第5章功率谱估计的现代方法

合集下载

现代谱估计-有理谱估计

现代谱估计-有理谱估计

,随 SNR 的下降而降低,增大阶次会增加分辨率,
但可能出现伪峰且方差增大。
3、滑动平均谱估计
3.1 引言
MA 模型隐含了 k q 的自相关函数 rx k 0 ;可以直接得自相关函数可靠 估计,而不需要 MA 模型参数,得到功率谱估计。与 BT 法的区别:BT 法适用 于任何平稳过程、MA 谱估计仅适用于有限阶 MA 模型;BT 法中自相关函数最 大延迟人为确定,MA 谱估计中模型阶次决定最大延迟;BT 不保证谱的非负性, 而 MA 谱估计非负。 MA 模型适合表示无尖峰有深谷的谱,因此不是高分辨率估计。
自相关函数矩阵 Rx p 同时是 Hermition 矩阵和 Toeplitz 矩阵。
2.2.2 AR 过程的线性预测
2.2.2.1 平稳随机过程的线性预测 平稳随机过程的波形估计 最小均方误差准则,线性估计,Wiener-Hopf 方程,正交原理 滤波、预测、平滑 线性最优预测,m 阶一步前向线性预测,m 阶一步后向线性预测,及它们之 间的关系(系数成共轭关系,最小预测误差功率相等) 最优前向预测误差滤波器的最小相位特性 线性最优预测的按阶次递推关系——Levinson 算法 最小均方预测误差的性质(正交性,递推性)及格型结构实现 反射系数的物理含义(前向预测误差和后向预测误差之间相关系数的负值) 2.2.2.2 AR 过程最优线性预测的特殊性质 AR 过程可由求解线性预测系数来实现 若已知自相关函数,可由 Levinson 递推算法得到 AR 参数 AR 过程可用自相关函数、AR 参数和反射系数三组参数等价表示
1.4 经典谱估计和现代谱估计
经典谱估计中,都隐含了这样一个假设:对于未得到的样本数据或未估计出 的自相关函数,认为是零。但实际上这些值并不一定为零,正是由于这种不合理 假设使得经典谱估计较低的分辨率和较大的失真。现代谱估计,对于未得到的样 本数据或未估计出的自相关函数,并不是简单地作零处理,而是认为与得到的样 本数据服从同一模型,估计质量取决于参数估计质量和模型的准确性。 。这是现 代谱估计与经典谱估计最主要的区别。

功率谱估计

功率谱估计

第五章 功率谱估计§5.1 引言从第一章的讨论中,我们已经知道一个随机信号在各时间点上的值是不能先验确定的,它的每个实现(样本)往往是不同的,因此无法象确定信号那样可以用数学表达式或图表精确地表示它,而只能用它的各种统计平均量来表征它。

其中,自相关量作为时移的函数是最能较完整地表征它的特定统计平均量值。

而一个随机信号的功率谱密度(函数),正是自相关函数的傅氏变换。

对于一个随机信号来讲,它本身的傅氏变换是不存在的,只能用功率谱密度来表征它的统计平均谱特性。

因此功率谱密度是一个随机信号的一种最重要的表征形式。

我们要在统计意义下了解一个随机信号,就要求知道(或估计)的它功率谱密度。

如果我们用)(m xx φ表示随机信号)(n x 的自相关函数,)(ωxx P 表示它的功率谱密度(以下简写成PSD),则有[见式(1.56)]∑∞-∞=-=m mj xxxx e m P ωφω)()( (5.1)而其中[])()()(m n x n x E m xx +∆*φ(5.2)对于平稳随机过程,根据各态历经假设,集合的平均可以用时间的平均代替,于是上式可写成∑-=*∞→++=NNn N xx m n x n x N m )()(121lim )(φ (5.3)将式(5.3)代入式(5.1)得n j m NN n N xx xx e m n x n x N P P ωωω∑∑∞-∞=-=*∞→⎥⎦⎤⎢⎣⎡++-=)()(121lim )()(⎥⎦⎤⎢⎣⎡+⋅⎥⎦⎤⎢⎣⎡+=∑∑∞-∞=+*-=-∞→m m n j N N n n j N e m n x e n x N )()()(121lim ωω 令m n l +=,上式可写成*∞-∞=---=∞→⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡+=∑∑l l j n j N N n N xx e l x e n x N P ωωω)()(121lim )(2)(121lim ⎥⎦⎤⎢⎣⎡+=--=∞→∑n j N N n N e n x N ω (5.4)式(5.4)在∞→N 的极限情况下是不可能收敛的,这是因为对于无限时域的随机信号,它的傅氏变换是不存在的。

