四川高三数学一诊模拟考试试题

合集下载

四川省南充市2024届高三高考适应性考试(一诊)考试数学(理)试题(含答案)

四川省南充市2024届高三高考适应性考试(一诊)考试数学(理)试题(含答案)

注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将答题卡交回。

一、单项选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的四川省南充市高2024届高考适应性考试(一诊)理科数学。

1.抛物线24x y =的准线方程为()A .1x =-B .1x =C .1y =-D .1y =2.当12m <<时,复数1(2)m m i -+-在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.已知正方形ABCD 的边长为1,则AB BC CA +-=()A .0BC.D .44.已知直线m ,n 和平面α,n α⊂,m α⊂/,则“m n ∥”是“m α∥”的()条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要5.已知全集U R =,集合{}3log (1)1A x x =->,2214x B x y ⎧⎫=+=⎨⎬⎩⎭,则能表示A ,B ,U 关系的图是()A .B.C.D .6.某商品的地区经销商对2023年1月到5月该商品的销售情况进行了调查,得到如下统计表.发现销售量y (万件)与时间x (月)成线性相关,根据表中数据,利用最小二乘法求得y 与x 的回归直线方程为:0.480.56y x =+.则下列说法错误的是()时间x (月)12345销售量y (万件)11.62.0a3A .由回归方程可知2024年1月份该地区的销售量为6.8万件B .表中数据的样本中心点为()3,2.0C . 2.4a =D .由表中数据可知,y 和x 成正相关7.二项式62x ⎫-⎪⎭的展开式中常数项为()A .60-B .60C .210D .210-8.已知:123a +=,3123b -=,则下列说法中错误的是()A .2a b +=B .312b <<C .1b a -<D .1ab >9.如图,正方体1111ABCD A B C D -的棱长为2,E ,F 分别为BC ,1CC 的中点,则平面AEF 截正方体所得的截面面积为()A .32B .92C .9D .1810.如图1是函数()cos 2f x x π⎛⎫= ⎪⎝⎭的部分图象,经过适当的平移和伸缩变换后,得到图2中()g x 的部分图象,则()图1图2A .1()22g x f x ⎛⎫=-⎪⎝⎭B .202332g ⎛⎫=-⎪⎝⎭C .方程14()log g x x =有4个不相等的实数解D .1()2g x >的解集为152,266k k ⎛⎫++ ⎪⎝⎭,k Z ∈11.已知双曲线2213y x -=的左右焦点分别为1F ,2F ,左右顶点分别为1A ,2A ,P 为双曲线在第一象限上的一点,若211cos 4PF F ∠=,则12PA PA ⋅= ()A .2-B .2C .5D .5-12.已知函数2()ln 2f x x m x=-+-(03m <<)有两个不同的零点1x ,2x (12x x <),下列关于1x ,2x 的说法正确的有()个①221m x e x <②122x m >+③3233m e x m<<-④121x x >A .1B .2C .3D .4二、填空题:本题共4小题,每小题5分,共20分。

2024届绵阳市南山中学高三数学(理)上学期一诊考试卷附答案详析

2024届绵阳市南山中学高三数学(理)上学期一诊考试卷附答案详析

2024届绵阳市南山中学高三数学(理)上学期一诊考试卷(试卷满分150分.考试用时120分钟)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,集合{}220A x x x =-<,{}1B x x =>,则()UA B = ð()A .{}12x x <<B .{}12x x ≤<C .{}01x x <<D .{}01x x <≤2.若复数5i43i z =-,则z =()A .34i 55+B .34i55-+C .34i 55--D .34i 55-3.设nS 是等差数列{}n a 的前n 项和,若25815a a a ++=,则9S =()A .15B .30C .45D .604.已知命题p :x ∃∈R ,使得2210ax x ++<成立为真命题,则实数a 的取值范围是()A .(],0-∞B .(),1-∞C .[)0,1D .(]0,15.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC -B .1344AB AC - C .3144+AB ACD .1344+AB AC6.执行如图所示的程序框图,若输出的a 的值为17,则输入的最小整数t 的值为()A .9B .12C .14D .167.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为15A 时,放电时间为30h ;当放电电流为50A 时,放电时间为7.5h ,则该萻电池的Peukert 常数λ约为()(参考数据:lg20.301≈,lg30.477≈)A .1.12B .1.13C .1.14D .1.158.若cos 0,,tan 222sin παααα⎛⎫∈=⎪-⎝⎭,则tan α=()A .1515B 5C .53D .1539.函数π()412sin 2x x f x x -⎛⎫=-⋅⋅+ ⎪⎝⎭的大致图象为()A .B .C .D .10.设函数π()sin 3f x x ω⎛⎫=+ ⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A .513,36⎫⎡⎪⎢⎣⎭B .519,36⎡⎫⎪⎢⎣⎭C .138,63⎛⎤⎥⎝⎦D .1319,66⎛⎤ ⎥⎝⎦11.已知函数()1e x xf x +=.若过点()1,P m -可以作曲线()y f x =三条切线,则m 的取值范围是()A .40,e ⎛⎫⎪⎝⎭B .80,e ⎛⎫ ⎪⎝⎭C .14,e e ⎛⎫- ⎪⎝⎭D .18,e e ⎛⎫ ⎪⎝⎭12.已知函数()323,0,31,0x x f x x x x ->⎧=⎨-+≤⎩,函数()()()g x f f x m =-恰有5个零点,则m 的取值范围是()A .()3,1-B .()0,1C .[)1,1-D .()1,3二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥ ,则k =.14.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高200BC =m ,则山高MN =m .15.已知等比数列{}n a 的前3项和为25168,42a a -=,则6a =.16.已知函数()y f x =是R 的奇函数,对任意x R ∈,都有(2)()(2)f x f x f -=+成立,当12,,1[]0x x ∈,且12x x ≠时,都有()()1212f x f x x x ->-,有下列命题①(1)(2)(3)(2019)0f f f f ++++= ②直线5x =-是函数()y f x =图象的一条对称轴③函数()y f x =在[7,7]-上有5个零点④函数()y f x =在[7,5]--上为减函数则结论正确的有.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象,如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域.18.已知数列{}n a 的前n 项和为n S ,313log 1log n n b b +-=,且()1122n n n a a a n +-=+≥.339S b ==,414b a =.(1)求数列{}n a 和{}n b 的通项公式;(2)若11n n n c a b ++=⋅,求数列{}n c的前n 项和n T .19.记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.20.已知函数()()e x f x a a x=+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.21.已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题记分.选修4—4:坐标系与参考方程22.在直角坐标系xOy 中,曲线M 的方程为24y x x =-+,曲线N 的方程为9xy =,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.(1)求曲线M ,N 的极坐标方程;(2)若射线00π:(0,0)2l θθρθ=≥<<与曲线M 交于点A (异于极点),与曲线N 交于点B ,且||||12OA OB ⋅=,求0θ.选修4—5:不等式选讲23.已知函数()121f x x x =++-.(1)求不等式()8f x <的解集;(2)设函数()()1g x f x x =--的最小值为m ,且正实数a ,b ,c 满足a b c m ++=,求证:2222a b c b c a ++≥.1.D【分析】先解一元二次不等式,化简集合A,再利用数轴进行集合的补集和交集运算可得.【详解】解一元二次不等式化简集合A,得{|02}A x x =<<,由{|1}B x x =>得{|1}U C B x x =≤,所以(){|01}U A C B x x ⋂=<≤.故选D.【点睛】本题考查了一元二次不等式的解法,集合的交集和补集运算,用数轴运算补集和交集时,注意空心点和实心点的问题,属基础题.2.C【分析】由复数的四则运算结合共轭复数的概念求解.【详解】由()5i 43i 5i 34i 43i 2555z +===-+-,得34i55z =--.故选:C 3.C【分析】根据等差数列的性质求出5a ,再根据等差数列前n 项和公式即可得解.【详解】由题意得2585315a a a a ++==,所以55a =,所以()199599452a a S a +===.故选:C.4.B【分析】由一次函数和二次函数的图象和性质,知当0a ≤时,命题为真命题,当0a >时,需0∆>,最后综合讨论结果,可得答案.【详解】命题p 为真命题等价于不等式2210ax x ++<有解.当0a =时,不等式变形为210x +<,则12x <-,符合题意;当0a >时,Δ440a =->,解得01a <<;当a<0时,总存在x ∃∈R ,使得2210ax x ++<;综上可得实数a 的取值范围为(),1-∞.故选:B 5.A【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BD=+ ,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+ ,之后将其合并,得到3144BE BA AC=+,下一步应用相反向量,求得3144EB AB AC=- ,从而求得结果.【详解】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC =+=+=++ 1113124444BA BA AC BA AC=++=+,所以3144EB AB AC=- ,故选A.【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.6.A【分析】根据流程框图代数进行计算即可,当进行第四次循环时发现输出的a 值恰好满足题意,然后停止循环求出t 的值.【详解】第一次循环,2213a =⨯-=,3a t =>不成立;第二次循环,2315a =⨯-=,5a t =>不成立;第三次循环,2519a =⨯-=.9a t =>不成立;第四次循环,29117a =⨯-=,17a t =>,成立,所以917t <≤,输入的最小整数t 的值为9.故选:A 7.D【分析】根据题意可得1530507.5C λλ=⨯=⨯,再结合对数式与指数式的互化及换底公式即可求解.【详解】由题意知1530507.5C λλ=⨯=⨯,所以50304157.5λ⎛⎫== ⎪⎝⎭,两边取以10为底的对数,得10lg 2lg23λ=,所以2lg220.301 1.151lg310.477λ⨯=≈≈--.故选:D .8.A【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin αααααα==-,再结合已知可求得1sin 4α=,利用同角三角函数的基本关系即可求解.【详解】cos tan 22sin ααα=- 2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--,0,2πα⎛⎫∈ ⎪⎝⎭ ,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,215cos 1sin 4αα∴-,sin 15tan cos 15ααα∴==.故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin α.9.D【分析】对函数化简后,利用排除法,先判断函数的奇偶性,再取特殊值判断即可【详解】因为()|22|cos x x f x x -=-⋅,()22cos()()x x f x x f x --=-⋅-=,所以()f x 为偶函数,所以函数图象关于y 轴对称,所以排除A ,C 选项;又1(2)4cos 204f =-<,所以排除B 选项,故选:D .10.C【分析】由x 的取值范围得到3x πω+的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得0ω>,因为()0,x π∈,所以,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭,要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ⎛⎫∈ ⎪⎝⎭的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω⎛⎤∈ ⎥⎝⎦.故选:C .11.A【分析】切点为0001,e x x x +⎛⎫ ⎪⎝⎭,利用导数的几何意义求切线的斜率,设切线为:()000001e e x x x xy x x +--=-,可得()201e x x m +=,设()()21e xx g x +=,求()g x ',利用导数求()g x 的单调性和极值,切线的条数即为直线y m =与()g x 图象交点的个数,结合图象即可得出答案.【详解】设切点为0001,e x x x +⎛⎫ ⎪⎝⎭,由()1e x xf x +=可得()()2e e 1e e x x xx x x f x -⋅+-==',所以在点0001,e x x x +⎛⎫ ⎪⎝⎭处的切线的斜率为()000e x xk f x -'==,所以在点0001,e x x x +⎛⎫ ⎪⎝⎭处的切线为:()000001e e x x x xy x x +--=-,因为切线过点()1,P m -,所以()0000011e e x x x x m x +--=--,即()201e x x m +=,即这个方程有三个不等根即可,切线的条数即为直线y m =与()g x 图象交点的个数,设()()21exx g x +=,则()()()2222211e e xxx x x x g x +-++'-+==由()0g x '>可得11x -<<,由()0g x '<可得:1x <-或1x >,所以()()21e xx g x +=在(),1-∞-和()1,+∞上单调递减,在()1,1-上单调递增,当x 趋近于正无穷,()g x 趋近于0,当x 趋近于负无穷,()g x 趋近于正无穷,()g x 的图象如下图,且()41e g =,要使y m =与()()21e xx g x +=的图象有三个交点,则40e m <<.则m 的取值范围是:40,e ⎛⎫ ⎪⎝⎭.故选:A.12.C【分析】由题意可先做出函数()f x 的大致图象,利用数形结合和分类讨论,即可确定m 的取值范围.【详解】当0x ≤时,()233f x x ¢=-.由()0f x ¢>,得1x <-,由()0f x '<,得10-<≤x ,则()f x 在(]1,0-上单调递减,在(),1-∞-上单调递增,故()f x 的大致图象如图所示.设()t f x =,则()m f t =,由图可知当3m >时,()m f t =有且只有1个实根,则()t f x =最多有3个不同的实根,不符合题意.当3m =时,()m f t =的解是11t =-,23t =.1f x t =()有2个不同的实根,2f x t =()有2个不同的实根,则()t f x =有4个不同的实根,不符合题意.当13m ≤<时,()m f t =有3个不同的实根3t ,4t ,5t,且()321t ∈--,,(]41,0t ∈-,[)52,3t ∈.3f x t =()有2个不同的实根,4f x t =()有2个不同的实根,5f x t =()有3个不同的实根,则()t f x =有7个不同的实根,不符合题意.当11m -≤<时,()m f t =有2个不同的实根6t ,7t,且()631t ∈--,,[)71,2t ∈.6f x t =()有2个不同的实根,7f x t =()有3个不同的实根,则()t f x =有5个不同的实根,符合题意.当3<1m -<-时,()m f t =有2个不同的实根8t ,9t,且()831t ∈--,,()901t ∈,,8f x t =()有2个不同的实根,9f x t =(),有2个不同的实根,则()t f x =有4个不同的实根,不符合题意.当3m ≤-时,()m f t =有且只有1个实根,则()t f x =最多有3个不同的实根,不符合题意,综上,m 的取值范围是[)1,1-.故选:C.【点睛】方法点睛:对于函数零点问题,若能够画图时可作出函数图像,利用数形结合与分类讨论思想,即可求解.本题中,由图看出,m 的讨论应有3m =,13m ≤<,11m -≤<,3<1m -<-,3m ≤-这几种情况,也是解题关键.13.103-.【分析】利用向量的坐标运算法则求得向量c 的坐标,利用向量的数量积为零求得k 的值【详解】()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯=,解得103k =-,故答案为:103-.【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.14.300【分析】先求,AC AMC ∠,由正弦定理得sin sin MCA AMCAM AC ∠∠=,最后由sin MN AM MAN =⋅∠可求.【详解】由题意,2002sin BCAC CAB ==∠,18045AMC MAC MCA ∠=︒-∠-∠=︒,由正弦定理得32sin sin 2220032002MCA AMCAM AM AC AM ∠∠=⇒=⇒=m ,所以3sin 2003300MN AM MAN =⋅∠==m.故答案为:30015.3【分析】设等比数列{}n a 的公比为q ,根据已知条件利用等比数列的定义计算可得12q =,196a =,即可求得6a 的值.【详解】解:设等比数列{}n a 的公比为q ,0q ≠,由题意1q ≠,因为前3项和为168,故()3112311681a q a a a q-++==-,又()43251111a a a q a q a q q -=-=-,所以12q =,196a =,则561196332a a q ==⨯=.故答案为:3.16.①②④【分析】根据题意,利用特殊值法求得()20f =,进而分析得到1x =时函数()f x 的一条对称轴,,函数()f x 时周期为4的周期函数,且函数()f x 在[1,1]-上单调递增,据此结合选项,逐项判定,即可求解.【详解】由题意,函数()y f x =是R 的奇函数,则()00f =,对任意x R ∈,都有(2)()(2)f x f x f -=+成立,当2x =,有()()0220f f ==,即()20f =,则有(2)()f x f x -=,即1x =时函数()f x的一条对称轴,又由()f x 为奇函数,则(2)()f x f x -=--,即()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以函数()f x 时周期为4的周期函数,当12,,1[]0x x ∈,且12x x ≠时,都有()()1212f x f x x x ->-,可函数()f x 在[1,1]-上单调递增,对于①中,由()()2f x f x +=-,则(1)(2)(3)(4)0f f f f +++=,所以(1)(2)(3)(2019)504[(1)(2)(3)(4)]f f f f f f f f ++++=+++ ()(1)(2)(3)20f f f f +++==,所以①正确;对于②中,由1x =时函数()f x 的一条对称轴,且函数()f x 时周期为4的周期函数,则直线5x =-是函数()y f x =图象的一条对称轴,所以②正确;对于③中,函数()y f x =在[7,7]-上有7个零点,分别为6,4,2,0,2,4,6---,所以C 错误;对于④中,函数()y f x =在[1,1]-上为增函数且周期为4,可得()y f x =在[5,3]--上为增函数,又由5x =-是函数()y f x =图象的一条对称轴,则函数()y f x =在[7,5]--上为减函数,所以④正确.故答案为:①②④17.(1)()323f x x π⎛⎫=+ ⎪⎝⎭(2)332⎡-⎢⎣【分析】(1)根据正弦型函数的图像求三角函数的解析式,根据最大值求出A ,由最小正周期求出ω,并确定ϕ.(2)根据平移后得到新的正弦型函数解析式,由函数解析式求出函数值域.【详解】(1)解:根据函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象可得3A =1252632ππππω=-=⋅,所以2ω=.再根据五点法作图可得23πϕπ⋅+=,所以3πϕ=,()323f x x π⎛⎫=+ ⎪⎝⎭.(2)将函数()f x 的图象向右平移3π个单位后,可得323sin 2333y x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()343g x x π⎛⎫=- ⎪⎝⎭的图象.由0,3x π⎡⎤∈⎢⎥⎣⎦,可得4,33x πππ⎡⎤-∈-⎢⎥⎣⎦又 函数()g x 在50,24π⎡⎤⎢⎥⎣⎦上单调递增,在5,243ππ⎡⎤⎢⎥⎣⎦单调递减∴3(0)2g =-,5324g π⎛⎫= ⎪⎝⎭,03g π⎛⎫= ⎪⎝⎭∴3()34,332g x x π⎛⎫⎡⎤=-∈- ⎪⎢⎝⎭⎣⎦∴函数()g x 在0,3π⎡⎤⎢⎥⎣⎦的值域332⎡-⎢⎣.18.(1)13n n b -=,21n a n =-(2)13n n T n +=⋅【分析】(1)根据对数运算得13n n b b +=,利用等比数列定义求通项公式,利用等差中项判断数列{}n a 为等差数列,建立方程求出公差,从而可得{}n a 的通项;(2)利用错位相减法计算即可.【详解】(1)∵313log 1log n n b b +-=,∴313log log (3)n n b b +=,则13n n b b +=,所以{}n b 为等比数列,又39b =,得11b =,所以13n n b -=,由112n n n a a a +-=+知{}n a 是等差数列,且41427b a ==,39S =,∴111327339a d a d +=⎧⎨+=⎩,得11a =,2d =.∴21n a n =-.(2)因为21n a n =-,13n n b -=,所以()11213n n n n c a b n ++=⋅=+,所以()()1231335373213213n nn T n n -=⋅+⋅+⋅+⋅⋅⋅+-⋅++⋅则()()23413335373213213n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅++⋅上面两式作差得()223123232323213n n n T n +-=+⋅+⋅+⋅⋅⋅+⋅-+⋅()()111913922132313n n n n n -++⎛⎫-⎪=+-+⋅=-⋅ ⎪-⎝⎭,∴13n n T n +=⋅19.(1)证明见解析;(2)7cos 12ABC ∠=.【分析】(1)根据正弦定理的边角关系有acBD b =,结合已知即可证结论.(2)方法一:两次应用余弦定理,求得边a 与c 的关系,然后利用余弦定理即可求得cos ABC ∠的值.【详解】(1)设ABC 的外接圆半径为R ,由正弦定理,得sin sin ,22b c R ABC C R ==∠,因为sin sin BD ABC a C ∠=,所以22b cBD a R R ⋅=⋅,即BD b ac ⋅=.又因为2b ac =,所以BD b =.(2)[方法一]【最优解】:两次应用余弦定理因为2AD DC =,如图,在ABC 中,222cos 2a b c C ab +-=,①在BCD △中,222()3cos 23ba b b a C +-=⋅.②由①②得2222223()3b a b c a b ⎡⎤+-=+-⎢⎥⎣⎦,整理得22211203a b c -+=.又因为2b ac =,所以2261130a ac c -+=,解得3c a =或32ca =,当22,33c c a b ac ===时,333c ca b c+=<(舍去).当2233,22c c a b ac ===时,22233()722cos 31222c c ABC c c c +⋅-==⋅∠.所以7cos 12ABC ∠=.[方法二]:等面积法和三角形相似如图,已知2AD DC =,则23ABD ABC S S =△△,即21221sin sin 2332b ac AD A B BC⨯=⨯⨯∠∠,而2b ac =,即sin sin ADB ABC ∠=∠,故有ADB ABC ∠=∠,从而ABD C ∠=∠.由2b ac =,即b c a b =,即CA BA CB BD =,即ACB ABD ∽,故AD AB AB AC =,即23bc c b =,又2b ac =,所以23c a =,则2227cos 212c a b ABC ac +-==∠.[方法三]:正弦定理、余弦定理相结合由(1)知BD b AC ==,再由2AD DC =得21,33AD b CD b==.在ADB 中,由正弦定理得sin sin AD BDABD A =∠.又ABD C ∠=∠,所以s 3sin n 2i C b A b =,化简得2sin sin 3C A=.在ABC 中,由正弦定理知23c a =,又由2b ac =,所以2223b a=.在ABC 中,由余弦定理,得222222242793cos 221223a a a a c b ABC ac a +--⨯∠+===.故7cos 12ABC ∠=.[方法四]:构造辅助线利用相似的性质如图,作DE AB ∥,交BC 于点E ,则DEC ABC △∽△.由2AD DC =,得2,,333c a a DE EC BE ===.在BED 中,2222()()33cos 2323BED a c b a c -=⋅∠+⋅.在ABC 中222cos 2a a BC c A b c +-=∠.因为cos cos ABC BED ∠=-∠,所以2222222()()3322233a c ba cb ac ac +-+-=-⋅⋅,整理得22261130a b c -+=.又因为2b ac =,所以2261130a ac c -+=,即3c a =或32a c =.下同解法1.[方法五]:平面向量基本定理因为2AD DC =,所以2AD DC =uuu r uuu r.以向量,BA BC 为基底,有2133BD BC BA =+.所以222441999BD BC BA BC BA =+⋅+ ,即222441cos 999b a c c ABC a ∠=++,又因为2b ac =,所以22944cos ac a ac ABC c ⋅∠=++.③由余弦定理得2222cos b a c ac ABC =+-∠,所以222cos ac a c ac ABC =+-∠④联立③④,得2261130a ac c -+=.所以32a c =或13a c=.下同解法1.[方法六]:建系求解以D 为坐标原点,AC 所在直线为x 轴,过点D 垂直于AC 的直线为y 轴,DC 长为单位长度建立直角坐标系,如图所示,则()()()0,0,2,0,1,0D A C -.由(1)知,3BD b AC ===,所以点B 在以D 为圆心,3为半径的圆上运动.设()(),33B x y x -<<,则229x y +=.⑤由2b ac =知,2BA BC AC⋅=,2222(2)(1)9x y x y ++⋅-+=.⑥联立⑤⑥解得74x =-或732x =≥(舍去),29516y =,代入⑥式得36||,||6,32a BC c BA b ====,由余弦定理得2227cos 212a c b ABC ac +-∠==.【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.20.(1)答案见解析(2)证明见解析【分析】(1)先求导,再分类讨论0a ≤与0a >两种情况,结合导数与函数单调性的关系即可得解;(2)方法一:结合(1)中结论,将问题转化为21ln 02a a -->的恒成立问题,构造函数()()21ln 02g a a a a =-->,利用导数证得()0g a >即可.方法二:构造函数()e 1x h x x =--,证得e 1xx ≥+,从而得到2()ln 1f x x a a x ≥+++-,进而将问题转化为21ln 02a a -->的恒成立问题,由此得证.【详解】(1)因为()()e x f x a a x=+-,定义域为R ,所以()e 1x f x a '=-,当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1x f x a -'=<恒成立,所以()f x 在R 上单调递减;当0a >时,令()e 10x f x a '=-=,解得ln x a =-,当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减;当ln x a >-时,()0f x ¢>,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增.(2)方法一:由(1)得,()()()ln min 2ln ln ln e 1a f aa x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,令()()21ln 02g a a a a =-->,则()21212a g a a a a -'=-=,令()0g a '<,则20a <<;令()0g a '>,则22a >;所以()g a 在22⎛⎫⎪ ⎪⎝⎭上单调递减,在22⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min2212ln 202222g a g ⎛⎛==--=> ⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.方法二:令()e 1x h x x =--,则()e 1x h x '=-,由于e x y =在R 上单调递增,所以()e 1xh x '=-在R上单调递增,又()00e 10h '=-=,所以当0x <时,()0h x '<;当0x >时,()0h x '>;所以()h x 在(),0∞-上单调递减,在()0,∞+上单调递增,故()()00h x h ≥=,则e 1xx ≥+,当且仅当0x =时,等号成立,因为()2ln 22()e e e ln 1x x x a f x a a x a a x a x x a a x+=+-=+-=+-≥+++-,当且仅当ln 0x a +=,即ln x a =-时,等号成立,所以要证3()2ln 2f x a >+,即证23ln 12ln 2x a a x a +++->+,即证21ln 02a a -->,令()()21ln 02g a a a a =-->,则()21212a g a a a a -'=-=,令()0g a '<,则20a <<;令()0g a '>,则22a >;所以()g a 在22⎛ ⎝⎭上单调递减,在22⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min2212ln 202222g a g ⎛⎛==--=> ⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.21.(1)2y x =(2)(,1)-∞-【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究【详解】(1)()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e x x f x x f =++=,所以切点为(0,0)11(),(0)21e x x f x f x ''-=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x=(2)()ln(1)e xax f x x =++()2e 11(1)()1e (1)e x x xa xa x f x x x '+--=+=++设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意2︒若10a -≤≤,当,()0x ∈+∞,则()e 20xg x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+≥,即()0f x '>所以()f x 在(0,)+∞上单调递增,()(0)0f x f >=故()f x 在(0,)+∞上没有零点,不合题意3︒若1a <-(1)当,()0x ∈+∞,则()e 20xg x ax '=->,所以()g x 在(0,)+∞上单调递增(0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<=,令(),1,e x x h x x =>-则1(),1,e xxh x x -'=>-所以()x xh x e =在()1,1-上单调递增,在()1,+∞上单调递减,所以()1()1e h x h ≤=,又ee10a-->,e 1e 10e e a af a -⎛⎫-≥-+⋅= ⎪⎝⎭,所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x ∈-=+-设()()e 2xh x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '=当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+<又1(1)0eg -=>所以存在(1,)t n ∈-,使得()0g t =,即()0f t '=当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减,当()1,0x ∈-,()()1eh x h >-=-,又e 1e 10a -<-<,()e e 1e e 0af a a -<-=而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点即()f x 在(1,0)-上有唯一零点所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-【点睛】方法点睛:本题的关键是对a 的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.22.(1)π4cos 02ρθθ⎛⎫=≤≤ ⎪⎝⎭;2sin 218ρθ=(2)π4【分析】(1)根据极坐标与直角坐标的互化公式,即可求解曲线M 和N 的极坐标方程;(2)将0θθ=代入曲线M 和N 的方程,求得018||sin 2OB ρθ==0||4cos OA ρθ==,结合题意求得0tan 1θ=,即可求解.【详解】(1)解:由24y x x =-+224(0)y x x y =-+≥,即224(04,0)x y x x y +=≤≤≥,又由cos sin x y ρθρθ=⎧⎨=⎩,可得2π4cos (0)2ρρθθ=≤≤,所以曲线M 的极坐标方程为π4cos 02ρθθ⎛⎫=≤≤ ⎪⎝⎭.由9xy =,可得2cos sin 9ρθθ=,即2sin 218ρθ=,即曲线N 的极坐标方程为2sin 218ρθ=.(2)解:将0θθ=代入2sin 218ρθ=,可得018||sin 2OB ρθ==将0θθ=代入4cos ρθ=,可得0||4cos OA ρθ==,则012||||tan OA OB θ⋅=因为||||12OA OB ⋅=,所以0tan 1θ=,又因为0π02θ<<,所以0π4θ=.23.(1)7,33⎛⎫- ⎪⎝⎭(2)证明见详解【分析】(1)分段讨论去绝对值即可求解;(2)利用绝对值不等式可求得2m =,再利用基本不等式即可证明.【详解】(1)由题意可得:()31,11213,1131,1x x f x x x x x x x -≥⎧⎪=++-=--<<⎨⎪-+≤-⎩,当1x ≥时,则()318f x x =-<,解得23x ≤<;当11x -<<时,则()38f x x =-<,解得11x -<<;当1x ≤-时,则()318f x x =-+<,解得713x -<≤-;综上所述:不等式()8f x <的解集为7,33⎛⎫- ⎪⎝⎭.(2)∵()()1112g x f x x x x =++---≥=,当且仅当[]1,1x ∈-时等号成立,∴函数()g x 的最小值为2m =,则2a b c ++=,又∵222a a b b a b b +≥⨯=,当且仅当2a b b =,即a b =时等号成立;222b b c c b c c +≥⨯,当且仅当2b c c =,即b c =时等号成立;2222c c a a c a a +≥⨯,当且仅当2c a a =,即a c =时等号成立;上式相加可得:222222a b c b c a a b cb c a ⎛⎫⎛⎫⎛⎫+++++≥++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当a b c ==时等号成立,∴2222a b c a b c b c a ++≥++=.。

