(优选)离散数学抽象代数

合集下载

最新离散数学参考答案--古天龙-常亮-版

最新离散数学参考答案--古天龙-常亮-版
第一篇之集合论
数理逻辑
第三篇之抽象代数
2003年,上海市总人口达到1464万人,上海是全国第一个出现人口负增长的地区。
众上所述,我们认为:我们的创意小屋计划或许虽然会有很多的挑战和困难,但我们会吸取和借鉴“漂亮女生”和“碧芝”的成功经验,在产品的质量和创意上多下工夫,使自己的产品能领导潮流,领导时尚。在它们还没有打入学校这个市场时,我们要巩固我们的学生市场,制作一些吸引学生,又有使学生能接受的价格,勇敢的面对它们的挑战,使自己立于不败之地。第四篇之图论
据介绍,经常光顾“碧芝”的都是些希望得到世界上“独一无二”饰品的年轻人,他们在琳琅满目的货架上挑选,然后亲手串连,他们就是偏爱这种DIY的方式,完全自助。
10元以下□ 10~50元□ 50~100元□ 100元以上□
2、你大部分的零用钱用于何处?
当然,在竞争日益激烈的现代社会中,创业是件相当困难的事。我们认为,在实行我们的创业计划之前,我们首先要了解竞争对手,吸取别人的经验教训,制订相应竞争的策略。我相信只要我们的小店有自己独到的风格,价格优惠,服务热情周到,就一定能取得大多女孩的信任和喜爱。
(二)DIY手工艺品的“热卖化”
500元以上 1பைடு நூலகம் 24%
一、 消费者分析
标题:大学生“负债消费“成潮流 2004年3月18日