第6讲功率谱估计的现代方法

第6讲功率谱估计的现代方法

第6讲:功率谱估计的现代方法§6.1 AR 模型法谱估计假设一个随机过程可以由AR(p)刻画-=)(n x ∑=+-⋅pk n v k n x k a 1)()()(它的功率谱为2222)()1(1)(fpj fj AR ep a ea f P ππσ--+++=这里]|)([|22n v E =σ给出一组观测数据)}1(),1(),0({-N x x x 得到估计的参数集}ˆ),(ˆ),2(ˆ),1(ˆ{2σp a a a,得到一个估计的功率谱密度PSD 。

2122)(ˆ1ˆ)(ˆ∑=-+=pk fkj ARe k af P πσ§6.1.1最大熵谱估计(MESE )假设已知)}(),1(),0({p r r r ,为了确定PSD ,外推 )2(),1(++p r p r ,有无穷多外推方法,一种原则是使信号熵最大,即有最大随机性。

对于高斯过程,熵可以表示成:⎰-⋅2121)(lndf f P C xx(1)(1)是熵表达式,C 是常数,由已知p+1个自相关值构成如下约束方程:p k k r df ef P fkj xx ,1,0)()(21212==⎰-π且知:∑+∞-∞=-⋅=k fkj xx ek r f P π2)()(用Lagrangian 乘积法构成目标函数。

⎰⎰∑--=+=2121212120)()(ln df ef P df f P S fkj xx pk ixx πλ并且求:0)(=∂∂k r S ,2,1||++=p p k经计算的得:1||0)(2+≥=⎰--p k df f P exx fmj πππ这隐含着:∑-=-=ppk fkj k xx ef P πλ2)(1和k k -=λλ*以确保)(f p xx 是实的。

即求得:∑-=-=ppk fkj k xx ef P πλ21)(上式带回p+1个约束方程,经过整理, 最后求得:2122)(1)(∑=-⋅+=pk fkj xx ek a f P πσ这里2σ和)(k a 必须满足:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅)(*)2(*)1(*)()2()1(p r r r p a a a R和:∑=+⋅+=pk k r k a r 12)()()0(σ这正是Yule-Walker 方程,由此得到结论:在Gaussian 随机过程情况下,最大熵估计和AR谱估计是一致的,在非Gaussian 情况下,这一结论并不成立。

功率谱估计

功率谱估计

功率谱估计引言:对信号和系统进行的分析研究、处理有两类方法:一类是在时域内进行,维纳滤波、卡尔曼滤波以及自适应滤波等都属于时域处理方法;另一类方法是频域研究方法。

对于确定性信号,傅里叶变换是在频率分析研究的理论基础,但是在实际生活中大多数信号是随机信号,而随机信号的傅里叶变换是不存在的,在实际应用中,通常通过采集和观测平稳随机过程的一个抽样序列的一段(有限个)数据,根据这有限个已知的数据来估计随机过程的功率谱问题来对随机信号进行分析,这即是频率谱估计。

功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内通过用某种有效的方法来估计出其功率谱密度,从而得出信号、噪声及干扰的一些性质来,提取被淹没在噪声中的有用信号。

功率谱估计就是通过信号的相关性估计出接受到信号的功率随频率的变化关系,实际用途有滤波,信号识别(分析出信号的频率),信号分离,系统辨识等。

谱估计技术是现代信号处理的一个重要部分,还包括空间谱估计,高阶谱估计等。

按照Weiner —Khintchine 定理,随机信号的功率谱和其自相关函数服从傅里叶变换关系,可以得出功率谱的一个定义,如公式(1)所示:()jwm m xx jw xx e m re P -∞-∞=∑=)( 公式(1)对于平稳随机信号,服从各态历经性,集合平均可以用时间平均来代替,可以推出功率谱的另一定义。