四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题

四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题

一、单选题二、多选题1. 假设一个蜂巢里只有1只蜜蜂,第1天它飞出去找回了2个伙伴:第2天,3只蜜蜂飞出去,各自找回了2个伙伴……如果这个找伙伴的过程继续下去,则到第4天所有蜜蜂都归巢后,蜂巢中全部蜜蜂的只数是( ).A .1B .3C .9D .812. 钝角中,,则( )A .1B.C.D .03. 设数列满足,,,数列前n 项和为,且(且).若表示不超过x 的最大整数,,数列的前n项和为,则( )A .2019B .2020C .2021D .20224. 已知平面向量,若与垂直,则( )A.B.C.D.5. 已知是边长为3的正三角形,点是的中点,点在边上,且,则( ).A.B.C.D.6. 已知椭圆与双曲线的焦点相同,离心率分别为,,且满足,,是它们的公共焦点,P 是椭圆和双曲线在第一象限的交点,若,则双曲线的离心率为()A.B.C .2D.7.已知,则=A.B.C.D.8. 在正方体ABCD-A 1B 1C 1D 1中,点M 、N 分别在AB 1、BC 1上,且AM=AB 1,BN=BC 1,则下列结论:①AA 1⊥MN ;②A 1C 1// MN ;③MN//平面A 1B 1C 1D 1;④B 1D 1⊥MN ,其中,正确命题的个数是A .1B .2C .3D .49.记,其中,则下列说法正确的是( )A .若,则B .若,则四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题三、填空题四、解答题C .若,,且恒成立,则D .若,则10.将函数的图象向右平移个单位长度得到函数的图象,若函数在区间上是单调增函数,则实数可能的取值为( )A.B .1C.D .211.已知函数的图象上相邻最低点和最高点的距离为,且在上有最大值,则( )A.B .的取值范围为C.在区间上无零点D .在区间上单调递减12. 已知m ,n 是空间中两条不同的直线,,为空间中两个互相垂直的平面,则下列命题不正确的是( )A .若,则B .若,,则C .若,,则D .若,,则13. 已知函数的图象与的图象关于直线对称,令,则关于函数有下列命题:①的图象关于原点对称;②的图象关于轴对称;③的最大值为;④在区间上单调递增.其中正确命题的序号为___________(写出所有正确命题的序号).14. 已知集合,则________.15. “南昌之星”摩天轮半径为80米,建成时为世界第一高摩天轮,成为南昌地标建筑之一.已知摩天轮转一圈的时间为30分钟,甲乙两人相差10分钟坐上摩天轮,那么在摩天轮上,他们离地面高度差的绝对值的取值范围是__________.16.已知数列的前n项和为,___________,.(1)求数列的通项公式;(2)已知数列,当时,,.记数列的前n 项和为,求.在下面三个条件中任选一个,补充在上面问题中并作答.①;②;③.注:如果选择多个条件分别解答,按第一个解答计分.17. 已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在第一象限且为抛物线C 上一点,点N (5,0)在点F 右侧,且△MNF 恰为等边三角形.(1)求C 的方程;(2)若直线l :x =ky +m 与C 交于A ,B 两点,∠AOB =120°(其中O 为坐标原点),求实数m 的取值范围.18. 已知函数.(1)若,画出函数的图象,并求出的最值;(2)若关于的不等式恒成立,求的取值范围.19. 若二次函数的图象的对称轴为,最小值为,且.(1)求的解析式;(2)若关于x的不等式在区间上恒成立,求实数m的取值范围.20. 某校高三年级50名学生参加数学竞赛,根据他们的成绩绘制了如图所示的频率分布直方图,已知分数在的矩形面积为,求:(1)分数在的学生人数;(2)这50名学生成绩的中位数(精确到);(3)若分数高于60分就能进入复赛,从不能进入复赛的学生中随机抽取两名,求两人来自不同组的概率.21. 已知函数,且在处切线垂直于y轴.(1)求m的值;(2)求函数在上的最小值;(3)若恒成立,求满足条件的整数a的最大值.(参考数据,)。

2024届成都市高三数学(文)上学期一诊联考试卷附答案解析

2024届成都市高三数学(文)上学期一诊联考试卷附答案解析

2024届成都市高三数学(文)上学期一诊联考试卷2023.12(试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数()22,0πsin ,02x x f x xx ⎧-<⎪=⎨≥⎪⎩,则()()11f f -+=()A .1-B .0C .1D .22.普法知识宣传小组打算从某小区的2000人中抽取25人进行法律知识培训,拟采取系统抽样方式,为此将他们一一编号为12000~,并对编号由小到大进行分段,假设从第一个号码段中随机抽出的号码是2,那么从第三个号码段中抽出的号码为()A .52B .82C .162D .2523.已知复数41i i i z -=+(i 为虚数单位),则z 的虚部为()A .1-B .1C .i -D .i 4.若数列{}n a 满足113,21n n a a a n +==-+,则234a a a ++=()A .6B .14C .22D .375.已知向量((),2,0a b =-= ,则cos ,a b =()A .32B .12C .12-D.6.若实数,x y 满足2020310x y x y x y -≥⎧⎪-≤⎨⎪+-≥⎩,则x y +的最小值为()A .0B .37C .35D .17.已知函数()f x 的大致图象如图所示,则()f x 的解析式可以为()A .()22e e 1x x x f x =-B .()22e e 1xxx f x =+C .()()()241ln 2xf x x x -=++D .()()24ln 11x f x x +=+8.已知平面,,,,a b αβγαβγβ⋂=⋂=,则α γ是a b 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.若11ln 22a =,22ln 33b =,1e c =-,则()A .c b a <<B .b<c<a C .c<a<bD .b a c<<10.已知()0,πα∈,且sin 2αα=,则tan α=()A .B .33C D 11.若[)20,,1e xx x ax ∞∈+++≤恒成立,则实数a 的最大值为()A .eB .2C .1D .e 2-12.已知圆22:40C x y +--=经过椭圆2222Ω:1(0)x y a b a b +=>>的两个焦点12,F F ,圆C 和椭圆Ω在第二象限的交点为12,24N NF NF ⋅=,则椭圆Ω的离心率为()A .B .63C .22D .12第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知集合{2},{lg }A x xB x y x =<==∣∣,则A B =.14.曲线()321f x x x =++在点()()1,1f 处的切线方程为.15.记n S 为公差不为零的等差数列{}n a 的前n 项和.若714S =,且3a ,4a ,6a 成等比数列,则2024a 的值为.16.已知侧面积为的圆锥内接于球O ,若圆锥的母线与底面所成角的正切值为12,则球O 的表面积为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.如图,正四棱柱1111ABCD A B C D -中,M 为1AA 的中点,2AB =,14AA =.(1)求证:1C M ⊥平面BDM ;(2)求三棱锥1M BC D-的体积.18.某校高中阶段实行体育模块化课程教学,在高一年级开设了篮球和羽毛球两个模块课程,从该校高一年级随机抽取的100名男生和100名女生中,统计出参加上述课程的情况如下:男生女生总计参加篮球模块课程人数602080参加羽毛球模块课程人数4080120总计100100200(1)根据上述列联表,是否有99.9%的把握认为该校高一年级体育模块化课程的选择与性别有关;(2)根据抽取的200名学生的模块化课程成绩,每个模块课程的前3名获得参加体育模块化教学推广大使的评选资格,若在有评选资格的6名学生中随机选出2人作为体育模块化课程教学的推广大使,求这2人来自不同模块化课程的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++()20P K k ≥0.0250.0100.0050.0010k 5.0246.6357.87910.82819.已知函数()2cos 2cos 1f x x x x =+-.在锐角ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足()1f A =.(1)求A 的值;(2)若1b =,求a c +的取值范围.20.在平面直角坐标系中,动点C 到点()1,0F 的距离与到直线=1x -的距离相等.(1)求动点C 的轨迹方程;(2)若直线:l y x m =+与动点C 的轨迹交于P ,Q 两点,当PQF △的面积为2时,求直线l 的方程.21.已知函数()2e e x f x x=-.(1)求函数()f x 的单调区间;(2)求证:()()e ln cosf x x x >+.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.选修4—4:坐标系与参数方程22.在平面直角坐标系xOy 中,已知直线1C 的参数方程为2cos sin x t y t αα=+⎧⎨=⎩(t 为参数,π02α<<).以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2cos22ρθ=.(1)当π3α=时,求直线1C 的普通方程;(2)已知点()2,0P ,若直线1C 交曲线2C 于,A B 两点,且4PA PB ⋅=,求α的值.选修4—5:不等式选讲23.已知函数()21,f x x a x a =-++∈R.(1)当4a =时,求不等式()7f x ≥的解集;(2)若()2f x a>,求a 的取值范围.1.B【分析】根据分段函数分段求值即可.【详解】由于函数()22,0πsin ,02x x f x xx ⎧-<⎪=⎨≥⎪⎩,所以()()()2π1sin1,11212f f ==-=--=-,则()()11110f f -+=-+=.故选:B.2.C【分析】根据系统抽样的特点确定第三个号码段中抽出的号码即可.【详解】采取系统抽样方式,从2000人中抽取25人,那么分段间隔为20008025=,第一个号码是2,那么第三个号码段中抽出的号码是2280162+⨯=.故选:C.3.A【分析】利用虚数单位的幂的运算及除法运算法则计算化简后,根据虚部的定义得到答案.【详解】∵()()()22421i 1i 1i 12i i 12i 1i i i i 11i 1i 1i 1(1)z ----+--======-+++----,∴z 的虚部为-1,故选:A.4.D【分析】根据条件求出234,,a a a ,即可得出结果.【详解】∵113,21n n a a a n +==-+,∴212116a a =-+=,3222111a a =-+=,4323120a a =-+=,∴2346112037a a a ++=++=.故选:D.5.C【分析】利用向量的夹角公式即可求解.【详解】因为((),2,0a b =-=,所以1cos ,2a b a b a b-⨯⋅===-.故选:C.6.B【分析】先作出不等式组表示的平面区域,然后令x y z +=,当直线y x z =-+在y 轴上截距最小时,x y +取最小,观察图象可得答案.【详解】作出不等式2020310x y x y x y -≥⎧⎪-≤⎨⎪+-≥⎩表示的平面区域如图:令x y z +=,则y x z =-+,即当直线y x z =-+在y 轴上截距最小时,x y +取最小,即y x z =-+过点21,77A ⎛⎫ ⎪⎝⎭时,x y +取最小值213777+=.故选:B.7.B【分析】由图可知,函数的定义域为R ,是奇函数,当0x >时()0f x >,由此判断各选项可得出结果.【详解】对于A ,当0x =时,02e 1e 10x -=-=,()22e e 1xxx f x =-无意义,故A 错误;对于B ,()22e ,e 1x x x f x x =∈+R ,()()()222122e 2e e 1e 1e 11e xx x x x x x x x f x f x ---⋅--===-=-+++,则()f x 是奇函数,当0x >时,20e 0,e x x >>,则()0f x >;对于C ,当0x >时,()210,ln 2ln10x x +>+>=,则()0f x <,故C 错误;对于D ,()()24ln 1,1x f x x x +=∈+R,则()()()()224ln 14ln 1()11x x f x f x x x -++-===-++,则()f x 是偶函数,故D 错误,综上,B 正确.故选:B.8.A【分析】结合面面平行的性质定理和线面平行的性质定理即可判断.【详解】因为α γ,,a b αβγβ⋂=⋂=,所以由面面平行的性质定理可得a b ,则充分性成立;因为a b ,,a b αβγβ⋂=⋂=可知,所以a b γγ⊄⎧⎨⊂⎩,则a γ∥,又b a αα⊄⎧⎨⊂⎩,则b αP ,当l αγ= 时,由线面平行的性质定理可知a l b ,则必要性不成立;综上所述,α γ是a b 的充分不必要条件.故选:A.9.C【分析】根据,,a b c 的特征可构造函数()ln f x x x=,利用导数求得函数单调性即可比较它们的大小.【详解】易知111lne e e c =-=,构造函数()()ln ,0,f x x x x =∈+∞,则()ln 1f x x '=+;令()0f x '=,解得1e x =,当10,e ⎛⎫∈ ⎪⎝⎭x 时,()0f x '<,当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x ¢>;可得()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e⎛⎫+∞ ⎪⎝⎭上单调递增;又易知112e 23<<,所以112e 23c f a f b f ⎛⎫⎛⎫⎛⎫=<=<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即c<a<b .故选:C10.B【分析】将已知条件两边平方,结合“1”的代换化为齐次式,再由弦化切求值即可.【详解】由题设222(sin )sin cos 3cos 4αααααα=-+=,所以4=,且()0,πα∈,故22tan 34tan 4ααα-+=+,即223tan 11)0ααα++=+=,所以tan α=.故选:B 11.D【分析】先确定0x =时的情况,在当0x >时,参变分离可得2e 1x x a x --≤,构造函数()2e 1x f x x x -=-,求出函数()f x 的最小值即可.【详解】当0x =时,01e ≤,不等式成立;当0x >时,2e 1x x a x --≤恒成立,即min 2e 1x a x x ⎛⎫ ⎪⎝⎭-≤-,令()2e 1x f x x x -=-,则()()()()()2222e e 1e 11x x x x x f x x x x x x -------'==,因为0x >时,e 10xx -->(后证)所以当01x <<时,()0f x '<,()f x 单调递减,当1x >时,()0f x ¢>,()f x 单调递减,故()()1mine 1e 2111f x f --===-,所以e 2a ≤-,即实数a 的最大值为e 2-.证明当0x >时,e 10xx -->,令()=e 1--x g x x ,0x >,则()=e 10x g x '->,则()g x 在()0,∞+上单调递增,所以()()00g x g >=,即e 10xx -->.故选:D.12.C【分析】先根据圆与x 轴的交点求出椭圆的焦点,然后利用圆周角的性质求出12cos F NF ∠,进而根据余弦定理及椭圆的定义可求出a ,则离心率可得.【详解】对于圆22:40C x y +--=,即(2216x y +-=,圆心为(0,,半径为4当0y =时,2x =±,当0x =时,124,4y y ==,即如图点()0,4B 即椭圆2222Ω:1(0)x y a b a b +=>>的两个焦点为()()122,0,2,0F F -,即2c =,又圆C 和椭圆Ω在第二象限的交点为N ,由圆周角的性质可得1212F NF F BF ∠=∠,则2212121cos cos 2cos 1212F NF F BF F BO ⎛⎫⎪∠=∠=∠-=⨯-=又由121122124cos 2N NF NF F NF F NF NF ⋅==∠=得1232NF NF =-,又()(()22212121212326c 22o 224s 1NF NF NF NF F NF NF NF +-∠=---=-+得(()2422163224a -=--,解得a =所以离心率c ea ==.故选:C.13.{}|02x x <<【分析】求出集合,A B 中元素范围,再求交集即可.【详解】{}{}|2|22A x x x x =<=-<<,{}{}lg |0B x y x x x ===>∣,则{}|02A B x x ⋂=<<.故答案为:{}|02x x <<.14.52y x =-【分析】首先求()1f 和()1f ',代入()()()111y f f x '-=-.【详解】因为2()32f x x x '=+,所以所求切线的斜率(1)325k f '==+=,而(1)1113f =++=,故所求的切线方程为35(1)y x -=-,即52y x =-.故答案为:52y x =-.15.2022【分析】根据等差数列的性质可得42a =,结合等比中项可得1d =,结合等差数列的定义分析求解.【详解】因为数列{}n a 为等差数列,则74714S a ==,可得42a =,设等差数列{}n a 的公差为0d ≠,因为3a ,4a ,6a 成等比数列,则2436a a a =,即()()4222=-+d d ,解得1d =或0d =(舍去),所以4202420202022=+=a a d .故答案为:2022.16.100π【分析】结合圆锥的几何性质求出圆锥的底面半径,作出轴截面结合勾股定理即可求解.【详解】设底面半径为r,因为圆锥的母线与底面所成角的正切值为12,则圆锥的高为2rh =,母线为2l r==,则其侧面积为1(2π)2r r =,解得4r =,作出圆锥的轴截面,如下图所示:则球的半径为2222()4(2)2rR r R R =+-=+-,解得5R =则球O 的表面积为224π4π(5)100πR =⋅=.故答案为:100π17.(1)证明见解析(2)4【分析】(1)根据正四棱柱的几何性质确定线段长度,结合勾股定理可得1C M DM⊥,1C M BM⊥,再根据线面垂直判定定理即可证得结论;(2)根据三棱锥的等体积转化,结合体积公式求解即可.【详解】(1)如图,连接11A C .正四棱柱1111ABCD A B C D -中,M 为1AA 的中点,2AB =,14AA =,∴221111112AC A D D C =+11122A M AM AA ===,222DM AD AM ∴=+=又22115C D DC CC =+22111123MC AC A M=+.22211C M DM DC +=,∴1C M DM ⊥.同理可得1C M BM⊥.DM BM M = ,DM ⊂平面BDM ,BM ⊂平面BDM ,∴1C M ⊥平面BDM .(2)由(1)知,BM DM BD ===1C M ⊥平面BDM .∴(112111433M BC D C BDM BDM V V S C M --==⋅=⨯⨯=△.三棱锥1C BDM-的体积为4.18.(1)有99.9%的把握认为该校高一年级体育模块化课程的选择与性别有关;(2)35.【分析】(1)应用卡方公式求卡方值,结合独立检验的基本思想得结论即可;(2)由古典概型中的列举法求概率即可.【详解】(1)由列联表数据可得,()222006080402010033.33310.828100100120803K ⨯⨯-⨯==≈>⨯⨯⨯.所以有99.9%的把握认为该校高一年级体育模块化课程的选择与性别有关.(2)设篮球模块课程的前3名为1A ,2A ,3A ,羽毛球模块课程的前3名为1B ,2B ,3B .从这6人中随机选2人的基本事件有()12,A A ,()13,A A ,()11,A B ,()12,A B ,()13,A B ,()23,A A ,()21,A B ,()22,A B ,()23,A B ,()31,A B ,()32,A B ,()33,A B ,()12,B B ,()13,B B ,()23,B B ,共15个.其中选出的这2人来自不同模块化课程的基本事件有()11,A B ,()12,A B ,()13,A B ,()21,A B ,()22,A B ,()23,A B ,()31,A B ,()32,A B ,()33,A B 共9个.故所求概率为93155P ==.19.(1)π3A =(2)1,22⎛ ⎝【分析】(1)由三角函数的诱导公式和辅助角公式计算可得;(2)首先由正弦定理和(1)求出122tan2a c B+=+,然后用锐角三角形和(1)求出B 的取值范围,最后结合正切函数公式计算出结果.【详解】(1)()2πcos 2cos 1cos22sin 26f x x x x x x x ⎛⎫=+-+=+ ⎪⎝⎭.由()π2sin 216f A A ⎛⎫=+= ⎪⎝⎭,即1sin 22π6A ⎛⎫+=⎪⎝⎭.ABC 为锐角三角形,ππ7π2,666A ⎛⎫+∈ ⎪⎝⎭,∴π5π266A +=.∴π3A =.(2)由正弦定理,sin sin sin a b c A B C ==.∴32sin a B =,2πsin sin 3sin sin B C c B B ⎛⎫- ⎪⎝⎭==.)22πsin cos 111132sin 2sin 2224sin cos 2tan 222B B B a c B B B B B ⎛⎫- ⎪+⎝⎭+++==++,.ABC 是锐角三角形,∴π02B <<,且2ππ32C B =-<.∴ππ,62B ⎛⎫∈ ⎪⎝⎭,ππ,2124B ⎛⎫∈ ⎪⎝⎭,ππtantanπππ34tan tan 2ππ12341tan tan 34-⎛⎫=-==- ⎪⎝⎭+⨯,()22Btan∈.∴322tan 2B ⎝.∴31,22a c ⎛+∈+ ⎝.综上,a c +的取值范围为1,22⎛+ ⎝.20.(1)24y x =(2)y x =或y x =或y x =.【分析】(1)结合抛物线的定义即可求解;(2)联立直线与抛物线,结合韦达定理及弦长公式和三角形面积公式即可求解.【详解】(1)由题知,动点C 的轨迹是以F 为焦点,=1x -为准线的抛物线.∴动点C 的轨迹方程为24y x =.(2)设()11,P x y ,()22,Q x y由24y x m y x =+⎧⎨=⎩消去x ,得2440y y m -+=.由16160m ∆=->,得1m <.∴124y y +=,124y y m =.由FPQ △的面积121122S PQ d y y =⋅⋅=⋅-∴14+=.∴14+=,即()210m m m +-=.1m <,∴0m =或m =.∴直线l 的方程为y x =或152y x -=+或152y x -=+.21.(1)单减区间为(),1ln 2-∞-,单增区间为()1ln 2,-+∞.(2)证明见解析【分析】(1)利用导数与函数单调性的关系即可得解;(2)构造函数()()2e e e ln 1x h x x x =--+,利用导数判推得()0h x >,进而得证.【详解】(1)因为()2e e x f x x=-,所以()2e ex f x =-',当(),1ln 2x ∈-∞-时,()0f x '<,()f x 单调递减;当()1ln 2,x ∈-+∞时,()0f x ¢>,()f x 单调递增;所以()f x 的单减区间为(),1ln 2-∞-,单增区间为()1ln 2,-+∞.(2)设函数()()2e e e ln 1xh x x x =--+,则()e2e e x h x x '=--,0x >,易得()h x '在()0,∞+上单调递增,且()10h '=,所以当()0,1x ∈,()0h x '<,()h x 单调递减;当()1,x ∈+∞,()0h x '>,()h x 单调递增;所以()()min 10h x h ==,故()2e e e ln 10x x x --+≥,当且仅当1x =时等号成立,即()()e ln 1f x x ≥+,当且仅当1x =时等号成立,因为1cos x ≥,所以()()()e ln 1e ln cosf x x x x ≥+≥+,由于上述不等式取等条件不能同时成立,所以()()e ln cosf x x x >+,得证.【点睛】关键点睛:本题解决的关键是利用中间函数()e ln 1y x =+作为桥梁,简化了证明过程,从而得证.22.0y --=(2)π6α=或π3【分析】(1)将π3α=代入参数方程,然后把参数方程转化为普通方程即可;(2)先求2C 的普通方程,再把1C 代入2C 得到一元二次方程,从而根据t 的几何意义得到α的值.【详解】(1)当π3α=时,求直线1C的参数方程为122x t y ⎧=+⎪⎪⎨⎪=⎪⎩,化简得直线1C0y --=.(2)因为曲线2C 的极坐标方程为2cos22ρθ=,所以()2222cos2cos sin 2ρθρθθ=-=.又因为=cos ,=sin x y ρθρθ,所以曲线2C 的普通方程为222x y -=.将直线1C 的参数方程为2cos sin x t y t αα=+⎧⎨=⎩(t 为参数,π02α<<)代入222x y -=,得()()2222cos sin t t αα+-=,化简得2222cos sin 244cos t t t ααα+-+=,即2cos 24cos 20t t αα++=.因为直线1C 交曲线2C 于,A B 两点,所以cos20α≠,即π4≠α,又()2Δ16cos 8cos 281cos 28cos 280.αααα=-=+-=>设,A B 两点对应的参数分别为12,t t ,则12124cos 2,cos 2cos 2t t t t ααα+=-=.因为点()2,0P 在直线1C 上,所以1224cos 2PA PB t t α⋅===,即1cos 22α=,又π02α<<,所以π6α=或π3.23.(1)410,,33⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭ (2)2,3⎛⎫-∞- ⎪⎝⎭【分析】(1)代入4a =,分类讨论去绝对值解不等式即可;(2)分2a <-,2a >-,2a >-讨论,通过单调性求出()f x 的最小值,然后利用()min 2f x a>解不等式求出a 的取值范围.【详解】(1)当4a =时,()33,22415,1233,1x x f x x x x x x x ->⎧⎪=-++=-+-≤≤⎨⎪-+<-⎩,因为()7f x ≥,所以3372x x -≥⎧⎨>⎩或5712x x -+≥⎧⎨-≤≤⎩或3371x x -+≥⎧⎨<-⎩,解得43x ≤-或103x ≥,故不等式()7f x ≥的解集为410,,33⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭ ;(2)当2a <-时,12a<-,此时()31,1211,1231,2x a x a f x x a x x a x a x a x ⎧⎪-+>-⎪⎪=-++=--≤≤-⎨⎪⎪-+-<⎪⎩,明显函数()f x 在,2a ⎛⎫-∞ ⎪⎝⎭上单调递减,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,故()min 2122a a a f x f a ⎫- -==⎪⎭>⎛⎝,解得25a <-,又2a <-,所以2a <-,当2a >-时,12a>-,此时()31,2211,1231,1a x a x a f x x a x x a x x a x ⎧-+>⎪⎪⎪=-++=---≤≤⎨⎪-+-<-⎪⎪⎩,明显函数()f x 在(),1-∞-上单调递减,在()1,-+∞上单调递增,故()()min 1121f ax f =--=>--,解得23a <-,又2a >-,所以223a -<<-;当2a =-时,此时()312f x x a=+>,综上所述,a 的取值范围是2,3⎛⎫-∞- ⎪⎝⎭.。

