含参数的二次函数求值域问题解析.doc

合集下载

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题湖北省荆州中学 鄢先进二次函数在闭区间上的最值问题是高中数学的重点和热点问题,频繁出现在函数试题中,很受命题者亲睐。

影响二次函数在闭区间上最值问题的主要因素是二次函数图像的开口方向与所给区间和对称轴的位置关系。

本文介绍有关二次函数在闭区间上最值问题的常见类型及解题策略,供同学们参考。

类型一 定轴定区间例1.已知函数2()2f x x x =-,求()f x 的最小值. 解:22()2(1)1f x x x x =-=-- 由图像可知,当1x =时,min ()1f x =-变式1.已知函数2()2f x x x =-,[2,4]x ∈,求()f x 的最小值。

分析:由图像可知,函数)(x f 在[2,4]为增函数,min ()(2)0f x f ∴==变式2.已知函数2()2f x x x =-,[0,3]x ∈,求()f x 的最大值.分析:由图像可知函数()f x 在[0,1]上递减,在[1,3]上递增,且3离对称轴的距离大于0离对称轴的距离。

max ()(3)3f x f ∴==例2.已知二次函数f x ax ax a ()=++-2241在区间[]-41,上的最大值为5,求实数a 的值。

解:将二次函数配方得f x a x a a ()()=++--24122,函数图像对称轴方程为x =-2,顶点坐标为()---2412,a a ,图像开口方向由a 决定。

很明显,其顶点横坐标在区间[]-41,内。

x①若a <0,函数图像开口向下,如下图1所示。

当x =-2时,函数()f x 取得最大值5 即f a a ()-=--=24152,解得a =±210 故a a =-=+210210()舍去图1 图2②若a >0,函数图像开口向上,如上图2所示,当x =1时,函数()f x 取得最大值5 即f a a ()15152=+-=,解得a a ==-16或,故a a ==-16()舍去综上可知:函数f x ()在区间[]-41,上取得最大值5时,a a =-=2101或 点拨:求解有关二次函数在闭区间上的最值问题,应先配方,作出函数图像,然后结合其图像研究,要特别注意开口方向、对称轴和区间的相对位置。

微专题13 含参数二次函数的最值问题(原卷版)

微专题13 含参数二次函数的最值问题(原卷版)

微专题13 含参数二次函数的最值问题【方法技巧与总结】1、定轴定区间型:即定二次函数在定区间上的最值,其区间和对称轴都是确定的,要将函数配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值(可结合图象);2、动轴定区间型:即动二次函数在定区间上的最值,其区间是确定的,而对称轴是变化的,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分类讨论,再利用二次函数的示意图,结合其单调性求解;3、定轴动区间型:即定二次函数在动区间上的最值,其对称轴确定而区间在变化,只需对动区间能否包含抛物线的定点横坐标进行分类讨论;4、动轴动区间型:即动二次函数在动区间上的最值,其区间和对称轴均在变化,根据对称轴在区间的左、右两侧和穿过区间这三种情况讨论,并结合图形和单调性处理。