如公式(2)所示:()])(121[2lim ∑-=-∞→+=N N n jwn N jw xx e n x N E e P 公式(2)频率谱估计主要分为经典谱估计和现代谱估计,经典谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗,主要方法有相关法和周期图法;现代谱估计是通过观测数据估计参数模型再按照求参数模型输出功率的方法估计信号功率谱,主要是针对经典谱估计的分辨率低和方差性能不好等问题提出的,应用最广的是AR 参数模型。

现代谱估计方法分析

现代谱估计方法分析

现代谱估计方法分析刘传辉(绵阳职业技术学院 信息工程系,四川 绵阳 621000)摘要:谱分析是信号分析的一种工具。

功率谱估计就是基于有限的数据寻找信号、随机过程或系统的频率成分。

它表示随机信号频域的统计特征,有着明显的物理意义,是信号处理的重要研究内容。

研究随机信号在频域的功率分布情况,即功率谱密度或功率谱,功率谱估计有着广泛的应用。

关键词:功率谱;信号分析;信号处理;Matlab ;Simulink中图分类号: 文献标识码:Modern Spectral Estimation MethodsLiu Chuan Hui(Dept. of Information Engineering, Mian yang vocational and technical college , Mang Yang 621000,China)Abstract : Sp ectral analysis is a tool for signal analysis. Power spect rum est imat ion is based on limit ed dat a looking for signals, the frequency of random process or system components. It said random signal frequency-domain stat istical characterist ics, t here is a clear physical meaning, is an important signal processing research content. Of random signals in the frequency domain, power distribution, that is t he power spectral density or power spect rum. Power spectrum estimation has been widely used.Keywords: Power spectrum; Signal Analysis ; Signal Processing; Matlab ;Simulink0、引言随机信号一般不能用明确的数学关系式来描述,也无法预测其未来瞬间的精确值,对于这些随机性质的数据只能用概率和统计平均的方法来描述,比如均值、均方差、相关函数以及功率谱密度函数等,一个平稳随机信号的功率谱密度叫做谱估计。

功率谱估计

功率谱估计

功率谱估计功率谱估计就是通过信号的相关性估计出接受到信号的功率随频率的变化关系,实际用途有滤波,信号识别(分析出信号的频率),信号分离,系统辨识等。

谱估计技术是现代信号处理的一个重要部分,还包括空间谱估计,高阶谱估计等。

维纳滤波、卡尔曼滤波,可用于自适应滤波,信号波形预测等(火控系统中的飞机航迹预判)。

如果我在噪声中加入一个信号波形。

要完全滤波出我加入的信号波形,能够做到吗?如果知道一些信息,利用一个参考信号波形,可利用自适应滤波做到(信号的初始部分稍有失真)。

功率谱估计是数字信号处理的主要内容之一,主要研究信号在频域中的各种特征,目的是根据有限数据在频域内提取被淹没在噪声中的有用信号。

下面对谱估计的发展过程做简要回顾:英国科学家牛顿最早给出了“谱”的概念。

后来,1822年,法国工程师傅立叶提出了著名的傅立叶谐波分析理论。

该理论至今依然是进行信号分析和信号处理的理论基础。

傅立叶级数提出后,首先在人们观测自然界中的周期现象时得到应用。

19世纪末,Schuster提出用傅立叶级数的幅度平方作为函数中功率的度量,并将其命名为“周期图”(periodogram)。

这是经典谱估计的最早提法,这种提法至今仍然被沿用,只不过现在是用快速傅立叶变换(FFT)来计算离散傅立叶变换(DFT),用DFT的幅度平方作为信号中功率的度量。

周期图较差的方差性能促使人们研究另外的分析方法。

1927年,Yule提出用线性回归方程来模拟一个时间序列。

Yule的工作实际上成了现代谱估计中最重要的方法——参数模型法谱估计的基础。

Walker利用Yule的分析方法研究了衰减正弦时间序列,得出Yule-Walker方程,可以说,Yule和Walker都是开拓自回归模型的先锋。

1930年,著名控制理论专家Wiener在他的著作中首次精确定义了一个随机过程的自相关函数及功率谱密度,并把谱分析建立在随机过程统计特征的基础上,即,“功率谱密度是随机过程二阶统计量自相关函数的傅立叶变换”,这就是Wiener—Khintchine定理。

