1)由题意可得:()30f c ==∵不等式230ax bx ++≤的解集为{}13x x ≤≤,则230ax bx ++=的两根为1,3,且0a >∵=43=3b a a -⎧⎪⎪⎨⎪⎪⎩,解得=1=4a b -⎧⎨⎩故()243f x x x =-+(2)由(1)可得()()()22423g x f x t x x tx =--=-+的对称轴为=x t当1t ≤-时,则()g x 在[]1,2-上单调递增∵()()1242g x g t ≥-=+=,则1t =-当12t -<<时,则()g x 在[]1,t -上单调递减,在(],2t 上单调递增∵()()232g x g t t ≥=-=,则=1t 或1t =-(舍去)当2t ≥时,则()g x 在[]1,2-上单调递减∵()()2742g x g t ≥=-=,则54t =(舍去)综上所述:实数t 的值为1±.【例3】已知函数2()f x x ax b =++.(1)若函数()f x 在(1,)+∞上是增函数,求实数a 的取值范围;(2)若不等式()0f x ≤的解集为{|02}x x ≤≤,求,a b 的值;(3)若1b =时,求[0,3]x ∈时()f x 的最小值()g a . 【答案】(1)[2,)-+∞;(2)2a =-,0b =;(3)21,0()1,604103,6a a g a a a a ≥⎧⎪⎪=--<<⎨⎪+≤-⎪⎩ 【分析】(1)根据函数()f x 的对称轴为2a x =-,且在(1,)+∞上是增函数,可得12a -≤,由此求得a 的范围; (2)由题意得0,2是方程的两个实数根,利用一元二次方程根与系数的关系,求出,ab 的值; (3)根据()f x 的对称轴和区间的关系分类讨论,根据函数的单调性求得()g a .(1)∵函数2()f x x ax b =++的对称轴为2a x =-,且()f x 在(1,)+∞上是增函数, ∵12a -≤,解得2a ≥-, ∵实数a 的取值范围是[2,)-+∞.(2)若不等式()0f x ≤的解集为{|02}x x ≤≤,则0,2是方程20x ax b ++=的两个实数根,∵0202a b +=-⎧⎨⨯=⎩,∵20a b =-⎧⎨=⎩. (3)若1b =,则2()1=++f x x ax ,对称轴为2a x =-, 当02a -≤,即0a ≥时,函数()f x 在到[0,3]单调递增, 则()()min 01f x f ==,当032a <-<,即60a -<<时, 函数()f x 在0,2a ⎛⎫- ⎪⎝⎭单调递减,在,32a ⎛⎫- ⎪⎝⎭单调递增, 则()222min112424a a a a f x f ⎛⎫=-=-+=- ⎪⎝⎭, 当32a -≥,即6a ≤-时,函数()f x 在[0,3]单调递减, 则()()min 3103f x f a ==+,综上,21,0()1,604103,6a a g a a a a ≥⎧⎪⎪=--<<⎨⎪+≤-⎪⎩. 【例4】已知函数()223f x x bx =-+,Rb ∈.(1)若函数()f x 的图象经过点()4,3,求实数b 的值;(2)在(1)条件下,求不等式()0f x <的解集;(3)当[]1,2x ∈-时,函数()y f x =的最小值为1,求当[]1,2x ∈-时,函数()y f x =的最大值.【答案】(1)2b =;(2){}13x x <<;(3)当1b ≤-时,()f x 的最大值为13,当12b -<<时,()f x 最大值为422+.【分析】(1)由题可得()43f =,进而即得;(2)利用二次不等式的解法即得;(3)对()f x 的对称轴与区间[]1,2-的关系进行分情况讨论,判断()f x 的单调性,利用单调性解出b ,再求出最大值.(1)由题可得()244833f b =-+=,∵2b =;(2)由()2430f x x x =-+<,解得13x <<,所以不等式()0f x <的解集为{}13x x <<;(3)因为2()23f x x bx =-+是开口向上,对称轴为x b =的二次函数,∵若1b ≤-,则()f x 在[]1,2-上是增函数,∵min ()(1)421f x f b =-=+=,解得32b =-, ∵max ()(2)7413f x f b ==-=;∵若2b ≥,则()f x 在[]1,2-上是减函数,∵min ()(2)741f x f b ==-=,解得32b =(舍); ∵若12b -<<,则()f x 在[]1,b -上是减函数,在(],2b 上是增函数;∵2min ()()31f x f b b ==-=,解得2b =或2b =-(舍).∵max ()(1)42422f x f b =-=+=+;综上,当1b ≤-时,()f x 的最大值为13,当12b -<<时,()f x 最大值为422+.【例5】在∵[]2,2x ∀∈-,∵[]1,3x ∃∈这两个条件中任选一个,补充到下面问题的横线中,并求解该问题.已知函数()24f x x ax =++.(1)当2a =-时,求函数()f x 在区间[]22-,上的值域; (2)若______,()0f x ≥,求实数a 的取值范围.【答案】(1)[]3,12(2)答案见解析【分析】(1)利用二次函数的性质直接求解其值域,(2)若选条件∵,求出抛物线的对称轴,分22a -≤-,222a -<-<和22a -≥三种情况求出函数的最小值,使最小值大于等于零,即可求出a 的取值范围,若选条件∵,则()max 0f x ≥,由抛物线的性质可得()10f ≥或()30f ≥,从而可求出a 的取值范围.(1)当2a =-时,()()222413f x x x x =-+=-+,∵()f x 在[]2,1-上单调递减,在[]1,2上单调递增,∵()()min 13f x f ==,()()max 212f x f =-=,∵函数()f x 在区间[]22-,上的值域为[]3,12. (2)方案一:选条件∵.由题意,得()22424a a f x x ⎛⎫=++- ⎪⎝⎭. 若22a -≤-,即4a ≥,则函数()f x 在区间[]22-,上单调递增, ∵()()min 2820f x f a =-=-≥,解得4a ≤,又4a ≥,∵a =4.若222a -<-<,即44a -<<,则函数()f x 在区间2,2a ⎡⎤--⎢⎥⎣⎦上单调递减,在区间,22a ⎡⎤-⎢⎥⎣⎦上单调递增, ∵()2min 4024a a f x f ⎛⎫=-=-≥ ⎪⎝⎭, 解得44a -≤≤,∵44a -<<.若22a -≥,即4a ≤-,则函数()f x 在区间[]22-,上单调递减, ∵()()min 2820f x f a ==+≥,解得4a ≥-,又4a ≤-,∵a =-4.综上所述,实数a 的取值范围为[]4,4-. 方案二:选条件∵. ∵[]1,3x ∃∈,()0f x ≥, ∵()max 0f x ≥,∵函数()f x 的图象是开口向上的抛物线,最大值只可能在区间端点处取得. ∵()10f ≥或()30f ≥,解得5a ≥-或133a ≥-, ∵5a ≥-.故实数a 的取值范围为[)5,-+∞. 【例1】已知二次函数()()20,,,f x ax bx c a a b c =++>∈R ,()11f -=,对任意x ∈R ,()()2f x f x +=-,且()0f x x +≥恒成立. (1)求二次函数()f x 的解析式;(2)若函数()()42g x f x x x λ=++-的最小值为5,求实数λ的值. 