四川省遂宁市2023届高三上学期一诊模拟考试理科数学试卷(Word版含答案)

四川省遂宁市2023届高三上学期一诊模拟考试理科数学试卷(Word版含答案)

遂宁市2023届高三上学期一诊模拟考试理科数学总分: 150分一 单选题(5分*12) 1. 已知复数 z 满足z =1+i , 则i zz+3i=( )A.−35−35iB.−15+35iC.−35+35iD.15+35i 2. 人口普查是世界各国所广泛采取的一种调查方法,根据人口普查的基本情况,可以科学的研究制定社会、经济、科教等各项发展政策,是国家科学决策的重要基础工作.截止2021年6月,我国共进行了七次人口普查,下图是这七次人口普查的城乡人数和增幅情况,下列说法错误的是( )A.城镇人口数逐次增加B.历次人口普查中第七次普查城镇人口最多C.城镇人口比重逐次增加D.乡村人口数逐次增加3. 已知命题 p : “a >1”; 命题q : “函数f(x)=ax +cosx 单调递增”, 则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不必要又不充分条件4. 已知角 α的顶点与坐标原点O 重合, 始边与x 轴的非负半轴重合. 若角α终边上一点P 的坐标为(cos 2π3,sin 2π3),则sinαtanα=( ) A.−32B.−√32C.√32D.325. 执行下侧所示的程序框图, 输出 S 的值为 ( )A.30B.70C.110D.1406. 函数 y =x 28−ln|x|的图象大致为( )A. B. C. D.7. 已知离心率为 32的双曲线C:x 2a 2−y 2b2=1(a >0,b >0)的右焦点与抛物线y 2=12x 的焦点重合,则C 的方程是 ( )A.x 25−y 24=1 B.x 24−y 25=1 C.x 28−y 210=1 D.x 23−y 26=1 8. 已知 a =e 0.1,b =√3c =ln2, 则a,b,c 的大小关系为 ( )A.a >b >cB.a >c >bC.b >a >cD.b >c >a9. 已知函数 f(x)=acos (x −π3)+√3sin (x −π3)是偶函数,g(x)=f (2x +π6)+1, 若关于x 的方程g(x)=m 在[0,7π12]有两个不相等实根, 则实数m 的取值范围是( ) A.[0,3] B.[0,3) C.[2,3) D.[√2+1,3)10.已知函数 f(x)的定义域为R,f(2x −2)为偶函数,f(x −3)+f(−x +1)=0, 当x ∈[−2,−1]时,f(x)=1a x −ax −4(a >0且a ≠1), 且f(−2)=4. 则∑k=119|f(k)|=( ) A.28B.32C.36D.4011. 某四棱锥的底面为正方形, 顶点在底面的射影为正方形中心, 该四棱锥所有顶点都在半径为 3 的球 O 上, 当该四棱锥的体积最大时, 底面正方形所在平面截球O 的截面面积是( ) A.πB.4πC.8πD.9π12. 已知函数 f(x)=sinωx +cosωx , 其中ω>0. 给出以下命题:①若 f(x)在(0,π4)上有且仅有 1 个极值点, 则1<ω≤5;①若 f(x)在(π2,π)上没有零点, 则0<ω≤34或32≤ω≤74;①若 f(x)在区间(π2,3π4)上单调递增, 则0<ω≤13或52≤ω≤3.其中所有真命题的序号是( ) A.①①B.①①C.①①D.①①①二 填空题(5分*4)2a 54 150 , 214. 双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左顶点为A , 右焦点F(c,0), 若直线x =c 与该双曲线交于B 、C 两点,△ABC 为等腰直角三角形, 则该双曲线离心率为__________15. 若数列 {a n }对任意n ∈N ∗满足:a 1+2a 2+3a 3+⋯+na n =n , 则数列{an n+1}的前n 项和为__________16. 已知函数 f(x)=sin π2x , 任取t ∈R , 记函数f(x)在[t,t +1]上的最大值为M t , 最小值为m t ,设ℎ(t)=M t −m t , 则函数ℎ(t)的值域为__________ 三 解答题(共70分)17. (12分)第七次全国人口普查是对中国特色社会主义进入新时代开展的重大国情国力调查.某地区通过摸底了解到,某小区户数有1000户,在选择自主填报或人户登记的户数与户主年龄段(45岁以上和45岁及以下)分布如下2×2列联表所示:(1)将题中列联表补充完整;通过计算判断,有没有95%的把握认为户主选择自主填报与年龄段有关系?(2)根据(1)中列联表的数据,在自主填报的户数中按照户主年龄段用分层抽样的方法抽取了6户.若从这6户中随机抽取3户进行进一步复核,记所抽取的3户中“户主45岁及以下”的户数为ξ,求ξ的分布列和数学期望. 附表及公式:其中 K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), n =a +b +c +d .18. (12分)在 △ABC 中,a,b,c 分别为角A 、B 、C 的对边,c(acosB +bcosA)=a 2−b 2+bc . (1)求 A ;(2)若角 A 的平分线AD 交BC 于D , 且BD =2DC,AD =2√3, 求a .19. (12分)已知数列 {a n }的前n 项和为S n , 且S n+1=S n +a n +1, __________. 请在a 4+a 7=13;a 1,a 3,a 7成等比数列;S 10=65, 这三个条件中任选一个补充在上面题干中, 并解答下面问题. (1)求数列 {a n }的通项公式;(2)设数列 {a n 2n }的前n 项和T n , 求证:1≤T n <3.20. (12分)如图, 四棱锥 P −ABCD 中, 侧面PAD ⊥底面ABCD , 底面ABCD 为梯形,AB//DC , 且AP =PD =CD =2AB =2√3,∠APD =∠ADC =60∘. 作PH ⊥AD 交AD 于点H , 连结AC,BD 交于点(1)设 G 是线段PH 上的点, 试探究: 当G 在什么位置时, 有GF//平面PAB ; (2)求平面 PAD 与平面PBC 所成二面角的正弦值.21. (12分)已知函数 f(x)=lnx +ax +1(其中a ∈R ).(1) 讨论函数 f(x)的单调性;(2) 对任意 x ∈(0,+∞)都有f(x)≤xe x 成立, 求实数a 的取值范围.22. (10分)在直角坐标系 xOy 中, 曲线C 的参数方程为{x =1+cosαy =1+sinα(α为参数). 以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系, 直线l 的极坐标方程为ρcos (θ−π4)=√2. (1)求直线 l 的直角坐标方程与曲线C 的普通方程;(2)已知点 A 的直角坐标为(−1,3), 直线l 与曲线C 相交于E,F 两点, 求AE ∙|AF|的值. 23. (10分)已知函数 f(x)=|x −1|+2|x +1|. (1) 求不等式 f(x)<5的解集;(2) 设 f(x)的最小值为m . 若正实数a,b,c 满足a +2b +3c =m , 求3a 2+2b 2+c 2的最小值.答案1. D【解析】z=1+i, 故i zz̅+3i =i(1+i)1−i+3i=−1+i1+2i=(−1+i)(1−2i)(1+2i)(1−2i)=1+3i5=15+35i.故选: D2. D【解析】根据给定的条形图,可得城镇人口在逐年增加,所以A正确;从给定的条形图象,可得再历次人口普查中第七次普查城镇人口最多的,所以B正确;从图表中的数据可得,七次人口普查中城镇人口比重依次为13.06,18.30,20.91,26.40,36.32,69.68,63.89,可知城镇人口比值逐次增加,所以C正确;由图表,可得乡村人口先增加后减少,所以D不正确.故选:D。