现代功率谱估计

现代功率谱估计

现代功率谱估计
现代功率谱估计是一种使用现代信号处理技术来计算信号功率谱的方法。

功率谱表示信号在频率域上的能量分布情况,描述了信号在不同频率上的能量或功率的分布。

在现代信号处理中,有几种方法可以用于功率谱估计:
周期图法(Periodogram Method):这是最简单的功率谱估计方法之一。

通过对信号进行傅里叶变换,然后取幅度的平方得到功率谱估计。

但是在实际应用中,可能需要对信号进行分段并对每个段进行周期图法计算,最后取平均值来获得更准确的估计结果。

Welch方法:这是一种常用的功率谱估计方法,它通过将信号分成多个段并对每个段进行周期图法计算,最后对所有段的结果进行平均来减小估计的方差,提高估计的准确性。

改进的周期图法:包括Bartlett、Hanning、Hamming等窗口函数来改进周期图法,减小泄漏效应leakage effect,提高频谱估计的分辨率和准确性。

自回归AR模型:利用信号的自相关性建立AR模型,然后通过这个模型来计算功率谱。

这种方法在非平稳信号和具有明显谱峰或特定频率成分的信号表现上较好。

这些现代功率谱估计方法可以根据不同的信号特点和应用需求选择合适的方法,并在工程、信号处理和科学领域有着广泛的应用。

功率谱估计的方法

功率谱估计的方法

功率谱估计的方法
功率谱估计是信号处理中常用的一种方法,用于分析信号在频域内的特点,通常可以分为以下几种方法:
一、经典方法
1.傅里叶变换法:将时域信号通过傅里叶变换变换到频域,然后计算功率谱密度。

2.自相关法:通过自相关函数反映信号的统计平稳性,然后通过傅里叶变换计算功率谱密度。

3.周期图法:将信号分解为若干个周期波形,然后对每个周期波形进行傅里叶变换计算周期功率谱,最后汇总得到整个信号的功率谱。

二、非经典方法
1. 时-频分析法:如短时傅里叶变换(STFT)、小波变换等,将信号分解为时域和频域两个维度的分量,从而可以分析信号在时间和频率上的变化。

2. 基于协方差矩阵的特征值分解法:通过建立协方差矩阵,在张成空
间中求解特征向量,从而达到计算信号功率谱的目的。

3. 基于频率锁定法:如MUSIC法、ESPRIT法等,是一种利用特定信号空间中的特定模式进行处理的方法。

以上方法各有特点,根据实际需求选择不同的方法可以得到相应的功率谱估计结果。

功率谱估计浅谈讲解

功率谱估计浅谈讲解

功率谱估计浅谈摘要:介绍了几种常用的经典功率谱估计与现代功率谱估计的方法原理,并利用Matlab对随机信号进行功率谱估计,对两种方法做出比较,分别给出其优缺点。

关键词:功率谱;功率谱估计;经典功率谱估计;现代功率谱估计前言功率谱估计是从频率分析随机信号的一种方法,一般分成两大类:一类是经典谱估计;另一类是现代谱估计。

由于经典谱估计中将数据工作区以外的未知数据假设为零,这相当于数据加窗,导致分辨率降低和谱估计不稳定。

现代谱估计则不再简单地将观察区外的未知数据假设为零,而是先将信号的观测数据估计模型参数,按照求模型输出功率的方法估计信号功率谱,回避了数据观测区以外的数据假设问题。

周期图、自相关法及其改进方法(Welch)为经典(非参数)谱估计方法, 其以相关和傅里叶变换为基础,对于长数据记录较适用,但无法根本解决频率分辨率低和谱估计稳定性的问题,特别是在数据记录很短的情况下,这一问题尤其突出。

以随机过程的参数模型为基础的现代参数法功率谱估计具有更高的频率分辨率和更好的适应性,可实现信号检测或信噪分离,对语音、声纳雷达、电磁波及地震波等信号处理具有重要意义,并广泛应用于通信、自动控制、地球物理等领域。

在现代参数法功率谱估计方法中,比较有效且实用的是AR模型法,Burg谱估计法,现代谱估计避免了计算相关,对短数据具有更强的适应性,从而弥补了经典谱估计法的不足,但其也有一些自身的缺陷。