【答案】(1)()2111424f x x x =-+,(2)174λ=± 【分析】(1)根据()()2f x f x +=-得到420a b +=,根据()0f x x +≥恒成立得到a c =,结合()11f a b c -=-+=,求出11,42a b ==-,14c =,求出二次函数解析式;(2)结合第一问,将()()42g x f x x x λ=++-写出分段函数,分12λ<-,1122λ-≤≤与12λ>三种情况,结合函数单调性,最小值为5,列出方程,求出实数λ的值. 【详解】(1)由题意得:()11f a b c -=-+=,且0a ≠,()()210f x x ax b x c +=+++≥恒成立,故()2Δ140a b ac >⎧⎪⎨=+-≤⎪⎩, 将1b a c +=+代入()2140b ac +-≤中,()20a c -≤, 故a c =,从而21a b c a b -+=-=,由()()2f x f x +=-得:()()()22222f x a x b x c ax bx c +=++++=-+,整理得()42420a b x a b +++=,故420a b +=, 联立21a b -=与420a b +=,解得:11,42a b ==-,故14c a ==, 二次函数解析式为()2111424f x x x =-+; (2)函数()()2421g x f x x x x x λλ=++-=++-的最小值为5,()2222131,24131,24x x x x g x x x x x λλλλλλ⎧⎛⎫+-+=+-+≥⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪-++=-++< ⎪⎪⎝⎭⎩, 且()21g λλ=+,即在端点处分段函数的函数值相等,当12λ<-时,()g x 在12x <-上单调递减,在21x ≥-上单调递增,故()g x 在12x =-处取得最小值,即354λ-+=,解得:17142λ=-<-,符合要求;当1122λ-≤≤时,()g x 在x λ<上单调递减,在x λ≥上单调递增, 故()g x 在x λ=处取得最小值,即215λ+=,解得:2λ=±,不合题意,舍去; 当12λ>时,()g x 在12x <上单调递减,在12x ≥上单调递增,故()g x 在12x =处取得最小值,即354λ+=,解得:17142λ=>,符合要求;综上:174λ=±. 【例2】已知函数()R a a x x x f ∈-+=,22. (1)若()x f 为偶函数,求a 的值;(2)若函数()()2+=x af x g 的最小值为8,求a 的值. 【答案】(1)0,(2)2【分析】(1)利用偶函数的定义,列出关系式,即可求出a 的值; (2)化简函数为分段函数,通过讨论a 的范围,列出关系式求解即可.【详解】(1)因为f (x )是偶函数,所以f (-x )=f (x ), 故x 2+2|-x -a |=x 2+2|x -a |,所以|x +a |=|x -a |,即x 2+2ax +a 2=x 2-2ax +a 2,化简得4ax =0, 因为x ∵R ,所以a =0.(2)22222(1)22,()()222(1)22,a x a a x ag x af x ax a x a a x a a x a ⎧+--+=+=+-+=⎨-+-+<⎩∵若a =0,则g (x )=2,不合题意; ∵若a <0,则g (x )无最小值,不合题意; ∵若0<a ≤1,当x ≥a 时,g (x )在[a ,+∞)上单调递增,g (x )≥g (a ); 当x <a 时,g (x )在(-∞,a )上单调递减,g (x )>g (a ).所以,g (x )的最小值为g (a )=a 3+2=8,所以a =36>1,舍去; ∵若a >1,当x ≥a 时,g (x )在[a ,+∞)上单调递增,g (x )≥g (a );当x <a 时,g (x )在(-∞,1]上单调递减,在(1,a )内单调递增,所以g (x )≥g (1), 因为g (1)<g (a ),所以g (x )的最小值为g (1)=2a 2-a +2=8,所以a =32-(舍去)或a =2,综上所述,a =2.【例3】已知函数()||1()f x x x a x =--+∈R .(1)当2a =时,试写出函数()()g x f x x =-的单调递增区间; (2)若函数()f x 在[1,4]上的最小值是3-,求a 的值 【答案】(1)单调递增区间为3,22⎛⎫⎪⎝⎭;(2)3或4【分析】(1)当2a =时,求出()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩,利用二次函数的性质确定函数的单调区间;(2)分1a <,12a ≤<,24a ≤<,48a ≤<和8a ≥五种情况进行讨论,结合函数的图象得到对应的最小值,即可得到答案 (1)当2a =时,()()2221(2)21212x x x f x x x x x x ⎧-+<⎪=--+=⎨-++≥⎪⎩, 所以()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩, 当2x <时,231y x x =-+,其图象开口向上,对称轴方程为32x =, 所以()g x 在3,2⎛⎤-∞ ⎥⎝⎦上单调递减,在3,22⎛⎫⎪⎝⎭上单调递增;当2x ≥时,21y x x =-++,其图象开口向下,对称轴方程为12x =, 所以()g x 在[2,)+∞上单调递减,综上可知,()g x 的单调递增区间为3,22⎛⎫⎪⎝⎭;(2)当1a <时,()224()124a a f x x x a x +⎛⎫=--+=--+ ⎪⎝⎭,因为122a <,所以()min ()44153f x f a ==-=-,解得3a =,故舍去; 当12a ≤<时,()22224,4244,124a a x a x f x a a x x a ⎧+⎛⎫--+≤≤⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪-+≤< ⎪⎪⎝⎭⎩, 因为1122a≤<,所以()f x 在[]1a ,递增,在[],4a 递减, 所以()f x 的最小值在()1f 或()4f 中取,且()22411224a a f a -⎛⎫=-+=- ⎪⎝⎭,()2244441524a a f a +⎛⎫=--+=- ⎪⎝⎭,若()f x 的最小值为()123f a =-=-,解得5a =,故舍去; 若()f x 的最小值为()44153f a =-=-,解得3a =,故舍去;当24a ≤<时,()22224,4244,124a a x a x f x a a x x a ⎧+⎛⎫--+≤≤⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪-+≤< ⎪⎪⎝⎭⎩,因为122a ≤<,所以()f x 在12a ⎡⎤⎢⎥⎣⎦,递减,在,2a a ⎡⎤⎢⎥⎣⎦递增,在[],4a 递减, 所以()f x 的最小值在2a f ⎛⎫⎪⎝⎭或()4f 中取,若()f x 的最小值为24324a af -⎛⎫==- ⎪⎝⎭,解得4a =±,故舍去; 若()f x 的最小值为()44153f a =-=-,解得3a =, 检验:353224a f f ⎛⎫⎛⎫==->- ⎪ ⎪⎝⎭⎝⎭,故满足;当48a ≤<时,()224()124a a f x x a x x -⎛⎫=--+=-+ ⎪⎝⎭,因为242a ≤<,所以2min 4()324a af x f -⎛⎫===- ⎪⎝⎭,因为48a ≤<,解得4a =; 当8a ≥时,()224()124a a f x x a x x -⎛⎫=--+=-+ ⎪⎝⎭,因为42a≥,所以()min ()41743f x f a ==-=-,解得5a =,故舍去; 综上所述,a 的值为3或4【点睛】关键点睛:这道题的关键在于比较对称轴2a和a 与区间[]1,4的关系,分成了5种情况,数形结合,利用二次函数的图象与性质得到对应的最小值 【例4】已知函数() 2.f x x x a =-+ (1)当2a =时,求()f x 的单调增区间;(2)若12,[0,2]x x ∃∈,使()()122f x f x ->,求实数a 的取值范围. 【答案】(1)单调递增区间为(),1-∞和()2,+∞ (2)(,1)(22,)-∞⋃+∞【分析】(1)根据已知及分段函数,函数的单调性与单调区间的计算,求出()f x 的单调增区间;(2)根据已知及二次函数的性质求最值,结合不等式和绝对值不等式的计算求出实数a 的取值范围. (1)当2a =时,()2222,22222,2x x x f x x x x x x ⎧-+=-+=⎨-++<⎩,2≥x 时,()f x 单调递增,2x <时,()f x 在(),1-∞上单调递增,在()1,2上单调递减,所以()f x 的单调递增区间为(),1-∞和()2,+∞, (2)12,[0,2]x x ∃∈,使()()122f x f x ->所以()()12max 2f x f x ->, 即()()max min 2f x f x ->,∵当2≤a 时,()22f x x ax =-++,对称轴2a x =, (i)当221≤≤a 即42≤≤a 时,()2max224a a f x f ⎛⎫==+ ⎪⎝⎭, ()()min 02f x f ==,所以()20224a a f f ⎛⎫-=> ⎪⎝⎭, 所以22a >或22a <-, 因为42≤≤a ,所以224a < , (ii)当22a>即4a >时,()()max 222f x f a ==-, ()()min 02f x f ==,所以()()20242f f a -=->,3a >,因为4a >,所以4a >,∵当0a 时,()22f x x ax =-+,对称轴02ax =<, 所以()()max 262f x f a ==-,()()min 02f x f ==,所以()()20422f f a -=->,1a <,所以0a ,∵当02a <<时,()222,02,2x ax x af x x ax a x ⎧-++<<=⎨-+<<⎩,因为()()()min 022f x f f ===,因为()220124a a f f ⎛⎫-=< ⎪⎝⎭, 所以2a f ⎛⎫⎪⎝⎭不可能是函数的最大值,所以()()max 262f x f a ==-, 所以()()20422f f a -=->, 所以01a <<,综上所述:a 的取值范围是(,1)(22,)-∞⋃+∞ .【点睛】关键点点睛:本题主要考查了分段函数,函数的单调性与单调区间,函数的最值,不等式和绝对值不等式的应用,属于较难题,解题的关键是将12,[0,2]x x ∃∈,使()()122f x f x ->,转化为()()max min 2f x f x ->,然后分类利用二次函数的性质求出其最值即可,考查了分类思想和计算能力【例5】已知函数()f x x m =-.(1)若函数()f x 在[]1,2上单调递增,求实数m 的取值范围;(2)若函数()()2g x xf x m =+在[]1,2的最小值为7,求实数m 的值.【答案】(1)(],1-∞ (2)2m =-或231m =-【分析】(1)化为分段函数,结合单调性得到实数m 的取值范围;(2)化为分段函数,对m 分类讨论,结合最小值为7,求出实数m 的值,注意舍去不合要求的值. (1)(),,x m x m f x x m m x x m -≥⎧=-=⎨-<⎩,即()f x 在()m -∞,上单调递减,在[),m +∞上单调递增,若函数()f x 在[]1,2上单调递增,则1m ,所以实数m 的取值范围是(],1-∞;(2)()()222222,,x mx m x mg x xf x m x x m m x mx m x m ⎧-+≥=+=-+=⎨-++<⎩, ∵当1m 时,()g x 在[]1,2上单调递增,故()()2min 117g x g m m ==-+=,解得:2m =-或3(舍去);∵当12m <≤时,()()2min 7g x g m m ===,解得:7m =±(舍去);∵当23m <≤时,()g x 在1,2m ⎛⎫⎪⎝⎭上单调递增,在,22m ⎛⎫ ⎪⎝⎭上单调递减,且2m x =更靠近1,所以()()2min 2247g x g m m ==+-=,解得:231m =-或231--(舍去);∵当34m <≤时,()g x 在1,2m ⎛⎫⎪⎝⎭上单调递增,在,22m ⎛⎫ ⎪⎝⎭上单调递减,且2m x =更靠近2,所以()()2min 117g x g m m ==-+=,解得:2m =-(舍去)或3(舍去);∵当4m >时,()g x 在[]1,2上单调递增,故()()2min 117g x g m m ==-+=,解得:2m =-(舍去)或3(舍去);综上:2m =-或231m =-.【例1】已知a ,b 是常数,0a ≠,()2f x ax bx =+,()20f =,且方程()f x x =有两个相等的实数根.(1)求a ,b 的值;(2)是否存在实数m ,n ()m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出实数m ,n 的值;若不存在,请说明理由. 【答案】(1)12a =-,1b =(2)存在,2,0m n =-=【分析】(1)由()20f =、()210ax b x +-=有两个相等的实数根可得答案;(2)假设存在符合条件的m ,n .21122f x x x ,得14n ≤,由一元二次函数图象的特征结合定义域和值域可得答案. (1)由()2f x ax bx =+,()20f =,得420a b +=,又方程()f x x =,即()210ax b x +-=有两个相等的实数根,所以()2140--=b a ,解得1b =,12a =-;(2)假设存在符合条件的,m n , 由(1)知22111112222f xx x x ,则有122n ≤,即14n ≤,由一元二次函数图象的特征,得14()2()2m n f m m f n n ⎧<≤⎪⎪=⎨⎪=⎪⎩,即2214122122m n m m m n n n⎧<≤⎪⎪⎪-+=⎨⎪⎪-+=⎪⎩,解得20m n =-⎧⎨=⎩,所以存在2m =-,0n =,使得函数()f x 在[]2,0-上的值域为[]4,0-. 