2024届绵阳中学高三数学(理)上学期一诊模拟卷(五)附答案解析

2024届绵阳中学高三数学(理)上学期一诊模拟卷(五)附答案解析

2024届绵阳中学高三数学(理)上学期一诊模拟卷(五)2023.10(试卷满分150分;考试时间120分钟)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的).1.已知集合{1,22x U x y A x ⎧⎫===>⎨⎬⎩⎭,则U A =ð()A .(],1-∞-B .[)2,1--C .[]2,1--D .[)2,-+∞2.实数a ,b 满足a b ≥,则下列不等式成立的是()A .1a b ≥B .tan tan a b ≥C .21a b -≥D .()ln 0a b -≥3.已知,,a b c 分别为ABC 的内角,,A B C 的对边,命题p :若222a b c +<,则ABC 为钝角三角形,命题q:若a b <,则cos cos A B <.下列命题为真命题的是()A .p q∧B .()p q ∧⌝C .()()p q ⌝∧⌝D .()p q⌝∨4.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入2x =,2n =,依次输入a 的值为1,2,3,则输出的s =()A .10B .11C .16D .175.如图,在平行四边形ABCD 中,23BE BC =,34DF DE=,若AF AB AD λμ=+ ,则λμ-=()A .32B .112-C .112D .06.等差数列{}n a 中,1472120a a a ++=,则746S a -=()A .60B .30C .10D .07.垃圾分类是指按一定规定或标准将垃圾分类储存、投放和搬运,从而转变成公共资源的一系列活动,做好垃圾分类是每一位公民应尽的义务.已知某种垃圾的分解率v 与时间t (月)近似地满足关系tv a b=⋅(其中,a b 为正常数),经过5个月,这种垃圾的分解率为5%,经过10个月,这种垃圾的分解率为10%,那么这种垃圾完全分解大约需要经过()个月.(参考数据:lg20.3≈)A .20B .27C .32D .408.函数()()3π3πe e 2sin ,22x x f x x x x -⎛⎫⎛⎫=--∈- ⎪ ⎪⎝⎭⎝⎭的图像大致是()A.B .C.D.9.定义:{},max ,,,a a ba b b a b ≥⎧=⎨<⎩函数(){}max sin ,cos f x x x =,下列选项正确的是()A .函数()f x 为偶函数B .函数()f x 不是周期函数C .函数()f x 在π0,2⎡⎤⎢⎥⎣⎦上单调递增D .函数()f x 的图像关于9π4x =对称10.若α,β为锐角,且π4αβ+=,则tan tan αβ+的最小值为()A.2B1C.2D111.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a+⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫ ⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是()A .20,3⎛⎤⎥⎝⎦B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤ ⎥⎝⎦D .33,42⎛⎤ ⎥⎝⎦12.函数()f x 和()g x 的定义域均为R ,且()33y f x =+为偶函数,()32y g x =++为奇函数,对x ∀∈R ,均有()()21f xg x x +=+,则()()77f g =()A .615B .616C .1176D .2058第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.已知()1,2AB =- ,点()()2,0,3,1C D -,则向量AB 在CD 方向上的投影为.14.若πtan 9α=,则7πcos()18πsin()9αα+=+.15.已知函数()22e ,1e ,1x xx x f x x x ⎧<⎪=⎨≥⎪⎩,若关于x 的方程()()220f x af x -=⎡⎤⎣⎦有两个不相等的实数根,则实数a 的取值范围是.16.已知正整数数列{}n a 满足:11,1,,nn n n n a n a na a a n a n +->⎧==⎨+≤⎩,则2022a =三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第.22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭,已知函数()y f x =的图象与x 轴相邻两个交点的距离为π2,且图象关于点π,08M ⎛⎫- ⎪⎝⎭对称.(1)求()f x 的单调区间;(2)求不等式()1f x -≤≤的解集.18.设n S 是数列{}n a 的前n 项和,已知11a =,11,,22,.nn n a n n a a n n +⎧+⎪=⎨⎪-⎩为奇数为偶数(1)证明:{}22n a -是等比数列;(2)求满足20n S >的所有正整数n.19.如图,在平面四边形ABCD 中,1AB =,3BC =,2AD CD ==.(1)当四边形ABCD 内接于圆O 时,求角C ;(2)当四边形ABCD 面积最大时,求对角线BD 的长.20.已知函数322()2f x x ax a x m =+++在1x =处取得极小值.(1)求实数a 的值;(2)若()f x 有3个零点,求实数m 的取值范围.21.已知函数()()2e 2x f x ax a =-∈R .(1)讨论()f x 的单调性;(2)若()sin cos 0e x x xf x -+≥对任意的[)0,x ∈+∞恒成立,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,曲线C 的参数方程为22cos 22sin x y αα=+⎧⎨=+⎩(α为参数),直线l 的参数方程为cos sin x t y t ββ=⎧⎨=⎩(t 为参数,0πβ≤<),以坐标原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位,建立极坐标系.(1)求曲线C 的极坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,且2216OA OB +=,求β的值.[选修4-5:不等式选讲]23.已知函数()2f x x =-.(1)解不等式()()216f x f x ++≥;(2)对()1,0a b a b +=>及R x ∀∈,不等式()412f x m x a b ----≤+恒成立,求实数m 的取值范围.1.C【分析】因为集合,U A 的代表元素都是x ,所以分别解关于x 的不等式可得集合,U A ,进而求出U A ð.【详解】由20x +≥得2x ≥-,由122x >得122x ->,即1x >-,所以{}{}2,1U x x A x x =≥-=>-,所以[]2,1U A -=-ð.故选:C.2.C【分析】举反例即可判定ABD ,由a b ≥,得出0a b -≥,利用指数函数的性质即可判定C.【详解】取1,1a b ==-,满足a b ≥,但1ab =-,所以A 错误;取3ππ,44a b ==,满足a b ≥,但tan 1tan 1a b =-<=,所以B 错误;若a b ≥,则0a b -≥,0221a b-≥=,所以C 正确;取1e a b -=,则()1ln ln 1e a b -==-,所以D 错误.故选:C.3.B【分析】分别判断两个命题的真假,再根据选项判断复合命题的真假.【详解】因为222a b c +<,所以222cos 02a b c C ab +-=<,则p 为真命题.因为a b <,所以A B <,又cos y x=在[]0,π上是减函数,所以cos cos A B >,则q 为假命题,只有()p q ∧⌝为真命题.故选:B4.B【分析】根据循环结构,令1,2,3a =依次进入循环系统,计算输出结果.【详解】解:∵输入的2x =,2n =,当输入的a 为1时,1S =,1k =,不满足退出循环的条件;当再次输入的a 为2时,4S =,2k =,不满足退出循环的条件;当输入的a 为3时,11S =,3k =,满足退出循环的条件;故输出的S 值为11.故选:B 5.D【分析】由已知结合向量的线性运算及平面向量基本定理即可求解.【详解】在平行四边形ABCD 中,23BE BC =,34DF DE =,所以()3344AF AD DF AD DE AD DC CE=+=+=++ 31334344AD AB AD AB AD⎛⎫=+-=+ ⎪⎝⎭,若AF AB AD λμ=+ ,则34λμ==,则0λμ-=.故选:D .6.B【分析】本题可由等差数列的性质即中项公式来求解.【详解】 等差数列{}n a 中,1472120a a a ++=,∴44120a =即430a =,∴()1774444470763662a a S a a a a a +-=-==-=.故选:B.7.B【分析】根据v 和t 的两组值求出,a b ,再根据100%1v ==求出t 即可得解.【详解】依题意得5105%10%a b a b ⎧=⋅⎨=⋅⎩,解得152b =, 2.5%a =,则152.5%2v =⋅,这种垃圾完全分解,即分解率为100%,即152.5%21t v =⋅=,所以15240=,所以21log 405t =,所以25lg 405log 40lg 2t ==5(lg 41)5(2lg 21)lg 2lg 2++==55101027lg 20.3=+≈+≈.故选:B8.A【分析】根据函数的奇偶性和特殊值,逐一判断,即可得到本题答案.【详解】由()()()()()e e 2sin e e 2sin xxxxf x x x x x f x ---=-+-=--=,又3π3π,22x ⎛⎫∈- ⎪⎝⎭,可知()f x 为偶函数,排除B ;因为()π0f =,可排除D ,又由1(1)(e2)sin10ef=--⋅>,可排除C.故选:A 9.D【分析】利用正弦曲线、余弦曲线确定(){}max sin,cosf x x x=的图像.【详解】因为(){}max sin,cosf x x x=,所以()f x的图像如下:由图可知,A,B,C错误,D正确.故选:D.10.A【分析】利用两角和的正切公式进行转化,结合基本不等式求得tan tan2αβ++≥,从而求得tan tanαβ+的最小值.【详解】因为()tan tantan11tan tanαβαβαβ++==-,所以()()1tan1tan1tan tan tan tanαβαβαβ++=+++()11tan tan tan tan2αβαβ=+-+=,所以()()21tan1tan1tan1tan2αβαβ+++⎛⎫++ ⎪⎝⎭≤,即2≤()2tan tan24αβ++,得()2tan tan28αβ++≥,由于α,β为锐角,所以tan tan20αβ++>,所以tan tan2αβ++≥,当且仅当tan tan1αβ==时等号成立,所以tan tanαβ+的最小值为2-.故选:A11.D【分析】推导出sin4d=1,由此能求出d,可得函数解析式,利用在23xπ⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论.【详解】∵{an}为等差数列,公差为d ,且0<d <1,a52k π≠(k ∈Z ),sin2a3+2sina5•cosa5=sin2a7,∴2sina5cosa5=sin2a7﹣sin2a3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sina5cos2d•2cosa5sin2d ,∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调∴23ππω≥,∴ω32≤;又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,所以f (x )在(0,23π)上存在零点,即223ππω<,得到ω34>.故答案为33,42⎛⎤ ⎥⎝⎦故选D【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.12.B【分析】由题意可以推出()()6f x f x =-,()()46g x g x =---,再结合()()21f xg x x +=+可得函数方程组,解出函数方程组后再代入求值即可.【详解】由函数()33f x +为偶函数,则()()3333f x f x +=-,即函数()f x 关于直线3x =对称,故()()6f x f x =-;由函数()32g x ++为奇函数,则()()3232g x g x ++=--+-,整理可得()()334g x g x ++-+=-,即函数()g x 关于()3,2-对称,故()()46g x g x =---;由()()21f xg x x +=+,可得()()266(6)1f xg x x -+-=-+,所以()()24(6)1f x g x x --=-+,故()()()()2214(6)1f x g x x f x g x x ⎧+=+⎪⎨--=-+⎪⎩,解得()()2621,620f x x xg x x =-+=-,所以()()27672128,67202277f g =-⨯+==⨯-=,所以()()772822616f g =⨯=.故选:B.13.2-【分析】根据投影的计算公式即可求解.【详解】由点()()2,0,3,1C D -,得()1,1CD =-,所以向量AB在CD方向上的投影为:cos ,2AB CD AB AB CD CD⋅⋅==-.故答案为:322-.14.3-##3-+【分析】利用和角的正余弦公式化简,再利用诱导公式及齐次式求法求解即可.【详解】πtan 9α=,则7π7π7ππππcos()cos cos sin sin cos sin sin cos tan tan 181818999ππππππsin()sin cos cos sin sin cos cos sin tan tan999999αααααααααααα+---===++++3=-=.故答案为:315.222e e ,,e 82⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭【分析】利用导数研究()f x 的单调性和极值,作出()f x 的图像;由关于x 的方程2[()]2()0f x af x -=有两个不相等的实数根,得到函数()y f x =与2y a =有一个交点,利用图像法求解.【详解】对于函数()22e ,1e ,1x xx x f x x x ⎧<⎪=⎨≥⎪⎩.当()2()e 1x f x x x =<时,2()(2)e x f x x x '=+.令()0f x '>,解得:<2x -或01x <<;令()0f x '<,解得:20x -<<;所以()f x 在(,2)-∞-上单调递增,在(2,0)-上单调递减,在(0,1)上单调递增.而<2x -,()0f x >;24(2)e f -=,(1)e f =.当()2e ()1x f x x x =≥时,24e ()(2)x f x x x x '=-.令()0f x '<,解得:12x <<;令()0f x '>,解得:2x >;所以()f x 在(1,2)上单调递减,在(2,)+∞上单调递增.而()1e f =;2e (2)4f =,2x >,()0f x >.作出()f x的图像如图所示:解关于x 的方程2[()]2()0f x af x -=有两个不相等的实数根,即关于x 的方程()[()2]0f x f x a -=有两个不相等的实数根,()0f x =只有一个实数根0x =,所以关于x 的方程()20f x a -=有一个非零的实数根,即函数()y f x =与2y a =有一个交点,横坐标0x ≠.结合图像可得:224e 2e4a <<或2a e >,所以a 的取值范围是222e e ,,e 82⎛⎫⎛⎫⋃+∞ ⎪ ⎪⎝⎭⎝⎭.16.630【分析】根据已知条件,易得到数列的初值,根据初值,可以进行归纳,得到1k n a =中项数满足的递推关系,然后使用数列归纳法进行推导论证,得到1213(21)k k n n ++=+的递推公式,然后通过构造等比数列求解出k n 的表达式,结合2022所满足的关系代入合适的关系式求解即可.【详解】由11,1,,nn n n n a n a na a a n a n +->⎧==⎨+≤⎩可得:n1234567891011121314na 1241510411312213114我们可以看到1k n a =的下标:1231,4,13,,n n n === 它们满足的递推关系:131,1,2,3k k n n k +=+=①,对k 归纳:1,2k =时已经成立,设已有1k n a =,则由条件,11k n k a n +=+,222k n k a n +=+,3k n ka n +=,423k n k a n +=+,归纳易得:212,1,2,3,,1k n m k k a n m m n +-=+-=+ ,221,1,2,3,,k n m k ka n m m n +=++= ,②于是,当1k m n =+时,312(1)1k n k k a n n +=+-+=,因此,131,(1,2,3,)k k n n k +=+= 即①式成立,根据①式,1213(21)k k n n ++=+,令21k kn x +=,所以13k kx x +=,13x =,所以3kk x =,因此312k k n -=,1,2,3,k = ,而773110932n -==,883132802n -==,则782022n n <<,7202224651n =+- ,故由②式可得,20227246510932465630a n =+-=+-=故答案为:630.17.(1)单调递增区间:3πππ,π8282k k ⎛⎫-++ ⎪⎝⎭,k ∈Z ,无递减区间(2)ππππ,42242k k x x k ⎧⎫-+≤≤+∈⎨⎬⎩⎭Z 【分析】(1)根据函数周期性,结合函数图象过的点的坐标,代值计算即可求得参数,则解析式可求;利用整体法代换法,即可求得函数的单调区间;(2)根据(1)中所求解析式,利用正切函数的单调性,即可解得不等式.【详解】(1)由题意知,函数f(x)的最小正周期为T =2π,即2ππω=,因为ω>0,所以ω=2,从而f(x)=tan(2x +φ),因为函数y =f(x)的图象关于点M ,08π⎛⎫- ⎪⎝⎭对称,所以2×8π⎛⎫- ⎪⎝⎭+φ=2k π,k ∈Z ,即φ=2k π+4π,k ∈Z.因为0<φ<2π,所以φ=4π,故f(x)=tan 24x π⎛⎫+ ⎪⎝⎭.令-2π+kπ<2x +4π<2π+kπ,k ∈Z ,得3244k x k k Zππππ-+<<+∈,,即38282k k x k Zππππ-+<<+∈所以函数的单调递增区间为3,8282k k ππππ⎛⎫-++ ⎪⎝⎭,k ∈Z ,无单调递减区间.(2)由(1)知,f(x)=tan 24x π⎛⎫+ ⎪⎝⎭.由-1≤tan 24x π⎛⎫+ ⎪⎝⎭得2443k x k k πππππ-+≤+≤+∈,Z ,即42242k k x k ππππ-+≤≤+∈,Z所以不等式-42242k k x x k ππππ⎧⎫-+≤≤+∈⎨⎬⎩⎭Z ∣,.18.(1)证明见解析(2)正整数n 为1,2【分析】(1)由定义能证明数列{}22n a -是等比数列;(2)由1211222n n a -⎛⎫-=-⋅ ⎪⎝⎭,得21218432nn n a a n -⎛⎫+=--⋅ ⎪⎝⎭,从而()()()22123421233123222nnn n S a a a a a a n -⎛⎫⎛⎫=++++⋅⋅⋅++=--++⨯ ⎪ ⎪⎝⎭⎝⎭;由求和式子由此能求出满足20n S >的所有正整数n 的值.【详解】(1)由已知得()222122111214211222n n n n a a n a n n a ++=++=-++=+,所以()2221222n n a a +-=-,其中232a =,21202a -=-≠,所以{}22n a -是以12-为首项,12为公比的等比数列;(2)由(1)知1211222n n a -⎛⎫-=-⋅ ⎪⎝⎭,所以2122n n a ⎛⎫=-+ ⎪⎝⎭,1211642n n a n --⎛⎫=-- ⎪⎝⎭,所以21218432nn n a a n -⎛⎫+=--⋅ ⎪⎝⎭,所以()()()21234212n n n S a a a a a a -=++++⋅⋅⋅++()2211118412326332222n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-++⋅⋅⋅+-++⋅⋅⋅+=-+-+⨯⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦233123222nn ⎛⎫⎛⎫=--++⨯ ⎪ ⎪⎝⎭⎝⎭,当2n ≥时,{}2n S 单调递减,其中252S =,474S =,6218S =-,所以满足20n S >的所有正整数n 为1,2.19.(1)π3C =【分析】(1)根据πA C +=,结合余弦定理求解即可;(2)将四边形ABCD 的面积拆成两个三角形的面积之和,由余弦定理和三角形面积公式结合三角函数的性质即可求解.【详解】(1)由余弦定理可得:222222cos 12212cos BD AB AD AB AD A A =+-⋅⋅=+-⨯⨯⨯,222222cos 32232cos BD BC CD BC CD C C =+-⋅⋅=+-⨯⨯⨯,所以54cos 1312cos A C -=-.又四边形ABCD 内接于圆O ,所以πA C +=,所以()54cos 1312cos C Cπ--=-,化简可得1cos 2C =,又()0,πC ∈,所以π3C =.(2)设四边形ABCD 的面积为S ,则11sin sin 22ABD BCD S S S AB AD A BC CD C =+=⋅⋅⋅+⋅⋅⋅△△,又222222cos 2cos BD AB AD AB AD A BC CD BC CD C =+-⋅⋅=+-⋅⋅,所以2222111223221221223223S sinA sinC cosA cosC ⎧=⨯⨯+⨯⨯⎪⎨⎪+-⨯⨯=+-⨯⨯⎩,即3,23,S sinA sinC cosC cosA =+⎧⎨=-⎩平方后相加得24106sin sin 6cos cos S A C A C +=+-,即()266cos S A C =-+,又()0,2πA C +∈,所以πA C +=时,2S 有最大值,即S 有最大值.此时,πA C =-,代入23cos cos C A =-得1cos 2C =.又()0,πC ∈,所以π3C =在BCD △中,可得:22222π2cos 23223cos73BD BC CD BC CD C =+-⋅⋅=+-⨯⨯⨯=,即BD 所以,对角线BD.20.(1)1-(2)4,027⎛⎫- ⎪⎝⎭【分析】(1)求得22()34f x x ax a '=++,根据题意得到2(1)340f a a '=++=,求得a 的值,再利用函数极小值的定义,进行判定,即可求解;(2)由(1)得到函数的()f x 单调性和极值,结合题意,列出不等式组,即可求解.【详解】(1)解:由题意,函数322()2f x x ax a x m =+++,可得22()34f x x ax a '=++,因为()f x 在1x =处取得极小值,所以2(1)340f a a '=++=,解得3a =-或1a =-.①当3a =-时,2()31293(1)(3)f x x x x x =-+=--'.令()0f x '>,解得1x <或3x >;令()0f x '<,解得13x <<.所以()f x 在(,1)-∞,(3,)+∞上单调递增,在(1,3)上单调递减,此时()f x 在1x =处取得极大值,不合题意,舍去.②当1a =-时,2()341(31)(1)f x x x x x '=-+=--.令()0f x '>,解得13x <或1x >;令()0f x '<,解得113x <<.所以()f x 在1,3⎛⎫-∞ ⎪⎝⎭,(1,)+∞上单调递增,在1,13⎛⎫⎪⎝⎭上单调递减,此时()f x 在1x =处取得极小值,符合题意.综上可知,1a =-.(2)解:由(1)知,当1a =-时,函数32()2f x x x x m =-++,且()f x 在1,3⎛⎫-∞ ⎪⎝⎭,(1,)+∞上单调递增,在1,13⎛⎫ ⎪⎝⎭上单调递减,要使()f x 有3个零点,只需112132793f m ⎛⎫=-++> ⎪⎝⎭且(1)1210f m =-++<,解得4027m -<<.故实数m 的取值范围为4,027⎛⎫- ⎪⎝⎭.21.(1)答案见解析(2)(],2-∞【分析】(1)利用导数与函数单调性的关系,分类讨论0a ≤与0a >即可得解;(2)构造函数()2sin cos e 2e x x x xh x ax -=-+,利用导数得到()h x '的单调性,从而分类讨论2a >与2a ≤,结合()00h =的特性进行分析即可得解.【详解】(1)因为()2e 2x f x ax=-,所以()()222e 22e x x f x a a'=-=-,当0a ≤时,2e 0x a -≥,即()0f x '≥,所以()f x 在R上单调递增;当0a >时,令2e 0xa -=,得1ln 2x a =,令()0f x '<,得1ln 2x a <;令()0f x ¢>,得1ln 2x a >;所以()f x 在1,ln 2a ⎛⎫-∞ ⎪⎝⎭上单调递减;()f x 在1ln ,2a ⎛⎫+∞ ⎪⎝⎭上单调递增;综上,当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在1,ln 2a ⎛⎫-∞ ⎪⎝⎭上单调递减;()f x 在1ln ,2a ⎛⎫+∞ ⎪⎝⎭上单调递增.(2)因为()2e 2x f x ax=-,所以由()sin cos 0e x x x f x -+≥,得2sin cos e 20e x x x x ax --+≥在[)0,∞+上恒成立,令()()2sin cos e 20e x x x x h x ax x -=-+≥,则()22cos 2e 2e xx x h x a '=-+,()00h =,令()()2cos e 0e x x x x a x ϕ=-+≥,则()22πsin cos 42e 2e e e x xx x x x x x ϕ⎛⎫+ ⎪--⎝⎭'=+=-,因为0x ≥,则e 1x≥,2e 1x ≥,π4x ⎛⎫+≤ ⎪⎝⎭,则π4e x x ⎛⎫+ ⎪⎝⎭≤所以2π42e 20e x x x ⎛⎫+ ⎪⎝⎭-≥>,则()0x ϕ'>在[)0,∞+上恒成立,所以()x ϕ在[)0,∞+上单调递增,则()h x'在[)0,∞+上单调递增,令()()32e 2e 0x x m x x x =-≥,则()()()326e 21e 2e 3e 1x x x x m x x x '=-+=--,令()()23e 10x n x x x =--≥,则()26e 10x n x '=-≥在[)0,∞+上恒成立,所以()n x 在[)0,∞+上单调递增,则()()00n x n ≥>,即()0m x '>,所以()m x 在[)0,∞+上单调递增,则()()02m x m ≥=,则32e 2e 2cos 22cos 0x xx x x -+≥-≥,故22cos 2e 20e x x xx -+≥,所以当2a >时,()002cos002e 2420e h a a '=-+=-<,()22cos 2e 20e a aah a a '=-+≥,所以()h x'在(]0,a 上必存在0x ,使得()00h x '=,又()h x '在[)0,∞+上单调递增,故当00x x <<时,()00h x '<,所以()h x 在()00,x 上单调递减,而()()00h x h <=,不满足题意;当2a ≤时,()()002cos 002e 22420e h x h a ''≥=-+≥-+=,所以()h x 在[)0,∞+上单调递增,故()()00h x h ≥=,满足题意;综上:2a ≤,即a 的取值范围为(],2-∞.【点睛】关键点睛:本题解决的关键在于利用导数求得当2a >时,存在()00,x x ∈使得()0h x <,从而排除2a >的情况,由此得解.22.(1)24cos 4sin 40ρρθρθ--+=(2)π12β=或5π12β=【分析】(1)首先将曲线C 的参数方程化为普通方程,再根据转化公式,化为极坐标方程;(2)首先将直线的极坐标方程代入曲线C 的极坐标方程,利用韦达定理表示22OA OB+,即可求解.【详解】(1)曲线C 的直角坐标方程:224440x y x y +--+=,根据公式直角坐标与极坐标转化公式,222x y ρ+=,cos x ρθ=,sin y ρθ=,所以C 的极坐标方程:24cos 4sin 40ρρθρθ--+=;(2)直线l 的极坐标方程:()R θβρ=∈,代入C 的极坐标方程得:()24cos sin 40ρββρ-++=,124cos 4sin ρρββ∴+=+,124ρρ=,()222221212122816sin 216OA OB ρρρρρρβ+=+=+-=+=,1sin 22β∴=,0πβ≤<,π26β∴=或5π12,即π12β=或5π12β=,23.(1)(,1][3,)-∞-+∞ ;(2)135m -≤≤.【分析】(1)写出()()21f x f x ++的分段函数的形式,分类讨论即可求得不等式的解集.(2)利用均值不等式,根据1a b +=,求得41a b +的最小值,再结合绝对值三角不等式,即可将问题转化为关于m 的不等式,则问题得解.【详解】(1)依题意,133,21()(21)2211,2233,2x x f x f x x x x x x x ⎧-<⎪⎪⎪++=-+-=+≤≤⎨⎪->⎪⎪⎩,当12x <时,由336x -≥,解得1x ≤-,则1x ≤-;当122x ≤≤时,16x +≥,解得5x ≥,无解;当2x >时,由336x -≥,解得3x ≥,则3x ≥,所以不等式()()216f x f x ++≥的解集为(,1][3,)-∞-+∞ .(2)由1(,0)a b a b +=>,得41414()559b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4b a a b =,即223a b ==时取等号,则当223a b ==时,min 41(9a b +=,依题意,R x ∀∈,|2||2|9x m x -----≤,而当x ∈R 时,|2||2||(2)(2)||4||4|x m x x m x m m -----≤--+--=--=+,当且仅当(2)(2)0x m x ----≤,且|2||2|x m x --≥--时取等号,因此|4|9m +≤,解得135m -≤≤,所以135m -≤≤.。

四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题

四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题

一、单选题二、多选题1.已知抛物线的准线是圆与圆的公共弦所在的直线,则抛物线的标准方程为( )A.B.C.D.2.已知函数,若在上有且仅有2个最大值点,则的取值范围是( )A.B.C.D.3. 如图是正方体的平面展开图,在这个正方体中,①BM 与ED 平行;②CN 与BE 是异面直线;③CN 与BM 成60°;④DM 与BN 垂直.以上四个命题中,正确命题的序号是()A .①②③B .②④C .③④D .②③④4. 已知函数(且),则关于x 的不等式的解集是( )A.B.C.D .以上答案都不对5.某班全体学生某次测试成绩(单位:分)的频率分布直方图如图,数据的分组依次为:,,,.若不低于80分的人数是15,则该班的学生人数是()A .40B .45C .50D .606. 已知函数,若曲线存在与y 轴垂直的切线,则a 的最大值为( )A.B.C.D.7. 已知,则的值为( )A .24B .48C .32D .728.函数有两个零点,下列说法错误的是( )A.B.C.D.9. 设,过定点的直线与过定点的直线相交于点,线段是圆的一条动弦,且,给出下列四个结论:其中所有正确结论的序号是( )A .一定垂直B.的最大值为4四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题三、填空题C .点的轨迹方程为D.的最小值为10. 如图,在棱长为1的正方体中,,分别为棱,的中点,为线段上一个动点,则()A .存在点,使直线平面B .平面截正方体所得截面的最大面积为C .三棱锥的体积为定值D .存在点,使平面平面11. 在长方体中,,,动点在体对角线上(含端点),则下列结论正确的有()A.当为中点时,为锐角B .存在点,使得平面C.的最小值D .顶点到平面的最大距离为12. 2021年4月30日,国家统计局发布了《2020年农民工监测调查报告》.如图,为2016年至2020年的农民工规模及增速图,则以下说法正确的是()A .2019年农民工规模达到最大B .这5年农民工规模的中位数为28836万人C .2020年农民工规模比2019年减少517万人,下降%D .5年以来,农民工规模增速逐年递减13.已知函数满足.若对于恒成立,则实数a 的取值范围是_________.四、解答题14. 已知函数是定义在上的偶函数,在上单调递减,且,则不等式的解集为______.15. 某科研机构为评定新研发的水稻的亩产量,随机抽取了部分地块进行测试,得到的样本亩产量(单位:kg )分别为1120,1135,1128,1123,1128,1129,1126,则该次新研发的水稻亩产量的平均值的估计值为___________.16.在凸四边形中,,,,.(1)若,求;(2)若的角平分线交对角线于点,求的最大值.17. 某数学建模小组研究挡雨棚(图1),将它抽象为柱体(图2),底面与全等且所在平面平行,与各边表示挡雨棚支架,支架、、垂直于平面.雨滴下落方向与外墙(所在平面)所成角为(即),挡雨棚有效遮挡的区域为矩形(、分别在、延长线上).(1)挡雨板(曲面)的面积可以视为曲线段与线段长的乘积.已知米,米,米,小组成员对曲线段有两种假设,分别为:①其为直线段且;②其为以为圆心的圆弧.请分别计算这两种假设下挡雨板的面积(精确到0.1平方米);(2)小组拟自制部分的支架用于测试(图3),其中米,,,其中,求有效遮挡区域高的最大值.18.如图中,已知点在边上,且,,,.(1)求的长;(2)求.(注:)19.在中,内角,,所对的边分别为,,,,,且,再从条件①、条件②中选择一个作为已知.(1)求的值;(2)求的面积.条件①:;条件②:.20. 已知抛物线C :y 2=2px (p >0)的焦点为F ,点P (t ,﹣2)在C 上,且|PF |=2|OF |(O 为坐标原点).(1)求C 的方程;(2)若A ,B 是C 上的两个动点,且A ,B 两点的横坐标之和为8,求当|AB |取最大值时,直线AB 的方程.21. 设的内角A 、、所对的边分别为、、,且.(1)证明:;(2)若,求的值.。

四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题(3)

四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题(3)

一、单选题二、多选题1. 命题“,函数是偶函数”的否定是( )A .,函数不是偶函数B .,函数不是偶函数C .,函数是奇函数D .,函数是奇函数2. 定义在上的函数满足,当时,,则不等式的解集为( )A.B.C.D.3. 某圆锥高为1,底面半径为,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为( )A .2B.C.D .14. 已知数列的通项公式为,前n项和为,则( )A .48B .63C .80D .995.已知平面向量满足,,,则向量与向量的夹角为( )A.B.C.D.6. 椭圆的左、右焦点为,,过垂直于x 轴的直线交C 于A ,B 两点,若为等边三角形,则椭圆C 的离心率为( )A.B.C.D.7.已知抛物线:与点,过的焦点且斜率为的直线与交于,两点,若,则( )A.B.C.D.8. 已知偶函数满足:对任意的,都有成立,则满足的取值范围是A.B.C.D.9. 已知函数,若函数的部分图象如图所示,则关于函数,下列结论正确的是()A .函数的图象关于直线对称B .函数的图象关于点对称C .函数在区间上的减区间为D .函数的图象可由函数的图象向左平移个单位长度得到10. 利用简单随机抽样的方法抽查某工厂的100件产品,其中一等品有20件,合格品有70件,其余为不合格品,现在这个工厂随机抽查一件产品,设事件A 为“是一等品”,B 为“是合格品”,C 为“是不合格品”,则下列结果正确的是( ).A.B.C.D.四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题(3)四川省绵阳南山中学2023-2024学年高三一诊模拟考试文科数学试题(3)三、填空题四、解答题11. 下列说法正确的是( )A .若,则B.若,,且,则的最大值是1C .若,,则D .函数的最小值为912. 已知点P 为双曲线上任意一点,为其左、右焦点,O 为坐标原点.过点P 向双曲线两渐近线作垂线,设垂足分别为M 、N ,则下列所述正确的是( )A.为定值B .O 、P 、M 、N 四点一定共圆C.的最小值为D .存在点P 满足P 、M 、三点共线时,P 、N 、三点也共线13. 对实数、定义一个运算:,设函数(),若函数的图象与轴恰有两个公共点,则实数的取值范围是__________.14. 如图,正四面体的棱长为3,,,分别是,,上的点,,,,截去三棱锥,同理,分别以,,为顶点,各截去一个棱长为1的小三棱锥,截后所得的多面体的外接球的表面积为_____.15. 图,在梯形,,,,,且,则的值为______.16.在中,内角A 、B 、C 的对边分别为a 、b 、c ,,(1)求角A ;(2)若,求a 的最小值.17.已知函数是上的偶函数,其图象关于点对称,且在区间上是单调函数.求和的值.18. 已知函数.(1)求的值;(2)求的最小正周期和单调递增区间.19. 电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差,,,,,的大小关系.20. 如图所示的几何体中,四边形ABCD为矩形,平面ABCD,,,,点P为棱DF的中点.(1)求证:平面APC;(2)求直线DE与平面BCF所成角的正弦值;(3)求平面ACP与平面BCF的夹角的余弦值.21. 已知函数.(1)若函数的图象与轴存在交点,求的最小值;(2)若函数的图象在点处的切线斜率为,且函数的最大值为,求证:.。

2025届四川省内江市高中高三一诊考试数学试卷含解析

2025届四川省内江市高中高三一诊考试数学试卷含解析

2025届四川省内江市高中高三一诊考试数学试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知()()()[)3log 1,1,84,8,6x x f x x x ⎧+∈-⎪=⎨∈+∞⎪-⎩ 若()()120f m f x ⎡⎤--≤⎣⎦在定义域上恒成立,则m 的取值范围是( )A .()0,∞+B .[)1,2C .[)1,+∞D .()0,12.已知x ,y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则2z x y =+的最大值为A .1B .2C .3D .43.函数()2cos2cos221x xf x x =+-的图象大致是( )A .B .C .D .4.设i 为虚数单位,则复数21z i=-在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限5.根据如图所示的程序框图,当输入的x 值为3时,输出的y 值等于( )A .1B .eC .1e -D .2e -6.若202031i iz i+=+,则z 的虚部是( )A .iB .2iC .1-D .17.已知0x =是函数()(tan )f x x ax x =-的极大值点,则a 的取值范围是 A .(,1)-∞- B .(,1]-∞ C .[0,)+∞ D .[1,)+∞8.已知复数21iz i=+,则z =( ) A .1i +B .1i -C 2D .29.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A .72种B .36种C .24种D .18种10.在等差数列{}n a 中,若n S 为前n 项和,911212a a =+,则13S 的值是( ) A .156B .124C .136D .18011.正方形ABCD 的边长为2,E 是正方形内部(不包括正方形的边)一点,且2AE AC ⋅=,则()2AE AC +的最小值为( ) A .232B .12C .252D .1312.已知向量11,,a b m ⎛⎫==,若()()a b a b +⊥-,则实数m 的值为( )A .12BC .12±D. 二、填空题:本题共4小题,每小题5分,共20分。