离散数学基础知识

离散数学基础知识

离散数学基础知识离散数学是计算机科学中一门重要的数学基础学科,它研究离散对象的性质和关系,主要涉及逻辑、集合论、图论、代数结构等方面的内容。

具备扎实的离散数学基础知识对于计算机科学领域的学习和研究都具有重要的意义。

本文将重点介绍离散数学的一些基础知识。

1. 逻辑逻辑是离散数学的基础,它研究判断和推理的规则。

在计算机科学中,逻辑常常用于描述程序的正确性和推理的过程。

逻辑包括命题逻辑和谓词逻辑两个分支。

命题逻辑研究命题与命题之间的关系,它使用命题变量和逻辑运算符来构造复合命题。

常见的逻辑运算符有非(¬)、与(∧)、或(∨)、蕴含(→)和等价(↔)等。

通过逻辑运算符的组合,可以构建出复杂的逻辑表达式,并通过真值表来确定表达式的真值。

谓词逻辑是对命题逻辑的扩展,它引入了量词和谓词,用于描述对象之间的关系。

谓词逻辑包括一阶逻辑和二阶逻辑两个分支。

一阶逻辑主要研究命题中包含变量的情况,而二阶逻辑则允许变量代表集合或者谓词。

2. 集合论集合论是离散数学的另一个重要分支,它研究集合及其运算和关系。

在计算机科学中,集合论被广泛应用于描述数据类型、数据结构和算法等方面。

集合是由一些确定的对象组成的整体,可以用罗素概念公理或者包含-属于公理来描述。

常见的集合运算有并(∪)、交(∩)、差(-)和补(\)等。

通过这些运算,可以构建出各种复杂的集合。

集合论中的函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素。

函数可以用来描述计算机程序中的算法和操作。

常见的函数类型有单射、满射、双射等。

3. 图论图论是离散数学的一个重要分支,它研究图的性质和关系。

在计算机科学中,图论被广泛应用于网络、算法和人工智能等方面。

图是由顶点和边组成的结构,可以用来描述对象之间的关系。

图的类型包括有向图和无向图,以及它们的变种如加权图和带标签的图等。

图的常见概念有度、路径、连通性和环等。

图的表示方法有邻接矩阵和邻接表两种。

邻接矩阵使用二维数组来表示顶点之间的连接关系,邻接表则使用链表来表示边的信息。

离散数学证明方法有哪些

离散数学证明方法有哪些

离散数学证明方法有哪些离散数学中的概念和定理偏多,思维较抽象,证明强调技巧性但改变不多。

下面我给大家整理了关于离散数学证明方法,盼望对你有协助!1离散数学证明方法离散数学是现代数学的一个重要分支,是计算机科学中根底理论的核心课程。

离散数学以探究离散量的构造和相互间的关系为主要目标,其探究对象一般地是有限个或可数个元素,因此他充分描述了计算机科学离散性的特点。

2离散数学证明方法干脆证明法干脆证明法是最常见的一种证明的方法,它通常用作证明某一类东西具有一样的性质,或者符合某一些性质必定是某一类东西。

干脆证明法有两种思路,第一种是从确定的条件来推出结论,即看到条件的时候,并不知道它怎么可以推出结论,那么可以先从确定条件遵照定理推出一些中间的条件(这一步可能是没有目的的,要看看从确定的条件中能够推出些什么),接着,选择可以推出结论的那个条件接着往下推演;另外一种是从结论反推回条件,即看到结论的时候,首先要反推一下,看看从哪些条件可以得出这个结论(这一步也可能是没有目的的,因为并不知道要用到哪个条件),以此类推始终到确定的条件。

通常这两种思路是同时进展的。

反证法反证法是证明那些“存在某一个例子或性质”,“不具有某一种的性质”,“仅存在”等的题目。

它的方法是首先假设出所求命题的否命题,接着依据这个否命题和确定条件进展推演,直至推出与确定条件或定理相冲突,那么认为假设是不成立的,因此,命题得证。

构造法证明“存在某一个例子或性质”的题目,我们可以用反证法,假设不存在这样的例子和性质,然后推出冲突,也可以干脆构造出这么一个例子就可以了。

这就是构造法,通常这样的题目在图论中多见。

值得留意的是,有一些题目其实也是本类型的题目,只不过比拟隐藏罢了,像证明两个集合等势,事实上就是证明“两个集合中存在一个双射”,我们即可以假设不存在,用反证法,也可以干脆构造出这个双射。

数学归纳法数学归纳法是证明与自然数有关的题目,而且这一类型的题目可以递推。

离散数学 第4章 代数系统(祝清顺版)

离散数学 第4章 代数系统(祝清顺版)
离散数学 第四章 代数系统 2007年8月20日
代数结构的知识体系
半群与群 环与域 格与布尔代数
分类 成分:载体及运算 公理:运算性质 产生 代数系统的构成
子集
子代数
同 种 的 同 类 型 的
等价关系
映射
代数系统的 同态与同构 代数系统间的关系
离散数学 第四章 代数系统 2007年8月20日
商代数 新代数系统
,有限域理论是差错控制编码理论的数学基础,在通讯中发 挥了重要作用。而电子线路设计、电子计算机硬件设计和通 讯系统设计更是离不开布尔代数。
离散数学 第四章 代数系统 2007年8月20日
学习本篇的方法
1、要按照数学的思维方式学习, 即观察客观世界, 抽象出模型 , 再分析、推理揭示内在规律的过程。 2、领会“抽象”性:代数的抽象性不仅体现在元素的抽象上, 还体现在相应运算的抽象上, 是在最纯粹的形式下研究代数结 构中的运算的规律与性质, 从运算的角度来考虑代数结构中的 元素。因此, 初等代数的相应概念、结论不能直接应用在抽象 代数中。如何跨越从直观到抽象是学习抽象代数的重要一步。 3、教材的基本思路是: 首先严格定义什么是代数结构, 并讨 论一般代数结构的基本性质。然后讨论代数结构研究的两个方 面:其一是通过一些基本性质来规定一类特定的代数结构, 并 对这类代数结构的性质进行研究。其二是研究代数结构之间的 各种关系, 通过对代数结构之间关系的研究 , 就可以把一个代 数结构中的某些性质推广到另一个代数结构中。
离散数学
第四章 代数系统
2007年8月20日
例题
例2 实数集R和两个二元运算: 普通加法+和普通乘法 ×, 构成一代数系统, 记作(R, +, ×).
(1) 载体是实数集R.