【题型归纳目录】 题型一:定轴定区间型 题型二:动轴定区间型 题型三:定轴动区间型 题型四:动轴动区间型题型五:根据二次函数的最值求参数 【典型例题】 题型一:定轴定区间型例1.(2022·全国·高一专题练习)函数()232f x x x =++在区间[] 55-,上的最大值、最小值分别是( ) A .1124-,B .212,C .1424-, D .最小值是14-,无最大值例2.(2022·全国·高一课前预习)函数y =x 2-2x +2在区间[-2,3]上的最大值、最小值分别是( ) A .10,5 B .10,1 C .5,1 D .以上都不对例3.(2022·陕西·榆林市第十中学高一期中)若二次函数()()()24f x a x x =+-的图像经过点()0,4-,则函数()f x 在[]4,2-上的最小值为___________.例4.(2022·全国·高一专题练习)已知函数242y x x =-+-,当14x ≤≤上时y 的最小值是________例5.(2022·广西南宁·高一期末)已知函数2()25,[1,5]f x x x x =-+∈-.则函数的最大值和最小值之积为______题型二:动轴定区间型例6.(2022·全国·高一课时练习)已知函数()()20f x x mx m =->在区间[]0,2上的最小值为()g m .(1)求函数()g m 的解析式. (2)定义在()(),00,∞-+∞上的函数()h x 为偶函数,且当0x >时,()()h x g x =.若()()4h t h <,求实数t 的取值范围.例7.(2022·全国·高一单元测试)已知函数2()2(f x x mx m m =-++∈R).当[1,1]x ∈-时,设()f x 的最大值为M ,则M 的最小值为( )A .14B .0C .14-D .1-例8.(2022·全国·高一单元测试)已知函数()()2213f x x k x =-++.(1)若函数()f x 为偶函数,求实数k 的值;(2)若函数()f x 在区间[]1,3-上具有单调性,求实数k 的取值范围;(3)求函数()f x 在区间[]22-,上的最小值.例9.(2022·全国·高一专题练习)已知函数()221f x x mx =++.(1)若1m =,求()f x 在13x -≤≤上的最大值和最小值; (2)求()f x 在22x -≤≤上的最小值;(3)在区间12x -≤≤上的最大值为4,求实数m 的值.例10.(2022·广东湛江·高一期末)已知函数()()f x x x a =-.其中a R ∈,且0a >. (1)求函数()f x 的单调区间; (2)求函数()f x 在1,12⎡⎤-⎢⎥⎣⎦上的最小值.例11.(2022·上海师大附中高一期末)已知函数2(1)h x ax x=+(常数a R ∈).(1)当2a =时,用定义证明()y h x =在区间[]1,2上是严格增函数; (2)根据a 的不同取值,判断函数()y h x =的奇偶性,并说明理由;(3)令1()()2f x h x x a x=--+,设()f x 在区间[]1,2上的最小值为()g a ,求()g a 的表达式.例12.(2022·全国·高一专题练习)已知函数()21f x x x a x R a R =+-+∈∈,,. (1)当1a =时,求函数()f x 的最小值 (2)求函数()f x 的最小值为()g a .例13.(2022·全国·高一课时练习)已知函数()f x 是定义在R 上的偶函数,且当0x ≤时,()22f x x x =+,现已画出函数()f x 在y 轴左侧的图象,如图所示,请根据图象.(1)补充完整图象并写出函数()()f x x R ∈的增区间; (2)写出函数()()f x x R ∈的解析式;(3)若函数()()[]()211,2g x f x ax x =-+∈,求函数()g x 的最小值.例14.(2022·安徽·合肥市第十中学高一期中)设函数2()43f x x ax =-+ (1)函数f (x )在区间[1,3]有单调性,求实数a 的取值范围; (2)求函数f (x )在区间[1,3]上的最小值h (a ).题型三:定轴动区间型例15.(2022·全国·高一单元测试)已知函数()22f x x mx n =++的图象过点(0,1)-,且满足()()12f f -=.(1)求函数()f x 的解析式;(2)求函数()f x 在[],2a a +上的最小值;例16.(2022·江苏·高一单元测试)二次函数()f x 满足()()12f x f x x +-=且()01f =. (1)求()f x 的解析式;(2)当[]11x ∈-,时,不等式()2f x x m >+恒成立,求实数m 的取值范围.(3)设函数()f x 在区间[]1a a +,上的最小值为()g a ,求()g a 的表达式.例17.(2022·全国·高一期中)已知二次函数2()(0)f x ax bx c a =++≠,且满足(0)2f =,(1)()21f x f x x +-=+.(1)求函数()f x 的解析式;(2)当[,2]x t t ∈+(R t ∈)时,求函数()f x 的最小值()g t (用t 表示).例18.(2022·全国·高一专题练习)已知函数()222f x x ax =++.(1)当1a =时,求函数()f x 在区间[)23-,上的值域; (2)当1a =-时,求函数()f x 在区间[]1t t +,上的最大值;(3)求()f x 在[]55-,上的最大值与最小值.例19.(2022·江苏南通·高一开学考试)已知关于x 的函数22 4.y x mx =-+ (1)当23x -≤≤时,求函数224y x mx =-+的最大值; (2)当23x -≤≤时,若函数最小值为2,求m 的值.例20.(2022·全国·高一专题练习)已知()f x 是二次函数,不等式()0f x <的解集是()05,,且()f x 在区间[]2-,4上的最大值是28. (1)求()f x 的解析式;(2)设函数()f x 在[]1x t t ∈+,上的最小值为()g t ,求()g t 的表达式.题型四:动轴动区间型例21.(2022·江苏·楚州中学高一期中)已知函数2()2(0)f x x ax a =-> (1)当2a =时,解关于x 的不等式3()5f x -<<(2)函数()y f x =在[],2t t +的最大值为0,最小值是-4,求实数a 和t 的值.例22.(2022·贵州毕节·高一期末)已知函数2()2(0)f x x ax a =->. (1)当3a =时,解关于x 的不等式5()7f x -<<;(2)函数()y f x =在[],2t t +上的最大值为0,最小值是4-,求实数a 和t 的值.例23.(2022·四川巴中·高一期中)已知a R ∈,函数()f x x x a =-. (1)设1a =,判断函数()f x 的奇偶性,请说明理由;(2)设0a ≠,函数()f x 在区间(),m n 上既有最大值又有最小值,请分别求出m ,n 的取值范围.(只要写出结果,不需要写出解题过程)例24.(2022·江苏苏州·高一期末)已知函数f (x )=x |x ﹣m |+n . (1)当f (x )为奇函数,求实数m 的值;(2)当m =1,n >1时,求函数y =f (x )在[0,n ]上的最大值.例25.(2022·浙江·磐安县第二中学高一开学考试)已知R a ∈,函数()f x x x a =-, (1)当2a =时,写出函数()y f x =的单调递增区间; (2)当2a >时,求函数()f x 在区间[]1,2上的最小值;(3)设0a ≠,函数()f x 在(),m n 上既有最大值又有最小值,请分别求出,m n 的取值范围(用a 表示)例26.(2022·全国·高一课时练习)已知函数()()2222f x x a x a =-++,()()22228g x x a x a =-+--+.设()()(){}1max ,H x f x g x =,()()(){}2min ,H x f x g x =.记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=______.例27.(2022·浙江·温州市第二十二中学高一开学考试)函数()f x x x a =-, (1)若()f x 在R 上是奇函数,求a 的值;(2)当2a =时,求()f x 在区间(0,4]上的最大值和最小值;(3)设0a >,当m x n <<时,函数()f x 既有最大值又有最小值,求m n 、的取值范围(用a 表示)题型五:根据二次函数的最值求参数例28.(2022·全国·高一专题练习)已知抛物线2y x bx c =-++与x 轴的一个交点为(1,0)-,且经过点(2,)c .(1)求抛物线与x 轴的另一个交点坐标.(2)当2t x t ≤≤-时,函数的最大值为M ,最小值为N ,若3M N -=,求t 的值.例29.(2022·全国·高一专题练习)若函数f (x )=ax 2+2ax +1在[-1,2]上有最大值4,则a 的值为( ) A .38B .-3C .38或-3D .4例30.(2022·全国·高一课时练习)函数()f x x x a =-在区间()0,1上既有最大值又有最小值,则实数a 的取值范围是( ) A .)222,0⎡-⎣ B .()0,222 C .2⎡⎫⎪⎢⎪⎣⎭D .)222,1⎡⎣例31.(2022·上海交大附中高一阶段练习)已知二次函数[]224,0,y x x x m =-+∈的最小值是3,最大值是4,则实数m 的取值范围是___________.例32.(2022·湖北黄石·高一期末)已知函数21()2f x x x =-+.若()f x 的定义域为[,]m n ,值域为[2,2]m n ,则m n +=__________.【过关测试】 一、单选题1.(2022·甘肃·民勤县第一中学高一阶段练习)有如下命题:①若幂函数()y f x =的图象过点12,2⎛⎫⎪⎝⎭,则()132f >; ②函数()()110,1x f x a a a -=+>≠的图象恒过定点()1,2; ③函数()1221log f x x x =--有两个零点; ④若函数()224f x x x =-+在区间[]0,m 上的最大值为4,最小值为3,则实数m 的取值范围是[]1,2.其中真命题的序号为( ). A .①②B .②④C .①④D .②③2.(2022·全国·高一专题练习)若函数2()23f x x bx a =-+在区间[0,1]上的最大值是M ,最小值m ,则M m -( )A .与a 无关,且与b 有关B .与a 有关,且与b 无关C .与a 有关,且与b 有关D .与a 无关,且与b 无关3.(2022·河南·郏县第一高级中学高一开学考试)已知()f x 为奇函数,且当0x >时,2()42f x x x =-+,则()f x 在区间[]4,2--上( ) A .单调递增且最大值为2 B .单调递增且最小值为2 C .单调递减且最大值为-2D .单调递减且最小值为-24.(2022·黑龙江·哈尔滨德强学校高一期中)已知函数()22f x x x a a =-++在区间[0,2]上的最大值是1,则a 的取值范围是( ) A .10,2⎡⎤⎢⎥⎣⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .1,2⎡⎫+∞⎪⎢⎣⎭D .110,,22⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭5.(2022·湖北·恩施土家族苗族高中高一阶段练习)已知函数2y x ax b =++(,R a b ∈)的最小值为0,若关于x 的不等式2x ax b c 的解集为{}|4x m x m <<+,则实数c 的值为( ) A .9B .8C .6D .46.(2022·河南·濮阳一高高一期中(理))已知定义域为R 的函数()f x 满足()()13f x f x +=,且当(]01x ∈,时,()()41f x x x =-,则当(]20x ∈-,时,()f x 的最小值为( ) A .181-B .127-C .19-D .13-7.(2022·河北省博野中学高一开学考试)已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两个实数根,则(m +2)(n +2)的最小值是( ). A .7B .11C .12D .168.(2022·陕西商洛·高一期末)若函数()2f x x bx c =++满足()10f =,()18f -=,则下列判断错误的是( )A .1b c +=-B .()30f =C .()f x 图象的对称轴为直线4x =D .f (x )的最小值为-1二、多选题9.(2022·全国·高一课时练习)设函数()21,21,ax x a f x x ax x a -<⎧=⎨-+≥⎩,()f x 存在最小值时,实数a 的值可能是( ) A .2B .-1C .0D .110.(2022·全国·高一课时练习)定义在R 上的奇函数()f x 在(),0∞-上的解析式()()1f x x x =+,则()f x 在[)0,∞+上正确的结论是( ) A .()00f =B .()10f =C .最大值14D .最小值14-11.(2022·浙江省龙游中学高一期中)已知函数()221f x x mx =-+,则下列结论有可能正确的是( )A .()f x 在区间[]1,2上无最大值B .()f x 在区间[]1,2上最小值为()f mC .()f x 在区间[]1,2上既有最大值又有最小值D .()f x 在区间[]1,2上最大值()1f ,有最小值()2f12.(2022·全国·高一单元测试)若[]()()11,9f x x x =+∈,()22()()g x f x f x =+,那么( )A .()g x 有最小值6B .()g x 有最小值12C .()g x 有最大值26D .()g x 有最大值182三、填空题13.(2022·上海·复旦附中高一开学考试)已知M 、N 两点关于y 轴对称,且点M 在双曲线12y x=上,点N 在直线3yx上,设点M 的对称点坐标为(),a b ,则二次函数()2y abx a b x =-++的最小值为______.14.(2022·全国·高一专题练习)已知二次函数22y x x c =-++,当12x -≤≤时,函数的最大值与最小值的差为______15.(2022·全国·高一专题练习)若函数()221f x x ax a =-+-在[0,2]上的最小值为1-.则=a ____.16.(2022·全国·高一专题练习)设函数()2,2,x x a f x x x a ⎧≤=⎨+>⎩,若()f x 有最小值,则a 的取值范围是______. 四、解答题17.(2022·全国·高一专题练习)如图,抛物线23y ax bx =+-与x 轴交于点()1,0A -,()3,0B ,交y 轴于点C .(1)求该抛物线的函数解析式;(2)当1m x m -≤≤时,函数23y ax bx =+-有最小值2m ,求m 的值.18.(2022·全国·高一课时练习)已知函数()()2y x x a =-+,其中R a ∈. (1)若函数的图象关于直线1x =对称,求a 的值; (2)试述函数值的变化趋势及函数的最大值或最小值.19.(2022·全国·高一专题练习)已知函数()221f x x mx =++.(1)若1m =,求()f x 在[]13,-上的最大值和最小值; (2)若()f x 在[]22-,为单调函数,求m 的值; (3)在区间[]12-,上的最大值为4,求实数m 的值.20.(2022·江西省铜鼓中学高一阶段练习)二次函数()()2210g x mx mx n m =-++>在区间[]0,3上有最大值4,最小值0.(1)求函数()g x 的解析式;(2)设()()(2)f x g x a x =+-,且()f x 在[1,2]-的最小值为3-,求a 的值.1121.(2022·全国·高一课前预习)(1)已知函数2()21f x ax ax =++在区间[-1,2]上最大值为4,求实数a 的值;(2)已知函数2()22f x x ax =-+,x ∈[-1,1],求函数()f x 的最小值.22.(2022·天津市武清区杨村第一中学高一期末)已知函数()22f x x mx n =++的图象过点()1,1-,且满足()()23f f -=.(1)求函数()f x 的解析式:(2)求函数()f x 在[],2a a +上的最小值;(3)若0x 满足()00f x x =,则称0x 为函数()y f x =的不动点,函数()()g x f x tx t =-+有两个不相等且正的不动点,求t 的取值范围.。