四川省绵阳市三台中学校2023届高三一诊模拟考试数学(理)试题(四)(含解析)

四川省绵阳市三台中学校2023届高三一诊模拟考试数学(理)试题(四)(含解析)

四川省绵阳市三台中学校2023届高三一诊模拟考试数学(理)试题(四)学校:___________姓名:___________班级:___________考号:___________e e-.....已知菱形ABCD 的对角线相交于点O 为AO 的中点,若2AB =,60BAD =︒,则AB DE ⋅=( ).2-B .12-72-D .12.函数()()()cos 0,0f x A x A ωϕω=+>><的部分图象如图所示,为了得到C .()()2e 22ln 211xf x x =---D .()()2e 22ln 212xf x x =---二、填空题(1)当[0,)θπ∈,求以极点为圆心,(2)设点P 是由(1)中的交点所确定的圆求点P 到直线l 的距离的最大值.参考答案:【点睛】本题考查向量的数量积运算,解题的关键在于根据题意建立平面直角坐标系,坐标法求解,考查运算求解能力,是中档题.9.B【详解】2A = ,22T π= ,T π= ,2ω= ,23π⨯66614.728⎡⎤⎢⎥⎣⎦,【分析】由7,66x ππ⎡⎤∈⎢⎥⎣⎦,求得1sin [,1]2x ∈-,即可求解.7ππ⎡⎤1由(1)知π3B=,于是在ABC中,由正弦定理知所以21 sin BAC∠=.()10g -≤且()10g ≤即可.即120,120a a +-≤--≤,解得[]1,1a ∈-.【点睛】本题考查绝对值不等式的求解,以及二次函数在区间上恒成立的问题,属综合基础题.。

四川省成都七中 2023 届高三上学期数学(理)一诊模拟考试参考答案

四川省成都七中 2023 届高三上学期数学(理)一诊模拟考试参考答案

1 高2023届高三一诊模拟考试数学参考答案(理科)一.选择题二.填空题13、-14 14、4 15、2 16、-2,16][三.解答题17. 解:(1)因为==A B B B sin sin22sin cos , 所以⨯====B b B A a 2sin 2255cos sin 63,因为⎝⎭⎪∈⎛⎫πB 20,,所以=B 5sin 4, 又===A B B B 25sin sin22sin cos 24,且A 为锐角,所以=A 25cos 7,所以=-+=-=C A B A B A B 5cos cossin sin cos cos 3)(. 因为=C B cos cos .所以=C B .所以==c b 5.…………………………………………5分(2)设=AMm ,=AN n ,根据题设有△△=S S AMN ABC 21, 所以=⨯mn A bc A 222sin sin 111,可得=mn 225, …………………………………………7分 所以=+-≥-=MN m n mn A mn mn 252cos 21814222,当且仅当==m n 所以MN 的最小值为 ……………………………………………………………12分18.解:(1)由样本频率分布表可知,样本中获一等奖的6人,获二等奖的8人,获三等奖的16人,共30人,则70人没有获奖,所以从该样本中随机抽取2名学生的竞赛成绩,这2名学生恰有一名学生获奖的概率为⨯===⨯P C 509933307014C C 1002307011. ……………………………………………………………5分 (2)因为该校所有参赛学生的成绩X 近似地服从正态分布N (64,225),所以=μ64,所以>=P X 2(64)1,即从所有参赛学生中随机抽取1名学生,该生成绩在64分以上的概率为21,所以随机变量⎝⎭⎪⎛⎫ξB 2~4,1, 所以⎝⎭⎝⎭⎝⎭ ⎪ ⎪ ⎪====⎛⎫⎛⎫⎛⎫-ξP k k kk k k 222()C C (0,1,2,3,4)1114444, 所以⎝⎭ ⎪===⎛⎫ξP 216(0)C 11404,⎝⎭⎪===⎛⎫ξP 24(1)C 11414, ⎝⎭ ⎪===⎛⎫ξP 28(2)C 13424,⎝⎭ ⎪===⎛⎫ξP 24(3)C 11434,⎝⎭ ⎪===⎛⎫ξP 216(4)C 11444, ………………………………………………………7分 ξ 10分所以=⨯=ξE 2()421. …………………………………………………………………12分 19. 解:(1)证明:△ABC 是边长为6的等边三角形,点M ,N 分别是边AB ,AC 的三等分点,且=AM AB 31,3有=-+->⇔+>∆k t k t k t 644(14)(416)0164222222,++=-k x x kt 148212,+=-k x x t 144162122, 因︒∠=AOB 90,则⋅=+=+++=++++OA OB x x y y x x kx t kx t k x x kt x x t ()()(1)()12121212121222++=-+==+---k k t k t k t t k 14140(1)(416)8516162222222222,整理得=+t k 5(1)1622,满足∆>0, 原点O 到直线l的距离===d 5, 综上得:原点O 到直线l ,即直线l 与圆+=x y 51622相切, 所以直线l 与定圆+=>O x y r r :(0)222相切,=r ………………………………12分 21.解:(1)由已知=-'xu x a (),1 当≤a 0时,≥'x f ()0在+∞(0,)恒成立,f x ()在+∞(0,)上单调递增;……………………2分 当>a 0时,由x f x a ()01得=a x 1, 若<<a x 01时,>'f x ()0,f x ()在⎝⎭ ⎪⎛⎫a 0,1上单调递增, 若>a x 1时,<'f x ()0,f x ()在⎝⎭⎪+∞⎛⎫a ,1上单调递减; 综上,当≤a 0时,f x ()的单调递增区间为+∞(0,),无单调递减区间; 当>a 0时,f x ()的单调递增区间为a(0,)1,单调递减区间为+∞a (,)1;…………5分 (2)解:由题意得:(∈+=-+>f x x ax ax x a R x 21ln 0),12)()()(==+--=-->'+x xg x f x x a a x x a x x ax ()()ln ln (0),11 =+-=>'-+x x xg x x a x ax ()1(0)11222 令=-+>∆=-h x x ax x a ()1(0),422 当-≤≤a 22时,≥h x ()0,≥'g x ()0,g x ()在+∞(0,)上递增;不满足=='g x f x ()()0有三个不同实根;当<-a 2时,∵=-+>h x x ax x ()1(0),2 ∴>h x ()0,>'g x ()0,g x ()在+∞(0,)上递增;也不满足=='g x f x ()()0有三个不同实根;当>a 2时,由=h x()0得==x x45, ∴g x ()在⎝⎭ ⎛上递增,在⎝⎭上递减,在⎝⎭⎪⎪+∞⎫上递增. ∵=='g x f x ()()0有三个不同实根<<x x x x x x ,,()123123 , …………7分 显然=g (1)0>1, ∴=<<>x x x 1,01,1213. 由=--=x g x x a x ()ln 01的结构特征得=-m g m g ()()1,∴=-x g x g ()()111 ∴==x g x g ()()0113,即=x x 113,即=x x 113 由g x ()的单调性可知, 当<<x x x 12时,>g x ()0,f x ()递增; 当<<x x x 23时,>g x ()0,f x ()递减.∴<<f x f x f x f x ()(),()()1232 . …………………………………………8分由得=--=-x x x g x x a x a x ln ()ln 1133333332 , 又=-+-f x x x a x x x 2ln (ln )12)(,4 ∴-=-=--+--+x x x x x f x f x f x f x x a x x x 2()()()()()2ln (ln ln )111111333332313333332, ∴--+=---x x x x x x a x x x x x ln (ln ln )111(1)13333332233333224, ⎝⎭⎝⎭⎪ ⎪∴-=+----⎛⎫⎛⎫x x x f x f x x x x x 2ln ()()[2ln 4ln 4]11133322313333222, 令=>x t t (1)32,则⎝⎭⎝⎭⎝⎭⎝⎭ ⎪ ⎪ ⎪ ⎪+----+----⎛⎫⎛⎫⎛⎫⎛⎫x x t t x x x x t t t t 2ln 4ln 4]=42ln 2ln 1111332233332222, 令⎝⎭⎝⎭ ⎪ ⎪=+---->⎛⎫⎛⎫t t G t t t t t t ()42ln 2ln (1)112, ∴='--++tG t t t t t ()3(1)(41)ln 222, 令=--++>ϕt t t t t t ()3(1)(41)ln (1)22,=--+-'ϕt t t t t ()52(2)ln 41,=--+''ϕt t t t ()2ln 3142,=<'''-ϕt t t ()02(1)32, ∴''ϕt ()在+∞(1,)上递减, ∴<=''''ϕϕt ()(1)0, ∴'ϕt ()在+∞(1,)上递减, ∴<=''ϕϕt ()(1)0, ∴ϕt ()'在+∞(1,)上递减, ∴<=ϕϕt ()(1)0,则<'G t ()0,∴G t ()在+∞(1,)上递减 , ∴<=G t G ()(1)0,∴<f x f x ()()31 , ∴<<f x f x f x 312)()()(,综上:f x f x f x (),(),()123的大小关系为:<<f x f x f x 312)()()(. ……………………12分 22. 解:(1)曲线C 的平面直角坐标系方程为-+=x y (1)422,故曲线C 的极坐标方程为--=ρρθ2cos 302. ……………………………………4分 (2)设直线l 的倾斜角为α,则ραραE F (,),(,)12,∵--=ρρα2cos 302,由韦达定理可知=-ρρ312.由余弦定理可知=AE ||=ρ21,==AF ||=ρ22, ∴⋅==ρρAE AF |412|||12.………………………………………………………………10分 23.解:(1)因为x x x x 12121,所以++≥a b c 1,因为+≥a b ab 222,+≥b c bc 222,+≥c a ac 222,所以++++≥a b c ab bc ac 222222222,所以a b c a b c ab bc ac a b c 333222()12222222, 故++≥a b c 31222.……………………………………………………………………………5分(2)因为+≥a b ab 222,所以+≥++=+a b a b ab a b 2222222)()(, 即+≥+a b a b 2222)(,两边开平方得a b a b a b 22()2222,同理可得(c bc b 2)222+c a 2), 三式相加,得a b b c c a a b c 2()2222222.…………………10分。

四川省绵阳中学2023-2024学年高三上学期一诊模拟(四)数学(理科)试题

四川省绵阳中学2023-2024学年高三上学期一诊模拟(四)数学(理科)试题

{ } 【详解】依题意,得 f (x) 的定义域为 x x ¹ 0 ,函数 f (x) 为偶函数,且 f (x) 在 (0, +¥) 上为
增函数,
而 a = f (log2 3) ,
因为 2 < 3 < 4 ,所以 log2 2 < log2 3 < log2 4 ,即1 < log2 3 < 2 ,
A. 3n2 - n 2
B. n2 + n 2
C. 3n - 2
D. 5n - 3n2 2
8.已知a
Î
æ çè
π 2

ö ÷ø
,且 3cos
2a
-
4 sin a
=
1
,则
tan
2a
=


A.
1 3
B. 4 2 7
C.
-
1 3
D. - 4 72
9.塑料袋给我们生活带来了方便,但塑料在自然界可停留长达 200~400 年之久,给环 境带来了很大的危害,国家发改委、生态环境部等 9 部门联合发布《关于扎实推进污 染物治理工作的通知》明确指出,2021 年 1 月 1 日起,禁用不可降解的塑料袋、塑料
1 PA
+
1 PB
的值.
23.已知函数 f (x) = 2 | x -1| + | x + 2 | . (1)求 f (x) £ 9 的解集; (2)若函数 f (x) 的最小值为 M ,且 a + b + c = M ,求 4a2 + b2 + c2 的最小值.
试卷第51 页,共33 页
1.A
参考答案:
-