离散数学-近世代数-代数结构

离散数学-近世代数-代数结构
添加标题
例:代数系统(N,+,×)。其中+,×分别代表通常数的加法和乘法。
添加标题
是否满足交换律?
添加标题
单位元( 幺元)
一个代数系统(S,*), 若存在一个元素eU,使得对 xS,有:e * x =x * e = x,则称 e 为对于运算“ * ”的单位元,也称幺元 。 注意: 单位元是跟运算有关系的,不同的运算可能单位元是不一样的。
解: 作双射 f:A1A2,f(1)=b, f(2)=d, f(3)=c, f(4)=a
a
b
c
d
a
b
b
b
d
b
a
a
d
b
c
c
b
c
a
d
a
a
c
d
*
1
2
3
4
1
4
1
2
4
2
4
2
3
4
3
1
4
3
3
4
1
2
1
1
设代数系统V1=(A1,*),V2=(A2,º), 其中A1={1,2,3,4}, A2={a,b,c,d}, * 和 º 的运算分别如下表,V1 和 V2 是否同构?
等幂律
设 * 是定义在集合A上的一个二元运算,如果对于任意的xA,都有x * x = x,则称 * 运算是等幂的。 例: S={1,2,4},在集合 p(S) 定义两个二元运算,∩,∪,分别表示集合的“并”运算和集合的“交”运算,∩,∪是等幂的? 解:对于任意的A p(S) ,有A∩A=A;A∪A=A 因此运算∩,∪都满足等幂律。
性质、定理
定理 一个代数系统,其零元若存在,则唯一。 定理 一个代数系统(S,),若集合 A 中元素的个数大于1,且该代数系统存在幺元 e 和零元θ,则θe。 证明:用反证法,设θ=e,则对于任意的xA,必有 x = ex = θx =θ= e, 即对于A中所有元素都是相同的,这与A中含有多个元素相矛盾。

大学_《离散数学》课后习题答案

大学_《离散数学》课后习题答案

《离散数学》课后习题答案《离散数学》简介1、集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数2、图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用3、代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数4、组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理5、数理逻辑部分:命题逻辑、一阶谓词演算、消解原理离散数学被分成三门课程进行教学,即集合论与图论、代数结构与组合数学、数理逻辑。

教学方式以课堂讲授为主,课后有书面作业、通过学校网络教学平台发布课件并进行师生交流。

《离散数学》学科内容随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。

离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。

由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。

离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。

离散数学的应用遍及现代科学技术的诸多领域。

离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。

离散数学 第五章 代数系统

离散数学 第五章 代数系统

5.1 代数系统的基本概念
• 当n = 1时,称f为一元运算,当n = 2时,称f为二元 运算,等等。
• 运算的例子很多。例如,在数理逻辑中,否定是 命题集合上的一元运算,合取和析取是命题集合 上的二元运算;在集合论中,集合的补是集合上 的一元运算,并与交是集合上的二元运算;在实 数算术中,加、减、乘、除运算都是二元运算。
可交换的二元运算,如果对于任意的x,yA,都

x*(x⊙y)=x 和 x⊙(x*y)=x
• 即(x)(y)(x,yA→x*(x⊙y)=x∧x⊙(x*y)=x),则称 运算*和运算⊙满足吸收律,或称*对于⊙以及⊙ 对于*是可吸收的。
5.2 运算及其性质
• 例5.9 给定<N,*,⊙>,其中N是自然数集合,* 和⊙定义如下: 对任意a,bN有a*b = max(a,b),a⊙b = min(a, b),试证,*和⊙互为吸收的。
1*(0⊙1)=1*0=1,而 (1*0) ⊙(1*1)=1⊙0=0
5.2 运算及其性质
• 形如表5-3的表常常称为运算表或复合表,它由运 算符、行表头元素、列表头元素及复合元素四部 分组成。对于集合的基数很小,特别是2或3时, 代数系统中运算常常用这种表给出。优点是简明 直观,一目了然。
• 性质5:吸收律 设*,⊙是定义在集合A上的两个
(1)x+yZ,
(封闭性)
(2)x+y=y+x
(交换律)
(3)(x+y)+z=x+(y+z)
(结合律)
• 容易找到与<Z,+>具有相同运算规律的一些代数 系统,如表5-2所示。
5.1 代数系统的基本概念
集合