【例2】已知函数()11,111,01x xf x x x⎧-≥⎪⎪=⎨⎪-<<⎪⎩. (1)当0a b <<,且()()f a f b =时,求11a b+的值; (2)若存在实数,(1)a b a b <<,使得函数()y f x =的定义域为[],a b 时,其值域为[],ma mb ,求实数m 的取值范围.【答案】(1)2; (2)104m <<.【分析】(1)根据函数()f x 的单调性可知,()()f a f b =可等价于1111a b -=-,即可解得11a b+的值; (2)根据函数()y f x =在[,]a b 上的单调性,即可确定()y f x =在[,]a b 上的值域,从而根据根的分布建立方程组,即可解出m 的取值范围. (1)由题意得()y f x =在()0,1上为减函数,在()1,+∞上为增函数, 由0a b <<,且0a b <<,可得01a b <<<且1111a b-=-因此112a b+=.(2)当[),1,a b ∞∈+时,则()y f x =在[)1,+∞上为增函数 故1111ma amb b⎧-=⎪⎪⎨⎪-=⎪⎩ 即a b 、是方程210mx x -+=的两个根即关于x 的方程210mx x -+=在[)1,+∞上有两个不等的实数根. 设()21g x mx x =-+,则()Δ0101120g m m >⎧⎪>⎪⎪⎨>⎪⎪>⎪⎩ 解得104m <<. 【例3】已知函数()2112f x a a x=+-,实数a R ∈且0a ≠. (1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;(2)设0m n <<且0a >时,()f x 的定义域和值域都是[],m n ,求n m -的最大值. 【答案】(1)()f x 在[],m n 上单调递增,理由见解析 (2)433【分析】(1)由定义法直接证明可得; (2)由题知,m n 是方程2112x a a x+-=的不相等的两个正数根,然后整理成一元二次方程,由判别式和韦达定理列不等式组求解可得a 的范围,再用韦达定理表示出所求,然后可解. (1)设120<m x x n ≤<≤,则()()1212222121211x x f x f x a x a x a x x --=-+=, 120<m x x n ≤<≤,12120,0x x x x ∴>-<,()()12f x f x ∴<,故()f x 在[],m n 上单调递增;(2)由(1)可得0m n <<时,()f x 在[],m n 上单调递增,()f x 的定义域和值域都是[],m n ,(),()f m m f n n ∴==,则,m n 是方程2112x a a x+-=的不相等的两个正数根, 即()222210a x a a x -++=有两个不相等的正数根,则222222Δ2402010a a a a a m n a mn a ⎧=+->⎪⎪+⎪+=>⎨⎪⎪=>⎪⎩(),解得12a >,222222241216()4333a a n m n m mn a aa ⎛⎫+⎛⎫∴-=+-=-=--+ ⎪ ⎪⎝⎭⎝⎭, 1,2a ∞⎛⎫∈+ ⎪⎝⎭,32a ∴=时,n m -最大值为433;【例4】已知二次函数2()(,,)f x ax bx c a b c =++∈R 的图像经过原点O ,满足对任意实数x 都有(3)(1)f x f x -=-,且关于x 的方程()2f x x =有两个相等的实数根.(1)求函数()f x 的解析式:(2)是否存在实数m 、()n m n <,使得()f x 的定义域为[,]m n ,值域为22,m n ⎡⎤⎣⎦?若存在,求出m ,n 的值;若不存在,请说明理由. 【答案】(1)2()2f x x x =-+ (2)存在,0,1m n ==【分析】(1)由题意列方程求解,,a b c(2)根据定义域与对称轴关系,讨论()f x 值域后求解 (1)()f x 经过原点,故0c,()2f x x =,即2(2)0ax b x +-=有两个相等的实数根,由Δ0=知2b =,(3)(1)f x f x -=-,故()f x 的对称轴为1x =,即12ba-=,1a =-, 函数()f x 的解析式为2()2f x x x =-+.(2)2()(1)11f x x =--+≤,故11n -≤≤,故()f x 在[,]m n 上单调递增,由题意得222222m m m n n n ⎧-+=⎨-+=⎩又m n <,解得01m n =⎧⎨=⎩ 存在0,1m n ==满足题意【例5】已知函数()f x =x 2-2x +b 的自变量的取值区间为A ,若其值域区间也为A ,则称A 为()f x 的保值区间.(1)若b =0,求函数f (x )形如[,)()t t R ∞+∈的保值区间;(2)若函数f (x )的保值区间为[m ,n ]()m n <,且f (x )在[m ,n ]上单调,求实数b 的取值范围. 【答案】(1)[1,)-+∞和[3,)+∞ (2)591,2,44⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【分析】(1)根据对称轴为标准分类讨论,使其满足定义即可求解;(2)以对称轴为界分类讨论,依据单调性建立等式,再将问题转化为二次函数或一元二次方程问题求解. (1)当0b =时,2()2f x x x =-,其对称轴为1x =.当1t ≤时,()[1,)f x ∈-+∞,此时,要满足函数f (x )是形如[,)()t t R ∞+∈的保值区间,则1t =-,区间为[1,)-+∞; 当1t >时,2()[2,)f x t t ∈-+∞,定义域为[,)t +∞,此时,要满足函数f (x )是形如[,)()t t R ∞+∈的保值区间,则22t t t -=,解得3t =或0=t (舍),因此,此时区间为[3,)+∞.综上可知,函数f (x )形如[,)()t t R ∞+∈的保值区间为[1,)-+∞和[3,)+∞; (2)因为函数f (x )的定义域、值域都为[m ,n ],且f (x )在[m ,n ]上单调, 当m ≥1时,函数f (x )在[m ,n ]上单调递增,此时()()f m m f n n =⎧⎨=⎩即222,2,m m b m n n b n ⎧-+=⎨-+=⎩等价于方程x 2-3x +b =0在[1,+∞)上有两个不等实根,令g (x )=x 2-3x +b ,则有Δ940,(1)20,31,2b g b ⎧⎪=->⎪=-+≥⎨⎪⎪>⎩解得924b ≤<;当n ≤1时,函数f (x )在[m ,n ]上单调递减,此时()()f m n f n m =⎧⎨=⎩即2222m m b n n n b m ⎧-+=⎨-+=⎩两式相减得:(m -n )(m +n -1)=0,即m =n (舍)或m +n -1=0,也即m =1-n ,由m <n 可得112n <≤, 将m =1-n 代入n 2-2n +b =m 可得方程n 2-n +b -1=0在1(,1]2上有解,即为函数b =-n 2+n +1在1(,1]2上的值域问题,因为22151()24b n n n =-++=--+在1(,1]2上单调递减,所以b 5[1,)4∈.综上所述,b 的取值范围是59[1,)[2,)44⋃.【例6】已知函数()221x f x x-=.