考点02 二次函数及指对数函数问题的探究(解析版)

考点02  二次函数及指对数函数问题的探究(解析版)

考点02 二次函数及指、对数函数问题的探究【知识框图】【自主热身,归纳提炼】1、(2019南京、盐城一模)已知y =f(x)为定义在R 上的奇函数,且当x >0时,f (x )=e x +1,则f (-ln2)的值为________.【答案】-3【解析】因为f(x)为奇函数,所以f(-ln 2)=-f(ln 2)=-(e ln 2+1)=-(2+1)=-3.2、(2016常州期末) 函数f (x )=log 2(-x 2+22)的值域为________. 【答案】. ⎝⎛⎦⎤-∞,32 【解析】由题意可得-x 2+22>0,即-x 2+22∈(0,22],故所求函数的值域为⎝⎛⎦⎤-∞,32. 3、(2018南京、盐城、连云港二模)函数f(x)=lg (2-x)的定义域为________.【答案】. (-∞,2)【解析】由题意得2-x>0,即x<2,所以函数f(x)=lg (2-x)的定义域为(-∞,2).4、(2018苏州期末)已知4a =2,log a x =2a ,则正实数x 的值为________. 【答案】 12【解析】由4a =2,得22a =21,所以2a =1,即a =12.由log 12x =1,得x =⎝⎛⎭⎫121=12.5、(2015南京调研)设函数f (x )=x 2-3x +a .若函数f (x )在区间(1,3)内有零点,则实数a 的取值范围为________. 【答案】⎝⎛⎦⎤0,94 解法 1 由f (x )=0得a =-x 2+3x =-⎝⎛⎭⎫x -322+94.因为x ∈(1,3),所以-⎝⎛⎭⎫x -322+94∈⎝⎛⎦⎤0,94,所以a ∈⎝⎛⎦⎤0,94.解法 2 因为f (x )=x 2-3x +a =⎝⎛⎭⎫x -322-94+a ,所以要使函数f (x )在区间(1,3)内有零点,则需f ⎝⎛⎭⎫32≤0且f (3)>0,解得0<a ≤94.解后反思 解法1将函数有零点的问题转化为方程后,再分离出参数a ,从而转化为求函数的值域来加以解决,这体现了函数与方程之间的相互转化关系的应用;解法2则是借助于函数的图像,通过数形结合的方法来解决的.6、(2015苏州期末) 已知函数f (x )=lg ⎝⎛⎭⎫1-a 2x 的定义域是⎝⎛⎭⎫12,+∞,则实数a 的值为________. 【答案】 2【解析】解法1 由1-a 2x >0,得2x >a .显然a >0,所以x >log 2a .由题意,得log 2a =12,即a = 2.解法2 (秒杀解法)当x =12时,必有1-a2x =0,解得a = 2.7、 (2018苏北四市、苏中三市三调)已知函数f (x )=x 2+ax +b (a ,b ∈R )的图像与x 轴相切,若直线y =c 与y =c +5分别交f (x )的图像于A ,B ,C ,D 四点,且四边形ABCD 的面积为25,则正实数c 的值为________.【答案】4【解析】:由题意得a 2=4b .又由x 2+ax +b =c 得AB =|x 1-x 2|=a 2-4(b -c )=2c .同理CD =2c +5.因为四边形ABCD 为梯形,所以25=12(2c +5+2c )×5,解得c =4.8、(2017徐州、连云港、宿迁三检)如图,已知正方形ABCD 的边长为2,BC 平行于x 轴,顶点A ,B 和C 分别在函数13log a y x =,22log a y x =和3log a y x =(1a >)的图象上,则实数a 的值为 ____ .【答案】2【解析】设)log 3,(t t A a (0>t ),因为正方形ABCD 的边长为2,所以)log 2,(t t B a ,)log 2,(2t t C a ,则⎩⎨⎧=-=-2log 2log 322t t t t a a ,即⎩⎨⎧==--2log 022t t t a ,解之得⎩⎨⎧==22a t ,即所求的实数a 的值为2.9、(2017徐州、连云港、宿迁三检)已知对于任意的(,1)(5,)x ∈-∞+∞U ,都有22(2)0x a x a --+>,则实数a 的取值范围是 ▲ .【答案】 ]5,1(【解析】 当04)2(42<--=∆a a ,即0452<+-a a ,41<<a 时,满足题意;当04)2(42≥--=∆a a ,即0452≥+-a a ,1≤a 或4≥a 时,则⎪⎪⎪⎩⎪⎪⎪⎨⎧≥+--≥+--<---<0)2(1050)2(2152)2(2122a a a a a ,解之得⎪⎩⎪⎨⎧≤≤<<5573a a a ,所以53≤<a ,又因为1≤a 或4≥a ,所以54≤≤a ,综上所述,实数a 的取值范围为]5,1(。

考点08 二次函数在闭区间上的最值(值域)问题的解法(解析版)

考点08  二次函数在闭区间上的最值(值域)问题的解法(解析版)