四川省绵阳市2023-2024学年高三上学期一诊模拟理科数学试卷(一)含解析

四川省绵阳市2023-2024学年高三上学期一诊模拟理科数学试卷(一)含解析

2021级高三上期一诊模拟试题(一)数学(答案在最后)本试卷分为试题卷和答题卡两部分,其中试题卷由第I 卷(选择题)和第II 卷(非选择题)组成,共4页;答题卡共4页.满分150分,考试时间120分钟.第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题意要求的.1.设全集I R =,集合{}2|log ,2A y y x x ==>,{|B x y ==,则A.A B ⊆B.A B A ⋃= C.A B ⋂=∅D.()I A B ⋂≠∅ð【答案】A 【解析】【分析】先化简集合A,B,再判断每一个选项得解.【详解】∵{}|1A y y =>,{|1}B x x =≥,由此可知A B ⊆,A B B ⋃=,A B A = ,I A B ⋂=∅ð,故选A .【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的理解掌握水平,属于基础题.2.下列函数中,与函数1y x =-相同的是()A.y =B.211x y x -=+ C.1y t =- D.y =【答案】C 【解析】【分析】根据两个函数的定义域相同,对应关系也相同,即判断这两个函数为相同函数.【详解】解:对于A ,1y x ===-,与函数1y x =-的对应关系不相同,故不是相同函数;对于B ,函数211x y x -=+的定义域为{}1x x ≠-,函数1y x =-的定义域为R ,两函数的定义域不相同,故两函数不是相同函数;对于C ,两函数的定义域都是R ,且对应关系相同,故两函数为相同函数;对于D ,1y x ==--,与函数1y x =-的对应关系不相同,故不是相同函数.故选:C.3.如图所示,在ABC 中,点D 是线段AC 上靠近A 的三等分点,点E 是线段AB的中点,则DE =()A.1136BA BC --B.1163BA BC --C.5163BA BC --D.5163BA BC -+【答案】B 【解析】【分析】由向量线性运算的几何意义即可计算【详解】()111111323263DE DA AE CA AB CB BA BA BC =+=+=+-=--.故选:B4.已知函数()22x f x a-=+(0a >且1a ≠)的图像过定点P ,且角α的始边与x 轴的正半轴重合,终边过点P ,则()211π9πcos sin 22sin πααα⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭--等于()A.23-B.23C.32D.32-【答案】A 【解析】【分析】先化简所要求的式子,又由于()220222123f aa -=+=+=+=,所以()22x f x a -=+过定点()2,3P ,进一步结合题意可以求出与α有关的三角函数值,最终代入求值即可.【详解】()()()222ππππ11π9πcos 6πsin 4πcos sin cos sin 222222sin πsin π+sin πααααααααα⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++-++-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦==--⎡⎤-+⎣⎦又因为ππcos cos sin 22ααα⎡⎤⎛⎫⎛⎫-+=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,sin os π2c αα⎛⎫= ⎪+⎝⎭,()22sin πsin αα+=,故原式=2sin cos 1sin tan αααα-⋅=-;又()22x f x a -=+过定点()2,3P ,所以3tan 2α=,代入原式得原式=12tan 3α-=-.故选:A .5.函数()()cos f x x ωϕ=+的部分图象如图所示,则()f x 的单调递减区间为()A.13π,π44k k ⎡⎤-+⎢⎥⎣⎦,Z k ∈ B.132π,2π44k k ⎡⎤-+⎢⎥⎣⎦,Z k ∈C.13,44k k ⎡⎤-+⎢⎣⎦,Zk ∈ D.132,244k k ⎡⎤-+⎢⎣⎦,Zk ∈【答案】D 【解析】【分析】根据图象可得()f x 的最小正周期和最小值点,根据余弦型函数的性质分析判断.【详解】设()f x 的最小正周期为T ,可知511244T =-=,即2T =,且当5134424x +==时,()f x 取到最小值,由周期性可知:与34x =最近的最大值点为31144x =-=-,如图所示,所以()f x 的单调递减区间为132,244k k ⎡⎤-+⎢⎥⎣⎦,Z k ∈.故选:D.6.下列5个命题:①“0R x ∃∈,2010x +<”的否定;②sin sin αβ=是αβ=的必要条件;③“若a ,b都是偶数,则a b +是偶数”的逆命题;④“若2320x x -+=,则1x =”的否命题;⑤{|x x x ∀∈是无理数},3x 是无理数.其中假命题的个数为()A.1B.2C.3D.以上答案都不对【答案】B 【解析】【分析】写出命题的否定即可判断①,根据必要条件的定义判断②,写出逆命题判断③,写出否命题判断④,利用特殊值判断⑤.【详解】对于①“0R x ∃∈,2010x +<”的否定为“R x ∀∈,210x +≥”,显然为真命题;对于②:由αβ=能推得出sin sin αβ=,故αβ=是sin sin αβ=的充分条件,sin sin αβ=是αβ=的必要条件,故②为真命题,对于③:“若a ,b 都是偶数,则a b +是偶数”的逆命题为:若a b +是偶数,则a ,b 都是偶数,当1a =,3b =时满足a b +是偶数,但是a ,b 都是奇数,故③是假命题;对于④:“若2320x x -+=,则1x =”的否命题为“若2320x x -+≠,则1x ≠”,由2320x x -+≠则1x ≠且2x ≠,故④为真命题;对于⑤:{|x x x ∀∈是无理数},3x 是无理数,为假命题,如3x 2=33322x ==为有理数,故⑤为假命题.故选:B7.“碳达峰”,是指二氧化碳的排放不再增长,达到峰值之后开始下降;而“碳中和”,是指企业、团体或个人通过植树造林、节能减排等形式,抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”.某地区二氧化碳的排放量达到峰值a (亿吨)后开始下降,其二氧化碳的排放量S (亿吨)与时间t (年)满足函数关系式t S ab =,若经过5年,二氧化碳的排放量为45a(亿吨).已知该地区通过植树造林、节能减排等形式,能抵消自产生的二氧化碳排放量为4a(亿吨),则该地区要能实现“碳中和”,至少需要经过多少年?(参考数据:lg 20.3≈)()A.28 B.29C.30D.31【答案】C 【解析】【分析】根据题设条件可得545a S ab ==,令4ta ab =,代入b =,等式两边取lg ,结合lg 20.3≈估算即可.【详解】由题意,545a S ab ==,即545b b =⇒=,令4ta ab =,即14t b =,故14t=,即1lg 4t =,可得1(3lg 21)2lg 25t -=-,即10lg 233013lg 20.1t =≈=-.故选:C8.若log (1),2()112,222a x x f x a x x ->⎧⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩,满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,则a 的取值范围是()A.(1,)+∞B.10,4⎛⎫ ⎪⎝⎭C.11,84⎡⎫⎪⎢⎣⎭D.∅【答案】C 【解析】【分析】依题意()f x 在R 上单调递减,则函数在各段单调递减,且断点左侧的函数值不小于右侧函数值.【详解】因为log (1),2()112,222a x x f x a x x ->⎧⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩,满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立,所以()f x 在R 上单调递减,则()0112021122log 2122a a a a ⎧⎪<<⎪⎪-<⎨⎪⎪⎛⎫-+≥- ⎪⎪⎝⎭⎩,解得1184a ≤<,即a 的取值范围是11,84⎡⎫⎪⎢⎣⎭.故选:C9.南宋时期的数学家杨辉所著的《详解九章算法》中有一个如图所示的“三角垛”问题,在“三角垛”的最上层放有一个球,第二层放有3个球,第三层放有6个球,……依此规律,其相应的程序框图如图所示.若输出的S 的值为56,则程序框图中①处可以填入()A.3?i <B.4?i <C.5?i <D.6?i <【答案】D 【解析】【分析】根据循环结构及执行逻辑写出执行步骤,结合输出结果确定条件即可.【详解】第一次循环:011,011a S =+==+=,不满足输出条件,2i =;第二次循环:123,134a S =+==+=,不满足输出条件,3i =;第三次循环:336,4610a S =+==+=,不满足输出条件,4i =;第四次循环:6410,101020a S =+==+=,不满足输出条件,5i =;第五次循环:10515,201535a S =+==+=,不满足输出条件,6i =;第六次循环:15621,352156a S =+==+=,满足输出条件,退出循环.所以判断框中的条件可填入“6?i <”.故选:D10.数列{}n a 中,12a =,对任意,,m n m n m n N a a a ++∈=,若155121022k k k a a a ++++++=- ,则k =()A.2B.3C.4D.5【答案】C 【解析】【分析】取1m =,可得出数列{}n a 是等比数列,求得数列{}n a 的通项公式,利用等比数列求和公式可得出关于k 的等式,由k *∈N 可求得k 的值.【详解】在等式m n m n a a a +=中,令1m =,可得112n n n a a a a +==,12n na a +∴=,所以,数列{}n a 是以2为首项,以2为公比的等比数列,则1222n n n a -=⨯=,()()()()1011011105101210122122212211212k k k k k k a a a a ++++++⋅-⋅-∴+++===-=--- ,1522k +∴=,则15k +=,解得4k =.故选:C.【点睛】本题考查利用等比数列求和求参数的值,解答的关键就是求出数列的通项公式,考查计算能力,属于中等题.11.已知函数()f x 是定义域为R 的偶函数,且()1f x +为奇函数,当[]0,1x ∈时,()3x f x k a =⋅+.若()()034f f +=,则()3log 2f =()A.2B.0C.3- D.6-【答案】A 【解析】【分析】由函数性质判断函数的周期性,根据特殊值求,k a 的值,再根据函数的解析式,代入求值.【详解】()1f x +Q为奇函数,()()11f x f x ∴-+=-+,又()f x 为偶函数,()()11f x f x ∴-+=-,()()11f x f x ∴-=-+,即()()()()()2,42f x f x f x f x f x =-+∴+=-+=,所以函数()f x 的周期为4,由()()11f x f x -+=-+,令0x =,易得()()()()10,3110,f f f f ==-==,()04,f ∴=()()04130f k a f k a ⎧=+=⎪∴⎨=+=⎪⎩,解得2,6k a =-=,∴当[]0,1x ∈时,()()3log 23236,log 22362262x f x f =-⋅+=-⨯+=-⨯+=.故选:A12.设函数()()224,4log 4,4x x x f x x x ⎧-+≤⎪=⎨->⎪⎩,若关于x 的方程()f x t =有四个实根1234,,,x x x x (1234x x x x <<<),则1234122x x x x +++的最小值为()A.312B.16C.332D.17【答案】B 【解析】【分析】作出函数()f x 的大致图象,可知124x x +=,由()y f x =与y t =的图象有四个交点可得()024t f <<=,计算2log (4)4t x =-=求得x 的值即可得4x 的范围,根据()()4232log 4log 40x x -+-=可得3x 与4x 的关系,再根据基本不等式计算34122x x +的最小值即可求解.【详解】作出函数()f x的大致图象,如图所示:当4x ≤时,()24f x x x =-+对称轴为2x =,所以124x x +=,若关于x 的方程()f x t =有四个实根1x ,2x ,3x ,()41234x x x x x <<<,则()024t f <<=,由2log (4)(2)4t x f =-==,得6516x =或20x =,则4520x <<,又2423log (4)log (4)x x -=--,所以()()4232log 4log 40x x -+-=,所以()()43441x x -⋅-=,所以43144x x =+-,且44(1,16)x -∈,所以()4434441121224241412204x x x x x x ⎛⎫=-+ ⎪⎝+-⎭+=++-2101210≥++==,当且仅当()4412424x x -=-,即46x =时,等号成立,故123414x x x x +++的最小值为16.故选:B.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.第II 卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案直接填答题卡的横线上.13.已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k=__________.【答案】2【解析】【分析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k 的值.【详解】由题意可得:211cos 452a b →→⋅=⨯⨯=,由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:202k a a b k →→→⨯-⋅=-=,解得:2k =.故答案为:2.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.14.若x ,y 满足约束条件240200x y x y y --≤⎧⎪--≥⎨⎪≤⎩,则23z x y =-的最大值为______.【答案】8【解析】【分析】作出可行域,通过平行232z y x ⎛⎫=- ⎪⎝⎭确定z 的最大值.【详解】如图,作出不等式组所表示的平面区域,联立方程2400x y y --=⎧⎨=⎩,解得4x y =⎧⎨=⎩,即()4,0C ,由23z x y =-,即232z y x ⎛⎫=- ⎪⎝⎭表示斜率23k =,横截距为2z的直线l ,通过平移可得当直线l 过点C 时,横截距最大,即z 最大,故max 24308z =⨯-⨯=.故答案为:8.15.函数sin cos ()1sin cos =++x xf x x x的值域为_____________.【答案】11,11,22⎡⎫⎛⎤---⎪ ⎢⎥⎪ ⎣⎭⎝⎦【解析】【分析】利用sin cos t x x =+通过换元将原函数转化为含未知量t 的函数()f t ,再解出函数()f t 的值域即为函数()f x 的值域.【详解】令sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,[1)(t ∈-- ,则212sin cos t x x =+,即21sin cos 2t x x -=,所以2112()12t t f t t --==+,又因为[1)(t ∈-- ,所以()11,11,22f t ⎡⎫⎛⎤∈--⎪ ⎢⎥⎪ ⎣⎭⎝⎦,即函数sin cos ()1sin cos =++x xf x x x的值域为11,11,22⎡⎫⎛⎤--⎪ ⎢⎥⎪ ⎣⎭⎝⎦ .故答案为:2121,11,22⎡⎫⎛⎤--⎪ ⎢⎥⎪ ⎣⎭⎝⎦.16.已知()f x 为偶函数,且当[)0,x ∈+∞时,()()0f x xf x '+<,其中()f x '为()f x 的导数,则不等式()()()11220x f x xf x --+>的解集为______.【答案】(),1-∞-【解析】【分析】根据给定条件,构造函数,利用导数探讨函数的单调性,再结合奇偶性求解不等式作答.【详解】令函数()()g x xf x =,当[)0,x ∈+∞时,()()()0g x f x xf x ''=+<,即函数()g x 在[0,)+∞上单调递减,由()f x 为偶函数,得()()()()g x xf x xf x g x -=--=-=-,即函数()g x 是奇函数,于是()g x 在R 上单调递减,不等式()()()()()1122022(1)1(2)(1)x f x xf x xf x x f x g x g x --+>⇔>--⇔>-,因此21x x <-,解得1x <-,所以原不等式的解集是(),1-∞-.故答案为:(),1-∞-【点睛】关键点睛:根据条件构造函数,利用导数研究函数的单调性是解决本题的关键.三、解答题:共70分,解答应写出文字说明,证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.(一)必考题:每小题12分,共60分.17.已知数列{}n a 的前n 项和为n S ,且满足()*2n n a S n n =+∈N .(1)求证:数列{}1n a +是等比数列;(2)记()()2221log 1log 1n n n c a a +=+⋅+,求证:数列{}n c 的前n 项和34n T <.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由2n n a S n =+得()11212n n a S n n --=+-≥,作差得121n n a a -=+,进而得1121n n a a -+=+,故数列{}1n a +是等比数列;(2)由(1)得21nn a =-,故()()()22211111log 1log 1222n n n c a a n n n n +⎛⎫===- ⎪+⋅+++⎝⎭,再根据裂项求和证明即可.【详解】解:(1)因为2n n a S n =+①,所以()11212n n a S n n --=+-≥②由①-②得,121n n a a -=+.两边同时加1得()1112221n n n a a a --+=+=+,所以1121n n a a -+=+,故数列{}1n a +是公比为2的等比数列.(2)令1n =,1121a S =+,则11a =.由()11112n n a a -+=+⋅,得21nn a =-.因为()()()22211111log 1log 1222n n n c a a n n n n +⎛⎫===- ⎪+⋅+++⎝⎭,所以11111111121324112n T n n n n ⎛⎫=-+-+⋅⋅⋅+-+- ⎪-++⎝⎭11113111221242224n n n n ⎛⎫⎛⎫=+--=-+ ⎪ ⎪++++⎝⎭⎝⎭.因为*11,02224n N n n ∈+>++,所以3113422244n n ⎛⎫-+<⎪++⎝⎭所以1111311312212422244n n n n n T ⎛⎫⎛⎫=+--=-+< ⎪ ⎪++++⎝⎭⎝⎭.【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k⎛⎫=-⎪++⎝⎭;(2)1k=;(3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18.已知向量()sin ,1a x = ,3cos ,2b x ⎛⎫=- ⎪⎝⎭ ,函数()()2f x a a b =⋅- .(1)求()f x 的最小正周期以及单调递增区间.(2)当π0,2x ⎡⎤∈⎢⎥⎣⎦时,求()f x 的值域.【答案】(1)πT =,π3ππ,π,Z 88k k k ⎡⎤-++∈⎢⎥⎣⎦(2)⎡-⎣【解析】【分析】(1)先通过向量的坐标运算及三角公式得()π24f x x ⎛⎫=- ⎪⎝⎭,然后根据正弦函数的性质得周期和递增区间;(2)利用正弦函数的图像和性质可得()f x 的值域.【小问1详解】由已知()31sin ,1cos ,sin cos ,22a b x x x x ⎛⎫⎛⎫-=--=+- ⎪ ⎪⎝⎭⎝⎭ ,()()()122sin ,1sin cos ,2f x a a b x x x ⎛⎫∴=⋅-=⋅+- ⎪⎝⎭ ()π2sin sin cos 1sin 2cos 224x x x x x x ⎛⎫=+-=-=- ⎪⎝⎭,2ππ2T ==∴,再令πππ2π22π,Z 242k x k k -+≤-≤+∈,解得π3πππ,Z 88k x k k -+≤≤+∈,即()f x 的最小正周期为π,单调递增区间为π3ππ,π,Z 88k k k ⎡⎤-++∈⎢⎥⎣⎦;【小问2详解】当π02x ≤≤时,ππ3π2444≤≤--x ,2πsin 2124x ⎛⎫∴-≤-≤ ⎪⎝⎭,π124x ⎛⎫∴-≤-≤ ⎪⎝⎭,()f x \的值域为⎡-⎣.19.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.【答案】(1)3B π=;(2)33,82.【解析】【分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABC S ac B =⋅ ,又根据正弦定理和1c =得到ABC S 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABC S C 的值域.【详解】(1)[方法一]【最优解:利用三角形内角和为π结合正弦定理求角度】由三角形的内角和定理得222A C Bπ+=-,此时sinsin 2A C a b A +=就变为sin sin 22B a b A π⎛⎫-= ⎪⎝⎭.由诱导公式得sin cos 222B B π⎛⎫-= ⎪⎝⎭,所以cos sin 2B a b A =.在ABC 中,由正弦定理知2sin ,2sin a R A b R B ==,此时就有sin cossin sin 2BA AB =,即cos sin 2B B =,再由二倍角的正弦公式得cos2sin cos 222B B B=,解得3B π=.[方法二]【利用正弦定理解方程求得cos B 的值可得B ∠的值】由解法1得sin sin 2A CB +=,两边平方得22sinsin 2A CB +=,即21cos()sin 2A C B -+=.又180A B C ++=︒,即cos()cos A C B +=-,所以21cos 2sin B B +=,进一步整理得22cos cos 10B B +-=,解得1cos 2B =,因此3B π=.[方法三]【利用正弦定理结合三角形内角和为π求得,,A BC 的比例关系】根据题意sinsin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sinsin 2A CB +=.0<B π<,02AC π+<<,因为故2A C B +=或者2A CB π++=,而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)[方法一]【最优解:利用锐角三角形求得C 的范围,然后由面积函数求面积的取值范围】因为ABC 是锐角三角形,又3B π=,所以,6262AC ππππ<<<<,则1sin 2ABCS ac B ==V 22sin 1sin 3sin 2sin sin C a A c B c C Cπ⎛⎫- ⎪⎝⎭⋅⋅===22sincos cos sin 333sin 8tan C CC C ππ-=.因为,62C ππ⎛⎫∈ ⎪⎝⎭,所以3tan ,3C ⎛⎫∈+∞ ⎪ ⎪⎝⎭,则1tan C ∈,从而82ABC S ⎛ ⎝⎭∈ ,故ABC面积的取值范围是,82⎛⎫ ⎪ ⎪⎝⎭.[方法二]【由题意求得边a 的取值范围,然后结合面积公式求面积的取值范围】由题设及(1)知ABC的面积4ABC S a =△.因为ABC 为锐角三角形,且1,3c B π==,所以22221cos 0,21cos 0,2b a A b b a C ab ⎧+-=>⎪⎪⎨+-⎪=>⎪⎩即22221010.b a b a ⎧+->⎨+->⎩,又由余弦定理得221b a a =+-,所以220,20,a a a ->⎧⎨->⎩即122a <<,所以82ABC S << ,故ABC面积的取值范围是,82⎛⎫ ⎪ ⎪⎝⎭.[方法三]【数形结合,利用极限的思想求解三角形面积的取值范围】如图,在ABC 中,过点A 作1AC BC ⊥,垂足为1C ,作2AC AB ⊥与BC 交于点2C .由题设及(1)知ABC 的面积34ABC S a=△,因为ABC 为锐角三角形,且1,3c B π==,所以点C 位于在线段12C C 上且不含端点,从而cos cos cc B a B⋅<<,即1cos3cos3a ππ<<,即122a <<,所以3382ABC S << ,故ABC面积的取值范围是,82⎛⎫⎪ ⎪⎝⎭.【整体点评】(1)方法一:正弦定理是解三角形的核心定理,与三角形内角和相结合是常用的方法;方法二:方程思想是解题的关键,解三角形的问题可以利用余弦值确定角度值;方法三:由正弦定理结合角度关系可得内角的比例关系,从而确定角的大小.(2)方法一:由题意结合角度的范围求解面积的范围是常规的做法;方法二:将面积问题转化为边长的问题,然后求解边长的范围可得面积的范围;方法三:极限思想和数形结合体现了思维的灵活性,要求学生对几何有深刻的认识和灵活的应用.20.已知函数()2e xf x ax =-.(1)若()f x 在()0,∞+上单调递增,求实数a 的取值范围;(2)若1a =,求曲线()y f x =过点()0,1的切线方程.【答案】(1)e ,2⎛⎤-∞ ⎥⎝⎦(2)1y x =+或()e 21y x =-+【解析】【分析】(1)根据题意可得()0f x '≥在()0,∞+恒成立,利用参变分离可得e2x a x≥在()0,∞+上恒成立,利用导数求maxe x x ⎛⎫ ⎪⎝⎭;(2)设切点()0200,e x x x -,根据导数的几何意义可得斜率为00e 2xk x =-,利用点斜式得()()()00200e e 2xxy x x x x --=--,代入点()0,1求解.【小问1详解】()e 2x f x ax '=-,因为()f x 在()0,∞+上单调递增所以()0f x '≥在()0,∞+恒成立,即e2x a x≥在()0,∞+上恒成立令()e x g x x =,则()()21exx g x x -'=所以()g x 在()0,1上单调递减,在()1,+∞上单调递增所以()()min 1e g x g ==,则2a e ≤,故实数a 的取值范围是e ,2⎛⎤-∞ ⎥⎝⎦【小问2详解】当1a =时,()2e xf x x =-,()e 2xf x x '=-.设切线与曲线()y f x =的切点坐标为()0200,e xx x -,切线斜率00e 2xk x =-则切线方程为()()()00200e e 2x xy x x x x --=--将点()0,1代入,得()()()0020001e e 2x xx x x --=--整理得()()00011ex x x -+-=构建()1xg x e x =--,则()1xg x e '=-令()0g x '>,则0x >∴()g x 在(),0∞-上单调递减,在()0,∞+上单调递增则()()00g x g ≥=因为1x e x ≥+恒成立,当且仅当0x =时,等号成立所以方程()()00011e0x x x -+-=的根为00x=或01x =当00x =时,所求切线方程为1y x =+当01x =时,所求切线方程为()e 21y x =-+21.已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.【答案】(1)见解析;(2)见解析【解析】【分析】(1)求得导函数后,可判断出导函数在1,2π⎛⎫- ⎪⎝⎭上单调递减,根据零点存在定理可判断出00,2x π⎛⎫∃∈ ⎪⎝⎭,使得()00g x '=,进而得到导函数在1,2π⎛⎫- ⎪⎝⎭上的单调性,从而可证得结论;(2)由(1)的结论可知0x =为()f x 在(]1,0-上的唯一零点;当0,2x π⎛⎫∈ ⎪⎝⎭时,首先可判断出在()00,x 上无零点,再利用零点存在定理得到()f x 在0,2x π⎛⎫ ⎪⎝⎭上的单调性,可知()0f x >,不存在零点;当,2x ππ⎡⎤∈⎢⎥⎣⎦时,利用零点存在定理和()f x 单调性可判断出存在唯一一个零点;当(),x π∈+∞,可证得()0f x <;综合上述情况可证得结论.【详解】(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,sin x -,在1,2π⎛⎫- ⎪⎝⎭上单调递减()'∴g x 在1,2π⎛⎫- ⎪⎝⎭上单调递减又()0sin0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++00,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x '=∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫⎪⎝⎭上单调递减则0x x =为()g x 唯一的极大值点即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤=()f x \在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在()00,x 上单调递增,在0,2x π⎛⎫⎪⎝⎭上单调递减又()00f '=()00f x '∴>()f x \在()00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-< ⎪++⎝⎭10,2x x π⎛⎫∴∃∈ ⎪⎝⎭,使得()10f x '=()f x \在()01,x x 上单调递增,在1,2x π⎛⎫⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1lnln102222e f ππππ⎛⎫⎛⎫=-+=>= ⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减()f x \在,2ππ⎡⎤⎢⎥⎣⎦上单调递减又02f π⎛⎫>⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+<即()02f f ππ⎛⎫⋅< ⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln 1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点【点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.(二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线1C 的参数方程为24,4x t y t ⎧=⎨=⎩(t 为参数),以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C πsin 104θ⎛⎫+-= ⎪⎝⎭,且两曲线1C 与2C 交于M ,N 两点.(1)求曲线1C ,2C 的直角坐标方程;(2)设()2,1P -,求PM PN -.【答案】(1)24y x =,10x y +-=(2)【解析】【分析】(1)依据参普方程互化规则求得曲线1C 的直角坐标方程,依据极坐标与直角坐标的互化规则求得曲线2C 的直角坐标方程;(2)利用直线参数方程的几何意义去求PM PN -的值简单快捷.【小问1详解】由曲线1C 的参数方程消去参数t ,得24y x =,即曲线1C 的直角坐标方程为24y x =.由曲线2C 的极坐标方程,得sin cos 10ρθρθ+-=,则10x y +-=即2C 的直角坐标方程为10x y +-=.【小问2详解】因为()2,1P -在曲线2C 上,所以曲线2C的参数方程为2,212x t y t ⎧=-⎪⎪⎨⎪=-+⎪⎩(t 为参数),代入1C的直角坐标方程,得21702t +-=.设M ,N 对应的参数分别为1t ,2t,则12t t +=-,1214t t =-,所以12PM PN t t -=+=.[选修4-5:不等式选讲]23.选修4-5:不等式选讲已知函数11()22f x x x =-++,M 为不等式()2f x <的解集.(Ⅰ)求M ;(Ⅱ)证明:当a ,b M ∈时,1a b ab +<+.【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析.【解析】【详解】试题分析:(I )先去掉绝对值,再分12x ≤-,1122x -<<和12x ≥三种情况解不等式,即可得M ;(II )采用平方作差法,再进行因式分解,进而可证当a ,b ∈M 时,1a b ab +<+.试题解析:(I )12,,211(){1,,2212,.2x x f x x x x -≤-=-<<≥当12x ≤-时,由()2f x <得22,x -<解得1x >-;当1122x -<<时,()2f x <;当12x ≥时,由()2f x <得22,x <解得1x <.所以()2f x <的解集{|11}M x x =-<<.(Ⅱ)由(Ⅰ)知,当,a b M ∈时,11,11a b -<<-<<,从而22222222()(1)1(1)(1)0a b ab a b a b a b +-+=+--=--<,因此1.a b ab +<+【考点】绝对值不等式,不等式的证明.【名师点睛】形如x a x b c -+-≥(或c ≤)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应的方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞(此处设a b <)三个部分,在每个部分去掉绝对值号并分别列出对应的不等式进行求解,然后取各个不等式解集的并集.。

南充市2025届高三高考适应性考试(一诊)数学试卷(解析版)

南充市2025届高三高考适应性考试(一诊)数学试卷(解析版)