离散数学 代数结构-代数系统

离散数学 代数结构-代数系统

例:设B={0,a,b,1},S1={a,1} S2={0,1} S3={a,b} 二元运算+和*由表给出,则: 1)<B,*,+,0,1>是代数系统吗? 2)<S1,*,+>是代数系统吗? 是<B,*,+,0,1>的子代数吗? 3)<S2,*,+,0,1>是<B,*,+,0,1>的子代数吗? 4)<S3,*,+>是代数系统吗?
4、子代数系统
定义14 设V= <S,fl,f2,…,fk> 是代数系统, B⊆S, 如果B对fl,f2, …,fk都是封闭的,且B和S含有相同的代数 常数,则称<B,fl,f2,…,fk > 是V的子代数系统,简称子 代数. 有时将子代数系统简记为B. 例 <N,+>是<Z,+> 的子代数,因为N对加法运算+是封闭的. < N,+> 也是<Z,+,0> 的子代数,因为N对加法运算封闭, 且N中含有代数常数0 注:从子代数定义不难看出,子代数和原代数不仅具有相同的构 成成分,是同类型的代数系统,而且对应的二元运算都具有相同 的运算性质。 任何代数系统其子代数一定存在;最大的子代数是其本身。 如果代数常数构成子代数,最小的子代数。 最小和最大的的子代数成为平凡的子代数。 如果B是S的真子集,则B构成的子代数称为V的真子代数。
3 相同代数性质(同种类)的代数系统
引入代数系统的主要目的是研究具有相同代数性质的代数系统,将相同 代数系统归类,并分析该类代数系统的性质。
代数系统 V = < S , * >, 其中 * 是一个可结合的二元 运算, 就代表了一类特殊的代数系统——半群.

离散数学几个典型的代数系统

离散数学几个典型的代数系统

{ a, b, c, e, f }是 L2的子格, 并且同构于五角格;
{ a, c, b, e, f }是 L3的子格, 也同构于钻石格.
25
全上界与全下界
定义 设L是格, 若存在 a∈L 使得 x∈L 有 a ≼ x, 则称 a 为 L 的全 下界; 若存在 b∈L 使得 x∈L 有 x ≼ b, 则称 b 为 L 的全 上界. 说明:
对偶原理 交换律、结合律、幂等律、吸收律
格的等价定义 子格 格的同构 特殊的格:分配格、有界格、有补格、布尔格
10
格的定义
定义 设<S, ≼>是偏序集,如果x,y≼S,{x,y}都有 最小上界和最大下界,则称S关于偏序≼作成一个
格. 由于最小上界和最大下界的惟一性,可以把求{x,y} 的最小上界和最大下界看成 x 与 y 的二元运算∨和 ∧,即 x∨y 和 x∧y 分别表示 x 与 y 的最小上界和 最大下界. 注意:这里出现的∨和∧符号只代表格中的运算, 而不再有其他的含义.
由 a ≼ a, a∧b ≼ a 可得 a∨(a∧b) ≼ a (VI)
由式 (V) 和 (VI) 可得 a∨(a∧b) = a 根据对偶原理, a∧(a∨b) = a 得证.
18
格作为代数系统的定义
定理 设<S,∗, >是具有两个二元运算的代数系统, 若对于∗和运算适合交换律、结合律、吸收律, 则 可以适当定义S中的偏序≼,使得<S, ≼>构成格, 且 a,b∈S有 a∧b = a∗b, a∨b = ab.
4
零因子的定义与存在条件
设<R,+,>是环,若存在 ab =0, 且 a0, b0, 称 a 为左零因子,b为右零因子,环 R 不是无零因子 环. 实例 <Z6,,>,其中 23=0,2 和 3 都是零因 子.

《离散数学》第5章 代数系统简介

《离散数学》第5章 代数系统简介
x ( x) 0, ( x) x 0 .
在 M n (R) 上,对于矩阵乘法只有可逆矩阵 M M n (R) 存在逆元
M 1 , M M 1 E 和 M 1 M E 成立, 使得 其中 E 为 n 阶 单位矩阵.
9、设 为 S 上的二元运算,如果对任意的 x, y, z S 满足以下条件 (1)若 x y x z 且 x 不是零元,则 y z , (2)若 y x z x 且 x 不是零元,则 y z , 就称运算 满足消去律
例如: 在幂集 P ( S ) 上的 和 是满足吸收律的.
若 算“”满足左分配律; b c a b a c a , 则运算“ ”对运算“ ”满足右分配律.若左右分配律 均满足, 称运算“ ”对运算“ ”满足分配律. 则

5、 设 是 A 上的二元运算,若存在 a A ,有
1、若 a b b a ,则称运算“ ”在A上是可换的 ,或 者说运算“ ”满足交换律.
例如:在实数集R上,通常的加法和乘法都满足交换律,但减法 和除法不满足交换律.因为2和4都是实数.因为2-4≠4-2.在幂集 P(S)上 , , 都满足交换律,但相对补不满足交换律.
2、若a b c a b c,则称运算“*”在A上是可结合 的.或称“*”满足结合律.
这些相当于前缀表示法,但对二元运算用得较多的还是 a1 a2 b .我们在本书中所涉及的代数运算仅限于一元. 和二元运算.
如果集合S是有穷集,S上的一元和二元运算也可以用 运算表给出.表5―1和表5-2是一元和二元运算表的一 般形式.
表5-1
表5-1
例2、(2) 设 S 0,1, 2,3, 4 ,定义 S 上的两个 二元运算如下:

离散数学07抽象代数

离散数学07抽象代数

设R为实数集合,它关于普通乘法*是R上的代数运算。
A2到A的映射定义为:
f:(i, j)→max{i, j}, (i, j)∈A2
则f是A上的一个二元运算, 显然, f满足
交换律、结合律。
7.2 代数结构及其性质
逻辑联结词合取、析取、蕴含以及等价 合取、析取、等价运算满足交换律、结 合律。 合取对析取满足分配律。 析取对合取也满足分配律。
都是真值集合{0, 1}上的二元代数运算。
7.2 代数结构及其性质
上述示例中, 虽然是对不同集合给
出的不同运算, 但它们都具有这样一个
共同的特点:它们都是某个给定的集合
S(S分别为上述二例中的P(A)和Mn(R))中
的任意一个或一对有序取出的元素, 根
据这个法则可在S中找到惟一的一个元素
与之对应。由此, 我们可以抽象出在一 个集合上的二元代数运算的概念。
7.2 代数结构及其性质
A={1,3,9,7},A上模10乘法*运算表如下
* 1 1 3 3 9 7
1
3
3
9
9
7
7
1
9
7
9
7
7
1
1
3
3
9
乘法*运算满足交换律、结合律、消去律
7.2 代数结构及其性质
B={0,1,2,3,4,5},B上模6乘法*运算表如下
* 0 1 2 0 0 0 0 1 0 1 2 2 0 2 4 3 0 3 0 4 0 4 2 0 4 2 5 0 5 4 3 2 1
在P(A)上并∪运算的结果均在P(A)中
7.2 代数结构及其性质
7.2.1 代数运算
例7.1 (2) A={1,3,9,7},A上模10乘法*运算表如下