专题二函数考点8 二次函数在闭区间上的最值(值域)问题的解法【方法点拨】一、知识梳理二、二次函数在闭区间上的最值(值域)问题的解法【高考模拟】1.已知函数()bf x ax x=+,若存在两相异实数,m n 使()()f m f n c ==,且40a b c ++=,则||m n -的最小值为( )A .22B 3C 2D 3【答案】B 【分析】由题设可得20(0)ax cx b x -+=≠,又()()f m f n c ==即,m n 为方程两个不等的实根,即有,c bm n mn a a+==,结合2||()4m n m n mn -=+-40a b c ++=得2||16()41b bm n a a-=⋅+⋅+.【解析】由题意知:当()bf x ax c x=+=有20(0)ax cx b x -+=≠, ∵()()f m f n c ==知:,m n 是20(0,0,0)ax cx b x a b -+=≠≠≠两个不等的实根.∴,c b m n mn a a +==,而2224||()4c ab m n m n mn a--=+-= ∵40a b c ++=,即4c b a =--,∴||m n -=b t a =,则||m n -==∴当18t =-时,||m n -故选:B 【点睛】关键点点睛:由已知条件将函数转化为一元二次方程的两个不同实根为,m n ,结合韦达定理以及||m n -=.2.已知函数2()f x ax bx c =++,满足(3)(3)f x f x +=-,且(4)(5)f f <,则不等式(1)(1) f x f -<的解集为( )A .(0,)+∞B .(2,)-+∞C .(4,0)-D .(2,4)【答案】C 【分析】由题设知()f x 关于3x =对称且开口向上,根据二次函数的对称性(1)(1)f x f -<有115x <-<,求解集. 【解析】依题意,有二次函数关于3x =对称且开口向上,∴根据二次函数的对称性:若(1)(1)f x f -<,即有115x <-<, ∴40x -<<. 故选:C 【点睛】关键点点睛:由题设可得()f x 关于3x =对称且开口向上,根据对称性求函数不等式的解集即可. 3.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( ) A .1-B .0C .1D .2【答案】A 【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈ 使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥, 利用导数判断()g x 的单调性求最小值即可. 【解析】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, ()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-,整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.4.已知函数2()26f x x ax =+--,若存在a R ∈,使得()f x 在[2,]b 上恰有两个零点,则实数b的最小值为( )A .B .4C .2+D .2+【答案】C 【分析】由函数在[2,]b 上恰好有2个零点可得,可得零点必在区间的端点,讨论零点为2和b 时,解得a 的值,将a 的值代入使得函数值f (b )0=求出b 的值即可. 【解析】因为函数2())|2|6f x x ax =+--在[2,]b 上恰有两个零点,所以在2x =与x b =时恰好取到零点的最小值和最大值时,实数b 取最小值, 若2x =,()f x 的零点满足f (2)2|222|60a =+--=,解得2a =,或4a =-,当2a =,2()|22|6f x x x =+--,满足()f x 在[2,]b 上恰好有2个零点,则f (b )2|22|60b b =+--=,且2b >,解得2b =(舍)或4b =-(舍),当4a =-时,2()|42|6f x x x =---且2b >,满足()f x 在[2,]b 上恰好有2个零点, 则f (b )2|42|60b b =---=,2b >,所以2|42|6b b --=,即2426b b --=-整理2440b b -+=,解得2b =(舍),或2480b b --=解得:2b =-(舍)或2b =+综上所述,当2b =+()f x 在[2,]b 上恰好有2个零点.故答案为:2+ 【点睛】本题考查函数的零点和方程根的关系,考查了计算能力,同时考查了转化思想与分类讨论思想的应用,属于难题.5.已知数列{}n a 的前n 项和为n S ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则19m n+的最小值为( ) A .145B .114C .83D .103【答案】B【分析】运用数列的递推式和等比数列的定义、通项公式可得2nn a =.求得6m n +=,()19119191066m m n m n n n m n m ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭,运用基本不等式,检验等号成立的条件,根据单调性即可得出结果. 【解析】解:22n n S a =-,可得11122a S a ==-,即12a =,2n ≥时,1122n n S a --=-,又22n n S a =-,相减可得1122n n n n n a S S a a =-=-﹣﹣,即12n n a a -=,{}n a 是首项为2,公比为2的等比数列.所以2nn a =.64m n a a =,即2264m n ⋅=,得6m n +=,所以()191191911010666m m n m n m n m n n ⎛⎛⎫⎛⎫+=++=++≥+ ⎪ ⎪ ⎝⎭⎝⎭⎝ 181663=⨯=, 当且仅当9n m m n=时取等号,即为32m =,92n =.因为m ,n 取整数,所以均值不等式等号条件取不到,则1983m n +>, 因为19196m n y m m +=+=-,在30,2⎛⎫⎪⎝⎭上单调递减,在3(,)2+∞上单调递增,所以当2m =,4n =时,19m n+取得最小值为114.故选:B. 【点睛】本题考查数列的通项公式的求法,运用数列的递推式和等比数列的定义、通项公式,考查基本不等式的运用,考查化简运算能力,属于中档题.6.已知函数()11,021,232x x x f x x -⎧-≤≤⎪=⎨⎛⎫<≤⎪ ⎪⎝⎭⎩,若存在实数123,,x x x ,当12303x x x ≤<<≤时,()()()123f x f x f x ==,则()2312x f x x x +的最小值是( ).A .58B .516C .532D .564【答案】C 【分析】作出分段函数的图像,结合图像确定123,,x x x 的范围及等量关系,再将所求式子转化为关于3x 的函数,利用函数的单调性求解最小值. 【解析】 如图:122x x += ,312112x x -⎛⎫-= ⎪⎝⎭即312112x x -⎛⎫=+ ⎪⎝⎭,()33112312111222x x x f x x x --⎡⎤⎛⎫⎛⎫+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=+ 令311,2x t t -⎛⎫=∈ ⎪⎝⎭1142⎡⎫⎪⎢⎣⎭,,则()()2321212x f x t t x x =++ 当14t =时取得最小值532. 故选C【点睛】本题主要考查分段函数图像、函数零点、函数最小值的应用,解题中主要应用了数形结合的思想、换元思想、函数思想,属于中档题;解题的关键有两个:一是准确作出分段函数图像,利用已知条件确定出123,,x x x 范围以及122x x +=;二是将所求式子转化为关于3x 的函数,利用函数的性质求最小值.7.已知实数x 、y 满足{24 2y xx y y ≤+≤≥-,若存在x 、y 满足()()22211(0)x y r r ++-=>,则r 的最小值为( )A .1B .2C .423D .523【答案】B【解析】试题分析:可行域为直线,24,2y x x y y =+==-围成的三角形区域, (),x y 到点()1,1-的距离最小值为2,所以r 的最小值为2考点:线性规划问题8.若实数a 、b 、c +∈R ,且2256ab ac bc a +++=-,则2a b c ++的最小值为( ) A .51- B .51+C .252+D .252-【答案】D 【解析】因为2256ab ac bc a +++=-,所以2ab a ac bc +++()()a a b c a b =+++()()a c a b =++()262551=-=- ,所以()()()()22a b c a c a b a c a b ++=+++≥++=252-,当且仅当()()a c a b +=+时,等号成立. 故选D.点睛:本题主要考查均值不等式的灵活应用,关键是对已知等式分解为()()()2=51a c a b ++-.9.已知圆和两点,若圆上存在点,使得,则的最小值为( )A .B .C .D . 【答案】D 【解析】试题分析:由题意以为直径的圆与圆有公共点,则,解得.所以的最小值为1,故选D .考点:两圆的位置关系.【名师点睛】1.两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到. 10.已知函数()1ln ax f x xe x ax -=--,21,a e ⎛⎤∈-∞- ⎥⎝⎦,函数()f x 的最小值M ,则实数M 的最小值是() A .1- B .1e-C .0D .31e-【答案】C 【分析】求得()()11'1ax f x ax e x -⎛⎫=+- ⎪⎝⎭,先证明110ax e x --≤,可得当10,x a ⎛⎫∈- ⎪⎝⎭时,()f x 单调递减,当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,(),f x 单调递增,则()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭,设(2210,,1ln t e M t e t a -⎤-=∈=-+⎦,()()22ln 10,t h t t t e e=-+<≤可证明()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ≥=,从而可得结果.【解析】 求得()()()1111111'11ax ax ax ax ax f x eaxe a e ax ax e x x x ----+⎛⎫=+--=+-=+- ⎪⎝⎭ 考察11ax y ex -=-是否有零点,令0y =, 可得1ln x a x -=,记()1ln xx xϕ-=,()2ln 2'x x xϕ-=,()x ϕ在()20,e 上递减,在()2,e +∞上递增, 所以()min x ϕ= ()2e ϕ 21e =-,即21ln 1x x e-≥-, 因为21a e ≤-,所以11ln 10ax x a e x x--≤⇔-≤, 故可知,当10,x a ⎛⎫∈-⎪⎝⎭时,()()10,'0,ax f x f x +>≤单调递减, 当1,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()()10,'0,ax f x f x +<≥单调递增,从而由上知()2min 1111ln f x f e a a a -⎛⎫⎛⎫=-=-+-- ⎪ ⎪⎝⎭⎝⎭, 设(()222210,,1ln 10t t e M t e t lnt t e a e -⎤-=∈=-+=-+<≤⎦, 记()()()22211ln 10,'0,t h t t t e h t e e t=-+<≤=-≤()h t 在(20,e ⎤⎦上单调递减,()()20h t h e ∴≥=,M ∴的最小值为0.故选C.【点睛】本题主要考查利用导数判断函数的单调性以及函数的最值,属于难题.求函数()f x 最值步骤:(1) 求导数()f x ';(2)判断函数的单调性;(3)若函数单调递增函数或单调递减,利用单调性求最值;(4) 如果只有一个极值点,则在该处即是极值也是最值;(5)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小. 11.已知函数()1f x x a =+,若存在,42ππϕ⎛⎫∈ ⎪⎝⎭,使()()sin cos 0f f ϕϕ+=,则实数a 的取值范围是( )A .1,22⎛⎝⎭B .122⎛⎫-- ⎪ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,02⎛⎫-⎪⎝⎭【答案】B【解析】 由题意,110sin cos aaφφ+=++ 有解∴sinφ+a+cosφ+a=0∴-(φ+4π) ∵φ∈(4π,2π), ∴φ+4π∈(2π,34π),∴sin (φ+4π)∈(2,1)(φ+4π)∈(1∴-2a ∈(1∴a ∈12⎛⎫- ⎪ ⎪⎝⎭。

培优专题01 二次函数含参数最值问题(解析版)高一数学同步教学题型(人教A版2019必修第一册)

培优专题01 二次函数含参数最值问题(解析版)高一数学同步教学题型(人教A版2019必修第一册)