南充市高2025届高考适应性考试(一诊)数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将答题卡交回.第Ⅰ卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}24Axx =≥∣,2,1,0,2,{}3B=−−,R 是实数集,则()A B =R ( )A. {0,2}B. {1,0}−C. {1,0,2}−D. {}1−【答案】B 【解析】【分析】先求得集合A ,进而得到A R ,进而根据交集的定义计算即可.【详解】因为{}{242A xx x x =≥=≤−∣或}2x ≥,所以{}22A xx −<<R ∣ , 又2,1,0,2,{}3B =−−, 所以(){1,0}A B =−R . 故选:B.2. 若复数z 满足(1i)1z −=,则在复平面内z 对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】A 【解析】【分析】根据复数的运算法则及几何意义求解即可.【详解】由(1i)1z −=,得()()211i 1i 11i 1i1i 1i 1i 22z ++====+−−+−, 所以在复平面内z 对应的点为1122,,位于第一象限. 故选:A.3. 甲同学近10次数学考试成绩情况如下:103,106,113,119,123,118,134,118,125,121,则甲同学数学考试成绩的第75百分位数是( ) A. 118 B. 121C. 122D. 123【答案】D 【解析】【分析】根据百分位数的定义计算.【详解】已知数据按从小到大排列为:103,106,113,118,118,119,121,123,125,134,75%1075×=.,因此第75百分位数是第8个数123.故选:D .4. 已知抛物线22(0)y px p =>的焦点为F ,抛物线上一点(1,)P t 满足2PF =,则抛物线方程为( )A. 214y x =B. 2y x C. 22y x = D. 24y x =【答案】D 【解析】【分析】由抛物线的焦半径公式可得122p+=,即可求得p ,从而求解. 【详解】由题意,得122p+=,即2p =, 所以抛物线方程为24y x =. 故选:D.5. “1m =”是“直线1:(1)10l x m y +++=与直线2:(1)10l m x my +−−=垂直”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】先求出两直线垂直充要条件,进而根据充分条件、必要条件的定义判断即可.【详解】若直线1:(1)10l x m y +++=与直线2:(1)10l m x my +−−=垂直, 则()()()1110m m m ×+++×−=,解得1m =±, 所以“1m =”是“直线1:(1)10l x m y +++=与直线2:(1)10l m x my +−−=垂直”的充分不必要条件. 故选:A.6.,其侧面积是底面积的2倍,则其表面积为( ) A. 2π B. 3πC.D.【答案】B 【解析】【分析】根据圆锥的侧面展开图和圆锥体积公式以及侧面积公式,即可求出结果. 【详解】设底面半径为r ,高为h ,母线为l ,如图所示:则圆锥的体积21π3Vr h ==,所以2r h =h =, 又212π2π2S rl r =⋅=侧,即2l r =,所以h ==,=,解得1r =,所以圆锥的表面积为222=π2π3π3πS S r r r ++==侧底. 故选:B .7.已知函数()cos 22(01)f x a x x a =<≤的图象关于直线π12x =对称,若方程的()(R)f x m m =∈在π0,4上恰有两个实数根,则m 的取值范围是( )A. 1,12B.C.D. 【答案】C 【解析】【分析】利用辅助角公式及函数的对称性求出a ,即可得到函数解析式,再求出函数在π0,4上的单调性,求出端点函数值与最大值,依题意()y f x =与y m =在π0,4上恰有两个交点,即可求出参数的取值范围.【详解】因()()cos 22sin 2f x a x x x ϕ==+(其中tan ϕ=),又函数()f x 的图象关于直线π12x =对称,且01a <≤,所以πππcos 11266f a =+=+,解得a =所以()1π2sin 2sin 223f x x x x+=+, 当π0,4x∈时,则ππ5π2,336x +∈ , 令πππ2332x ≤+≤,解得π012x ≤≤πsin 213x≤+≤ ,令ππ5π2236x ≤+≤,解得ππ124x ≤≤,且1πsin 2123x≤+≤, 所以()f x 在π0,12 上单调递增,在ππ,124 上单调递减,且()0f =,π112f = ,π142f = , 因方程()(R)f x m m =∈在π0,4 上恰有两个实数根,即()y f x =与y m =在π0,4上恰有两个交点,为为1m ≤<,即m 的取值范围是. 故选:C8. 定义在R 上的函数()f x 的图象关于点11,22对称,且满足1()(5)2f x f x =,(0)0f =,当1201x x ≤<≤时,都有()()12f x f x ≤,则12024f=( )A.1256B.1128C.164D.132【答案】D 【解析】【分析】根据函数()f x 的图象关于点11,22对称可得到()()11f x f x +−=,进而求得()11f =,11()22f =,反复利用1()(5)2f x f x =,适当赋值,再结合条件当1201x x ≤<≤时,都有()()12f x f x ≤即可求解.【详解】因为函数()f x 的图象关于点11,22对称, 所以()()11f x f x +−=,令1x =()()101f f +=,又(0)0f =,所以()11f =, 由1()(5)2f x f x =, 令15x =,则111()(1)522f f ==, 令125x =,则1111()()25254f f ==, 令1125x =,则1111()()1252258f f ==, 令1625x =,则1111()()625212516f f ==,令13125x =,则1111()()3125262532f f ==, 同理,令12x =,由()()11f x f x +−=,则11()()122f f +=,即11()22f =,由1()(5)2f x f x =, 令110x =,则1111()()10224f f ==, 令150x =,则1111()()502108f f ==,令1250x =,则1111()()25025016f f ==, 令11250x =,则1111()()1250225032f f ==, 因为当1201x x ≤<≤时,都有()()12f x f x ≤, 而11101312520241250<<<<, 则1112024312532f f ≥=,1112024125032f f ≤= , 所以11202432f = . 故选:D.【点睛】关键点睛:解答本题的关键是利用()()152f x f x =,结合赋值法,采用两边夹逼的方法,求出结果.二、多选题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 如图,在边长为2的正方体ABCD A B C D −′′′′中,E 为AD 的中点,F 为AA ′的中点,过点C ′、E 、B 作正方体的截面α,则下列结论中正确的是( )A. 三棱锥C BC E ′−的体积为43B. B F ′与BE 所成角的余弦值为35C. //B F α′D. 二面角C BE C ′−−的余弦值为23【答案】ACD 【解析】【分析】对于A ,根据等体积法C BC E E BC C V V ′′−−=直接计算即可;对于BCD ,建立空间直角坐标系,利用空间向量求解判断即可.详解】对于A ,11142223323C BC E E BC C BC C V V CD S ′′′−−==×=××××= ,故A 正确; 对于B ,以B 为原点,以,,BA BC BB ′所在直线为,,x y z 轴建立空间直角坐标系,所以()0,0,2B ′,()2,0,1F ,()0,0,0B ,()2,1,0E ,()0,2,0C ,()0,2,2C ′,则()2,0,1B F ′=−,()2,1,0BE =,则4cos 5,B B F E BE B F EF B B ==′⋅′′⋅, 所以B F ′与BE 所成角的余弦值为45,故B 错误; 对于C ,由B 知,()2,0,1B F ′=−,()2,1,0BE = ,()0,2,2BC ′= , 设平面BEC ′的一个法向量为(),,m x y z =,则00m BE m BC ′ ⋅=⋅=,即20220x y y z += += ,【令1x =,可得()1,2,2m=− ,所以220m B F ′==⋅− ,即F m B ⊥′,又B F ′⊄平面BEC ′,所以//B F ′平面BEC ′, 即//B F α′,故C 正确;对于D ,在正方体ABCD A B C D −′′′′中,BB ′⊥平面ABCD ,所以平面BEC 的一个法向量为()0,0,2BB ′=, 所以42cos 233,m BB BB B m B m ′⋅⋅===′×′,所以二面角C BE C ′−−的余弦值为23,故D 正确. 故选:ACD.10. 设0x >函数()ln f x x =,2()g x x x=+,则下列结论中正确的是( ) A. 存在0x >,使得()1f x x >−B. 函数(1)f x +的图象与函数e 1x y =−的图象有且仅有一条公共的切线C. 函数()g x图象上的点与原点距离的最小值为D. 函数()()f x g x +的极小值点为1x = 【答案】BD 【解析】【分析】构造函数()()1ln 1,0h x f x x x x x =−+=−+>,进而结合导数分析单调性,得到()1f x x ≤−恒成立,从而判断A ;分析可得函数(1)y f x =+与e 1x y =−互为反函数,图象关于直线y x =对称,结合图象即可判断B ;表示出函数()g x 图象上的点2,m m m+()0m ≠与原点距离,进而结合基本不等式求解判断C ;令()2()()ln ,0F x f x g x x x x x=+=++>,进而结合导数分析单调性,从而判断D.【详解】对于A ,设()()1ln 1,0h x f x x x x x =−+=−+>,则()111xh x x x−=−=′, 令ℎ′(xx )>0,即01x <<;令ℎ′(xx )<0,即1x >,所以函数ℎ(xx )在(0,1)上单调递增,在(1,+∞)上单调递减,所以()()()110h x f x x h =−+≤=,即()1f x x ≤−恒成立,故A 错误; 对于B ,函数()(1)ln 1y f x x =+=+,则1e y x +=,即e 1y x =−,所以函数(1)y f x =+与e 1x y =−互为反函数,图象关于直线y x =对称,且直线y x =为函数(1)y f x =+与e 1x y =−唯一的公切线,故B 正确;对于C ,函数2()g x x x =+图象上的点2,m m m+()0m ≠与原点距离为d =≥当且仅当2242m m=,即2m =所以函数2()g x x x=+,故C 错误; 对于D ,令()2()()ln ,0F x f x g x x x x x=+=++>,则()()()2222211221x x x x F x x x x x+−+−=′=+−=, 令()0F x ′>,即1x >;令()0F x ′<,即01x <<, 所以函数FF (xx )在(0,1)上单调递减,在(1,+∞)上单调递增, 所以当1x =时函数FF (xx )取得极小值,故D 正确. 故选:BD.11. 双曲线22:4C x y −=的左、右焦点分别为1F ,2F ,左、右顶点分别为A ,B ,若P 是右支上一点(与B 不重合)如图,过点P 的直线l 与双曲线C 的左支交于点Q ,与其两条渐近线分别交于S ,T 两点,则下列结论中正确的是( )A. P 到两条渐近线的距离之积为2B. 当直线l 运动时,始终有||||QS TP =C. 在PAB 中,tan tan 2tan 0PAB PBA APB ∠+∠+∠=D. 12PF F 内切圆半径取值范围为(0,1) 【答案】ABC 【解析】【分析】选项A,设出点(),P P P x y ,然后计算出渐近线,分别计算距离求解即可;选项B ,设直线:l y kx m =+,然后分别联立双曲线和渐近线方程计算交点,计算即可; 选项C ,利用点(),P P P x y 坐标表示出tan ,tan 22P P P P y yPAB PBA x x ∠=∠=−+−,然后利用三角形内角的角度关系得到,()tan tan tan tan 1tan ?tan PAB PBAAPB PAB PBA PAB PBA∠+∠∠=−∠+∠=−−∠∠,由选项可知,只需得到分母的值就可以得到正确答案;选项D,高中我们求三角形内切圆半径的方法为2r ×=三角形面积三角形周长,然后化简求解即可.【详解】由题可知双曲线的标准方程为22144x y C :−=,故两个渐近线方程分别为y x =与y x =−,设点(),P P P x y ,由题可知0,0P P x y >≠所以点(),P P P x y到两个渐近线的距离分别为12d =故2212,2P Px y d d −=由题可知224P P x y −=,故122d d =,故选项A 正确; 设点()()()(),,,,,,,s s T T Q Q P P S x y T x y Q x y P x y显然直线l 的斜率存在,设直线:l y kx m =+ 联立方程:l y kx m =+,22144x y C :−=,得()2221240kxkmx m −−−−=所以221P Q kmx x k +=− 直线:l y kx m =+分别与渐近线y x =与y x =−联立得,11T Sm mx x k k==−− 得22111T S m m kmx x k k k+=+=−−−− 所以有P Q T S x x x x +=+ 即P T S Q x x x x −=−由题可知,,Q T QS x TP x =−=− 所以||||QS TP =,故选项B 正确; 不妨设(),P P P x y ,2,0P P x y >> 由题可知,()()2,0,2,0A B −所以有tan ,tan 22P PP P y y PAB PBA x x ∠=∠=−+− ()tan tan tan tan 1tan ?tan PAB PBAAPB PAB PBA PAB PBA∠+∠∠=−∠+∠=−−∠∠22tan tan 224P P PP P P y y y PAB PBA x x x −−∠∠=×=+−−由题可知,224P P y x −=−故22tan tan 14PP y PAB PBA x −∠∠==−− 所以tan tan tan tan tan 1tan tan 2PAB PBA PAB PBAAPB PAB PBA ∠+∠∠+∠∠=−=−−∠∠ 整理得tan tan 2tan 0PAB PBA APB ∠+∠+∠=,故选项C 正确; 由三角形内切圆的半径求法可知其内切圆半径2PABS r PA PB AB=++易知14,22PAB P P AB S AB y y ===PA =得r =因为224P P x y −=得r =因为224P P x y −=,我们不妨令2π,2tan ,0,cos 2P P x y ααα==∈所以r得sin cos sin 122rααα++令cossin22t αα+=得2π,1sin 24t t αα+=+, 因为π0,2α∈,所以(π24t α+∈所以有()21111t r t t −==−∈−+,故选项D 错误.故选:ABC【点睛】关键点点睛,在解析几何中当我们需要运用距离公式的时候,特别是很多距离相加,式子中会存在较多的根号,我们经常利用三角换元然后化简求解.三、填空题:本题共3小题,每小题5分,共15分.12. 已知向量(1,0)a = ,(,2)b x =− ,且(2)a a b ⊥−,则x =______.【答案】12##0.5 【解析】【分析】先求出2a b −的坐标,再根据平面向量垂直的坐标表示求解即可.【详解】因为(1,0)a =,(,2)b x =− ,所以2(1,0)2(,2)(1,0)(2,4)(12,4)a b x x x −=−−=−−=−,又(2)a a b ⊥−,所以(2)120a a b x ⋅−=−=,即12x =.故答案为:12. 13. 某一随机变量X 的分布列如下表,且0.2n m −=,则()32E X +=______. X 0 1 2 3 P0.1m0.2n【答案】8 【解析】【分析】根据题意可得0.10.210.2m n n m +++=−=,即可求得,m n 的值,进而结合期望公式可求得()E X ,进而得到(32)E X +.【详解】由题意,得0.10.210.2m n n m +++=−=,解得0.25,0.45m n ==, 所以00.110.2520.230.452()E X =×+×+×+×=, 所以()(32)323228E X E X +=+=×+=. 故答案为:8.14. 已知平面四边形ABCD 中,1AB =,2BC =,3CD =,4DA =,则该平面四边形ABCD 面积的最大值为_____________.【答案】 【解析】【分析】先根据余弦定理可得6cos cos 5D B −=,进而表示出四边形ABCD 面积sin 6sin S B D =+,进而得到()2253712cos S B D +=−+,进而求解.【详解】连接AC ,由余弦定理得,222222cos 2cos AC AB BC AB BC B AD DC AD DC D +−⋅⋅+−⋅⋅,即222212212cos 43243cos B D +−×××+−×××, 即6cos cos 5D B −=,又四边形ABCD 的面积11sin sin 22ABC ADC S S S AB BC B AD DC D =+=⋅⋅+⋅⋅ 1112sin 43sin sin 6sin 22B D B D =××+××=+, 则()()()22225sin 6sin 6cos cos 3712sin sin cos cos S B D D B B D B D +=++−=+−()3712cos B D =−+,即()21212cos 24S B D =−+≤,即S ≤当且仅当πB D +=时,等号成立,所以平面四边形ABCD 面积的最大值为.故答案为:第Ⅱ卷四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,已知sin 2sin cos cos sin A B C B C =⋅+⋅. (1)求角A 的大小;(2)若2b c =,ABC 的面积为ABC 的周长. 【答案】(1)π3(2)6+ 【解析】【分析】(1)先根据两角和的正弦公式化简题干条件可得sin 2sin A A =,进而得到2πA A +=,进而求解; (2)根据三角形的面积公式及余弦定理求解即可. 【小问1详解】因为()sin 2sin cos cos sin sin sin A B C B C B C A =⋅+⋅=+=, 在ABC 中,2πA A +=,即π3A =. 【小问2详解】 由(1)知,π3A =,所以211sin 222ABC S bc A c ==× , 即2c =,所以4b =,又22212cos 164242122a b c bc A +−+−×××,即a =,所以ABC 的周长为426a b c ++=+=+.16. 已知动点(,)P x y 与定点(1,0)F 的距离和P 到定直线:2l x =,记点P 的轨迹为曲线C .(1)求曲线C 的标准方程;(2)设点(1,0)F ′−,若曲线C 上两点M ,N 均在x 轴上方,且//FM F N ′,FM F N ′+=,求直线FM 的斜率.【答案】(1)2212x y +=(2)【解析】【分析】(1)根据距离公式列出方程即可求解;(2)设FM F Nk k k ′==,可得直线F N ′的方程,呢绒联立方程组,结合对称性与弦长公式列出方程即可求解.【小问1详解】=整理化简得,2212x y +=,所以曲线C 的标准方程为2212x y +=.【小问2详解】由题意,直线,FM F N ′的斜率都存在,设FM F Nk k k ′==, 则直线F N ′的方程为()1y k x =+, 分别延长NF ′,MF 交曲线C 于点,N M ′′, 设()()1122,,,N x y N x y ′,联立()22112y k x x y =+ +=,即()2222124220k x k x k +++−=, 则22121222422,1212k k x x x x k k−+=−=++, 根据对称性,可得FM F N =′′,则FM F N NN +==′′===k =,所以直线FM 的斜率为17. 如图,在三棱锥ABC 中,SA ⊥平面ABC ,AB BC ⊥,1SA AB BC ===,点M ,N 分别是线段SB,AC 上的动点,且满足(0SM AN aa ==<<.(1)证明:⊥BC 平面SAB ;(2)当线段MN 的长度最小时,求直线SC 与平面AMN 所成角的正弦值. 【答案】(1)证明见解析 (2)13【解析】【分析】(1)先根据SA ⊥平面ABC 可得SA BC ⊥,再根据线面垂直的判定定理证明即可;(2)建立空间直角坐标系,表示出MN =MN 的长度最小时a 的值,再根据空间向量求解即可. 【小问1详解】因为SA ⊥平面ABC ,⊂BC 平面ABC , 所以SA BC ⊥,又AB BC ⊥,SA AB A ∩=,,SA AB ⊂平面SAB 所以⊥BC 平面SAB . 【小问2详解】以B 为原点,以,BC BA 所在直线为,x y 轴建立如图所示的空间直角坐标系, 则()0,0,0B ,()0,1,0A ,()1,0,0C ,()0,1,1S ,因为(0SM AN a a ==<<,AC =,所以,1,0N ,0,1,1M,所以MN =,所以当a =时,MN 最小,此时11,,022N,110,,22M ,则110,,22AM=−,11,,022AN =− , 设平面AMN 的一个法向量为(),,m x y z =,则00m AM m AN ⋅= ⋅= ,即1102211022y z x y −+= −= , 取1x =,则()1,1,1m =,又()1,1,1SC −− ,设直线SC 与平面AMN 所成角为θ,则1sin cos ,3m SC m SC m SCθ⋅===⋅, 即直线SC 与平面AMN 所成角的正弦值为13.18. 已知函数e ()xf x x=.(1)判断函数()f x 的单调性,并求出()f x 的极值;(2)讨论方程()(R)f x a a =∈的解的个数; (3)求证:()ln e 1f x x x ≥−+−.【答案】(1)()f x 取得极小值e ,无极大值 (2)答案见解析 (3)证明见解析 【解析】【分析】(1)直接利用导数判断函数单调性,进而求得极值; (2)结合函数()f x 的图象求解即可;(3)转化为证明e ln e 1x x x x −+≥−,构造函数()e ln xg x x x x−+,0x >,进而结合导数证明即可.【小问1详解】由e ()xf x x=,0x ≠, 则()22e 1e e ()xx x x x f x x x−⋅−==′, 由于e 0x >恒成立,因此令()0f x ′>,即1x >, 令()0f x ′<,即0x <或01x <<,所以函数()f x 在(),0∞−和(0,1)上单调递减,在(1,+∞)上单调递增, 当1x =时,函数()f x 取得极小值(1)e f =,无极大值. 【小问2详解】由(1)知,函数()f x 在(),0∞−和(0,1)上单调递减,在(1,+∞)上单调递增, 且(1)e f =,画出函数()f x 的大致图象:由图可知,当e a >时,函数yy =ff (xx )与y a =有2个交点,方程()f x a =有2个解; 当0a <或e a =时,函数yy =ff (xx )与y a =有1个交点,方程()f x a =有1个解; 当0e ≤<a 时,函数yy =ff (xx )与y a =有0个交点,方程()f x a =有0个解. 【小问3详解】证明:由()ln e 1f x x x ≥−+−,0x >,即e ln e 1x x x x ≥−+−,即e ln e 1xx x x−+≥−,设()e ln xg x x x x−+,0x >,所以()()()()()2222e1e 1e 111xx xx x x x x x g x xx xx−−−−+−=−+==′,令()e xh x x =−,当0x >时,()e 10xh x =′−>,所以函数ℎ(xx )(0,+∞)上单调递增,则()()e 010xh x x h =−>=>所以令()0g x ′>,即1x >;令()0g x ′<,即01x <<, 所以函数()g x 在(0,1)上单调递减,在(1,+∞)上单调递增,所以()()e ln 1e 1xg x x x g x=−+≥=−,所以()ln e 1f x x x ≥−+−.19. 今年立秋以后,川渝地区持续性高温登上热搜,引发关注讨论.根据专家推测,主要是由于大陆高压和西太平洋副热带高压呈现非常强大,在高压的控制下,川渝地区上空晴朗少云,在太阳辐射增温和气流下沉增温的共同作用下,两个地区的气温出现了直接攀升的状态.川东北某城市一室内游泳馆,为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可自由选择A 和B 两个套餐之一;该游泳馆在App 平台上推出了优惠券活动,下表是App 平台统计某周内周一至周六销售优惠券情况.星期t 1 2 3 4 5 6销售量y(张)218224 230 232 236 90经计算可得:6112056i i yy ==∑,614004i i i t y ==∑,62191i i t ==∑. (1)因为优惠券销售火爆,App 平台在周六时系统出现异常,导致当天顾客购买优惠券数量大幅减少,现剔除周六数据,求y 关于t 的经验回归方程; (2)若购买优惠券的顾客选择A 套餐的概率为13,选择B 套餐的概率为23,并且A 套餐包含两张优惠券,B 套餐包含一张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ; (3)请依据下列定义,解决下列问题:在定义:如果对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<(a 是一个确定的实数),则称数列{}n a 收敛于a .运用:记(2)中所得概率n P 的值构成数列{}()*n P n ∈N .求n P 的最值,并证明数列{}n P 收敛. 参考公式:()()()1122211ˆn n i i i ii i n n i ii i x x y y x y nx y b x x x nx ====−−−⋅=−−∑∑∑∑,ˆˆa y bx =−. 【答案】(1)8ˆ 4.4214.y t =+ (2)311443n n P =+×−(3)最大值为79,最小值为23,证明见解析 【解析】 【分析】(1)计算出新数据的相关数值,代入公式求出ˆˆ,a b的值,进而得到y 关于t 的经验回归方程; (2)由题意可知122133n n n P P P −−=+,3n ≥,其中123P =,279P =,构造等比数列,再利用等比数列的通项公式求解; (3)分n 算,即可得证.【小问1详解】由题意,1234535t ++++=,()61119020569022855i i y y = =−=×−= ∑, 则122221400469053228ˆ 4.491653n i i i n i i t y nt y b t nt ==−⋅−×−××==−−×−∑∑, ˆˆ228 4.43214.8ay bt =−=−×=, 所以y 关于t 的经验回归方程为8ˆ 4.4214.y t =+. 【小问2详解】 由题意,可知123P =,222173339P =×+=,当3n ≥时,122133n n n P P P −−=+,即1121133n n n n P P P P −−−+=+, 又21171213933P P +=+×=, 所以当2n ≥时,数列113n n P P −+为各项都为1的常数列, 即()11123n n P P n −+=≥, 所以1313434n n P P − −=−− ,2n ≥,又1323143412P −=−=−, 所以数列34n P −为首项为112−公比为13−的等比数列, 所以13114123n n P − −=−×− ,即311443nn P =+×− . 【小问3详解】 由(2)知,311443nn P =+×− , 当n 为偶数时,31134434n n P =+×> ,且n P 随n 的增大而减小, 因此n P 的最大值为279P =; 当n 为奇数时,31134434n n P =−×< ,且n P 随n 的增大而增大, 因此n P 的最小值为123P =, 综上所述,n P 的最大值为79,最小值为23. 对于任意0ε>,总存在正整数()013log 41N ε =+,其中[]x 表示不超过x 的最大整数, 当()13log 41n ε >+ 时,()13log 431111114434343n n n P εε −=×−=×<×= , 所以数列{}n P 收敛于34.【点睛】知识方法点睛:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.。

四川省成都市2024届高三上学期一诊模拟考试 数学(文)含答案

四川省成都市2024届高三上学期一诊模拟考试 数学(文)含答案

成都2023—2024学年度2024届高三(上)一诊模拟试卷数学(文)(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2230A x x x =∈--<Z ,则集合A 的子集个数为()A.3B.4C.8D.162.已知a 为实数,若复数()()i 12i a +-为纯虚数,则a =()A.2- B.12-C.12D.23.一组数据共含大小不一的7个数值,其平均数和方差分别为1x 和21s ,若去掉一个最大值和一个最小值,则剩下的数据其平均数和方差分别为2x 和22s ,则一定有()A.12x x <B.12x x >C.2212s s < D.2212s s >4.与y =有相同定义域的函数是()A.23y x= B.2y =C.()lg 10x y =D.ln xy e =5.若向量a ,b 满足:1a = ,()a b a +⊥ ,2a b -= ,则b =()A.2C.106.阅读如图所示的程序框图,运行相应的程序.若输出的S 为1112,则判断框中填写的内容可以是()A.4n ≤B.5n ≤C.6n ≤D.8n ≤7.已知a ,b ,c ∈R ,则“a b ≤”的必要不充分条件可以是()A.11a b≤ B.ac bc≤ C.22ac bc≤ D.22a b≤8.抛物线C :22y px =(0p >)的顶点为O ,斜率为1的直线l 过点()2,0p ,且与抛物线C 交于A ,B 两点,若OAB △的面积为,则该抛物线的准线方程为()A.1x =-B.2x =-C.2x =-D.x =9.设m ,n 是两条不相同的直线,α,β是两个不重合的平面,则下列命题错误的是()A.若m α⊥,//n β,//αβ,则m n ⊥B.若//n α,n β⊥,则αβ⊥C.若m 、n 是异面直线,m α⊂,//m β,n β⊂,//n α,则//αβ.D.若m n ⊥,m β⊥,则//n β10.已知3παβ-=,tan tan αβ-=()cos αβ+的值为()A.12B.13C.14-D.16-11.与曲线在某点处的切线垂直,且过该点的直线称为曲线在某点处的法线,若曲线4y x =的法线的纵截距存在,则其最小值为()A.34 B.1C.1716D.5412.已知双曲线C :22221x y a b-=(0a >,0b >)的左焦点为F ,过F 的直线与圆222x y a +=相切于点Q ,与双曲线的右支交于点P ,若2PQ QF =,则双曲线C 的离心率为()A.3B.2C.32D.43第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分)13.函数()()()21f x x x a =+-是偶函数,则a =______.14.若x ,y 满足约束条件320,0,0,x y x y y -+≤⎧⎪-≤⎨⎪≥⎩则2z x y =-的最大值为______.15.半球的表面积与其内最大正方体的表面积之比为______.16.如图,在ABC △所在平面内,分别以AB ,BC 为边向外作正方形ABEF 和正方形BCHG .记ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,面积为S .已知34S =,且sin sin 4sin sin a A c C a C B +=,则FH =______.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.)17.(12分)某企业生产的产品按质量分为一等品和二等品,该企业计划对现有生产设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取200件产品作为样本,产品的质量情况统计如表:一等品二等品合计设备改造前12080200设备改造后15050200合计270130400(1)判断是否有99%的把握,认为该企业生产的这种产品的质量与设备改造有关;(2)按照分层抽样的方法,从设备改造前的产品中取得了5件产品,其中有3件一等品和2件二等品.现从这5件产品中任选2件,求选出的这2件全是一等品的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.0500.0100.0010k 3.8416.63510.82818.(12分)在等比数列{}n a 和等差数列{}n b 中,1122a b ==,222a b =,3322a b =+.(1)求数列{}n a 和{}n b 的通项公式;(2)令2n n n b c a =,记数列{}n c 的前n 项积为n T ,其中11T c =,证明:916n T ≤.19.(12分)如图,平面四边形ABCD 中,//BC AD ,90ADC ∠=︒,120ABC ︒∠=,E 是AD 上的一点,24AB BC DE a ===(0a >),F 是EC 的中点,以EC 为折痕把EDC △折起,使点D 到达点P 的位置,且PC BF ⊥.(1)证明:平面PEC ⊥平面ABCE ;(2)求点C 到平面PAB 的距离.20.(12分)设函数()()sin sin 1cos cos x a F x x a x a λλ-=-+--,其中0,2a π⎛⎫∈ ⎪⎝⎭.(1)若1λ=,讨论()F x 在,2a π⎛⎫⎪⎝⎭上的单调性;(2)若12λ≤,证明:当,2x a π⎛⎫∈ ⎪⎝⎭时,不等式()()0x a F x -<恒成立.21.(12分)在平面直角坐标系xOy 中,O 为坐标原点,动点(),D x y 与定点)3,0F的距离和D 到定直线33x =的距离的比是常数32,设动点D 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知定点(),0P t ,20t -<<,过点P 作垂直于x 轴的直线l ,过点P 作斜率大于0的直线l '与曲线C 交于点G ,H ,其中点G 在x 轴上方,点H 在x 轴下方.曲线C 与x 轴负半轴交于点A ,直线AG ,AH 与直线l 分别交于点M ,N ,若A ,O ,M ,N 四点共圆,求t 的值.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程为cos 1sin x t y t αα=⎧⎨=+⎩(t 为参数),α为l 的倾斜角,且()0,απ∈,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2221cos ρθ=+.(1)求曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于A 、B 两点,点()0,1P 恰为线段AB 的三等分点,求sin α.23.(10分)选修4-5:不等式选讲已知()2f x x m =+(m ∈R ).(1)当0m =时,求不等式()25f x x +-<的解集;(2)对于任意实数x ,不等式()222x f x m --<成立,求m 的取值范围.参考答案(文科)一、单选题:共12道小题,每题5分.共60分.123456789101112CADDBCCADDAB二、填空题:共4道小题,每题5分,共20分.13.1214.1-15.34π16.三、解答题:共5道大题,共70分.17.(12分)解:(1)∵()22400120501508040010.256 6.63520020027013039K ⨯-⨯===>⨯⨯⨯,∴有99%的把握认为该企业生产的这种产品的质量与设备改造有关.(2)在取出的5件产品中,3件一等品记为a ,b ,c ,2件二等品记为D ,E ,从这5件产品中任选2件的所有情况为ab ,ac ,aD ,aE ,bc ,bD ,bE ,cD ,cE ,DE ,共10种,其中2件全是一等品的情况为ab ,ac ,bc ,共3种,∴选出的2件全是一等品的概率为310.18.(12分)解:(1)设数列{}n a 的公比为q ,数列{}n b 的公差为d ,由1122a b ==,有12a =,11b =,又由222a b =,有()221q d =+,有1q d =+,又由3322a b =+,有()222122q d =++,有222q d =+,可得22q q =,得2q =或0q =(舍去),1d =,故2nn a =,n b n =;(2)证明:由(1)知:222n n n n b n c a ==,*n ∈N ,则()222111121222n nn n n n n n n c c +++++--=-=当3n ≥时,10n n c c +-<,即345670c c c c c >>>>>⋅⋅⋅>,而112c =,21c =,398c =,41c =,当4n ≥时,有111n n n T c T ++=<,则112T =,212T =,3916T =,456916T T T =>>>⋅⋅⋅,故916n T ≤.19.(12分)解:(1)由//BC AD ,90ADC ∠=︒,2AB BC DE ==,所以平面四边形ABCD 为直角梯形,设24AB BC DE a ===,因为120ABC ︒∠=.所以在Rt CDE △中,CD =,4EC a =,3tan 3DE ECD CD ∠==,则30ECD ∠=︒,又90ADC BCD ︒∠=∠=,所以60BCE ∠=︒,由4EC BC AB a ===,所以BCE △为等边三角形,又F 是EC 的中点,所以BF EC ⊥,又BF PC ⊥,EC ,PC ⊂平面PEC ,EC PC C = ,则有BF ⊥平面PEC ,而BF ⊂平面ABCE ,故平面PEC ⊥平面ABCE .(2)在Rt PEC △中,122PE DE PF EC a ====,取EF 中点O ,所以PO EF ⊥,由(1)可知平面PEC ⊥平面ABCE ,平面PEC 平面ABCE EC =,所以PO ⊥平面ABCE .过O 作OH AB ⊥于H ,连PH ,则由PO ⊥平面ABCE ,AB ⊂平面ABCE ,所以AB PO ⊥,又AB OH ⊥,PO OH O = ,则AB ⊥平面POH ,又PH ⊂平面POH ,所以AB PH ⊥,在Rt POH △中,PO =,OH BF ==,所以PH =,设C 到平面PAB 的距离为d ,由C PAB P ABC V V --=,即1133PAB BEC S d S OP ⨯⨯=⨯⨯△△,即1111443232a a ⨯⨯=⨯⨯⨯.可得5d a ==.20.(12分)解:(1)由1λ=知,()sin sin cos x aF x a x a -=--,()()()()2cos sin sin x x a x a F x x a '---=--,令()()()cos sin sin G x x x a x a =--+-,由()()sin 0G x x x a '=->,知()G x 在,2a π⎛⎫⎪⎝⎭上单增,有()()0G x G a >=,即()0F x '>,亦知()F x 在,2a π⎛⎫⎪⎝⎭上单调递增.(2)由12λ≤知,当,2x a π⎛⎫∈ ⎪⎝⎭时,()()()()()1cos cos sin sin x a F x x a x a x a λλ-=-+---⎡⎤⎣⎦()()()cos cos cos sin sin a x x x a x a λ=-+---⎡⎤⎣⎦()()()1cos cos cos sin sin 2a x x x a x a ⎡⎤≤-+---⎢⎥⎣⎦,令()()()()1cos cos sin sin 2f x a x x a x a =+---,()()()11cos cos sin 22f x a x x a x =---',()()1cos 02f x x a x =--'<',知()f x '在,2a π⎛⎫⎪⎝⎭上单减,有()()0f x f a '<=',亦知()f x 在,2a π⎛⎫⎪⎝⎭上单减,有()()0f x f a <=,即()()0x a F x -<.21.(12分)解:(12=,两边平分并化简得2214x y +=,即曲线C 的方程.(2)设点()11,G x y ,()22,H x y .直线GH :()y k x t =-(0k >)与椭圆C 的方程2214x y +=联立,消去y 得()()22222148440k x k tx k t +-+-=.由韦达定理:2122814k t x x k +=+,221224414k t x x k-⋅=+.由条件,直线AG 的方程为()1122y y x x =++,直线AH 的方程为()2222yy x x =++,于是可得()1122M y t y x +=+,()2222N y t y x +=+.因为A ,O ,M ,N 四点共圆,由相交弦定理可知()()()2M N y y t t -=-+,化简得()()1212222y y tx x t =+++又()11y k x t =-,()22y k x t =-,代入整理得:()()()2212121212242k x x t x x t t x x x x t -++=++++.将韦达定理代入化简得:()224242t t t t -=++,即23t =-.22.(10分)解:【详解】(1)由曲线C 的极坐标方程为2221cos ρθ=+,可得222cos 2ρρθ+=,又由cos x ρθ=,sin y ρθ=,代入可得2222x y +=,即曲线C 的直角坐标方程为2212y x +=.(2)把直线参数方程cos 1sin x t y t αα=⎧⎨-+⎩(t 为参数),代入曲线C 的直角坐标方程2212y x +=,整理得()221cos 2sin 10t t αα++⋅-=,设A ,B 对应的参数分别为1t ,2t ,得1222sin 1cos t t αα+=-+,12211cos t t α⋅=-+,因为点()0,1P 恰为线段AB 的三等分点,不妨设2AP PB =,则122t t =,所以122t t =-,代入1222sin 1cos t t αα+=-+,12211cos t t α⋅=-+,化简得22sin 9α=,又因为()0,απ∈,所以2sin 3α=.23.(10分)解:(1)当0m =时,不等式225x x +-<可转化为:0225x x x <⎧⎨-+-<⎩或02225x x x ≤≤⎧⎨-+<⎩或2225x x x >⎧⎨+-<⎩整理得:01x x <⎧⎨>-⎩或023x x ≤≤⎧⎨<⎩或273x x >⎧⎪⎨<⎪⎩所以不等式的解集为713x x ⎧⎫-<<⎨⎩⎭.(2)因为2222222x x m x x m m --+≤---=+若()222x f x m --<恒成立.只需来解22m m +<即可。