下面就给出这两类谱估计的简单原理介绍与方法实现。

经典谱估计法经典法是基于传统的傅里叶变换。

本文主要介绍一种方法:周期图法。

周期图法由于对信号做功率谱估计,需要用计算机实现,如果是连续信号,则需要变换为离散信号。

下面讨论离散随机信号序列的功率谱问题。

连续时间随机信号的功率谱密度与自相关函数是一对傅里叶变换对,即:()()j x x S R e d +∞-Ω-∞Ω=⎰τττ若()x R m 是()x R Ω的抽样序列,由序列的傅里叶变化的关系,可得()()j j n x x m S e R m e ωω∞-=-∞=∑即()j x S e ω与()x R m 也是一对傅里叶变换对。

功率谱估计

功率谱估计

E [ x ( n ) x ( k ) x ( p ) x ( q ) ] E [ x ( n ) x ( k ) ] E [ x ( p ) x ( q ) ] E [ x ( n ) x ( p ) ] E [ x ( k ) x ( q ) ] E [ x ( n ) x ( q ) ] E [ x ( k ) x ( p ) ]
✓ 这里由于对信号作了实白噪声的假设,才有无偏估计的结果。
➢ 周期图的均方值
E[IN(1)IN(2)]EN12 XN(ej1)2 XN(ej2)2
N12 n
k
p
RN(n)RN(k)RN(p)RN(q)
q
E[x(n)x(k)x(p)x(q)]e-j1(nk)e-j2(pq)
利用正态白噪声、多元正态随机变量的多阶矩公式,有
Ii()M 1 M n01xi(n)ejn 2
将得到的L个周期图进行平均,作为信号x(n)的功率谱估计, 公式如下:
Pˆxx(ej)L1 iL1 Ii()
估计效果分析:
➢ 偏移分析:
E[Pˆxx(ej)]
1 L
L i1
EIi()EIi()
1 2π
-ππWB(ej)Pxx(ej(-))d
式中
P x(xej)F[T rx(xm )]
W B(ej)F[T w B(m ) ]N 1 ssiiN n n /(/2 (2 )) 2
✓ 周期图的统计平均值等于它的真值卷积三角谱窗函数,因此周期图是有偏估计,但当N→∞时,wB(m)→1, 三角谱窗函数趋近于δ函数,周期图的统计平均值趋于它的真值,因此周期图属于渐近无偏估计。
P ( je ) xx
2
2
1
00Βιβλιοθήκη 123/

功率谱估计

功率谱估计
1 1 N −1 N −1 jω 2 I N (ω ) = X (e ) = ∑ ∑ x(k ) x(n)e jω k e − jω n N N n =0 k =0
2 var[ I N (ω )] = E[ I N (ω )] − E 2 [ I N (ω )]
下面先求周期图的均值,再求其均方值:
1 1 ∞ ∞ jω 2 E[ I N (ω )] = X (e ) = ∑ ∑ E[ x(k ) x(n)]RN (k ) RN (n)e− jω ( n −k ) N N n =−∞ k =−∞
经典谱估计
BT法:1958年,R.Blackmant和J.Tukey提出, 先估计自相关函数,再计算功率谱。 周期图法:1898年,Schuster利用傅里叶级数 去拟合待分析的信号,提出周期图的术语,但 直到FFT出现,周期图法才受到人们的重视。 这种方法直接对观测数据进行FFT,取模平方, 除以N得到功率谱。
11
将 ω = ω1 = ω2 代入上式,得 sin( N ω ) 2 2 E[ I N (ω )]=σ x4 2 + N sin(ω )
sin( N ω ) 2 2 var[ I N (ω )]=E[I N (ω )]-E 2 [I N (ω )]=σ x4 1 + N sin(ω ) 显然,当N趋于无限大时,周期图的方差并不趋于0,而是趋 于功率谱真值的平方,即
N −1 1 N −1 − jω k = ∑ x(k )e ∑ x* (n)e jω n n =0 N k =0
1 N −1 N −1 = ∑ ∑ x(k ) x* (n)e − jω ( k − n ) N k =0 n =0 令 m = k − n,即 k = m + n,则