培优专题01二次函数含参数最值问题【题型目录】题型一:定轴动区间问题题型二:定区间动轴问题题型三:含绝对值二次函数问题题型四:定义域为[]n m ,,值域为[]kn km ,求参数问题题型五:二次函数值域包含性问题【典型例题】题型一:定轴动区间问题【例1】已知二次函数满足2()(0)f x ax bx c a =++≠,满足(1)()21f x f x x +-=-,且(0)0f =.(1)求()f x 的解析式;(2)当[]()2R x t t t ∈+∈,时,求函数()f x 的最小值()g t (用t 表示).【答案】(1)()22f x x x=-(2)()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩【分析】(1)由题意可得0c =,再代入(1)()21f x f x x +-=-到2()(0)f x ax bx a =+≠,化简可求出,a b ,从而可求出()f x 的解析式.(2)求出抛物线的对称轴,然后分1,21t t ≥+≤和11t t <<+三种情况求解函数的最小值.【详解】(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)0f =,(1)()21f x f x x +-=-,所以0c =,()()221121221a x b x ax bx x ax a b x +++--=-⇒++=-,所以221a a b =⎧⎨+=-⎩,得12a b =⎧⎨=-⎩.所以()22f x x x =-.(2)()22f x x x =-是图象的对称轴为直线1x =,且开口向上的二次函数.当1t ≥时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递增,则()()2min 2f x f t t t ==-;当21t +≤即1t ≤-时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递减,则()()()()22min 22222f x f t t t t t =+=+-+=+;当11t t <<+,即11t -<<时,()()()2min 11211f x f ==-=-;综上所述()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩.【例2】已知定义在R 上的函数()f x ,满足()226f x x x -=--.(1)求()f x 的解析式.(2)若()f x 在区间[]0,m 上的值域为25,44⎡⎤--⎢⎥⎣⎦,写出实数m 的取值范围(不必写过程).(3)若()f x 在区间[],2t t +上的最小值为6,求实数t 的值.【例3】对于函数()f x ,若存在0R x ∈,使得()00f x x =成立,则称0x 为()f x 的不动点,已知函数2()(2)4f x ax b x =+++的两个不动点分别是-2和1.(1)求,a b 的值及()f x 的表达式;(2)当函数()f x 的定义域是[,1]t t +时,求函数()f x 的最大值()g t .【例4】已知函数()f x 为二次函数,不等式()0f x >的解集是()1,5,且()f x 在区间[1,4]-上的最小值为12-.(1)求()f x 的解析式;(2)设函数()f x 在[,1]t t +上的最大值为()g t ,求()g t 的表达式.【答案】(1)()265f x x x =-+-(2)()224,24,2365,3t t tg t t t t t ⎧-+≤⎪=<<⎨⎪-+-≥⎩【分析】(1)根据题意,设()()1(5)f x a x x =--,可得函数的对称轴3x =,再根据函数在[]1,4-上的最小值,求出a ,可得函数()f x 数的表达式;(2)分13t + 时、3t 时和23t <<时三种情况,分别讨论函数的单调性,可得相应情况下函数的最大值,最后综合可得()g t 的表达式.。