(1)求函数()y f x =的值域;(2)若不等式()231x f x x kx +≥+在[]1,2x ∈时恒成立,求实数k 的最大值;(3)设()()1g x t f x =⋅+(11,x m n ⎡⎤∈⎢⎥⎣⎦,0m n >>,0t >),若函数()y g x =的值域为[]23,23m n --,求实数t 的取值范围. 【答案】(1)(,1)-∞ (2)2- (3)(0,1)【分析】(1)化简函数得21()1(0)f x x x=-≠,由20x >,可求出2111x -<,从而可求得函数的值域, (2)等式()231x f x x kx +≥+在[]1,2x ∈时恒成立,转化为2k x x ≤-+在[]1,2x ∈时恒成立,令2211()24h x x x x ⎛⎫=-+=--+ ⎪⎝⎭,可得()h x 在[]1,2上单调递减,从而可求出其最小值,进而可求得实数k 的最大值,(3)由题意得min max 11()23,()23g x g m g x g n m n ⎛⎫⎛⎫==-==- ⎪ ⎪⎝⎭⎝⎭,从而可得,m n 是方程2310(0)tx x t t -+-=>的两个不相等的正根,令2()310(0)x tx x t t ϕ=-+-=>,则有Δ94(1)0302(0)10t t t t ϕ=-->⎧⎪⎪>⎨⎪=->⎪⎩,从而可求出实数t 的取值范围 (1)由题意得21()1(0)f x x x =-≠, 因为20x >,所以210x >,则2111x -<, 所以函数()f x 的值域为(,1)-∞ (2)因为[]1,2x ∈,所以不等式可化为2311kx x x ≤-+-, 所以2k x x ≤-+,令2211()24h x x x x ⎛⎫=-+=--+ ⎪⎝⎭,则()h x 在[]1,2上单调递减,所以min ()(2)422h x h ==-+=-,所以2k ≤-, 所以实数k 的取值范围为(,2]-∞-, 所以实数k 的最大值为2- (3)由题意得2()1tg x t x =-++, 因为0t >,所以()g x 在11,(0,0)m n m n ⎡⎤>>⎢⎥⎣⎦上单调递增,所以min max 11()23,()23g x g m g x g n m n ⎛⎫⎛⎫==-==- ⎪ ⎪⎝⎭⎝⎭,即()()221123,1123t m m t n n -+=--+=-,所以,m n 是方程()21123t x x -+=-,即2310(0)tx x t t -+-=>的两个不相等的正根,令2()310(0)x tx x t t ϕ=-+-=>,其图象开口向上,对称轴为直线32x t=,且有两个不相等的正零点, 所以Δ94(1)0302(0)10t t t t ϕ=-->⎧⎪⎪>⎨⎪=->⎪⎩,即01t R t t ∈⎧⎪>⎨⎪<⎩,解得01t <<所以实数t 的取值范围为(0,1)【例7】已知()f x 是定义在R 上的函数,且()()0f x f x +-=,当0x >时,()22f x x x =-,(1)求函数()f x 的解析式;(2)当[)1,x ∞∈+时,()()g x f x =,当(),1x ∞∈-时()223g x x mx m =-+-,()g x 在R 上单调递减,求m 的取值范围;(3)是否存在正实数a b ,,当[],x a b ∈时,()()h x f x =且()h x 的值域为11,b a ⎡⎤⎢⎥⎣⎦,若存在,求出a b ,,若不存在,说明理由.【答案】(1)()222020x x x f x x x x ⎧-≥=⎨+<⎩,,; (2)[)3,∞+; (3)存在,151,2a b +==.【分析】(1)根据函数是奇函数以及大于零时()f x 的解析式,即可容易求得结果; (2)根据(1)中所求,结合()f x 的单调性,列出不等关系,即可求得参数范围; (3)根据()h x 的单调性,结合,a b 是方程32210x x -+=的两个正根,求解即可. (1)由题意,任取0x <,则0x ->,故有()22f x x x -=--,因为()f x 是定义在R 上的函数,且()()0f x f x +-=,即函数()y f x =是定义在R 上的奇函数,0x ∴<时,()()22f x f x x x =--=+,又0x =时,()()000f f +=,即()00f =,所以()222020x x x f x x x x ⎧-≥=⎨+<⎩,,. (2)当[)1,x ∞∈+时,()()2(1)1g x f x x ==--+,在[)1,+∞单调递减,又当(),1x ∞∈-时,()223g x x mx m =-+-,且()g x 在R 上单调递减,所以121231m m m ⎧≥⎪⎨⎪-+-≥⎩,解得3m ≥, 即m 的取值范围为[)3,∞+. (3)当0x >时,()2(1)11f x x =--+≤,若存在这样的正数a ,b ,则当[]()max 1,[]1x a b f x a∈=≤时,,故1a ≥, ()f x ∴在[],a b 内单调递减,()()221212f b b b bf a a a a⎧==-+⎪⎪∴⎨⎪==-+⎪⎩,所以,a b 是方程32210x x -+=的两个正根, ()()32221110x x x x x -+=---=, 12151,2x x +∴==, 故存在正数1512a b +==,满足题意. 【例1】已知函数()1f x x x=+,()21g x x ax a =-+-. (1)若()g x 的值域为[)0,∞+,求a 的值.(2)证明:对任意[]11,2x ∈,总存在[]21,3x ∈-,使得()()12f x g x =成立. 【答案】(1)2 (2)证明见解析【分析】(1)由题意,可得Δ0=,从而即可求解;(2)利用对勾函数单调性求出()f x 在[1,2]上的值域,再分三种情况讨论二次函数()g x 在闭区间[]1,3-上的值域,然后证明()f x 的值域是()g x 值域的子集恒成立即可得证. (1)解:因为()g x 的值域为[)0,∞+,所以()()222414420a a a a a ∆=--=-+=-=,解得2a =.(2)证明:由题意,根据对勾函数的单调性可得()1111f x x x =+在[]1,2上单调递增,所以()152,2f x ⎡⎤∈⎢⎥⎣⎦. 设()21g x x ax a =-+-在[]1,3-上的值域为M ,当12a≤-,即2a -时,()g x 在[1,3]-上单调递增,因为max ()(3)8212g x g a =-=,min ()(1)24g x g a -==-,所以2,52M ⎡⎤⊆⎢⎥⎣⎦;当32a,即6a 时,()g x 在[1,3]-上单调递减,因为max ()(1)212g x g a -==,min ()(3) 824g x g a =--=,所以2,52M ⎡⎤⊆⎢⎥⎣⎦;当132a -<<,即26a -<<时,22min 11()1(2)(4,0]244a g x g a a a ⎛⎫==-+-=--∈- ⎪⎝⎭,max ()max{2, 82}[4,12)g x a a =-∈,所以52,2M ⎡⎤⊆⎢⎥⎣⎦;综上,52,2M ⎡⎤⊆⎢⎥⎣⎦恒成立,即()f x 在[1,2]上的值域是()g x 在[1,3]-上值域的子集恒成立,所以对任意1[1,2]x ∈总存在2[1,3]x ∈-,使得()()12f x g x =成立.