《功率谱估计》课件

《功率谱估计》课件
《功率谱估计》 PPT课件
目录
• 引言 • 功率谱估计的基本原理 • 常见功率谱估计方法 • 现代功率谱估计方法 • 功率谱估计的性能评估 • 实际应用案例分析
01
引言
功率谱估计的定义
功率谱估计是对信号的频率内容进行描述的方法,通过分析信号在不同频率的功 率分布情况,可以了解信号的特性。
功率谱估计可以分为非参数方法和参数方法两类,其中非参数方法包括傅里叶变 换、Welch方法等,而参数方法则包括AR模型、MA模型、和ARMA模型等。
非参数模型
不假设信号的功率谱具有特定参数形式,而是直接从数据中估计功率谱。
03
常见功率谱估计方法
直接法
定义
直接法是通过测量信号的样本值,利用离散 傅里叶变换(DFT)直接计算信号的频谱。
特点
计算简单,但容易受到频率偏移和相位失真的影响 。
应用场景
适用于信号频率稳定且对相位精度要求不高 的场合。
间接法
THANKS
感谢观看
分辨率与假峰率
分辨率(Resolution)
衡量功率谱估计中能够区分两个相近频率成分的能力。分辨率越高,说明估计的功率谱能够更好地分 辨出相近的频率成分。
假峰率(False Peak Rate)
衡量估计的功率谱中出现的虚假频率峰的概率。假峰率越低,说明估计的功率谱中虚假频率峰的出现 概率越小。
06
特点
能够减小频谱泄漏效应,提高频 谱分辨率。
应用场景
适用于信号持续时间较短或需要 高分辨率频谱分析的场合。
最大熵法
定义
最大熵法是一种基于信息论的方法,通过最 大化熵函数来估计信号的功率谱。
特点
能够提供平滑且连续的功率谱估计,但计算 复杂度较高。

第五章谱估计

第五章谱估计

2 ( 2k )..( 5 30 )

lim E[ I N ( )] ( )...(5 31) 渐进无偏差
2 sin N 4 估计方差: Var[ I N ( )] x 1 ..( 5 32 ) N sin
E

x(t ) dt (5 1)

2
则x(t)的连续傅氏变换存在,由下式给出:
X( f )
E



x (t ) exp( j 2ft )dt (5 2)
2
根据Parseval能量定理,有:
14:56

x(t ) dt

X ( f ) df (5 3)
d (n) x(n)d (n k ) x(n k ) (5 15 )

功率谱的估计可写成:
jn j ( n k ) d (n) x(n)e d (n k ) x(n k )e n n
关(协方差)函数为: ( k )
若有:
k
E x(n ) x(n k ) (5 8)

( k )

(5 9 )
jk ( ) ( k ) e (5 10 ) 则功率谱密度为: k ( ) 是以0对称,周期为2。反变换为:
定义:长度为N的实平稳随机信号序列
x N ,0 n N 1
的周期图为: I ( ) 1 X ( ) 2 , (5 26) N N
式中
X N ( )
jn x ( n ) e DFT n 0
N 1

功率谱估计

功率谱估计

经典功率谱估计1、直接法:直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。

Matlab代码示例:clear;Fs=1000; %采样频率n=0:1/Fs:1;%产生含有噪声的序列xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));window=boxcar(length(xn)); %矩形窗nfft=1024;[Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法plot(f,10*log10(Pxx));2、间接法:间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。

Matlab代码示例:clear;Fs=1000; %采样频率n=0:1/Fs:1;%产生含有噪声的序列xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));nfft=1024;cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数CXk=fft(cxn,nfft);Pxx=abs(CXk);index=0:round(nfft/2-1);k=index*Fs/nfft;plot_Pxx=10*log10(Pxx(index+1));plot(k,plot_Pxx);3、改进的直接法:对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。

3.1、Bartlett法Bartlett平均周期图的方法是将N点的有限长序列x(n)分段求周期图再平均。

Matlab代码示例:clear;Fs=1000;n=0:1/Fs:1;xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));nfft=1024;window=boxcar(length(n)); %矩形窗noverlap=0; %数据无重叠p=0.9; %置信概率[Pxx,Pxxc]=psd(xn,nfft,Fs,window,noverlap,p);index=0:round(nfft/2-1);k=index*Fs/nfft;plot_Pxx=10*log10(Pxx(index+1));plot_Pxxc=10*log10(Pxxc(index+1));figure(1)plot(k,plot_Pxx);pause;figure(2)plot(k,[plot_Pxx plot_Pxx-plot_Pxxc plot_Pxx+plot_Pxxc]);3.2、Welch法Welch法对Bartlett法进行了两方面的修正,一是选择适当的窗函数w(n),并再周期图计算前直接加进去,加窗的优点是无论什么样的窗函数均可使谱估计非负。