专题1含参二次函数 - 解析版

专题1含参二次函数 - 解析版

专题1含参二次函数含参数的二次函数,由于渗透参数导致二次函数的许多性质具有不确定性,再加上绝对值进行复合或分段,求解难度加大、卡壳点增多,需要解题思维的智慧点来支撑.二次函数问题在高考数学命题中永不过时,必须积累大量智慧点,积累破解难点的学习经验.一、二次函数不同表达式间的链接问题1:已知,b c ∈R ,函数()2f x x bx c =++在()0,1上与x 轴有两个不同的交点,求()21c c b ++的取值范围.【解析】卡壳点:不会将二次函数系数与零点沟通.应对策略:参数与零点间的联系通过二次函数不同表达式间的联系来建立.问题解答:设()f x 的两个零点分别为12,x x ,且1201x x <<<,则()()()12f x x x x x =--. 于是()()()()121200,11110c f x x c b f x x ==>++==-->,从而()()()()()()2221122121211101101112216x x x x c c b c c b f f x x x x +-+-⎛⎫⎛⎫<++=++==--≤= ⎪ ⎪⎝⎭⎝⎭.由1201x x <<<知,等号不成立,所以()21c c b ++的取值范围是10,16⎛⎫⎪⎝⎭.【反思】二次函数至少有三种表达形式,即一般式、零点式和对称式,对这三种形式之间的联系不熟悉是产生解题痛点的原因,如何将目标参数与函数零点结合起来?“桥梁”就是二次函数的零点式.在确定最值时,零点式的结构给我们启示,借助基本不等式实现“元”的消失,从而获得参数的范围.二、含绝对值的二次函数结构等价转化问题2:已知函数()211f x x x a x =+-++在R 上有两个不同的零点,则实数a 的取值范围是 【解析】卡壳点:不会将复杂函数的零点转化为两个函数图象交点思考.应对策略:既含参数又有绝对值的二次函数,可将其复杂结构在其本质结构(即函数零点、方程实根、图象交点)间相互转化.1问题解答:()211f x x x a x =+-++在R 上有两个不同的零点,可转化为方程(211)a x x x +=-+-在R 上有两个不同的实根,再转化为两函数1y a x =+与()()21y g x x x ==-+-的图象有两个不同交点.而()()2221,1,11, 1.x x x g x x x x x x ⎧-+-≤=-+-=⎨--+>⎩画出1y a x =+与()y g x =的图象,如图1.显然当0a <时,开口向下的“V”形线才能与拋物线相交,“V”形线开口的大小决定它们交点的个数.根据图象可知,只需考虑方程组()21,1y a x y x x ⎧=+⎨=-+-⎩和()21,1y a x y x x ⎧=-+⎨=-+-⎩的解的情况,考虑图象相切的情形,则联立方程组所得方程()2110x a x a +-++=和2(1x -+a)10x a -+=都有唯一解. 由()()21410a a --+=得323a =-由()()21410a a +--=得323a =--所以当323323a --<<-,1y a x =+与()y g x =的图象才会有两个交点.【反思】面对复杂的代数式结构,冷静地分解代数式,尝试寻找代数式的主体结构(如二次函数与一次函数图象)间的关系,通过数形结合的方法解决.三、二次复台函数不动点转化之桥一一零点表达问题3:已知,b c ∈R ,函数()2f x x bx c =++,它的不动点为12,x x ,且212x x ->,若四次方程()()f f x x =的另两个根为34,x x ,且34x x <,试判断这四个根的大小. 【解析】卡壳点:不会将二次复合函数与函数零点建立关系.应对策略:理解函数不动点概念,将复合结构用零点式表达,并进行化简与转化. 问题解答:由题意得()()()12f x x x x x x -=--,即()()()12f x x x x x x =--+. 于是()()()()()12f f x x f x x f x x f x x ⎡⎤⎡⎤-=--+-⎣⎦⎣⎦()()()()()()12112212x x x x x x x x x x x x x x x x ⎡⎤⎡⎤=--+---+-+--⎣⎦⎣⎦()()()()()()12121211x x x x x x x x x x x x =---+-++-- ()()()()1212111x x x x x x x x ⎡⎤=---+-++⎣⎦.所以34,x x 为方程()()()121110g x x x x x =-+-++=的两个根. 由212x x ->,得()()11222120,20g x x x g x x x =-+=-+.如图2,因为二次函数()g x 的图象开口向上,所以方程()0g x =在区间(∞-,)1x 和()12,x x 上各有一个根.又34x x <,得()()31412,,,x x x x x ∞∈-∈.所以3142x x x x <<<.【反思】函数()f x 的不动点12,x x 即为方程()0f x x -=的两个实根.如何比较这四个根的大小?思路隐藏得比较深,但二次函数的零点表达式又帮助我们建立起一种联系,特别是复合函数的简单化,使我们再一次认识此函数的本来面目.二次复合函数的根的分布情况,最终用零点定理确定.四、合参二次函数抓“形式”促“结构”问题4:设()(){}()()()()()(),,min ,,,f x f xg x f x g x g x f x g x ⎧≤⎪=⎨>⎪⎩若()2f x x px q =++的图象经过两点()(),0,,0αβ,且存在整数n ,使得1n n αβ<<<+,则A.()(){}1min ,14f n f n +>B.()(){}1min ,14f n f n +<C.()(){}1min ,14f n f n +=D.()(){}1min ,14f n f n +≥【解析】卡壳点:不会将较小者函数与零点建立关系.应对策略:深刻理解较小者函数的数学符号,借助零点式进行转化.问题解答:设()()()f x x x αβ=--,图象如图3,由题意可知()()()0f n n n αβ=-->.()()()()()()111f n f n n n n n αβαβ+=--+-+-()()()()11n n n n αβαβ=--+-+- ()()()()11n n n n ααββ=-+--+- 22111,2216n n n n ααββ-++--++-⎛⎫⎛⎫≤= ⎪ ⎪⎝⎭⎝⎭ 当且仅当1,1n n n n ααββ-=+--=+-时,等号成立. 但由1n n αβ<<<+知等号不成立,所以()(){}()()21min ,1116f n f n f n f n +≤+<, 即()(){}1min ,14f n f n +<.【反思】因为()(){}()()(){}()min ,1,min ,11f n f n f n f n f n f n +≤+≤+,所以()(){}()()2min ,11f n f n f n f n +≤+.问题转化为探求()()1f n f n +的最大值,此时二次函数的零点式为探求()()1f n f n +的最大值起到了桥梁作用,对()()1f n f n +零点式的代数结构的识别为基本不等式的运用奠定了基础.任何数学问题的外在形式中必隐藏着其本质结构,对于二次函数,其表达形式至少有一般式、零点式和顶点式,它们之间联系紧密,可以相互转化.本题中抓住()()()()()()111f n f n n n n n αβαβ+=--+-+-这一智慧点,就能解决问题.五、含参二次函数抓“形态”促“化数”因为二次函数的图象是最基本的图形,若题目给出了特定区间上的抛物线,则应将抛物线补充“完整”,以帮助分析、寻找解题途径与思路.问题5:设函数()()2,f x x ax b a b =++∈R ,当214a b =+时,求函数()f x 在[]1,1-上的最小值()g a 的表达式.【解析】卡壳点:不会分类处理定区间上抛物线弧的最值. 应对策略:抓住二次函数的几何形态,分类将二次函数代数式转化.3问题解答:()22221142a a f x x ax b x ax x ⎛⎫=++=+++=++ ⎪⎝⎭,其图象的对称轴方程为2a x =-.(1)当12a -<-,即2a >时,()()2124a g a f a =-=-+,如图4.(2)当112a -≤-≤,即22a -≤≤时,()12a g a f ⎛⎫=-= ⎪⎝⎭,如图5.(3)当12a ->,即2a <-时,()()2124a g a f a ==++,如图6.所以()222,2,41,22,2, 2.4a a a g a a a a a ⎧-+>⎪⎪⎪=-≤≤⎨⎪⎪++<-⎪⎩【反思】从抛物线的形态上看,抓住对称轴2ax =-进行分类讨论,求出a 的取值范围即可得证.此问题涉及二次函数图象的形态,㧓住对称轴思考,帮助分析此二次函数的最值.六、含参二次函数抓“分类”促“分解”因为高中二次函数问题中一般含有参数或绝对值,也可能是复合或分段函数,求解时都离不开分类讨论,通过分类达到分解综合问题之目的.对于二次函数的分类,关键还是对称轴,因为它制约着二次函数的最值与值域.问题6:设()()()22222,0,43,0,k x a k x f x x a a x a x ⎧+-≥⎪=⎨+++-<⎪⎩其中a ∈R .若对任意的非零实数1x ,存在唯一的非零实数()212x x x ≠,使得()()12f x f x =成立,则k 的取值范围为【解析】卡壳点:不会从几何角度思考分段、任意、存在、含参的二层分类. 应对策略:抓住二次函数图象的对称轴分类,将综合问题按层分解. 问题解答:设()()()()22222,43g x k x a k h x x a a x a =+-=+++-.(1)若二次函数()h x 图象的对称轴在y 轴的左侧,对任意的非零实数1x 就会破坏()212x x x ≠的唯一性.(2)若二次函数()h x 图象的对称轴不在y 轴的左侧,即240a a +≤.①两个函数的图象在y 轴上不交于同一点,对任意的非零实数1x ,会破坏()212x x x ≠的唯一性; ②因为两个函数的图象在y 轴上交于同一点,即()()00g h =,所以69k a =-在[]4,0-上有解,从而[]33,9k ∈--.【反思】一个分段函数中含有二次函数(的一部分),从形上思考分类,抓住抛物线的对称轴进人第一层分类,然后抓住分段点位置进人第二层分类,思维的有序性是解决问题的关键. 强化练习1.设函数()f x 的定义域为R ,满足()()12f x f x +=,且当(]0,1x ∈时,()()1f x x x =-.若对任意(],x m ∞∈-,都有()89f x ≥-,则m 的取值范围是A.9,4∞⎛⎤- ⎥⎝⎦B.7,3∞⎛⎤- ⎥⎝⎦C.5,2∞⎛⎤- ⎥⎝⎦D.8,3∞⎛⎤- ⎥⎝⎦【解析】如答图, 作出函数图象, 可以直接排除选项 C,D.因为当 x ∈(0,1] 时, f(x) 的值域为 [−14,0], 所以 把函数值转移到 [−14,0] 上, 才能求出对应的 x 值.f(x)=2f(x −1)=4f(x −2)=−89,即 f(x −2)=−29=(x −2)(x −3), 代值检验可知 选 B.【反思】人们常常利用周期性把自变量转移到某个区间, 求得函数值, 现在反过来, 需要根据值域, 用类似周期的关系 把自变量进行转移.2.已知a ∈R ,设函数()222,1,ln ,1,x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为A.[]0,1B.[]0,2C.[]0,eD.[]1,e【解析】由 f(0)⩾0, 得 a ⩾0.当 0⩽a ⩽1 时, f(x)=x 2−2ax +2a =(x −a)2+2a –a 2⩾2a −a 2 =a(2−a)>0.当 a >1 时, f(1)=1>0.故当 a ⩾0 时, x 2−2ax +2a ⩾0 在 (−∞,1] 上恒成立.若 x −aln⁡x ⩾0 在 (1,+∞) 上恒成立, 即 a ⩽xln⁡x 在 (1,+∞) 上恒成立. 令 g(x)=xln⁡x , 则 g ′(x)=ln⁡x−1(ln⁡x)2.易知 x =e 为函数 g(x)=xln⁡x 在 (1,+∞) 上唯一的极小 值点, 也是最小值点.故 g(x)min =g(e)=e , 所以 a ⩽e . 综上所述, a 的取值范围为 [0,e], 故选 C.【反思】 分段函数中对二次函数进行分析判断, 对超越函数进行参变分离.3.已知λ∈R ,函数()24,,43,,x x f x x x x λλ-≥⎧=⎨-+<⎩当2λ=时,不等式()0f x <的解集是__.若函数()f x 恰有2个零点,则λ的取值范围是_.若函数()f x 恰有1个零点,则λ的取值范围是若函数()f x 恰有3个零点,则λ的取值范围是____【解析】由 f(x)<0, 解得 1<x <4.画出函数 f(x) 的图象, 如答图所示, 可以判断函数 f(x) 恰有 2 个零点, 此时 1<λ⩽3,λ>4.令 y =x −4,y =x 2−4x +3, 分析当 λ 变化时, 函数零 点的变化情况: (1) 当 λ⩽1 时, 有 1 个零点; (2) 当 1<λ⩽3 时, 有 2 个零点; (3) 当 3<λ⩽4 时, 有 3 个零点; (4) 当 λ>4 时, 有 2 个零点;【反思】 数形结合, 以形促数, 直观判断.4.已知函数()221f x ax x =++,若对任意x ∈R ,都有()()0f f x ≥恒成立,则实数a 的取值范围是_____【解析】显然 a >0, 否则, 当 x →∞ 时, 有 f(f(x)) →−∞, 不符合题意. 当 a >0 时, 函数 f(x) 的值域是 [a−1a,+∞).根据题意, 对函数 f(x) 值域中的任意一个数 t , 都有 f(x)⩾0, 因此 f(x) 没有零点, 或者 f(x) 的较大零点不超 过a−1a.即 4−4a <0, 或者 {4−4a >0,−2+√4−4a 2a ⩽a−1a, 解得实数 a 的取值范围是 [√5−12,+∞). 换一个思路: 根据对称轴 x =−1a<a−1a , 知 f(x) 在 (a−1a ,+∞) 上单调递增, 于是 f (a−1a )⩾0, 解得 a ⩾√5−12 【反思】 此问题考查学生对二次函数性质的理解运用能力, 复合结构阻碍了学生的思维, 只有抓住二次函数的重要 特征, 关于对称轴、单调性与值域的问题才能迎扨而解.5.已知函数()2221f x x x a x a =+--,当[)1,x ∞∈+时,()0f x ≥恒成立,则实数a 的取值范围是______【解析】解法 1 (分离变量法) 当 x ∈[1,+∞) 时, f(x)⩾0 恒成立等价于 ∀x ∈[1,+∞),a 2+√2x −1a − x 2−x ⩽0 恒成立, 解此不等式得⁡−√2x −1+√4x 2+6x −12⩽a ⁡⩽−√2x −1+√4x 2+6x −12. 函数 u(x)=−√2x−1+√4x 2+6x−12 在 [1,+∞) 上 单调递减, 因此 a ⩾u max =u(1)=−2.当 x ∈[1,+∞) 时, 函数 v(x)=−√2x−1+√4x 2+6x−12 ⩾x+2−√2x−12⩾1,且知 v(1)=1, 因此 a ⩽v min =v(1)=1.综上, a 的取值范围是 [−2,1].必要性: 由 f(1)⩾0, 解得 −2⩽a ⩽1. 以下解法只证明 充分性.解法 2 (直接研究 f(x) 的单调性)当 −2⩽a ⩽0 时, f(x) 在 [1,+∞) 上单调递增, 故 f(x)⩾f(1)⩾0.当 0<a ⩽1 时, x 2−√2x −1a ⩾x 2−√2x −1⩾x 2 −x ⩾0.又有 x −a 2⩾1−1=0, 相加可得 f(x)⩾0.综上,充分性得证.解法 3(直接求导法)f ′(x)=2x +1√2x−1=√2x−1−a √2x−1. 函数 y =(2x +1)√2x −1−a 在 [1,+∞) 上单调递 增, 因此 (2x +1)√2x −1−a ⩾3−a >0, 即 f ′(x)>0.∀x ∈[1,+∞), 当 a ∈[−2,1] 时, f(x) 在 [1,+∞) 上 单调递增, 故 f(x)⩾f(1)⩾0.【反思】 在不同思维基础下, 多角度思考, 学会必要性探路 和充分性证明的基本思路.6.已知()2f x ax bx c =++,其中*,,a b c ∈∈N Z ,若方程()0f x x -=的根在()0,1上,求a 的最小值.【解析】令 g(x)=f(x)−x =0 的两根为 x 1,x 2, 则 g(x)=a (x −x 1)(x −x 2).由题设知, g(0)>0,g(1)>0.g(0)g(1)=a 2x 1x 2(1−x 1)(1−x 2)⩽a 2(x 1+1−x 12)2. (x 2+1−x 22)2=a 216, 当且仅当 x 1=x 2=12 时等号成立. 又 a ∈N ∗,b,c ∈Z,g(0)>0,g(1)>0,g(0)=c ⩾1, g(1)=f(1)−1=a +b +c −1⩾1, 所以 g(0)g(1)⩾1.综上可知, a 216⩾1, 即 a 2⩾16,a ⩾4.又 a ∈N ∗, 所以 a 的最小值为 4 .【反思】 二次函数不同表达式的链接. 7.探求()2y f x x x c ==++在定区间[],(,m n m n 为常数)上的最值.【解析】 y =f(x)=x 2+x +c =(x +12)2+c −14. 设 M(c) 和 m(c) 分别表示所求的最大值和最小值.(1) 当 −12⩽m 时, f(x) 在 [m,n] 上单调递增,所以 M(c)=f(n),m(c)=f(m).(2) 当 m <−12⩽m+n 2 时, M(c)=f(n),m(c)= f (−12)=c −14. (3) 当 m+n 2<−12⩽n 时, M(c)=f(m),m(c)= f (−12)=c −14. (4) 当 −12>n 时, f(x) 在 [m,n] 上单调递减,所以 M(c)=f(m),m(c)=f(n).因此 M(c)={f(n),1⩾−(m +n),f(m),1<−(m +n), m(c)={f(m),1⩾−2m,c −14,−2n ⩽1<−2m,f(n),1<−2n.【反思】 一段抛物线弧上最值的分类思考需要整体设计. 不论是动抛物线在定区间上的最值, 还是定抛物线在动区间上的最值, 都需要根据抛物线的对称轴与定义区间的位置关 系进行分类讨论. 此问题含有字母, 抽象表达显得更为重要. 8.如果一个函数的值域与其定义域相同,则称该函数为“同域函数”.已知函数()21f x ax bx a =+++{}210,0x ax bx a x +++≥≥∣. (I)若1,2a b =-=,求()f x 的定义域;(II)当1a =时,若()f x 为“同域函数”,求实数b 的值;(III)若存在实数0a <且1a ≠-,使得()f x 为“同域函数”,求实数b 的取值范围.【解析】(I) 当 a =−1,b =2 时, f(x) 的定义域为 [0,2].(II) 当 a =1 时, f(x)=√x 2+bx +2,x ⩾0.(i) 当 −b 2⩽0, 即 b ⩾0 时, f(x) 的定义域为 [0,+∞), 值域为 [√2,+∞),所以当 b ⩾0 时, f(x) 不是“同域函数”. (ii) 当 −b 2>0, 即 b <0 时, 当且仅当 Δ=b 2−8=0 时, f(x) 是“同域函数”, 此时 b =−2√2. 综上所述, 实数 b 的值为 −2√2.(III) 设 f(x) 的定义域为 A , 值域为 B .(i) 当 a <−1 时, a +1<0, 此时 0∉A,0∈B , 从而 A ≠B,f(x) 不是“同域函数”. (ii) 当 −1<a <0 时, a +1>0. 设 x 0=−b−√b 2−4a(a+1)2a , 则 f(x) 的定义域 A =[0,x 0](1) 当 −b 2a ⩽0, 即 b ⩽0 时, f(x) 的值 域 B = [0,√a +1]. 若 f(x) 是“同域函数”, 则 x 0=√a +1, 从而 b =−(√a +1)2. 又 −1<a <0, 所以实数 b 的取值范围是(−1,0)(2) 当 −b 2a >0, 即 b >0 时, f(x) 的 值 域 B = [0,√4a(a+1)−b 24a ], 若 f(x) 是 “同域函数”, 则 x 0= √4a(a+1)−b 24a , 从而 b =√b 2−4a(a +1)(√−a −1)(∗).此时, 由 √−a −1<0,b >0 可知, (∗) 式不成立.综上所述, 实数 b 的取值范围是 (−1,0).【反思】 分析双参数时, 固定其中的一个参数, 对另一个参 数分类讨论.。