四川省成都市四川天府新区综合高级中学2024届高三一诊模拟2数学(文)试题

四川省成都市四川天府新区综合高级中学2024届高三一诊模拟2数学(文)试题

一、单选题二、多选题1. 若复数(是虚数单位),则( )A.B.C.D.2. 已知函数的图象上一点,,,则的最小值为( )A.B.C.D.3. 已知定义域为R 的函数在单调递增,且为偶函数,若,则不等式的解集为( )A.B.C.D.4. 已知为锐角,且,则( )A.B.C .1D.5. 设函数f (x )=cos 2x +b sin x ,则“b =0”是“f (x )的最小正周期为π”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.函数的图像在点处的切线方程为( )A.B.C.D.7.已知直线与x 轴相交于点A ,过直线l 上的动点P 作圆的两条切线,切点分别为C ,D 两点,记M是的中点,则的最小值为( )A.B.C.D .38. 已知椭圆:的右焦点为,短轴的一个端点为,直线:交椭圆于,两点,若,点与直线的距离不小于,则椭圆的离心率的取值范围是A.B.C.D.9.已知圆,直线,是直线上的动点,过点作圆的切线,切点为,则切线长取最小值时,下列结论正确的是( )A.B.C.的方程可以是D .的方程可以是10. 如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,AC 与EF 交于点G ,现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H ,那么在这个空间图形中必有()A .AG⊥所在平面B .AH ⊥所在平面C .EF ⊥所在平面四川省成都市四川天府新区综合高级中学2024届高三一诊模拟2数学(文)试题三、填空题四、解答题D .HG ⊥所在平面11. 我国首先研制成功的“双曲线新闻灯”,如图,利用了双曲线的光学性质:,是双曲线的左、右焦点,从发出的光线射在双曲线右支上一点,经点反射后,反射光线的反向延长线过;当异于双曲线顶点时,双曲线在点处的切线平分.若双曲线的方程为,则下列结论正确的是()A .射线所在直线的斜率为,则B.当时,C .当过点时,光线由到再到所经过的路程为13D.若点坐标为,直线与相切,则12.如图,已知函数(其中,,)的图象与轴交于点,与轴交于点,,,.则下列说法正确的有()A.的最小正周期为12B.C.的最大值为D.在区间上单调递增13.请你举出与函数在处具有相同切线的一个函数___________.14. 已知一轴截面为正方形的圆柱体和一个小球的表面积相同,则此圆柱体与小球的体积之比为_____________.15.过作圆的两条切线,切点为,则过两点的直线方程为________.16. 垃圾分类指的是按照一定规定或者标准将垃圾分类储存、投放和搬运,从而转变成公共资源的一系列活动的总称我国的垃圾分类大致分为厨余垃圾、可回收垃圾、有害垃圾、其他垃圾四类,而正确的掌握垃圾分类也是中学生的必修课之一.某学校从甲、乙两个班级中各随机抽取了8名学生参加垃圾分类知识的检测,并将检测后的成绩统计如表所示:甲7364747865728785乙748576747786其中,,,.(1)求,的值;(2)现从乙班同学中随机抽取4人,记80分以上的人数为,求的分布列以及数学期望.17. 推进垃圾分类处理,是落实绿色发展理念的必然选择.为加强社区居民的垃圾分类意识,某社区在健身广场举办了“垃圾分类,从我做起”生活垃圾分类大型宣传活动,号召社区居民用实际行动为建设绿色家园贡献一份力量,为此需要征集一部分垃圾分类志愿者.(1)为调查社区居民喜欢担任垃圾分类志愿者是否与性别有关,现随机选取了一部分社区居民进行调查,其中被调查的男性居民30人,女性居民20人,男性居民中不喜欢担任垃圾分类志愿者占男性居民的,女性居民中不喜欢担任垃圾分类志愿者占女性居民的,判断能否在犯错误概率不超过0.5%的前提下,认为居民喜欢担任垃圾分类志愿者与性别有关?附:,.0.1000.0500.0100.0050.0012.7063.841 6.6357.87910.828(2)某垃圾站的日垃圾分拣量y(千克)与垃圾分类志愿者人数x(人)满足回归直线方程,数据统计如表:志愿者人数x(人)23456日垃圾分拣量y(千克)24294146t已知,,,根据所给数据求t,预测志愿者人数为10人时,该垃圾站的日垃圾分拣量.附:,.18.已知圆:,直线与圆相切,且直线:与椭圆:相交于两点,为原点.(1)若直线过椭圆的左焦点,且与圆交于两点,且,求直线的方程;(2)如图,若的重心恰好在圆上,求的取值范围.19. 如图,一个质点在随机外力的作用下,从数轴点1的位置出发,每隔向左或向右移动一个单位,设每次向右移动的概率为.(1)当时,求后质点移动到点0的位置的概率;(2)记后质点的位置对应的数为,若随机变量的期望,求的取值范围.20.在平面四边形中,,,.(1)若,求的大小;(2)求边长度的最大值.21. 随着中国经济的快速发展,环保问题已经成为一个不容忽视的问题,而与每个居民的日常生活密切相关的就是水资源问题.某污水处理厂在国家环保部门的支持下,引进新设备,污水处理能力大大提高.已知该厂每月的污水处理量最少为150万吨,最多为300万吨,月处理成本(万元)与月处理量(万吨)之间的函数关系可近似地表示为,且每处理一万吨污水产生的收益为万元.(1)该厂每月污水处理量为多少万吨时,才能使每万吨的处理成本最低?(2)该厂每月能否获利?如果能获利,求出最大利润.。

四川省绵阳中学2023-2024学年高三上学期一诊模拟(三)数学(理科)试题

四川省绵阳中学2023-2024学年高三上学期一诊模拟(三)数学(理科)试题

四川省绵阳中学2023-2024学年高三上学期一诊模拟(三)数学(理科)试题学校:___________姓名:___________班级:___________考号:___________ A.45.25m B.50.76mA.52B.10.已知实数0x>,则函数A.(0,)+¥B.11.若函数()y f x=满足由图知:AD BC EC ==,D Ð所以,DM EM AM CM ==,而令,AM a DM x a ==-且2a >所以222(6)()x x a a a -+-=Þ构造函数()()2e 0m f m m mt m =-+>,所以原问题等价于存在两个不等的正实数x ,y ,使得()()f x f y =,显然函数()f m 不是正实数集上的单调函数,()()e 20m f m m t m ¢=-+>,设()()()e 20e 2m m g m m m g m ¢=->Þ=-,当ln 2m >时,()()0,g m g m ¢>单调递增,当0ln 2m <<时,()()0,g m g m ¢<单调递减,故()()minln 22ln 2g m g ==-,当2ln 20t -+³时,即ln 22t ³-时,()()0,f m f m ¢³单调递增,所以不符合题意;当2ln 20t -+<时,即ln 22t <-时,显然存在0m ,使得()00f m ¢=,因此一定存在区间()()00,0m m e e e -+>,使得()f m ¢在()()0000,,,m m m m e e -+上异号,因此函数()f m 在()()0000,,,m m m m e e -+上单调性不同,因此一定存在两个不等的正实数x ,y ,使得()()e e x y x y x y t -+-=-成立,故答案为:),2l 2(n2-¥-【点睛】关键点睛:本题的关键是由()()e e x y x y x y t -+-=-构造函数()()2e 0m f m m mt m =-+>.17.(1)21n a n =-(2)证明见解析【分析】(1)根据等差数列的通项公式进行求解即可;。

四川省成都石室中学2022-2023学年高三上学期一诊模拟考试数学(文科)试题

四川省成都石室中学2022-2023学年高三上学期一诊模拟考试数学(文科)试题

一、单选题二、多选题1. 函数与的图象关于直线l 对称,则l 可以是( )A.B.C.D.2. 已知集合A =,集合B =,则AB =( )A .[0,1]B .[- 1,1]C .[-1,0)D .[- 1,0]3. 已知,则( )A.B.C.D.4. 已知命题p :,,则命题p的否定为( )A .,B .,C .,D .,5. 若,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知,,,则“”的一个必要不充分条件是( )A.B.C.D.7. 已知函数,的图象如图所示,则该函数的解析式可能为()A.B.C.D.8. 在正三棱台中,,,,则正三棱台的外接球体积为( )A.B.C.D.9. 已知复数,则下列结论正确的是( )A.B .复数在复平面内对应的点在第二象限C.D.10.已知,则下列结论正确的是( )A.B.C.D.11. 函数在内有唯一零点的充分条件是( )A.的最小正周期为πB .在内单调C .在内有且仅有一条对称轴D .在内的值域为12. 如图,正方体的棱长为1,线段上有两个动点,,且,则下列结论中正确的是( )四川省成都石室中学2022-2023学年高三上学期一诊模拟考试数学(文科)试题四川省成都石室中学2022-2023学年高三上学期一诊模拟考试数学(文科)试题三、填空题四、解答题A .异面直线、所成角为定值B.C .的面积与的面积相等D.三棱锥的体积为定值13. 在平面直角坐标系中,平面向量,将绕原点逆时针旋转得到向量-,若A ,B ,C三点共线,则在方向上的投影是___________.14. 在的展开式中,的系数为______.15.已知定义在上的偶函数,满足,若,则的值为________.16. 已知函数,其中,,,,其部分图象如图所示.(1)求函数的解析式;(2)已知函数,求函数的单调递增区间.17. 已知函数,.(Ⅰ)求函数的最小正周期及单调递增区间;(Ⅱ)若为锐角且,满足,求.18.已知椭圆的左、右焦点分别为F 1,F 2,点P 在椭圆C 上,以PF 1为直径的圆过焦点F 2.(1)求椭圆C 的方程;(2)若椭圆C 的右顶点为A ,与x 轴不垂直的直线l 交椭圆C 于M ,N 两点(M ,N 与A 点不重合),且满足AM ⊥AN ,点Q 为MN 中点,求直线MN 与AQ 的斜率之积的取值范围.19.设.(1)求曲线在点处的切线方程;(2)设,求最大值.20. 记的内角的对边分别为,,.(1)求的面积;(2)若,求.21. 已知函数.(1)求曲线上一点处的切线方程;(2)当时,在区间的最大值记为,最小值记为,设,求的最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015届高三一诊模拟考试(一)数 学第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{1},{0,1,2,4}A x x B =>=,则()R C A B =( )(A ) {2,4} (B ) {0} (C ) {0,1} (D )∅2.复数2i2i =- (A )24i 55-+ (B )24i 55- (C )24i 55+(D )24i 55--3.下列说法正确的是 (A )“(0)0f =”是“函数()f x 是奇函数”的充要条件 (B )若0:p x ∃∈R ,2010x x -->,则:p ⌝x ∀∈R ,210x x --< (C )若p q ∧为假命题,则p ,q 均为假命题(D )“若6πα=,则1sin 2α=”的否命题是“若6πα≠,则1sin 2α≠”4.以下茎叶图记录了甲乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则y x ,的值分别为 (A ) 5,2 (B )5,5 (C ) 8,5 (D )8,85.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )(A )-19 (B ) 13 (C )1 (D )726.已知不等式组,,y x y x x a ≤⎧⎪≥-⎨⎪≤⎩(其中0a >)表示的平面区域的面积为4,点(,)P x y 在该平面区域内,则2z x y =+的最大值为(A )9 (B )6 (C )4(D )37.函数4ln )2()44ln()2()(2--+--=x x x x x f 的零点个数为( ) (A )2 (B )1 (C )3 (D )08.已知实数[1,10]x ∈,执行如右图所示的程序框图,则输出x 的值不小于55的概率为(A )19 (B )29 (C )49 (D )599.设P 是双曲线2214y x -=上除顶点外的任意一点,1F 、2F 分别是双曲线的左、右焦点,△12PF F 的内切圆与边12F F 相切于点M ,则12F M MF ⋅=(A )5 (B )4 (C )2 (D )110.已知函数()1e 1x mf x =++,若,,a b c ∀∈R ,(),(),()f a f b f c 为某一个三角形的边长,则实数m 的取值范围是(A )1[,0]2- (B )[0,1] (C )[1,2] (D )1[,1]2-第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。

11.已知tan 3α=,则3cos sin 2cos sin()ααααπ+=++______.12.在Rt △ABC 中,2C π=,6B π=,1CA =,则|2|AC AB -=_____.13.一个多面体的三视图如图所示,则该多面体的体积是_____.14.若两正数a ,c 满足228a c ac ++=,则ac 的最大值为 15.设[]x 表示不超过x 的最大整数,如:[]3π=,[ 4.3]5-=-.给出下列命题:①对任意实数x ,都有[]0x x -≤; ②若12x x ≤,则12[][]x x ≤;③[lg1][lg2][lg3][lg100]90++++=;④若函数21()122x x f x =-+,则[()][()]y f x f x =+-的值域为{1,0}-. 其中所有真命题的序号是__________.三、解答题:共6大题,共75分。

解答应写出文字说明,证明过程或演算步骤。

16.(本小题满分12分)已知{a n }是首项为1,且满足12n n a a +=+,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .17.(本小题满分12分)设平面向量2(cos )2xx =m ,(2,1)=n ,函数()f x =⋅m n .(Ⅰ)当[,]32x ππ∈-时,求函数()f x 的取值范围;(Ⅱ)当13()5f α=,且236ππα-<<时,求sin(2)3πα+的值.18.(本小题满分12分)某学校为了选拔学生参加“XX 市中学生知识竞赛”,先在本校进行选拔测试(满分150分),若该校有100名学生参加选拔测试,并根据选拔测试成绩作出如图所示的频率分布直方图.(Ⅰ)根据频率分布直方图,估算这100名学生参加选拔测试的平均成绩;(Ⅱ)该校推荐选拔测试成绩在110以上的学生代表学校参加市知识竞赛,为了了解情况,在该校推荐参加市知识竞赛的学生中随机抽取2人,求选取的两人的选拔成绩在频率分布直方图中处于不同组的概率.19.(本小题满分12分)已知数列{}n a 的前n 项和为n S 满足:332n n S a n =+-.(Ⅰ)求证:数列{1}n a -是等比数列;(Ⅱ)令31323log (1)log (1)log (1)n n c a a a =-+-++-,对任意*n ∈N ,是否存在正整数m ,使121113n mc c c +++≥都成立?若存在,求出m 的值;若不存在,请说明理由. 20.(本小题满分13分)已知函数1()x f x x e -=(其中e 为自然对数的底数)的定义域为(0,)+∞. (I )求函数()f x 在[]1,+m m (0>m )上的最小值;(Ⅱ)对(0,)x ∀∈+∞,不等式2()1xf x x x λ>-+-恒成立,求λ的取值范围.21.(本小题满分14分)已知函数xax g x x f -==2)(,ln )((a 为实数). (I )当1=a 时,求函数)()()(x g x f x -=ϕ的最小值; (II )若方程)(5.1)(2x g e x f =(其中e 为自然对数的底数)在区间[0.5,2]上有解,求实数a的取值范围.(III )若mx x x f x u 2)()(2++=,当)(x u y =存在两个极值时,求m 的取值范围,并证明两个极值之和小于2ln 3--.2015届高三一诊模拟考试(一) 数学参考答案及评分意见(文史类)一、选择题:CADCD ,BACBD . 二、填空题:11. -6;12. 2;13.233;14. 2; 15.①②④. 三、解答题:共6大题,共75分。

解答应写出文字说明,证明过程或演算步骤。

16. 解:(1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以 a n =a 1+(n -1)d =2n -1.故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2. ……………6分(2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0,所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列,所以b n =b 1q n -1=2×4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q =23(4n-1).……………12分17.解析:(Ⅰ)22()(cos ,)(2,1)2cos 22xxf x x x =⋅= ······· 1分cos 1x x =+2sin()16x π=++. ··················· 3分当[,]32x ππ∈-时,2[,]663x πππ+∈-,则1sin()126x π-≤+≤,02sin()136x π≤++≤,所以()f x 的取值范围是[0,3]. ······················ 6分(Ⅱ)由13()2sin()165f παα=++=,得4sin()65πα+=, ··········· 7分因为236ππα-<<,所以263πππα-<+<,得3cos()65πα+=, ········ 9分 sin(2+)sin[2()]36ππαα=+432sin()cos()26655ππαα=++=⨯⨯2425=. 12分两段可以合并,所以*(21)31,2n n N T n n -⋅-∈=…………………(12分) 18.解析:(Ⅰ)设平均成绩的估计值为X ,则:(200.001400.004600.009800.0201000.0131200.0021400.001)20X =⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯80=. ································ 6分(Ⅱ)该校学生的选拔测试分数在[110,130)有4人,分别记为A ,B ,C ,D ,分数在[130,150)有2人,分别记为a ,b ,在则6人中随机选取2人,总的事件有(A ,B ),(A ,C ),(A ,D ), (A ,a ),(A ,b ),(B ,C ),(B ,D ),(B ,a ),(B ,b ),(C ,D ),(C ,a ),(C ,b ),(D ,a ),(D ,b ),(a ,b )共15个基本事件,其中符合题设条件的基本事件有8个. 故选取的这两人的选拔成绩在频率分布直方图中处于不同组的概率为815P =. ·· 12分 19.解析:当1n =时,111322S a a ==-,解得14a =, ············1分 当2n ≥时,由332n n S a n =+-得11342n n S a n --=+-, ············2分 两式相减,得1133122n n n n S S a a ---=-+,即132n n a a -=-, ·········3分 则113(1)n n a a --=-,故数列{1}n a -是以113a -=为首项,公比为3的等比数列. 4分(Ⅱ)由(Ⅰ)知13n n a -=,31323(1)log (1)log (1)log (1)122n n n n c a a a n +=-+-++-=+++=, ····· 6分 所以12112()(1)1n c n n n n ==-++, ····················· 7分则121111111112[(1)()()]2(1)22311n c c c n n n +++=-+-++-=-++, ······ 8分 由121113n m c c c +++≥对任意*n ∈N 都成立,得12(1)13mn -≥+, 即16(1)1m n ≤-+对任意*n ∈N 都成立,又*m ∈N , 所以m 的值为1,2,3. ························· 12分 20.解析:解:2()x x xe e f x x-'=, …………1分 令()0f x '>得1x >;令()0f x '<得1x <所以,函数()f x 在(0,1)上是减函数;在(1,)+∞上是增函数 …………2分 (I )当1m ≥时,函数()f x 在[m,m+1](m>0)上是增函数,所以, min ()()me f x f m m ==…………4分当01m <<时,函数()f x 在[m,1]上是减函数;在[1,m+1] 上是增函数 所以, min ()(1)f x f e ==。

相关文档
最新文档