功率谱功率谱估计

功率谱功率谱估计

(3)去非平稳 为了进行频谱分析,可以构造出平稳随机信号, 方法是减去系统的变化趋势。对于线性或近似线性 增长的趋势项,可用多项式拟合的办法来去,对于 其它类型的趋势项可用滤波的方法来去除。
四、估计质量的评价
设a是广义平稳随机过程 x ( n) 的一个数字特征 ˆ 是a的一个估计 a 1、偏倚 ˆ ] E{a a ˆ } a E{a ˆ} b[a 它表示了估计值与实际值的接近程度。 ˆ ] 0, 叫无偏估计 b[a ˆ ] 0, 叫有偏估计 b[a 2、方差 2 ˆ ˆ var[a] E{[a E{a}] } 它表示了估计值相对估计均值的分散程度。
k 1
p q
h(n)
x(n)
若u(n)是一个方差为 的白噪声,则x(n)的功率谱 j 2 j 2 S x (e ) | H ( e ) |
2
B( z ) B (1 / z ) 或 S x ( z ) H ( z ) H (1 / z ) A( z ) A* (1 / z * )
最大熵 参数化 最小交叉熵 ……
三、随机信号分析的预处理
要讨论问题通常是零均值信号的谱估计问题, 一般信号都很少满足要求,所有需作预处理 (1)取样: 若信号未经取样,则在满足取样定理的 前提下取样可根据信号带宽的物理限制,粗略估计 取样间隔。 ~ (2)去均值 x ( n) x ( n) m x
H (z)
1 1 ak z k
k 1 p
称为AR模型
( 3 )若ak 和br均不为 0,
x( n) a k x( n k ) br u( n r ) H ( z )
k 1 r 0 p q

q
称为ARMA模型

功率谱估计方法综述

功率谱估计方法综述

功率谱估计方法综述:简介:随机信号的持续时间是无限长的,因此随机信号的总能量是无限的,因而随机过程的任意一个样本寒暑都不满足绝对可积条件,所以其傅里叶变换不存在。

尽管随机信号的总能量是无限的,但其平均功率却是有限的,因此,要对随机信号的频域进行分析,应从功率谱出发进行研究才有意义。

信号的功率谱密度描述随机信号的功率在频域随频率的分布。

功率谱估计(PSD)是用有限长的数据来估计信号的功率谱,即利用给定的N个样本数据估计一个平稳随机信号的功率谱密度。

背景:功率谱估计在实际工程中有重要应用价值,如在语音信号识别、雷达杂波分析、波达方向估计、地震勘探信号处理、水声信号处理、系统辨识中非线性系统识别、物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周期研究等许多领域,发挥了重要作用。

功率谱估计方法主要分为2大类:非参数化方法(又称经典功率谱估计)和参数化方法(又称现代功率谱估计)。

非参数化方法有相关函数法(BT法)、周期图法、平均周期图法、平滑平均周期图法等;而参数化谱估计有R模型法、移动平均模型法(简称MA模型法)、自回归移动平均模型法(简称ARMA模型法)、最大熵谱分析法(AR模型法)、Pisarenko谐波分解法、Prony 提取极点法、Prony谱线分解法以及capon最大似然法等,由于涉及许多复杂数学计算,在此未作详细数学推导,以下介绍几种常用的功率谱估计方法一、非参数化方法(经典法)经典功率谱估计是将数据工作区外的未知数据假设为零,相当于数据加窗。

1、自相关法又称相关函数法(BT法),根据维纳—辛钦定理:平稳随机过程的自相关函数和功率谱函数是一傅里叶变换对,对于平稳随机信号来说,其相关函数是确定性函数,故其功率谱也是确定的.这样可由平稳随机离散信号的有限个离散值,求出自相关函数,然后作Fourier变换,得到功率谱。