二次函数问题

二次函数问题

二次函数问题二次函数最值对于二次函数y=a(x-m)2+n,x ∈[t,s]求最值的问题;解决此类问题的基本思路为:根据对称轴相对定义域区间的位置,利用分类讨论思想方法。

为做到分类时不重不漏,可画对称轴相对于定义域区间的简图分类。

①表示对称轴在区间[t ,s ]的左侧,②表示对称轴在区间[t ,s ]内且靠近区间的左端点,③表示对称轴在区间内且靠近区间的右端点,④表示对称轴在区间[t ,s ]的右侧。

然后,再根据口诀“开口向上,近则小、远则大”;“开口向下,近则大、远则小”即可快速求出最值。

含参数的二次函数求最值的问题大致分为三种题型,无论哪种题型都围绕着对称轴与定义域区间的位置关系进行分类讨论题型一:“动轴定区间”型的二次函数最值 1、求函数2()23f x x ax =-+在[0,4]x ∈上的最值。

分析:先配方,再根据对称轴相对于区间的位置讨论,然后根据口诀写出最值。

解:222()23()3f x x ax x a a =-+=-+- ∴此函数图像开口向上,对称轴x=a①、当a <0时,0距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=0时,min y =3,x=4时,max y =19-8a②、当0≤a<2时,a 距对称轴x=a 最近,4距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=4时,max y =19-8a③、当2≤a<4时,a 距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=a 时,min y =3-a2,x=0时,max y =3④、当4≤a 时,4距对称轴x=a 最近,0距对称轴x=a 最远, ∴x=4时,min y =19-8a ,x=0时,max y =32、已知函数2()(21)3f x ax a x =+--在区间3[,2]2-上最大值为1,求实数a 的值分析:取a=0,a ≠0,分别化为一次函数与二次函数,根据一次函数、二次函数的性质分类讨论.解:1)若a=0,则f(x)=-x-3,而f(x)在3[,2]2-上取不到最大值为1,∴a ≠02)若a ≠0,则2()(21)3f x ax a x =+--的对称轴为0122ax a-=(Ⅰ)若3()12f -=,解得103a =-,此时0233[,2]202x =-∈-a<0, 0()f x 为最大值,但23()120f -≠(Ⅱ) 若(2)1f =解得34a =此时013[,2]32x =-∈-0310,43a x =>=-距右端点2较远(2)f 最大值符合条件(Ⅲ) 若0()1f x =解得32a -±=当302a -+=<时034[,2]2x =-∉-当302a --=<时034[,2]2x =∈-综收所述34a =或32a --=评注:此类题属于“动轴定区间”型的二次函数最值,解决此类问题的关键是讨论对称轴相对于定义域区间的位置,讨论时做到不重不漏。

2020年高考数学(理)函数与导数 专题04 二次函数及其性质(解析版)

2020年高考数学(理)函数与导数 专题04 二次函数及其性质(解析版)