离散数学知识点总结

离散数学知识点总结

离散数学知识点总结1. 集合论- 集合的基本概念:集合、元素、子集、幂集、并集、交集、差集、补集。

- 集合的运算:德摩根定律、分配律、结合律、交换律。

- 有限集合和无限集合:可数与不可数集合、阿列夫零、阿列夫一。

2. 数理逻辑- 命题逻辑:命题、联结词、真值表、逻辑等价、逻辑蕴含、逻辑独立。

- 一阶谓词逻辑:量词、谓词、解释、满足、逻辑公式、全称量词、存在量词。

- 证明方法:直接证明、间接证明、反证法、数学归纳法。

3. 递归关系和函数- 递归定义:递归方程、初始条件、递归函数。

- 递归函数的例子:阶乘、斐波那契数列。

- 函数的性质:单射、满射、双射、复合函数。

4. 图论- 图的基本概念:顶点、边、路径、回路、图的同构。

- 图的类型:无向图、有向图、简单图、多重图、连通图、强连通图。

- 图的算法:欧拉路径、哈密顿回路、最短路径(Dijkstra算法)、最小生成树(Prim算法、Kruskal算法)。

5. 组合数学- 排列与组合:排列数、组合数、二项式定理。

- 组合恒等式:Pascal三角形、组合恒等式。

- 组合问题:计数原理、Inclusion-Exclusion原理。

6. 布尔代数- 布尔运算:AND、OR、NOT、XOR、NAND、NOR、XNOR。

- 布尔表达式的简化:卡诺图、奎因-麦克拉斯基方法。

- 布尔函数的表示:真值表、卡诺图、逻辑表达式。

7. 关系论- 关系的基本概念:笛卡尔积、自反性、对称性、传递性。

- 关系的类型:等价关系、偏序关系、全序关系。

- 关系的闭包:自反闭包、对称闭包、传递闭包。

8. 树和森林- 树的基本概念:节点、边、根、叶、子树、兄弟、祖先、子孙。

- 特殊类型的树:二叉树、平衡树、B树、B+树。

- 树的遍历:前序遍历、中序遍历、后序遍历、层次遍历。

9. 算法复杂度- 时间复杂度:最好情况、最坏情况、平均情况、大O表示法。

- 空间复杂度:算法空间需求的分析。

- 渐进分析:渐进紧确界、大Θ表示法、小o和大O的非正式描述。

离散数学-代数系统

离散数学-代数系统
连接看作 上的一种运算,那么这种运算不可交换,但是 可结合。集合 关于连接运算就构成了一个代数系统,它 恰好是抽象代数系统 —— 半群的一个实例。
1
抽象代数在计算机中有着广泛的应用,例如自动机理论、编码 理论、形式语义学、代数规范、密码学等等都要用到抽象代数 的知识。 构成一个抽象代数系统有三方面的要素:
4
为了研究抽象的代数系统,需要先定义一元和二元代数运算以 及二元运算的性质,并通过选择不同的运算性质来规定各种抽 象代数系统的定义。在此基础上再深入研究这些抽象代数系统 的内在特性和应用。
主要内容:
第四章 代数系统 第五章 群 *第六章 环和域 第七章 格和布尔代数
5
第四章 代数系统
本章在集合、关系和函数等概念基础上,研究更为复杂的对 象——代数系统,研究代数系统的性质和特殊的元素,代数系 统与代数系统之间的关系(如代数系统的同态、满同态和同构, 这些概念较为复杂也较为抽象,是本章的难点)。它们将集合、 集合上的运算以及集合间的函数关系结合在一起进行研究。 前三章内容是本章的基础,熟练地掌握集合、关系、函数等概 念和性质是理解本章内容的关键。
= (r1 + r2 – r1r2) + r3 – (r1 + r2 – r1r2)r3
= r1 + r2 + r3 – r1r2 – r1r3 – r2r3 + r1r2r3,
r1 (r2 r3) = r1 (r2 + r3 – r2r3)
= r1 + (r2 + r3 – r2r3) – r1(r2 + r3 – r2r3)
定理4-1 设 ◦ 是定义在集合 A 上的一个 n 元运算,且在 A 的两 个子集 S1 和 S2 上均封闭,则 ◦ 在 S1 S2 上也是封闭的。

离散数学的代数理论

离散数学的代数理论

2016/6/10
zhengjin,csu
14
例6 (1)代数<I,· ,1,0>,· 表示乘法,有一个么元 1和零元0 (2)代数<N,+> 有么元0,但无零元。 (3)代数<N,min>有一个零元0,但无么元。
2016/6/10
zhengjin,csu
15
么元和零元的性质
定理: 设* 是S 上的一个二元运算,若同时具有左么元 a 和右么 元b,则a=b,a就是么元。 证明:由a是左么元知:a*b=b 由b是右么元知:a*b=a 所以a=b, 所以a也是右么元。a就是么元 (这个定理说明:如果同时存在左么元和右么元,则二者相等, 且就是么元,么元若存在,只有一个) 对于零元也有类似结果。 定理:设*是S上的一个二元运算,若同时具有左零元a和右零元 b,则a=b,a就是零元。
2016/6/10
zhengjin,csu
13
么元和零元的定义
定义 2 设 *是 S 上的二元运算, 1是 S 的元素,如果对 S 中的 每一元素x,有 1*x=x*1=x 则称元素 1 对运算 *是么元。若 0 是 S中的元素,且对 S中的 每一元素x,有 0*x=x*0=0 则称元素0对运算*是零元。
类似地,有右么元和右零元的定义。
2016/6/10 zhengjin,csu 12
例5 代数A的运算*如下表所示
很显然: a是*的左么元 a也是*的右么元, b是*的左零元。 没有右零元。
* a a b c a b c
b b b c
c c b b
判断方法:
观察运算的行和列: 若存在某一行和上边行相同,则其左边的元素就是运算的左么元。 若存在某一列与左列相同,则其上方的元素就是运算的右么元。

离散数学-格和布尔代数

离散数学-格和布尔代数
8
注: 从偏序集 < L; > 的次序图来看 l1 和 l2 有最大下界:从结点 l1 和 l2 出发,经过向下的路径 至少可以共同到达次序图的一个结点,这些结点中最上面 的那一个就代表 l1 和 l2 的最大下界。 l1 和 l2 有最小上界:从结点 l1 和 l2 出发,经过向上的路径 至少可以共同到达次序图的一个结点,这些结点中最下面 的那一个就代表 l1 和 l2 的最小上界。
且 a2 a1,a1 a2,
由 的反对称性得 a1 = a2。 类似地可以证明,l1 和 l2 若存在 lub,则 lub 也一定是唯一的。
11
三、最小元素和最大元素
定义7-4 设 < L; > 是一偏序集。 (1) 如果存在元素 a L,使得对所有的元素 l L,有 a l, 则称 a 是 < L; > 的最小元素。 (2) 如果存在元素 b L,使得对所有的元素 l L,有 l b, 则称 b 是 < L; > 的最大元素。 定理7-2 若偏序集 < L; > 有最小元素,则最小元素是唯一的。 若 < L; > 有最大元素,则最大元素也是唯一的。 证明:设 a1, a2 都是 < L; > 的最小元素,b1, b2 都是 < L; > 的 最大元素,则由定义7-4,有 a1 a2,a2 a1,b1 b2,b2 b1。 由反对称性得 a1 = a2,b1 = b2。 12
18
定理7-5(结合律)设 < L; > 是格,则对任意的 l1, l2, l3 L, 有 (1) l1 (l2 l3) = (l1 l2) l3;(2) l1 (l2 l3) = (l1 l2) l3。

离散数学代数结构部分

离散数学代数结构部分

定义5.13 设
定义5.14 设
例5.14 个数的最小公倍数的运算。则
表示求两
解: 零元是不存在的, 只有惟一的逆元。
例5.15 在有理数集Q上定义二元运算*
解:
例5.16 设有集合
讨论这5个集合对普通的乘法和加法运算是否封闭。 解:
例5.17 设
解:
第六章 几个典型的代数系统
解:对于任意a,b∈N a*(a★b)=max(a,min(a,b))=a a★(a*b)=min(a,max(a,b))=a 因此,*和★满足吸收律。
5.2节 二元运算中的特殊元素 1. 幺元 定义5.7 设*是S上的二元运算,
在自然数集N上加法的幺元是0,乘法 的幺元是1. 对于给定的集合和运算有的存在幺 元,有的不存在幺元。
定义5.3 设*是定义在集合A上的二元 运算,如果对于任意的x,y,z∈A, 都有 (x*y)*z = x*(y*z) ,则称该二元 运算 * 是可结合的,或者说运算 * 在 A 上适合结合律。 例5.3 设A=Z,“+”是整数中的加法:则 “+”在Z中适合结合律。 “。”是整数中的减法:则特取 而 运算“。”不满足结合律
在自然数集N上普通乘法的零元是0,而 加法没有零元。
定理5.3 设 *是S上的二元运算,如果S中 存在(关于运算*的)零元,则必是唯一的。
所以零元是Байду номын сангаас一的。
定理 5.4 设 * 是 S 上的二元运算,如 果S中既存在关于运算 *的左零元 l 又 存在关于运算*的右零元 r
2. 逆元 定义5.9 设*是S上的二元运算,
从表中可以看出,运算满足封闭性,满足结合律 和交换律,0是单位元,每个元都有逆元 ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.2 代数结构及其性质
其他例子:A={0,1},A上逻辑非、析取、合取运算
一元运算
二元运算
{c}
{c} {a,c} {b,c} {c} {a,b,c} {a,c} {b,c} {a,b,c}
{a,b} {a,c} {b,c}
{a,b} {a,b} {a,b} {a,b,c} {a,b} {a,b,c} {a,b,c} {a,b,c} {a,c} {a,c} {a,b,c} {a,c} {a,b,c} {a,c} {a,b,c} {a,b,c} {b,c} {a,b,c} {b,c} {b,c} {a,b,c} {a,b,c} {b,c} {a,b,c}
{a,b,c} {a,b,c} {a,b,c} {a,b,c} {a,b,c} {a,b,c} {a,b,c} {a,b,c} {a,b,c}
在P(A)上并∪运算的结果均在P(A)中
7.2 代数结构及其性质
7.2.1 代数运算
例7.1 (2) A={1,3,9,7},A上模10乘法*运算表如下
*
1
7.2 代数结构及其性质
定义7.1 设S是一个非空集合。如果有一 个法则, 它对S中任意两个有序元素a与b, 在S中都有一个惟一确定的元素c与它们 对应, 则称这个法则是集合S中一个二元 代数运算。
7.2 代数结构及其性质
一般地,容易得到n元运算的定义:
设S是一个非空集合。如果有一个法则,它 对S中任意n个有序元素a1, a2, …, an, 在S中 都有一个惟一确定的元素d与它们对应, 则称这 个法则是集合S中一个n元代数运算。

φ
{a} {b} {c} {a,b} {a,c} {b,c} {a,b,c}
φ
φ
{a} {b} {c} {a,b} {a,c} {b,c} {a,b,c}
{a}
{a} {a} {a,b} {a,c} {a,b} {a,c} {a,b,c} {a,b,c}
{b}
{b} {a,b} {b} {b,c} {a,b} {a,b,c} {b,c} {a,b,c}
3
9
7
1
1
3
9
7
3
3
9
7
1
9
9
7
1
3
7
7
1
3
9
B={0,1,2,3},B上模4加法+运算表如下
+
0
1
2
3
0
0
1
2
3
1
1
2
3
0
2
2
3
பைடு நூலகம்
0
1
3
3
0
1
2
A上乘法*的结果在A中, B上加法+的结果在B中
7.2 代数结构及其性质
7.2.1 代数运算
例7.1
(3)设Mn(R)是全体n×n实矩阵的集合, 考虑Mn(R) 中普通的矩阵乘法*, 则对于任意两个n×n实 矩阵A、B, 根据矩阵乘法法则可得到Mn(R)中 惟一的一个n×n实矩阵C作为A乘B的结果。我 们记C=A*B。
第7章 抽象代数
本章内容提要:
重点:
1. 抽象代数概述
代数结构的判定与构造
代数结构关系:同态、同构
2. 代数结构及其性质 特殊关系:同余关系
3. 同态与同构
7.1 抽象代数概述
抽象代数的创始人是两位英年早逝的青 年数学家,阿贝尔与伽罗瓦。阿贝尔, 是挪威 青年数学家, 乡村牧师之子, 幼年丧父, 家贫。 多独创性成果, 但大都未受重视, 贫病而逝。 去逝后3天, 柏林大学寄来教授聘书, 让后人 叹息!后人曾评价说:“他工作不是为自己, 而是为他热爱的科学”。2001,在阿贝尔诞生 200周年之际,挪威王国政府宣布,设立面向 国际的“阿贝尔数学奖”。
Niels Abel
A statue of Abel in Oslo
7.1 抽象代数概述
伽罗瓦, 是法国青年数学家, 其父亲是自由主义 思想家, 母亲亦受了良好教育, 中学时就对数学产生 强烈兴趣, 他两次投考巴黎综合技术学院而未被录取, 后进入巴黎高师学习, 提出“群”的概念。但其论文 未被数学家柯西、泊松等接受。跟大多数数学家不问 政治不同,伽罗瓦是一个非常激进的革命者,后因政 治原因入狱。最后与人决斗受伤而去逝。在其决斗前 几天, 写下了其主要研究成果, 直到40年后, 其成果 才被世人所接受。后有著名数学家评价说:“伽罗瓦 的去逝使数学的发展推迟了几十年”。从伽罗瓦的工 作以后,代数学结束了解方程的历史,进入研究新的 数学对象——群、环、域的抽象代数的发展阶段。
(优选)离散数学抽象代数
抽象代数
主要内容
✓ 第7章 ✓ 第8章 ✓ 第9章
抽象代数 群 布尔代数
第7章 抽象代数
相对古典代数而言, 抽象代数也称为近世代 数(Modern Algebra), 由于其研究对象是由对象 集合及运算组成的数学结构,即代数结构, 因此, 抽象代数也被称为代数结构或代数系统。
Evariste Galois
A drawing done in 1848 from memory by Evariste's brother. This is taken from a French stamp
7.2 代数结构及其性质
7.2.1 代数运算 例7.1 (1)设A={a,b,c}是一个非空集合, P(A)={φ,{a},{b},{c},{a,b},{a,c},{b,c} ,{a,b,c}}
根据上述定义,可以看到,如果这个法则 是S的一个代数运算,则该法则其实就是S上的 一个映射(或函数):Sn→S, n称为这个运算的 阶。对于集合S的一个n元运算f, 若(a1,a2,…, an)∈Sn在f下的像是c, 即f(a1,a2, …,an)→c, 则记为c=f(a1, a2, …, an)。
7.2 代数结构及其性质
上述示例中, 虽然是对不同集合给 出的不同运算, 但它们都具有这样一个 共同的特点:它们都是某个给定的集合 S(S分别为上述二例中的P(A)和Mn(R))中 的任意一个或一对有序取出的元素, 根 据这个法则可在S中找到惟一的一个元素 与之对应。由此, 我们可以抽象出在一 个集合上的二元代数运算的概念。
抽象代数对计算机科学的发展有着重大的理 论和实践意义, 如在程序理论、语义学、数据结 构和编码理论, 以及逻辑电路设计的研究, 此外, 抽象代数还被广泛用于物理学、生物学以及社会 科学中。本章将探讨代数结构的数学描述以及一 般代数结构的基本性质。后续两章将深入讨论群、 布尔代数等典型的代数结构及其应用。
相关文档
最新文档