【例2】函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数,给定函数()261+-=+x x f x x . (1)求()f x 的对称中心;(2)已知函数()g x 同时满足:∵()11+-g x 是奇函数;∵当[]0,1x ∈时,()2g x x mx m =-+.若对任意的[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =,求实数m 的取值范围. 【答案】(1)()1,1-- (2)[]2,4-【分析】(1)设()f x 的对称中心为(),a b ,根据对称性得到关于,a b 的方程,解得即可得解;(2)易求得()f x 的值域为[]2,4-,设函数()g x 的值域为集合A ,则问题可转化为[]2,4A ⊆-,分0m ≤,2m ≥和02m <<三种情况讨论,从而可得出答案.【详解】(1)解:()()()2211666111x x x x f x x x x x +-+-+-===-+++, 设()f x 的对称中心为(),a b ,由题意,得函数()y f x a b =+-为奇函数, 则()()f x a b f x a b -+-=-++, 即()()20f x a f x a b ++-+-=, 即()()662011x a x a b x a x a +-+-+--=++-++,整理得()()()()221610a b x a b a a ⎡⎤---+-+=⎣⎦, 所以()()()21610a b a b a a -=-+-+=,解得1,1a b =-=-, 所以函数()f x 的对称中心为()1,1--;(2)解:因为对任意的[]10,2x ∈,总存在[]21,5x ∈,使得()()12g x f x =, 所以函数()g x 的值域是函数()f x 的值域的子集, 因为函数6,1y x y x ==-+在[]1,5上都是增函数, 所以函数()61f x x x =-+在[]1,5上是增函数, 所以()f x 的值域为[]2,4-, 设函数()g x 的值域为集合A , 则原问题转化为[]2,4A ⊆-,因为函数()11+-g x 是奇函数,所以函数()g x 关于()1,1对称, 又因为()11g =,所以函数()g x 恒过点()1,1, 当02m≤,即0m ≤时,()g x 在[]0,1上递增,则函数()g x 在(]1,2上也是增函数, 所以函数()g x 在[]0,2上递增, 又()()()0,2202g m g g m ==-=-,所以()g x 的值域为[],2m m -,即[],2A m m =-, 又[][],22,4A m m =-⊆-, 所以2240m m m ≥-⎧⎪-≤⎨⎪≤⎩,解得20m -≤≤,当12m≥即2m ≥时,()g x 在[]0,1上递减,则函数()g x 在(]1,2上也是减函数, 所以函数()g x 在[]0,2上递减, 则[]2,A m m =-, 又[][]2,2,4A m m =-⊆-, 所以2224m m m ≥⎧⎪-≥-⎨⎪≤⎩,解得24m ≤≤,当012m<<即02m <<时, ()g x 在0,2m ⎛⎫ ⎪⎝⎭上递减,在,12m ⎛⎫⎪⎝⎭上递增, 又因函数()g x 过对称中心()1,1,所以函数()g x 在1,22m ⎛⎫- ⎪⎝⎭上递增,在2,22m ⎛⎫- ⎪⎝⎭上递减,故此时()()min min 2,2m g x g g ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭,()()max max 0,22m g x g g ⎧⎫⎛⎫=-⎨⎬ ⎪⎝⎭⎩⎭,要使[]2,4A ⊆-,只需要()()()222202222404222422402g g m m m g m g m m m m g g m m ⎧=-=-≥-⎪⎛⎫⎪=-+≥- ⎪⎪⎝⎭⎪=≤⎨⎪⎛⎫⎛⎫⎪-=-=-+≤ ⎪ ⎪⎪⎝⎭⎝⎭⎪<<⎩,解得02m <<,综上所述实数m 的取值范围为[]2,4-.【点睛】本题考查了函数的对称性单调性及函数的值域问题,考查了转化思想及分类讨论思想,解决本题第二问的关键在于把问题转化为函数()g x 的值域是函数()f x 的值域的子集,有一定的难度. 【例3】已知函数2()3,()221()f x x g x x ax a a =-+=-+-∈R . (1)若函数()g x 的值域为[0,)+∞,求a 的取值集合;(2)若对于任意的1[2,2]x ∈-,总存在2[2,2]x ∈-,使得()()12f x g x =成立,求实数a 的取值范围. 【答案】(1)1a = (2)1(,1],3⎡⎫-∞-⋃+∞⎪⎢⎣⎭【分析】(1)利用二次函数的图像与性质,得到Δ0=,求解即可.(2)将问题转化为()()()()min minmax max f x g x f x g x ⎧≥⎪⎨≤⎪⎩,然后利用二次函数的性质以及一次函数的性质,求解两个函数的最值,求解不等式组,即可得出答案. (1)∵函数2()221g x x ax a =-+-的值域为[0,)+∞,∵2(2)4(21)0a a ∆=--=, 解得1a =; (2)由题意可知()()()()min minmax max f x g x f x g x ⎧≥⎪⎨≤⎪⎩对于函数()3f x x =-+在[2,2]-上是减函数,∵min max ()(2)1,()(2)5f x f f x f ===-=, 函数2()221g x xax a =-+-图象开口向上,对称轴为直线x a =.∵当2a ≤-时,函数()g x 在[2,2]-上为增函数,min max?()(2)63,()(2)23g x g a g x g a =-=+==-+,∵163,523,a a ≥+⎧⎨≤-+⎩此时2a ≤-; ∵当20a -<≤时,函数()g x 在区间[2,]a -上为减函数,在[],2a 上为增函数,2min max ()()21,()(2)23g x g a a a g x g a ==-+-==-+,∵2121,523,a a a ⎧≥-+-⎨≤-+⎩此时21a -<≤-;∵当02a <<时,函数()g x 在区间[2,]a -上为减函数,在[],2a 上为增函数,2min max ()()21,()(2)63g x g a a a g x g a ==-+-=-=+, ∵2121,563,a a a ⎧≥-+-⎨≤+⎩此时123a ≤<; ∵当2a ≥时,函数()g x 在[2,2]-上是减函数,∵max min ()(2)63,()(2)23g x g a g x g a =-=+==-+, ∵123,563,a a ≥-+⎧⎨≤+⎩此时2a ≥; 综上所述,实数a 的取值范围是1(,1],3⎡⎫-∞-⋃+∞⎪⎢⎣⎭.。
含参二次函数的最值问题
(2)t<1<t+2,即-1<t<1时 当x=1时,y有最大值, y max = f(1)= 6
y
x (2)
(3)t≥1时,函数f(x)在区间 [t,t+2]上单调递减, 当x=t时,y有最大值, y max = f(t)= -t2+2t+5
y
x
(1)
y
综上所述:
(1) t ≤ -1时, y max = -t2-2t+5 (2) -1<t<1时, y max = 6 (3) t ≥1时, y max = -t2+2t+5
变式作业上第9题 已知函数f(x)=-x2+2ax+1-a在区间[0,1]上有最大值 2,求a?