由于随机序列{X(n)}的自相关函数R(n)=E[X(n)X(n+m)]定义在离散点m上,设取样间隔为错误!未找到引用源。

现代谱估计课件

现代谱估计课件

N 1
E[Rˆx (m)]e jm
m( N 1)
N 1 m( N 1)
Rx
(m)
N
| N
m
|
e
jm
令w(m)为三角窗
w(m)
(N
|
m 0,
|)
/
N
,
| m | N 1 else
E[Sˆx (e j )] [Rx (m)w(m)]e jm m
E[Sˆx (e j )]
1
2
Sx (e j ) W (e j )
pxx3=abs(fft(xn(515:768),Nsec).^2)/Nsec; %第三段功率谱
pxx4=abs(fft(xn(769:1024),Nsec).^2)/Nsec; %第四段功率谱
Pxx=10*log10((pxx1+pxx2+pxx3+pxx4)/4); %平均得到整个序
列功率谱
f=(0:length(Pxx)-1)*Fs/length(Pxx); %给出功率谱对应的频率
)
2
sin N
N (1
2
sin 1
2
2 2
)
2
令1=2=
2
4 x
[1
(
sin N )2 ] N sin
当N时,频谱估计方差2不趋向于零,而趋 18
向于
4 x
,因此经典频谱估计不是一致估计
经典谱估计的方差
若取1= 2k/N,2=2l/N,k、l是整数,则有:
Cov[ Sˆ x
5
0
-5 0 50 100 150 200 250 300 350 400 450 500
现代谱估计

功率谱估计的经典方法

功率谱估计的经典方法


=
Ryy (m) =
p =−∞
∑R
k = −∞ ∞
∑ h( k ) R
xx

xx
( m − k ) = Rxx (m) ∗ h( m)
(m − p) Rhh ( p) = Rxx (m) ∗ Rhh (m)

= Rxx (m) ∗ h(m) ∗ h(−m) = Rxy (m) ∗ h(−m)
S yy (e jω ) = S xy (e jω ) H (e− jω )



2
离散随机信号通过线性非移变系统
(4)输入随机过程与输出随机过程的互相关序列Rxy(m)
∞ Rxy ( m) = E [x ( n) y ( n + m) ] = E x ( n) ∑ h( k ) x ( n + m − k ) k = −∞
=
k = −∞
∑ h(k ) E[x(n) x(n + m − k )]
ˆ B =α − E [ α ]
无偏估计, 无偏估计 有偏估计,当观测数据为无穷时B = 0,则称其为渐 渐 B = 0时无偏估计 B ≠ 0 有偏估计 进无偏估计。无偏估计和渐进无偏估计又称为是好估计 进无偏估计 好估计。 好估计
均值 均方值
E[xn ] = mxn = ∫ xpxn ( x, n)dx
∞ −∞
E x = ∫ x 2 pxn ( x, n)dx
2 n −∞
[ ]
2

方差
E xn − mxn
[(
) ]= σ
2 xn
=∫
∞ −∞
(x − m )
xn

第五章功率谱估计1-2节

第五章功率谱估计1-2节
28/113
经FFT变换,得:
ˆ ˆ ˆ Pxx (k ) FFT xx (m) xx (m)e
m0 L -1 -j 2 km L
k 0,1, 2, L -1
29/113
三、相关图法功率谱估计质量
用x(n)的N 个有限值得到 ˆ 自相关函数的估计 ( m),
13/113
(a)间接法(BT法)
BT法又称为相关图法 对信号序列估计求其自相关函数值 对自相关函数的估计进行加权 对加权的自相关函数做傅里叶变换 获得功率谱估计。

直到1965年快速傅里叶变换算法(FFT) 问世以前,是最流行的谱估计方法。
14/113
(b)直接法(又称周期图 (periodogram)法)
对观测到的数据样本直接进行傅里叶变换 取模的平方,再除以N 得到功率谱估计。 不用估计自相关函数,且可以用FFT进行计算, 在FFT出现以后,周期图法才得到了广泛的应 用。
15/113
(2)现代谱估计


其基本思想是根据已有的观测数据,建 立信号所服从的模型,从而在观测不到 的区间上,信号的取值服从模型的分布 情况,不再认为是零。 主要讨论参数模型(AR、MA、ARMA) 法。
N

2 xx (l ) xx (l m)xx (l - m) (N - m - l )
N - m -1 2 l -( N - m -1) N - m -1 2 l -( N - m -1)
N - m
N
所以在实际中必须兼顾分辨率与方差的要求来适当选择信号仍然是均值为方差为的白噪声观察数据长度为了利用平均周期法估计其功率谱将它分成段分别按照平均周期图法估计其功率谱得到功率谱曲线如图从图中可以看出随着分段数的增加功率谱估计值在附近的幅度愈来愈小显示出分段平均对周期图方差减少有明显效果
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档