函数与导数04 函数 二次函数及其性质一、具体目标:1.掌握二次函数的图象与性质,2.会求二次函数的最值(值域)、单调区间. 二、知识概述:二次函数1.一元二次方程的相关知识:20(0)ax bx c a ++=≠根的判别式: ;判别式与根的关系:________________________; 求根公式:_____________________;韦达定理:____________________.ac b 42-=∆;⎪⎩⎪⎨⎧∈<∆==∆≠>∆φx x x x x ,0,0,02121;aac b b x242-±-=;⎪⎪⎩⎪⎪⎨⎧=-=+a c x x a b x x 2121 2.二次函数的相关知识: 2(0)y ax bx c a =++≠定义域:________________________; 值域:________________________; 对称轴方程:____________________; 顶点坐标:____________________; 与y 轴的交点坐标:______________. 二次函数的顶点式:______________.二次函数的零点式:__________________;与x 轴的交点坐标:_______________________;定义域:R ; 值域:),44[,02+∞->abac a ;]44,(,02ab ac a --∞< 【考点讲解】对称轴方程:ab x 2-=; 顶点坐标:)44,2(2a b ac a b --; 与y 轴的交点坐标:),0(c .二次函数的顶点式:h k x a y +-=2)(.二次函数的零点式:))((21x x x x a y --=;与x 轴的交点坐标:)0,24(2aacb b -±-; 3.二次函数2(0)y ax bx c a =++≠的单调性:当0a >时,单调增区间是___________;单调减区间是__________. 当0a <时,单调增区间是___________;单调减区间是__________.0>a 时),2(+∞-a b ;)2,(a b --∞.0<a 时)2,(a b --∞;),2(+∞-ab4.二次函数2(0)y ax bx c a =++≠在某一闭区间上的最值: 首先确定二次函数的顶点:_______________ ①若顶点的横坐标在给定的区间上,则:0a >时,在顶点处取得最____值,为_______,在离对称轴较远的端点取得最____值. 0a <时,在顶点处取得最____值,为_______,在离对称轴较远的端点取得最____值.②若顶点的横坐标不在给定的区间上,则:0a >时,最___值在离对称轴较近的端点处取得,最___值在离对称轴较远的端点处取得. 0a <时,最___值在离对称轴较近的端点处取得,最___值在离对称轴较远的端点处取得.)44,2(2a b ac a b --;①小,a b ac 442-,大;大,ab ac 442-,小 ②小 大 大 小5.考点探析:从近几年的高考试题来看,二次函数图像的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用.高考对幂函数,只需掌握简单幂函数的图象与性质.6.温馨提示:(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解. 7.根据已知条件确定二次函数解析式,一般用待定系数法,选择规律如下: (1)已知三个点的坐标,可选用一般式;(2)已知顶点坐标、对称轴、最大或最小值,可选用顶点式; (3)已知抛物线与x 轴的两交点坐标,可选用两点式. 【常见题型】1.二次函数的解析式:(1)已知二次函数的图象经过三点错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含参数的二次函数求值域问题专题
有时参数在区间上, 有时参数在解析式上, 构成了有时轴动区间定,
而有时轴定区间动
1 函数f(x)=x 2
-2x2的定义域为
Li, mJ 值域为41…由实数m 的取值范围是
H, 31
2
已知函数f(x)=x 2 -2x+3在区间d, rnJk 有最大值3,最小值2,则实数m 的取值范围是 匕2】
2 2
3 已知f (x) = -4x
+ 4ax 4a -a 在区间[0,
1]内有最大值一5,求a 的值・
3 a
解:•・• f(x)的对称轴为X0二厂①当0 <- <1,即o <a <2H^t[f (x)]max
② 当 a < 0时[f ( x)] max= f (0) = —4a — 8 2
= -5,= a = —5;
③ 当 a >2时[f ( x)lmax= f ⑴=-4 殳2 = -5八 a = ±1 不合; 综上,a =—或a.= —5・
2
4已知定义在区间 [0,3]上的函数f(x)= kx-
解析:V f(x)= k(x- %— k, (1) 当k>0时,二次函数图象开口向上,当 ?k= 1;
(2) 当k<0时,二次函数图象开口向下,当 —3.
(3) 当k= 0时,显然不成立. 故k 的取值集合为{1, — 3}・ 答案:{1, - 3}
o
=—x -ax b 有最小值一1,最大值1 •求使函数取
得最大值和最小值吋相应的
x 的值・
a
解:a>0, /. f(X )对称轴 X = —— V 0 J. [ f ( X )] min = f ( X )= —1 二 3 = b ;
a
2kx 的最大值为3,那么实数k 的取值范围为 ___________ ・
2 x= 3时,f(x)有最大值,f(3) = k - 3-2kx3= 3k= 3
x= 1 时,f(x)有最大值,f(1)= k- 2k=- k= 3?k= 5.
已知 a>0,当 x e 函数 f (x)
\T2 /(\ XI -
①当一2 兰一1 即竝2时,[f(X)]max = f (4) =1= a =1,不合;
a j
②当一1 < 一一<0,即0 < a < 2时,[f ( x)] max = f ( ——) =1 = a = -2 + 2?,
2 2
•I x ==1 一 \ 2 .
2
综上,当X=[时5[f (X)]min =-1;当*1-血时,[f (X)]max =〔・
2 2
・已知函数f(x)= 4x— 4ax+ a— 2a+ 2在区间[0,2]上有最小值3,求a的值.
i —
\lz
(2)当a
l\l/a z/f\
XI
/(\ z/(\
XI XI
U ] \)/ \)/ min
\1/
4—
v T v
〉厂
,①当。

玄严严
u —
-
a2
a
解:J f(x)= 4( x —)-2a+ 2,对称轴为 x=2-
a
①当多,即aso 时,函数f(x)在[0,2]上是增函数,
2
f ( x) min = f (0)=
a — 2a+2. 由a — 2a+ 2= 3,得a=1眾・ •・• a< 0, ?. a=申
a
a
②当 0V$ 2、即 0<a< 4时,f ( X )min =
£()= — 2a + 2・ 计
由一2a + 2= 3,得 a=- ?(0,4),舍去.
2
3 - 7设二次函数f(x)= ax+ 2ax+1在[-3,2]±有最大值4,则实数a 的值为 ____________________ ・或一
O
分析:函数的对称轴X= - 1
当 a>OI3 j 5 f (X )max = f (2) =8a+1=4,解得 a=8
当 av0时,f ( x)max = f (- 1) =-a+1 =4,解得 a=-3
=2 一 + +
8 已知二次函数f (x) ax 2xab 的定义域为[0, 3],而值域为[1, 5],求a> b 的值.
a
③ 当卒,即a¥时,函数f(x)在 由爲一 10a+18= 3,得 a=5±
2
f ( X )min =
f ⑵二 a — 10a+ 18.
a>4,・•・ a= 5+
0.
上是减函数,
综上所述,a= 1
a=
解:对称轴xo =a
a v 1 时,ymin = f [ ) = 2 2a ;
2
1 三 3 乞 3时,ymin = f a )=1-3; a > 3时,y min = f § ) = 10 6a
解:(1)当 a<2 时,fx( hx = f$ )「0 6a ;
⑵当 a *时,fx (烏) = 22a 。

・本题若修改为求函数的最值, 讨论又该怎样进行? 10 解:(1)
(2) (3) (4)
ad 吋,fx(
柱a <2时,
2<a <3吋,
)=106久 f X (扁=f [ )=2 2a ;
2
f*
)=10 6a, f X ( bn = f @ )=1 a
2
吃 kax =
H ) = 2 2a, f x (也=f 0 )=1 a ;
处 3时,Lx =
M ) = 2 2a, f x ( )=10Ga 。

、求函数y = x 2
—4x$在区间t 』1上的眾小值。

解:对称轴xo =2
(1)当 2<tl 卩 t>2时,yen =f1( ) = t 2
-4t 3;
(2) 当 t <2<t +1 即厲 <20t ,ymin = f ? )=^1;
(3) 当 2 >t +1 即 tc 时,y“n=ft(1+ ) = t 2
—2t
改: 1. 本题若修改为求函数的最大值,过程又如何?
(3)
I X \Z [ -^-XZ a
解:f* )=X2+|x—a|* =< 2 5一’这个函数是一个分段函数’由于上下两段上
x -x 1 +x <a
的对称轴分别为直线x=—1 , x=1 ,当,-1 <a<1 , a> 1时原函数的图象分别
2 2 2 2 2 2
如下(1) , (2) , (3)
1 1 ;>
(2)当畝 总=3 ) = a +1;
(1)当农一「时,f (Xh
f-1 亠;
I 2J 4。

相关文档
最新文档