第2类:函数对称轴固定,动区间
例2:
t, t 2上的最大值 求函数f ( x) x2 2x 5在区间
对称轴:x=1
(1)t+2≤1时,即:t ≤ -1时, 函数f(x)在区间[t,t+2]上单调递 增当x=t+2时,y有最大值, y max = f(t+2)= -t2-2t+5
x
(3)
例3:求二次函数f(x)=x2-2x-3 在[-3,a] (a>-3)上的最值
y
(1)当 3 a 1时
a -3 o
1
f ( x)min =f(a)=a2-2a-3
x
f ( x)max =f(-3)=12
f(x)=x2-2x-3,x∈[-3,a] (a>-3)
y
y
-3 o1Leabharlann a5x-3 o
1
5a
x
培优专题01 二次函数含参数最值问题(解析版)
培优专题01二次函数含参数最值问题【题型目录】题型一:定轴动区间问题题型二:定区间动轴问题题型三:含绝对值二次函数问题题型四:定义域为[]n m ,,值域为[]kn km ,求参数问题题型五:二次函数值域包含性问题【典型例题】题型一:定轴动区间问题【例1】已知二次函数满足2()(0)f x ax bx c a =++≠,满足(1)()21f x f x x +-=-,且(0)0f =.(1)求()f x 的解析式;(2)当[]()2R x t t t ∈+∈,时,求函数()f x 的最小值()g t (用t 表示).【答案】(1)()22f x x x =-(2)()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩【详解】(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)0f =,(1)()21f x f x x +-=-,所以0c =,()()221121221a x b x ax bx x ax a b x +++--=-⇒++=-,所以221a ab =⎧⎨+=-⎩,得12a b =⎧⎨=-⎩.所以()22f x x x =-.(2)()22f x x x =-是图象的对称轴为直线1x =,且开口向上的二次函数.当1t ≥时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递增,则()()2min 2f x f t t t ==-;当21t +≤即1t ≤-时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递减,则()()()()22min 22222f x f t t t t t =+=+-+=+;当11t t <<+,即11t -<<时,()()()2min 11211f x f ==-=-;综上所述()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩.【例2】已知定义在R 上的函数)f x ,满足()226f x x x -=--.(1)求()f x 的解析式.(2)若()f x 在区间[]0,m 上的值域为25,44⎡⎤--⎢⎥⎣⎦,写出实数m 的取值范围(不必写过程).f x 在区间[],2t t +上的最小值为6,求实数t 的值.【例3】对于函数()f x ,若存在0R x ∈,使得()00f x x =成立,则称0x 为()f x 的不动点,已知函数2()(2)4f x ax b x =+++的两个不动点分别是-2和1.(1)求,a b 的值及()f x 的表达式;[,1]t t +【例4】已知函数为二次函数,不等式的解集是,且在区间上的最小值为12-.(1)求()f x 的解析式;上的最大值为【例1】已知函数2()f x x mx m =-+-.(1)若函数()f x 在[]1,0-上单调递减,求实数m 的取值范围;(2)若当1x >时,()4f x <恒成立,求实数m 的取值范围;(3)是否存在实数m ,使得()f x 在[]2,3上的值域恰好是[]2,3?若存在,求出实数m 的值;若不存在,说明上单调递减,应满足【例2】已知二次函数的图象过点,且不等式20ax bx c ++≤1(1)求()f x 的解析式:24g x f x t x =--在区间[]1,2-上有最小值2,求实数t 的值.(1)若函数()f x 在(1,)+∞上是增函数,求实数a 的取值范围;(2)若不等式()0f x ≤的解集为{|02}x x ≤≤,求,a b 的值;时,函数【例4】已知函数,R b ∈.(1)若函数()f x 的图象经过点()4,3,求实数b 的值;(2)在(1)条件下,求不等式()0f x <的解集;1,2x ∈-时,函数()y f x =的最小值为1,求当[]1,2x ∈-时,函数()y f x =的最大值.【例5】在①2,2x ∀∈-,②1,3x ∃∈这两个条件中任选一个,补充到下面问题的横线中,并求解该问题.已知函数()24f x x ax =++.(1)当2a =-时,求函数()f x 在区间]22-,上的值域;【例1】已知二次函数()()20,,,f x ax bx c a a b c =++>∈R ,()11f -=,对任意x ∈R ,()()2f x f x +=-,且()0f x x +≥恒成立.(1)求二次函数()f x 的解析式;(1)若x f 为偶函数,求a 的值;(1)当2a =时,试写出函数()()g x f x x =-的单调递增区间;)x(1)当2a =时,求f x 的单调增区间;,所以(1)若函数f x 在[]1,2上单调递增,求实数m 的取值范围;2g x xf x m =+在[]1,2的最小值为7,求实数m 的值.【例1】已知a ,b 是常数,0a ≠,()2f x ax bx =+,()20f =,且方程()f x x =有两个相等的实数根.(1)求a ,b 的值;(2)是否存在实数m ,n ()m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出实数m ,=【例2】已知函数()1,111,01x xf x x x⎧-≥⎪⎪=⎨⎪-<<⎪⎩.(1)当0a b <<,且()()f a f b =时,求11a b+的值;(2)若存在实数,(1)a b a b <<,使得函数()y f x =的定义域为[],a b 时,其值域为[],ma mb ,求实数m 的取值【例3】已知函数()22f x a a x=+-,实数a R ∈且0a ≠.(1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;f x 的定义域和值域都是[],m n ,求n m -的最大值.【例4】已知二次函数,满足对任意实数(3)(1)f x f x -=-,且关于x 的方程()2f x x =有两个相等的实数根.(1)求函数()f x 的解析式:(2)是否存在实数m 、()n m n <,使得()f x 的定义域为[,]m n ,值域为22,m n ⎡⎤⎣⎦?若存在,求出m ,n 的值;【例5】已知函数-2x +b 的自变量的取值区间为A ,若其值域区间也为A ,则称A 为的保值区间.(1)若b =0,求函数f (x )形如[,)()t t R ∞+∈的保值区间;m n <【例6】已知函数()2f x x-=.(1)求函数()y f x =的值域;(2)若不等式()231x f x x kx +≥+在[]1,2x ∈时恒成立,求实数k 的最大值;(3)设()()1g x t f x =⋅+(11,x m n ⎡⎤∈⎢⎥⎣⎦,0m n >>,0t >),若函数()y g x =的值域为[]23,23m n --,求实数【例7】已知是定义在R 上的函数,且0f x f x +-=,当0x >时,(1)求函数()f x 的解析式;(2)当[)1,x ∞∈+时,()()g x f x =,当(),1x ∞∈-时()223g x x mx m =-+-,()g x 在R 上单调递减,求m 的取值范围;(3)是否存在正实数a b ,,当[],x a b ∈时,()()h x f x =且()h x 的值域为11,b a ⎡⎤⎢⎥⎣⎦,若存在,求出a b ,,若不【例1】已知函数()1f x x x=+,()21g x x ax a =-+-.(1)若()g x 的值域为[)0,∞+,求a 的值.证明:对任意1,2x ∈,总存在1,3x ∈-,使得f x g x =成立.【例2】函数y f x =的图象关于坐标原点成中心对称图形的充要条件是函数y f x =为奇函数,可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数,给定函数()261+-=+x x f x x .(1)求()f x 的对称中心;(2)已知函数()g x 同时满足:①()11+-g x 是奇函数;②当[]0,1x ∈时,()2g x x mx m =-+.若对任意的0,2x ∈1,5x ∈,使得()()g x f x =所以【例3】已知函数(1)若函数()g x 的值域为[0,)+∞,求a 的取值集合;[2,2]x ∈-[2,2]x ∈-f x g x =。
含参数的二次函数最值问题PPT课件
当k ≥1 时 f(x) max=f(k+2)=k2+2k-3 f(x) min=f(k)=k2-2k-3 13
评注:探究1属于“轴定区间动”的问题,
看作动区间沿x轴移动的过程中,函数最 值的变化,即动区间在定轴的左、右两侧 及包含定轴的变化,要注意开口方向及端 点情况。
14
(1)讨论对称轴x= b 与区间 [ a,b]的相对位置;
7
y = x 2∙x 3
8
6
4
2 x=1
k+2
k 15
5
2
4
6
8
10
y = x2 2∙x 3 y = x2 2∙x 3
8
6
4
x=1
2
10 5
k
15
2
k+2
5
10
10
4
6
8
10
8
6
4
x=1
2
k
5
2
k+2
15 5
4
6
8
10
10
8
6
4
2 x=1
10 5
k 1105
k+2
2
4
6
8
8
10
2019/10/30
注意数形结合和分类讨论
16
17
2019/10/30
18
5
5
2
2
2
6
4
2 x=1
15
k 10
k+2 5
2
4
4
4
4
6
6
当k ≤-1时 f(x)max=f(k)=k2-2k-3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
6
6
8
8
8
8
10
10
10
4
解:(1)当k+2≤1即k ≤-1时
2
x=1 k+2
f(x)max=f(k)=k2-2k-3
5 10 15
k
2
f(x)min=f(k+2) =(k+2)2-2(k+2)-3 =k2+2k-3
4
6
8
10
4
x=1
2
(2)当 k <1 < k+2 时 即-1 <k <1时 f(x)min=f(1)=- 4
课堂小结
含参数的二次函数最值问题: 轴动区间定 轴定区间动
核心 : 区间与对称轴的相对位置
注意数形结合和分类讨论
5
k
10
k+2
①当f(k)>f(k+2)时,
10
15
8 2
即k2-2k-3 > k2+2k-3 即-1<k<0时 f(x)max=f(k)=k2-2k-3
6
4
4
6
②当f(k) ≤f(k+2)时,
x=1
2
8
即k2-2k-3 ≤ k2+2k-3 即0≤ k<1时
k k+2
5
10
2
f(x)max=f(k+2)=(k+2)2-2(k+2)-3 =k2+2k-3
y y y
-1
O
1
x
-1
O 1
x
-1
O
1
x
综上所述:
y y y
-1
O
1
x
-1
O
1
x
-1
O 1
x
当 a 2 时 当-2<a<2时
f(x)min=f(1)=4+a
f min
当a≥2时
f(x)min=f(-1)=4-a
a a f 3 4 2
2
评注:探究2属于“轴动区间定”的问题,
10
15
4
6
4
(3)当k ≥1时
x=1 k k+2
5
2
f(x) max=f(k+2)=k2+2k-3
10 15
2
f(x) min=f(k)=k2-2k-3
4
6
8
10
综上所述:
6 4 2
6
6
6
4
4
4
x=1
x=1 k+2
5
2
x=1
2
2
k
10
k+2
5
k
10
10
k+2
10
5
x=1
15
15
k
2
5
15
5
15
要看区间[k,k+2]与对称轴 x=1的位置,则
从以下几个方面解决如图:
y=x
2∙x
3
y = x2 y=x
2
2∙x 2∙x
8
3 3
10
10
8
8
8
6
6
6
6
4
4
4
x=1
2
4
x=1 k+2
2
x=1
2
2
k
5
10
k+2
5
k
10
10
k+2
15
5
x=1
15
5
10 5
k+2
2
2
2
2
4
4
4
4
6
b (1)判断x0= 是否属于 [ m,n]; 2a
(2)当x0∈[m,n]时,f(m)、f(n)、f(x0) 中的较大者是最大值,较小者是最小值; (3)当x0 [m,n]时,f(m)、f(n)中的较大 者是最大值,较小者是最小值.
探究1:若x∈[-1,1],求函数y =x2+ax+3的 最小值:
10
f(x)max=f(k+2)=k2+2k-3
10
当k ≥1
时 f(x) max=f(k+2)=k2+2k-3
评注:探究1属于“轴定区间动”的问题,
看作动区间沿 x 轴移动的过程中,函数最 值的变化,即动区间在定轴的左、右两侧 及包含定轴的变化,要注意开口方向及端 点情况。
b (1)讨论对称轴x= 与区间 [ a,b]的相对位置; 2a b (2)当对称轴在区间[a,b]内时,f(a)、f(b)、f( ) 2a 中的较大者是最大值,较小者是最小值; b (3)当区间[a,b]在对称轴x= 一侧时,f(a)、f(b) 2a 中的较者是最大值,较小者是最小值.
看作对称轴沿x轴移动的过程中,函数最值的 变化,即对称轴在定区间的左、右两侧及对 称轴在定区间上变化情况,要注意开口方向 及端点情况。
探究2:如何 求函数y=x2-2x-3,x∈[k,k+2] 时的最值?
解析: 因为函数 y=x2-2x-3=(x-1)2-4的对称
轴为 x=1 固定不变,要求函数的最值,即
5
k
10
k+2
2
5
2
2
4
4
4
4
当k ≤-1时
8
6
6
6
f(x)max=f(k)=k2-2k-3
8
f(x)min=f(k+2)=k2+2k-3
8
8
6
当-1<k <0时 当0≤ k<1时
10
f(x)max=f(k)=k2-2k-3
10
f(x)min=f(1)=- 4 f(x)min=f(1)=- 4 f(x) min=f(k)=k2-2k-3
含参数的二次函数
最值问题
课前热身
已知函数f(x)= x2 –2x – 3
(1)若x∈[–2,0],求函数f(x)的最值;
(2)若x∈[ 2,4 ],求函数f(x)的最值;
1 5 , ],求函数f(x)的最值; (3)若x∈[ 2 2
求二次函数f(x)=ax2+bx+c在[m,n]上的 最值或值域的一般方法是: