北京市2018年中考数学一模分类汇编选择第8题无答案

合集下载

北京市2021-2023三年中考数学真题分类汇编-01选择题知识点分类

北京市2021-2023三年中考数学真题分类汇编-01选择题知识点分类

北京市2021-2023三年中考数学真题分类汇编-01选择题知识点分类一.科学记数法—表示较大的数(共3小题)1.(2023•北京)截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A.23.9×107B.2.39×108C.2.39×109D.0.239×109 2.(2022•北京)截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨.将262883000000用科学记数法表示应为( )A.26.2883×1010B.2.62883×1011C.2.62883×1012D.0.262883×10123.(2021•北京)党的十八大以来,坚持把教育扶贫作为脱贫攻坚的优先任务.2014﹣2018年,中央财政累计投入“全面改善贫困地区义务教育薄弱学校基本办学条件”专项补助资金1692亿元,将169200000000用科学记数法表示应为( )A.0.1692×1012B.1.692×1012C.1.692×1011D.16.92×1010二.实数与数轴(共2小题)4.(2022•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.a<﹣2B.b<1C.a>b D.﹣a>b 5.(2021•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.a>﹣2B.|a|>b C.a+b>0D.b﹣a<0三.估算无理数的大小(共1小题)6.(2021•北京)已知432=1849,442=1936,452=2025,462=2116.若n为整数且n<<n+1,则n的值为( )A.43B.44C.45D.46四.根的判别式(共2小题)7.(2023•北京)若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则实数m的值为( )A.﹣9B.C.D.9 8.(2022•北京)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为( )A.﹣4B.C.D.4五.不等式的性质(共1小题)9.(2023•北京)已知a﹣1>0,则下列结论正确的是( )A.﹣1<﹣a<a<1B.﹣a<﹣1<1<a C.﹣a<﹣1<a<1D.﹣1<﹣a<1<a 六.函数的图象(共1小题)10.(2022•北京)下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是( )A.①②B.①③C.②③D.①②③七.二次函数的应用(共1小题)11.(2021•北京)如图,用绳子围成周长为10m的矩形,记矩形的一边长为xm,它的邻边长为ym,矩形的面积为Sm2.当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是( )A.一次函数关系,二次函数关系B.反比例函数关系,二次函数关系C.一次函数关系,反比例函数关系D.反比例函数关系,一次函数关系八.认识立体图形(共1小题)12.(2022•北京)下面几何体中,是圆锥的为( )A.B.C.D.九.几何体的展开图(共1小题)13.(2021•北京)如图是某几何体的展开图,该几何体是( )A.长方体B.圆柱C.圆锥D.三棱柱一十.余角和补角(共1小题)14.(2023•北京)如图,∠AOC=∠BOD=90°,∠AOD=126°,则∠BOC的大小为( )A.36°B.44°C.54°D.63°一十一.对顶角、邻补角(共1小题)15.(2022•北京)如图,利用工具测量角,则∠1的大小为( )A.30°B.60°C.120°D.150°一十二.垂线(共1小题)16.(2021•北京)如图,点O在直线AB上,OC⊥OD.若∠AOC=120°,则∠BOD的大小为( )A.30°B.40°C.50°D.60°一十三.全等三角形的性质(共1小题)17.(2023•北京)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC同侧,AB<BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是( )A.①②B.①③C.②③D.①②③一十四.多边形内角与外角(共2小题)18.(2023•北京)正十二边形的外角和为( )A.30°B.150°C.360°D.1800°19.(2021•北京)下列多边形中,内角和最大的是( )A.B.C.D.一十五.轴对称图形(共1小题)20.(2022•北京)图中的图形为轴对称图形,该图形的对称轴的条数为( )A.1B.2C.3D.5一十六.中心对称图形(共1小题)21.(2023•北京)下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.一十七.概率的意义(共1小题)22.(2023•北京)先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( )A.B.C.D.一十八.列表法与树状图法(共2小题)23.(2022•北京)不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A.B.C.D.24.(2021•北京)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )A.B.C.D.北京市2021-2023三年中考数学真题分类汇编-01选择题知识点分类参考答案与试题解析一.科学记数法—表示较大的数(共3小题)1.(2023•北京)截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A.23.9×107B.2.39×108C.2.39×109D.0.239×109【答案】B【解答】解:239000000=2.39×108,故选:B.2.(2022•北京)截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨.将262883000000用科学记数法表示应为( )A.26.2883×1010B.2.62883×1011C.2.62883×1012D.0.262883×1012【答案】B【解答】解:262883000000=2.62883×1011.故选:B.3.(2021•北京)党的十八大以来,坚持把教育扶贫作为脱贫攻坚的优先任务.2014﹣2018年,中央财政累计投入“全面改善贫困地区义务教育薄弱学校基本办学条件”专项补助资金1692亿元,将169200000000用科学记数法表示应为( )A.0.1692×1012B.1.692×1012C.1.692×1011D.16.92×1010【答案】C【解答】解:将169200000000用科学记数法表示应为1.692×1011.故选:C.二.实数与数轴(共2小题)4.(2022•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.a<﹣2B.b<1C.a>b D.﹣a>b【答案】D【解答】解:根据图形可以得到:﹣2<a<0<1<b<2;所以:A、B、C都是错误的;故选:D.5.(2021•北京)实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A.a>﹣2B.|a|>b C.a+b>0D.b﹣a<0【答案】B【解答】解:A.由图可得数a表示的点在﹣2左侧,∴a<﹣2,A选项错误,不符合题意.B.∵a到0的距离大于b到0的距离,∴|a|>b,B选项正确,符合题意.C.∵|a|>b,a<0,∴﹣a>b,∴a+b<0,C选项错误,不符合题意.D.∵b>a,∴b﹣a>0,D选项错误,不符合题意.故选:B.三.估算无理数的大小(共1小题)6.(2021•北京)已知432=1849,442=1936,452=2025,462=2116.若n为整数且n<<n+1,则n的值为( )A.43B.44C.45D.46【答案】B【解答】解:∵1936<2021<2025,∴44<<45,∴n=44,故选:B.四.根的判别式(共2小题)7.(2023•北京)若关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,则实数m的值为( )A.﹣9B.C.D.9【答案】C【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个相等的实数根,∴Δ=b2﹣4ac=(﹣3)2﹣4m=0,解得m=.故选:C.8.(2022•北京)若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为( )A.﹣4B.C.D.4【答案】C【解答】解:根据题意得Δ=12﹣4m=0,解得m=.故选:C.五.不等式的性质(共1小题)9.(2023•北京)已知a﹣1>0,则下列结论正确的是( )A.﹣1<﹣a<a<1B.﹣a<﹣1<1<a C.﹣a<﹣1<a<1D.﹣1<﹣a<1<a 【答案】B【解答】解:∵a﹣1>0,∴a>1,∴﹣a<﹣1,∴﹣a<﹣1<1<a,故选:B.六.函数的图象(共1小题)10.(2022•北京)下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是( )A.①②B.①③C.②③D.①②③【答案】A【解答】解:汽车从A地匀速行驶到B地,根据汽车的剩余路程y随行驶时间x的增加而减小,故①符合题意;将水箱中的水匀速放出,直至放完,根据水箱中的剩余水量y随放水时间x的增大而减小,故②符合题意;用长度一定的绳子围成一个矩形,周长一定时,矩形面积是长x的二次函数,故③不符合题意;所以变量y与变量x之间的函数关系可以用如图所示的图象表示的是①②.故选:A.七.二次函数的应用(共1小题)11.(2021•北京)如图,用绳子围成周长为10m的矩形,记矩形的一边长为xm,它的邻边长为ym,矩形的面积为Sm2.当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是( )A.一次函数关系,二次函数关系B.反比例函数关系,二次函数关系C.一次函数关系,反比例函数关系D.反比例函数关系,一次函数关系【答案】A【解答】解:由题意得,2(x+y)=10,∴x+y=5,∴y=5﹣x,即y与x是一次函数关系.∵S=xy=x(5﹣x)=﹣x2+5x,∴矩形面积满足的函数关系为S=﹣x2+5x,即满足二次函数关系,故选:A.八.认识立体图形(共1小题)12.(2022•北京)下面几何体中,是圆锥的为( )A.B.C.D.【答案】B【解答】解:A是圆柱;B是圆锥;C是三棱锥,也叫四面体;D是球体,简称球;故选:B.九.几何体的展开图(共1小题)13.(2021•北京)如图是某几何体的展开图,该几何体是( )A.长方体B.圆柱C.圆锥D.三棱柱【答案】B【解答】解:∵圆柱的展开图为两个圆和一个长方形,∴展开图可得此几何体为圆柱.故选:B.一十.余角和补角(共1小题)14.(2023•北京)如图,∠AOC=∠BOD=90°,∠AOD=126°,则∠BOC的大小为( )A.36°B.44°C.54°D.63°【答案】C【解答】解:∵∠AOC=90°,∠AOD=126°,∴∠COD=∠AOD﹣∠AOC=36°,∵∠BOD=90°,∴∠BOC=∠BOD﹣∠COD=90°﹣36°=54°.故选:C.一十一.对顶角、邻补角(共1小题)15.(2022•北京)如图,利用工具测量角,则∠1的大小为( )A.30°B.60°C.120°D.150°【答案】A【解答】解:根据对顶角相等的性质,可得:∠1=30°,故选:A.一十二.垂线(共1小题)16.(2021•北京)如图,点O在直线AB上,OC⊥OD.若∠AOC=120°,则∠BOD的大小为( )A.30°B.40°C.50°D.60°【答案】A【解答】解:∵∠AOC+∠BOC=180°,∠AOC=120°,∴∠BOC=180°﹣120°=60°,又∵OC⊥OD,∴∠COD=90°,∴∠BOD=∠COD﹣∠BOC=90°﹣60°=30°,故选:A.一十三.全等三角形的性质(共1小题)17.(2023•北京)如图,点A,B,C在同一条直线上,点B在点A,C之间,点D,E在直线AC同侧,AB<BC,∠A=∠C=90°,△EAB≌△BCD,连接DE.设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>;③(a+b)>c.上述结论中,所有正确结论的序号是( )A.①②B.①③C.②③D.①②③【答案】D【解答】解:①过点D作DF∥AC,交AE于点F;过点B作BG⊥FD,交FD于点G.∵DF∥AC,AC⊥AE,∴DF⊥AE.又∵BG⊥FD,∴BG∥AE,∴四边形ABGF为矩形.同理可得,四边形BCDG也为矩形.∴FD=FG+GD=a+b.∴在Rt△EFD中,斜边c>直角边a+b.故①正确.②∵△EAB≌△BCD,∴AE=BC=b,∴在Rt△EAB中,BE==.∵AB+AE>BE,∴a+b>.故②正确.③∵△EAB≌△BCD,∴∠AEB=∠CBD,又∵∠AEB+∠ABE=90°,∴∠CBD+∠ABE=90°,∴∠EBD=90°.∵BE=BD,∴∠BED=∠BDE=45°,∴BE==c•sin45°=c.∴c=.∵=2(a2+2ab+b2)=2(a2+b2)+4ab>2(a2+b2),∴>,∴>c.故③正确.故选:D.一十四.多边形内角与外角(共2小题)18.(2023•北京)正十二边形的外角和为( )A.30°B.150°C.360°D.1800°【答案】C【解答】解:因为多边形的外角和为360°,所以正十二边形的外角和为:360°.故选:C.19.(2021•北京)下列多边形中,内角和最大的是( )A.B.C.D.【答案】D【解答】解:A.三角形的内角和为180°;B.四边形的内角和为360°;C.五边形的内角和为:(5﹣2)×180°=540°;D.六边形的内角和为:(6﹣2)×180°=720°;故选:D.一十五.轴对称图形(共1小题)20.(2022•北京)图中的图形为轴对称图形,该图形的对称轴的条数为( )A.1B.2C.3D.5【答案】D【解答】解:如图所示,该图形有5条对称轴,故选:D.一十六.中心对称图形(共1小题)21.(2023•北京)下列图形中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.【答案】A【解答】解:A、原图既是中心对称图形,又是轴对称图形,故此选项符合题意;B、原图是中心对称图形,不是轴对称图形,故此选项不合题意;C、原图是轴对称图形,不是中心对称图形,故此选项不合题意;D、原图是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.一十七.概率的意义(共1小题)22.(2023•北京)先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( )A.B.C.D.【答案】A【解答】解:先后两次抛掷同一枚质地均匀的硬币,总共有四种等可能结果,分别是:(正,正)、(正,反)、(反,正)、(反,反),则第一次正面向上、第二次反面向上的概率是,故选:A.一十八.列表法与树状图法(共2小题)23.(2022•北京)不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A.B.C.D.【答案】A【解答】解:列表如下:红绿红(红,红)(绿,红)绿(红,绿)(绿,绿)所有等可能的情况有4种,其中第一次摸到红球、第二次摸到绿球的有1种情况,所以第一次摸到红球、第二次摸到绿球的概率为,故选:A.24.(2021•北京)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )A.B.C.D.【答案】C【解答】解:画树形图得:由树形图可知共4种等可能的结果,一枚硬币正面向上,一枚硬币反面向上的有2种结果,∴一枚硬币正面向上,一枚硬币反面向上的的概率为=,故选:C.。

精品解析:北京市2018年中考数学试卷(解析版)

精品解析:北京市2018年中考数学试卷(解析版)

北京市2018年中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下列几何体中,是圆柱的为A. B. C. D.【答案】A【解析】分析:根据几何体的特征进行判断即可.详解:A选项为圆柱,B选项为圆锥,C选项为四棱柱,D选项为四棱锥.故选A.点睛:考查立体图形的认识,掌握立体图形的特征是解题的关键.2.实数,,在数轴上的对应点的位置如图所示,则正确的结论是A. B. C. D.【答案】B【解析】分析:观察数轴得到实数,,的取值范围,根据实数的运算法则进行判断即可.详解:∵,∴,故A选项错误;数轴上表示的点在表示的点的左侧,故B选项正确;∵,,∴,故C选项错误;∵,,,∴,故D选项错误.故选B.点睛:主要考查数轴、绝对值以及实数及其运算.观察数轴是解题的关键.3.方程组的解为A. B. C. D.【解析】分析:根据方程组解的概念,将4组解分别代入原方程组,一一进行判断即可.详解:将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.点睛:考查方程组的解的概念,能同时满足方程组中每个方程的未知数的值,叫做方程组的解.4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为,则FAST的反射面积总面积约为A. B. C. D.【答案】C【解析】分析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.详解:,故选C.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.5.若正多边形的一个外角是,则该正多边形的内角和为A. B. C. D.【答案】C【解析】分析:根据正多边形的外角度数求出多边形的边数,根据多边形的内角和公式即可求出多边形的内角和. 详解:由题意,正多边形的边数为,其内角和为.故选C.点睛:考查多边形的内角和与外角和公式,熟练掌握公式是解题的关键.6.如果,那么代数式的值为A. B. C. D.【答案】A分析:根据分式混合运算的法则进行化简,再把整体代入即可.详解:原式,∵,∴原式.故选A.点睛:考查分式的化简求值,熟练掌握分式混合运算的法则是解题的关键.7.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度(单位:)与水平距离(单位:)近似满足函数关系().下图记录了某运动员起跳后的与的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A. B. C. D.【答案】B【解析】分析:根据抛物线的对称性即可判断出对称轴的范围.详解:设对称轴为,由(,)和(,)可知,,由(,)和(,)可知,,∴,点睛:考查抛物线的对称性,熟练运用抛物线的对称性质是解题的关键.8.右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为轴、轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(,)时,表示左安门的点的坐标为(5,);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(,)时,表示左安门的点的坐标为(10,);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(,)时,表示左安门的点的坐标为(,);④当表示天安门的点的坐标为(,),表示广安门的点的坐标为(,)时,表示左安门的点的坐标为(,).上述结论中,所有正确结论的序号是A. ①②③B. ②③④C. ①④D. ①②③④【答案】D【解析】分析:根据天安门的坐标和点的平移规律,一一进行判断即可.详解:显然①②正确;③是在②的基础上,将所有点向右平移个单位,再向上平移个单位得到,故③正确;④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(,)时,表示左安门的点的坐标为(,)”的基础上,将所有点向右平移个单位,再向上平移个单位得到,故④正确.点睛:考查平面直角坐标系,点坐标的确定,点的平移,熟练掌握点的平移规律是解题的关键.二、填空题(本题共16分,每小题2分)9.下图所示的网格是正方形网格,________.(填“”,“”或“”)【答案】>【解析】分析:构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.详解:如下图所示,是等腰直角三角形,∴,∴.故答案为:另:此题也可直接测量得到结果.点睛:考查等腰直角三角形的性质,构造等腰直角三角形是解题的关键.10.若在实数范围内有意义,则实数的取值范围是_______.【答案】【解析】分析:根据二次根式有意义的条件,即可求出实数的取值范围.详解:被开方数为非负数,故.故答案为:.点睛:考查二次根式有意义的条件,被开方数大于等于零.11.用一组,,的值说明命题“若,则”是错误的,这组值可以是_____,______,_______.【答案】(1). 2(2). 3(3). -1【解析】分析:根据不等式的性质3,举出例子即可.详解:根据不等式的性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.满足,即可,例如:,3,.故答案为:,3,.点睛:考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.12.如图,点,,,在上,,,,则________.【答案】70°【解析】分析:根据=,得到,根据同弧所对的圆周角相等即可得到,根据三角形的内角和即可求出.详解:∵=,∴,∴,∵,∴.故答案为:点睛:考查圆周角定理和三角形的内角和定理,熟练掌握圆周角定理是解题的关键.13.如图,在矩形中,是边的中点,连接交对角线于点,若,,则的长为________.【答案】【解析】分析:根据勾股定理求出,根据∥,得到,即可求出的长.详解:∵四边形是矩形,∴,∥,,在中,,∴,∵是中点,∴,∵∥,∴,∴.故答案为:.点睛:考查矩形的性质,勾股定理,相似三角形的性质及判定,熟练掌握相似三角形的判定方法和性质是解题的关键.14.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【答案】C【解析】分析:样本容量相同,观察统计表,可以看出C 线路上的公交车用时超过分钟的频数最小,即可得出结论.详解:样本容量相同,C 线路上的公交车用时超过分钟的频数最小,所以其频率也最小,故答案为:C.点睛:考查用频率估计概率,读懂统计表是解题的关键.15.某公园划船项目收费标准如下:某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.【答案】380【解析】分析:分析题意,可知,八人船最划算,其次是六人船,计算出最总费用最低的租船方案即可.详解:租用四人船、六人船、八人船各1艘,租船的总费用为(元)故答案为:380.点睛:考查统筹规划,对船型进行分析,找出总费用最低的租船方案即可.16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.【答案】3【解析】分析:左边图中,根据中国创新综合排名全球第22,找出对应创新产出排名,再从右图进行分析即可.详解:从左图可知,创新综合排名全球第22,对应创新产出排名全球第11;从右图可知,创新产出排名全球第11,对应创新效率排名全球第3.故答案为:3.点睛:考查函数图象获取信息,读懂图象是解题的关键.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点.求作:,使得.作法:如图,①在直线上取一点,作射线,以点为圆心,长为半径画弧,交的延长线于点;②在直线上取一点(不与点重合),作射线,以点为圆心,长为半径画弧,交的延长线于点;③作直线.所以直线就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵_______,_______,∴(____________)(填推理的依据).【答案】(1)作图见解析(2),,三角形中位线平行于三角形的第三边.【解析】分析:根据作图过程,补全图形即可.详解:(1)尺规作图如下图所示:(2),,三角形中位线平行于三角形的第三边.点睛:考查尺规作图,三角形中位线定理,熟练掌握三角形的中位线定理是解题的关键.18.计算:.【答案】【解析】分析:按照实数的运算顺序进行运算即可.详解:原式.点睛:本题考查实数的运算,主要考查零次幂,绝对值,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.19.解不等式组:.【答案】.【解析】分析:分别解不等式,找出解集的公共部分即可.详解:由①得,,由②得,,∴不等式的解集为.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.20.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=2,a=1时,x1=x2=﹣1.【解析】分析:(1)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(1)解:由题意:.∵,∴原方程有两个不相等的实数根.(2)答案不唯一,满足()即可,例如:解:令,,则原方程为,解得:.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.21.如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.(1)求证:四边形是菱形;(2)若,,求的长.【答案】(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出.根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:∵∥,∴∵平分∴,∴∴又∵∴又∵∥,∴四边形是平行四边形又∵∴是菱形(2)解:∵四边形是菱形,对角线、交于点.∴.,,∴.在中,.∴.∵,∴.在中,.为中点.∴.点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.22.如图,是的直径,过外一点作的两条切线,,切点分别为,,连接,.(1)求证:;(2)连接,,若,,,求的长.【答案】(1)证明见解析;(2).【解析】分析:(1)根据切线的性质定理得到,平分.根据等腰三角形的性质即可得到于,即.(2)连接、.根据等腰三角形的性质和平角的性质得到.进而得到.在中,解直角三角形即可.详解:(1)证明:∵、与相切于、.∴,平分.在等腰中,,平分.∴于,即.(2)解:连接、.∵∴∴同理:∴.在等腰中,.∴.∵与相切于.∴.∴.在中,,∴.点睛:本题考查了切线的性质和判定,圆周角定理,解直角三角形等,题目比较典型,综合性比较强,难度适中.23.在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点.(1)求的值;(2)横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.①当时,直接写出区域内的整点个数;②若区域内恰有4个整点,结合函数图象,求的取值范围.【答案】(1)4;(2)①3个.(1,0),(2,0),(3,0).②或.【解析】分析:(1)根据点(4,1)在()的图象上,即可求出的值;(2)①当时,根据整点的概念,直接写出区域内的整点个数即可.②分.当直线过(4,0)时,.当直线过(5,0)时,.当直线过(1,2)时,.当直线过(1,3)时四种情况进行讨论即可.详解:(1)解:∵点(4,1)在()的图象上.∴,∴.(2)① 3个.(1,0),(2,0),(3,0).②.当直线过(4,0)时:,解得.当直线过(5,0)时:,解得.当直线过(1,2)时:,解得.当直线过(1,3)时:,解得∴综上所述:或.点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.24.如图,是与弦所围成的图形的内部的一定点,是弦上一动点,连接并延长交于点,连接.已知,设,两点间的距离为,,两点间的距离为,,两点间的距离为.小腾根据学习函数的经验,分别对函数,随自变量的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量的值进行取点、画图、测量,分别得到了,与的几组对应值;(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点(,),(,),并画出函数,的图象;(3)结合函数图象,解决问题:当为等腰三角形时,的长度约为____.【答案】(1)3.00;(2)作图见解析;(3)或或.【解析】分析:(1)当时,即为圆的半径.(2)根据(1)中的图表,描点,连线即可.(3)根据等腰三角形的性质,结合函数图象进行回答即可.详解:(1)(2)如下图所示:如下图所示,函数图象的交点的横坐标即为所求.点睛:考查动点产生的函数图象问题,函数探究,圆的性质,等腰三角形的性质等,熟练掌握函数图象以及性质是解题的关键.25.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.,,,,,);.A课程成绩在这一组是:70 71 71 71 76 76 77 78 79 79 79.A,B两门课程成绩的平均数、中位数、众数如下:根据以上信息,回答下列问题:(1)写出表中的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;(3)假设该年级学生都参加此次测试,估计A课程成绩超过分的人数.【答案】(1)78.75;(2)B;(3)180人.【解析】分析:(1)根据中位数的概念直接进行计算即可.(2)根据成绩和中位数的关系即可知道排名更靠前的课程.(3)用总人数300乘以抽取的学生中A课程成绩超过分的比例即可.详解:(1)(2)B.该学生A课程分数低于中位数,排名在中间位置之后,而B课程分数高于中位数,排名在中间位置之前.(3)解:抽取的60名学生中.A课程成绩超过的人数为36人.∴(人)答:该年级学生都参加测试.估计A课程分数超过的人数为180人.点睛:考查频数分布直方图,中位数,用样本估计总体,熟练掌握中位数的计算方法和意义是解题的关键.26.在平面直角坐标系中,直线与轴、轴分别交于点,,抛物线经过点,将点向右平移5个单位长度,得到点.(1)求点的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段恰有一个公共点,结合函数图象,求的取值范围.【答案】(1)(5,4);(2)x=1;(3)或或.【解析】分析:(1)根据直线与轴、轴交于、.即可求出(,0),(0,4),根据点的平移即可求出点的坐标;(2)根据抛物线过(,),代入即可求得,根据抛物线的对称轴方程即可求出抛物线的对称轴;(3)分①当抛物线过点时.②当抛物线过点时.③当抛物线顶点在上时.三种情况进行讨论即可. 详解:(1)解:∵直线与轴、轴交于、.∴(,0),(0,4)∴(5,4)(2)解:抛物线过(,)∴.∴∴对称轴为.(3)解:①当抛物线过点时.,解得.②当抛物线过点时.,解得.③当抛物线顶点在上时.此时顶点为(1,4)∴,解得.∴综上所述或或.点睛:属于二次函数的综合题,考查了一次函数与坐标轴的交点,点的平移,抛物线对称轴,抛物线与线段交点问题,注意分类讨论思想在解题中的应用.27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE 的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.【答案】(1)证明见解析;(2)BH=AE,理由见解析.【解析】分析:(1)连接.根据对称的性质可得..证明,根据全等三角形的性质得到.进而证明≌,即可证明.(2)在上取点使得,连接.证明≌,根据等腰直角三角形的性质即可得到线段与的数量关系.详解:(1)证明:连接.∵,关于对称.∴..在和中.∴∴.∵四边形是正方形∴.∴∴∴∵.∴在和.∴≌∴.(2).证明:在上取点使得,连接.∵四这形是正方形.∴..∵≌∴同理:∴∵∴∴∴∴.∵∴∵∴∴∵.∴在和中∴≌∴在中,,.∴∴.点睛:本题是四边形的综合题,考查了正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定等知识此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.28.对于平面直角坐标系中的图形,,给出如下定义:为图形上任意一点,为图形上任意一点,如果,两点间的距离有最小值,那么称这个最小值为图形,间的“闭距离”,记作(,).已知点(,6),(,),(6,).(1)求(点,);(2)记函数(,)的图象为图形,若(,),直接写出的取值范围;(3)的圆心为(t,0),半径为1.若(,),直接写出t的取值范围.【答案】(1)2;(2)或;(3)或或.【解析】分析:(1)画出图形,根据“闭距离”的概念结合图形进行求解即可.(2)分和两种情况,画出示意图,即可解决问题.(3)画出图形,直接写出t的取值范围.详解:(1)如下图所示:∵(,),(6,)∴(0,)∴(,)(2)或(3)或或.点睛:属于新定义问题,考查点到直线的距离,圆的切线的性质,认真分析材料,读懂“闭距离”的概念是解题的关键.2018年四川省广元市中考数学试卷一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+93.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣34.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.85.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A .B .C .D .6.一元一次不等式组的最大整数解是( )A .﹣1B .0C .1D .27.如图,⊙O 是正五边形ABCDE 的外接圆,点P 是的一点,则∠CPD 的度数是( )A .30°B .36°C .45°D .72°8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s (米)和所用时间t (分钟)的关系图.则下列说法中错误的是( )A .小明吃早餐用时5分钟B .小华到学校的平均速度是240米/分C .小明跑步的平均速度是100米/分D .小华到学校的时间是7:559.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C.D.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为克.12.一个多边形的每一个外角都是18°,这个多边形的边数为.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为cm.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x 轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有(只填序号)三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.17.(7分)先化简,再求值:÷(﹣),其中a=+2.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:(1)该班学生的总人数为人;(2)由表中的数据可知:a=,b=;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b 与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.2018年四川省广元市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.【分析】根据绝对值的定义回答即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值得定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解答此题的关键.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+9【分析】根据幂的乘方、同底数幂的乘法、平方差公式和完全平方公式分别求出每个式子的值,再判断即可.【解答】解:A、结果是a6,故本选项不符合题意;B、结果是4x2﹣1,故本选项不符合题意;C、结果是a10,故本选项不符合题意;D、结果是a2﹣6a+9,故本选项符合题意;故选:D.【点评】本题考查了幂的乘方、同底数幂的乘法、平方差公式和完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.3.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣3【分析】将x=4代入方程中即可求出a的值.【解答】解:将x=4代入2(x﹣1)+3a=3,∴2×3+3a=3,。

人教中考数学一模试题分类汇编——平行四边形综合含答案解析

人教中考数学一模试题分类汇编——平行四边形综合含答案解析

一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度2.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD的延长线于G.(1)求证:AE=EG;(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;(3)如图3,取GF的中点M,若AB=5,求EM的长.【答案】(1)证明见解析(2)证明见解析(3)5 2【解析】【分析】(1)根据平行线的性质和等腰三角形的三线合一的性质得:∠CAD=∠G,可得AE=EG;(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=12AC,计算可得结论.【详解】证明:(1)如图1,过E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如图2,连接GC,∵AC=BC,AD⊥BC,∴BD=CD,∴AG是BC的垂直平分线,∴GC=GB,∴∠GBF=∠BCG,∵BG=BF,∴GC=BE,∵CE=EF,∴∠CEF=180°﹣2∠F,∵BG=BF,∴∠GBF=180°﹣2∠F,∴∠GBF=∠CEF,∴∠CEF=∠BCG,∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,∴∠GCE=∠F,在△BEF 和△GCE 中,CE GCE F CG BF EF =⎧⎪∠=∠⎨⎪=⎩,∴△BEF ≌△GEC (SAS ),∴BE =EG ;(3)如图3,连接DM ,取AC 的中点N ,连接DN ,由(1)得AE =EG ,∴∠GAE =∠AGE ,在Rt △ACD 中,N 为AC 的中点,∴DN =12AC =AN ,∠DAN =∠ADN , ∴∠ADN =∠AGE ,∴DN ∥GF ,在Rt △GDF 中,M 是FG 的中点, ∴DM =12FG =GM ,∠GDM =∠AGE , ∴∠GDM =∠DAN ,∴DM ∥AE ,∴四边形DMEN 是平行四边形, ∴EM =DN =12AC , ∵AC =AB =5, ∴EM =52. 【点睛】 本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键.3.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF 与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.【答案】(1)见解析;(2)12;探究:2或2.【解析】试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC=,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.考点:四边形综合题.4.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.5.点P是矩形ABCD对角线AC所在直线上的一个动点(点P不与点A,C重合),分别过点A,C向直线BP作垂线,垂足分别为点E,F,点O为AC的中点.(1)如图1,当点P与点O重合时,请你判断OE与OF的数量关系;(2)当点P运动到如图2所示位置时,请你在图2中补全图形并通过证明判断(1)中的结论是否仍然成立;(3)若点P在射线OA上运动,恰好使得∠OEF=30°时,猜想此时线段CF,AE,OE之间有怎样的数量关系,直接写出结论不必证明.【答案】(1)OE =OF .理由见解析;(2)补全图形如图所示见解析,OE =OF 仍然成立;(3)CF =OE+AE 或CF =OE ﹣AE .【解析】【分析】(1)根据矩形的性质以及垂线,即可判定()AOE COF AAS ∆≅∆,得出OE =OF ; (2)先延长EO 交CF 于点G ,通过判定()AOE COG ASA ∆≅∆,得出OG =OE ,再根据Rt EFG ∆中,12OF EG =,即可得到OE =OF ; (3)根据点P 在射线OA 上运动,需要分两种情况进行讨论:当点P 在线段OA 上时,当点P 在线段OA 延长线上时,分别根据全等三角形的性质以及线段的和差关系进行推导计算即可.【详解】(1)OE =OF .理由如下:如图1.∵四边形ABCD 是矩形,∴ OA =OC .∵AE BP ⊥,CF BP ⊥,∴90AEO CFO ∠=∠=︒.∵在AOE ∆和COF ∆中,AEO CFO AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AOE COF AAS ∆≅∆,∴ OE =OF ;(2)补全图形如图2,OE =OF 仍然成立.证明如下:延长EO 交CF 于点G .∵AE BP ⊥,CF BP ⊥,∴ AE //CF ,∴EAO GCO ∠=∠.又∵点O 为AC 的中点,∴ AO =CO .在AOE ∆和COG ∆中,EAO GCO AO CO AOE COG ∠=∠⎧⎪=⎨⎪∠=⎩,∴()AOE COG ASA ∆≅∆,∴ OG =OE ,∴Rt EFG ∆中,12OF EG =,∴ OE =OF ; (3)CF =OE +AE 或CF =OE -AE . 证明如下:①如图2,当点P 在线段OA 上时.∵30OEF ∠=︒,90EFG ∠=︒,∴60OGF ∠=︒,由(2)可得:OF =OG ,∴OGF ∆是等边三角形,∴ FG =OF =OE ,由(2)可得:AOE COG ∆≅∆,∴ CG =AE .又∵ CF =GF +CG ,∴ CF =OE +AE ;②如图3,当点P 在线段OA 延长线上时.∵30OEF ∠=︒,90EFG ∠=︒,∴60OGF ∠=︒,同理可得:OGF ∆是等边三角形,∴ FG =OF =OE ,同理可得:AOE COG ∆≅∆,∴ CG =AE .又∵ CF =GF -CG ,∴ CF =OE -AE .【点睛】本题属于四边形综合题,主要考查了矩形的性质、全等三角形的性质和判定以及等边三角形的性质和判定,解决问题的关键是构建全等三角形和证明三角形全等,利用矩形的对角线互相平分得全等的边相等的条件,根据线段的和差关系使问题得以解决.6.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.7.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【答案】(1)AG2=GE2+GF2(2)【解析】试题分析:(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可解决问题.试题解析:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=.考点:1、正方形的性质,2、矩形的判定和性质,3、勾股定理,4、直角三角形30度的性质8.如图1所示,(1)在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P 是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN.(2)若将(1)中“正三角形ABC”改为“正方形ABCD”,N是∠DCP的平分线上一点,若∠AMN=90°,则AM=MN是否成立?若成立,请证明;若不成立,说明理由.(3)若将(2)中的“正方形ABCD”改为“正n边形A1A2…A n“,其它条件不变,请你猜想:当∠A n﹣2MN=_____°时,结论A n﹣2M=MN仍然成立.(不要求证明)【答案】0 (2)180 nn【解析】分析:(1)要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.(2)同(1),要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.详(1)证明:在边AB上截取AE=MC,连接ME.在正△ABC中,∠B=∠BCA=60°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAE,BE=AB-AE=BC-MC=BM,∴∠BEM=60°,∴∠AEM=120°.∵N是∠ACP的平分线上一点,∴∠ACN=60°,∴∠MCN=120°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(2)解:结论成立;理由:在边AB上截取AE=MC,连接ME.∵正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE,BE=AB-AE=BC-MC=BM,∴∠BEM=45°,∴∠AEM=135°.∵N是∠DCP的平分线上一点,∴∠NCP=45°,∴∠MCN=135°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(3)由(1)(2)可知当∠A n-2MN等于n边形的内角时,结论A n-2M=MN仍然成立;即∠A n-2MN=()02180nn-时,结论A n-2M=MN仍然成立;故答案为[()02180nn-].点睛:本题综合考查了正方形、等边三角形的性质及全等三角形的判定,同时考查了学生的归纳能力及分析、解决问题的能力.难度较大.9.如图1,在菱形ABCD中,ABC=60°,若点E在AB的延长线上,EF∥AD,EF=BE,点P 是DE的中点,连接FP并延长交AD于点G.(1)过D作DH AB,垂足为H,若DH=,BE=AB,求DG的长;(2)连接CP,求证:CP FP;(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB的延长线上运动,点F在AB的延长线上运动,且BE=BF,连接DE,点P为DE的中点,连接FP、CP,那么第(2)问的结论成立吗?若成立,求出的值;若不成立,请说明理由.【答案】(1)1;(2)见解析;(3).【解析】试题分析:(1)根据菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60°,则∠DAH=∠ABC=60°,根据DH⊥AB得出∠DHA=90°,根据Rt△ADH的正弦值得出AD的长度,然后得出BE的长度,然后证明△PDG≌△PEF,得出DG=EF,根据EF∥AD,AD∥BC 得出EF∥BC,则说明△BEF为正三角形,从而得出DG的长度;(2)连接CG、CF,根据△PDG≌△PEF得出PG=PF,然后证明△CDG≌△CBF,从而得到CG=CF,根据PG=PF得出垂直;(3)过D作EF的平行线,交FP延长于点G,连接CG、CF证△PEF≌△PDG,然后证明△CDG≌△CBF,从而得出∠GCE=120°,根据Rt△CPF求出比值.试题解析:(1)解:∵四边形ABCD为菱形∴DA∥BC CD="CB" ∠CDG=∠CBA=60°∴∠DAH=∠ABC=60°∵DH⊥AB ∴∠DHA=90°在Rt△ADH中 sin∠DAH=∴AD=∴BE=AB=×4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P为DE的中点∴PD=PE∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC∴∠FEB=∠CBA=60°∵BE=EF ∴△BEF为正三角形∴EF=BE=1 ∴DG=EF=1、证明:连接CG、CF由(1)知△PDG≌△PEF ∴PG=PF在△CDG与△CBF中易证:∠CDG=∠CBF=60° CD=CB BF=EF=DG ∴△CDG≌△CBF∴CG=CF ∵PG=PF ∴CP⊥GF(3)如图:CP⊥GF仍成立理由如下:过D作EF的平行线,交FP延长于点G连接CG、CF证△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC∴∠ADP=∠PEC∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60°∴∠CDG=∠ADC+∠GDA=120°∵∠CBF=180°-∠EBF=120°∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP∵∠DCP=180-∠ABC=120°∴∠DCG+∠GCE=120°∴∠FCE+∠GCE=120°即∠GCE=120°∴∠FCP=∠GCE=60°在Rt△CPF中 tan∠FCP=tan60°==考点:三角形全等的证明与性质.10.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.(1)求矩形ABCD的边AD的长.(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.(2)由折叠可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,NC≥3.∴△PCN为等腰三角形,只可能NC=NP.过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,∴解得x=.(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.设MP=y,在Rt△ADM中,,即∴ y=.∴ S=考点:函数的性质、勾股定理.。

2018年中考数学真题分类汇编第一期专题18图形的展开与叠折试题含解

2018年中考数学真题分类汇编第一期专题18图形的展开与叠折试题含解

图形的展开与叠折一、选择题1.(2018•四川凉州•3分)一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山【分析】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.2.(2018·天津·3分)如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3 (2018·新疆生产建设兵团·5分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【分析】根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.【点评】本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.4 (2018·台湾·分)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A. B.C. D.【分析】三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.【解答】解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D选项中,展开图能折叠成一个三棱柱,符合题意;故选:D.【点评】本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.5. (2018•河南•3分)某正方体的每个面上那有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我6.(2018·浙江衢州·3分)如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB 边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110° C.108° D.106°【考点】平行线的性质【分析】由折叠可得:∠DGH=∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°.【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得:∠DGH=∠DGE=74°.∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°.故选D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.7. (2018·浙江舟山·3分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. B.C. D.【考点】剪纸问题【解析】【解答】解:沿虚线剪开以后,剩下的图形先向右上方展开,缺失的部分是一个等腰直角三角形,用直角边与正方形的边是分别平行的,再沿着对角线展开,得到图形A。

2024年北京市西城区中考数学一模试卷及答案解析

2024年北京市西城区中考数学一模试卷及答案解析

2024年北京市西城区中考数学一模试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)如图是某几何体的展开图,该几何体是()A.圆锥B.三棱柱C.三棱锥D.四棱锥2.(2分)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109 3.(2分)下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.4.(2分)直尺和三角板如图摆放,若∠1=55°,则∠2的大小为()A.35°B.55°C.135°D.145°5.(2分)不透明袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再从中随机摸出一个小球,则两次都摸到蓝球的概率为()A.B.C.D.6.(2分)已知﹣2<a<﹣1,则下列结论正确的是()A.a<1<﹣a<2B.1<a<﹣a<2C.1<﹣a<2<a D.﹣a<1<a<2 7.(2分)若关于x的一元二次方程kx2+x﹣2=0有两个实数根,则实数k的取值范围是()A.k≤﹣B.k>﹣且k≠0C.k≥﹣且k≠0D.k≥﹣且k≠08.(2分)如图,在Rt△ABC中,∠ACB=90°,BC=a,AC=b(其中a<b).CD⊥AB 于点D,点E在边AB上,BE=BC.设CD=h,AD=m,BD=n,给出下面三个结论:①n2+h2<(m+n)2;②2h2>m2+n2;③AE的长是关于x的方程x2+2ax﹣b2=0的一个实数根.上述结论中,所有正确结论的序号是()A.①B.①③C.②③D.①②③二、填空题(共16分,每题2分)9.(2分)若在实数范围内有意义,则实数x的取值范围为.10.(2分)分解因式:x2y﹣12xy+36y=.11.(2分)方程=的解为.12.(2分)在平面直角坐标系xOy中,若函数y=(k≠0)的图象经过点(﹣1,8)和(2,n),则n的值为.13.(2分)如图,在▱ABCD中,点E在边AD上,BA,CE的延长线交于点F.若AF=1,AB=2,则=.14.(2分)如图,在⊙O的内接四边形ABCD中,点A是的中点,连接AC,若∠DAB =130°,则∠ACB=°.15.(2分)如图,两个边长相等的正六边形的公共边为BD,点A,B,C在同一直线上,点O1,O2分别为两个正六边形的中心.则tan∠O2AC的值为.16.(2分)将1,2,3,4,5,…,37这37个连续整数不重不漏地填入37个空格中.要求:从左至右,第1个数是第2个数的倍数,第1个数与第2个数之和是第3个数的倍数,第1,2,3个数之和是第4个数的倍数,…,前36个数的和是第37个数的倍数.若第1个空格填入37,则第2个空格所填入的数为,第37个空格所填入的数为.37…三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:|﹣|﹣()﹣1+2sin60°﹣.18.(5分)解不等式组:.19.(5分)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.20.(5分)如图,点E在▱ABCD的对角线DB的延长线上,AE=AD,AF⊥BD于点F,EG∥BC交AF的延长线于点G,连接DG.(1)求证:四边形AEGD是菱形;(2)若AF=BF,tan∠AEF=,AB=4,求菱形AEGD的面积.21.(5分)某学校组织学生社团活动,打算恰好用1000元经费购买围棋和象棋,其中围棋每套40元,象棋每套30元.所购买围棋的套数能否是所购买象棋套数的2倍?若能,请求出所购买的围棋和象棋的套数,若不能,请说明理由.22.(5分)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(3,5),B (﹣2,0),且与y轴交于点C.(1)求该函数的解析式及点C的坐标;(2)当x<2时,对于x的每一个值,函数y=﹣3x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.23.(6分)某学校组织学生采摘山楂制作冰糖葫芦(每串冰糖葫芦由5颗山楂制成).同学们经过采摘、筛选、洗净等环节,共得到7.6kg的山楂.甲、乙两位同学各随机分到了15颗山楂,他们测量了每颗山楂的重量(单位:g),并对数据进行整理、描述和分析.下面给出了部分信息.a.甲同学的山楂重量的折线图:b.乙同学的山楂重量:8,8.8,8.9,9.4,9.4,9.4,9.6,9.6,9.6,9.8,10,10,10,10,10c.甲、乙两位同学的山楂重量的平均数、中位数、众数:平均数中位数众数甲9.5m9.2乙9.59.6n 根据以上信息,回答下列问题:(1)写出表中m,n的值;(2)对于制作冰糖葫芦,如果一串冰糖葫芦中5颗山楂重量的方差越小,则认为这串山楂的品相越好.①甲、乙两位同学分别选择了以下5颗山楂制作冰糖葫芦.据此推断:品相更好的是(填写“甲”或“乙”);甲9.29.29.29.29.1乙9.49.49.48.98.8②甲同学从剩余的10颗山植中选出5颗山楂制作一串冰糖葫芦参加比赛,首先要求组成的冰糖葫芦品相尽可能好,其次要求冰糖葫芦的山楂重量尽可能大.他已经选定的三颗山楂的重量分别为9.4,9.5,9.6,则选出的另外两颗山楂的重量分别为_______和;(3)估计这些山楂共能制作多少串冰糖葫芦.24.(6分)如图,AB为⊙O的直径,弦CD⊥AB于点H,⊙O的切线CE与BA的延长线交于点E,AF∥CE,AF与⊙O的交点为F.(1)求证:AF=CD;(2)若⊙O的半径为6,AH=2OH,求AE的长.25.(6分)如图,点O为边长为1的等边三角形ABC的外心.线段PQ经过点O,交边AB 于点P,交边AC于点Q.若AP=x,AQ=y1,S△APQ:S△ABC=y2,下表给出了x,y1,y2的一些数据(近似值精确到0.0001).x0.50.550.60.650.70.750.80.850.90.951 y110.84620.750.68420.63640.60.57140.54840.92940.51350.5 y20.46540.450.44470.44550.450.45710.46610.47650.48780.5(1)补全表格;(2)在同一平面直角坐标系xOy中描出了部分点(x,y1),(x,y2).请补全表格中数据的对应点,并分别画出y1与y2关于x的函数图象;(3)结合函数图象,解决下列问题:①当△APQ是等腰三角形时,y1关于x的函数图象上的对应点记为(a,b),请在x轴上标出横坐标为a的点;②当y2取最大值时,x的值为.26.(6分)在平面直角坐标系xOy中,点A(﹣2,y1),B(2,y2),C(m,y3)在抛物线y=ax2+bx+3(a>0)上.设抛物线的对称轴为直线x=t.(1)若y1=3,求t的值;(2)若当t+1<m<t+2时,都有y1>y3>y2,求t的取值范围.27.(7分)在△ABC中,∠ABC=∠ACB=45°,AM⊥BC于点M.D是射线AB上的动点(不与点A,B重合),点E在射线AC上且满足AE=AD,过点D作直线BE的垂线交直线BC于点F,垂足为点G,直线BE交射线AM于点P.(1)如图1,若点D在线段AB上,当AP=AE时,求∠BDF的大小;(2)如图2,若点D在线段AB的延长线上,依题意补全图形,用等式表示线段CF,MP,AB的数量关系,并证明.28.(7分)在平面直角坐标系xOy中,已知⊙O的半径为1,对于⊙O上的点P和平面内的直线l:y=ax给出如下定义:点P关于直线l的对称点记为P′,若射线OP上的点Q 满足OQ=PP′,则称点Q为点P关于直线l的“衍生点”.(1)当a=0时,已知⊙O上两点P1(,),P2(﹣,﹣),在点Q1(1,2),Q2(,),Q3(﹣1,﹣1),Q4(﹣,﹣)中,点P1关于直线l的“衍生点”是,点P2关于直线l的“衍生点”是;(2)P为⊙O上任意一点,直线y=x+m(m≠0)与x轴,y轴的交点分别为点A,B.若线段AB上存在点S,T,使得点S是点P关于直线l的“衍生点”,点T不是点P关于直线l的“衍生点”,直接写出m的取值范围;(3)当﹣1≤a≤1时,若过原点的直线s上存在线段MN,对于线段MN上任意一点R,都存在⊙O上的点P和直线l,使得点R是点P关于直线l的“衍生点”.将线段MN长度的最大值记为D(s),对于所有的直线s,直接写出D(s)的最小值.2024年北京市西城区中考数学一模试卷参考答案与试题解析一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.【分析】通过展开图的面数,展开图的各个面的形状进行判断即可.【解答】解:由题意可知,该几何体的底面是一个三角形,侧面由三个三角形组成,故该几何体是三棱锥.故选:C.【点评】本题考查棱柱的展开与折叠,掌握三棱锥展开图的特征是正确判断的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A.该图是轴对称图形,不是中心对称图形,故本选项不符合题意;B.该图是中心对称图形,不是轴对称图形,故本选项不合题意;C.该图是轴对称图形,不是中心对称图形,故本选项不符合题意;D.该图既是中心对称图形也是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形和轴对称图形,熟练掌握中心对称图形和轴对称图形的概念是解题的关键.4.【分析】求出∠3=90°﹣55°=35°,由平行线的性质推出∠3=∠4=35°,由邻补角的性质得到∠2=180°﹣35°=145°.【解答】解:∵∠1=55°,∴∠3=90°﹣55°=35°,∵直尺的对边平行,∴∠3=∠4=35°,∴∠2=180°﹣35°=145°.故选:D.【点评】本题考查平行线的性质关键是由平行线的性质推出∠3=∠4=35°.5.【分析】列表可得出所有等可能的结果数以及两次都摸到蓝球的结果数,再利用概率公式可得出答案.【解答】解:列表如下:红蓝红(红,红)(红,蓝)蓝(蓝,红)(蓝,蓝)共有4种等可能的结果,其中两次都摸到蓝球的结果有1种,∴两次都摸到蓝球的概率为.故选:A.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.6.【分析】根据﹣2<a<﹣1,判断出﹣a的取值范围,进而推出a、﹣a的大小关系即可.【解答】解:∵﹣2<a<﹣1,∴1<﹣a<2,∴a<1<﹣a<2.故选:A.【点评】此题主要考查了有理数大小比较的方法,解答此题的关键是判断出﹣a的取值范围.7.【分析】根据一元二次方程kx2+x﹣2=0有两个实数根,构建不等式求解.【解答】解:由题意,Δ≥0且k≠0,∴1+8k≥0,∴k≥﹣,∴k≥﹣且k≠0.故选:C.【点评】考查根的判别式,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.8.【分析】因为CD⊥AB,所以∠CDB=∠CDA=90°,由勾股定理得,n2+h2=a2,因为∠ACB=90°,由勾股定理得,(m+n)2=a2+b2,因为a2<a2+b2,所以n2+h2<(m+n)2,由射影定理得,h2=mn,所以2h2=2mn,因为a<b,a=,b=,则m>n,所以(m﹣n)2>0,可得m2+n2>2mn,所以m2+n2>2h2,方程x2+2ax﹣b2=0配方得(x+a)2﹣(a2+b2)=0,因为a2+b2=(m+n)2,可得(x+a)2=(m+n)2,解得x的值,因为BE=BC,BC=a,可得BE=a,因为AB=AD+BD=m+n,所以AE=m+n ﹣a,可得AE的长是否是关于x的方程x2+2ax﹣b2=0的一个实数根.【解答】解:∵CD⊥AB,∴∠CDB=∠CDA=90°,∴n2+h2=a2,∵∠ACB=90°,∴(m+n)2=a2+b2,∵a2<a2+b2,∴n2+h2<(m+n)2,故①符合题意,∵h2=mn,∴2h2=2mn,∵a<b,a=,b=,∴m>n,∴(m﹣n)2>0,即m2+n2>2mn,∴m2+n2>2h2,故②不符合题意,x2+2ax﹣b2=0,配方得,(x+a)2﹣(a2+b2)=0,∵a2+b2=(m+n)2,∴(x+a)2﹣(m+n)2=0,即(x+a)2=(m+n)2,∴x=m+n﹣a或x=﹣m﹣n﹣a,∵BE=BC,BC=a,∴BE=a,∵AB=AD+BD=m+n,∴AE=m+n﹣a,∴AE的长是关于x的方程x2+2ax﹣b2=0的一个实数根x=m+n﹣a,故③符合题意,故选:B.【点评】本题考查了射影定理、勾股定理,关键是掌握射影定理的运用.二、填空题(共16分,每题2分)9.【分析】根据二次根式的被开方数是非负数即可得出答案.【解答】解:∵x﹣3≥0,∴x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.10.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2,故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.11.【分析】方程两边都乘(3x﹣1)(x﹣2)得出4(x﹣2)=3(3x﹣1),求出方程的解,再进行检验即可.【解答】解:=,方程两边都乘(3x﹣1)(x﹣2),得4(x﹣2)=3(3x﹣1),4x﹣8=9x﹣3,4x﹣9x=﹣3+8,﹣5x=5,x=﹣1,检验:当x=﹣1时,(3x﹣1)(x﹣2)≠0,所以分式方程的解是x=﹣1.故答案为:x=﹣1.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.12.【分析】由点A的坐标,利用待定系数法可求出反比例函数解析式,再利用反比例函数图象上点的坐标特征,即可求出n的值.【解答】解:将点(﹣1,8)代入y=(k≠0)得:8=,解得:k=﹣8,∴反比例函数解析式为y=﹣当x=2时,y=﹣=﹣4,∴n的值为﹣4.故答案为:﹣4.【点评】本题考查了反比例函数图象上点的坐标特征以及待定系数法求反比例函数解析式,根据给定坐标,利用待定系数法求出反比例函数解析式是解题的关键.13.【分析】由平行四边形的性质得到AB∥CD,CD=AB=2,推出△FAE∽△CDE,得到=,而AF=1,于是得到=.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=2,∴△FAE∽△CDE,∴=,∵AF=1,∴=.故答案为:.【点评】本题考查平行四边形的性质,相似三角形的判定和性质,关键是由△FAE∽△CDE,推出=.14.【分析】根据圆内接四边形的性质求出∠DCB,再根据圆周角定理求出∠ACB.【解答】解:∵四边形ABCD为圆内接四边形,∴∠DAB+∠DCB=180°,∵∠DAB=130°,∴∠DCB=180°﹣130°=50°,∵点A是的中点,∴∠ACB=∠ACD=×50°=25°,故答案为:25.【点评】本题考查的是圆内接四边形的性质、圆周角定理,熟记圆内接四边形的性质是解题的关键.15.【分析】根据正六边形的性质,直角三角形的边角关系以及锐角三角函数的定义进行计算即可.【解答】解:如图,连接O2C,过O2点作O2E⊥BC,垂足为E,设正六边形的边长为a,则O1A=O1B=O2C=a,在Rt△O2CE中,O2C=a,∠CO2E=30°,∴EC=O2C=a=BE,O2E=O2C=a,∴AE=2a+a=a,∴tan∠O2AC==.故答案为:.【点评】本题考查正多边形和圆,掌握正六边形的性质,直角三角形的边角关系以及锐角三角函数的定义是正确解答的关键.16.【分析】根据第1个数是第2个数的倍数,第1个空格填入37,而37是质数,可知第2个空格所填入的数为1,根据前37个数的和为:1+2+3+⋯+37=703=37×19,且37与19都是质数,且前37个数的和是第37个数的倍数,即可得出结果.【解答】解:根据要求:第1个数是第2个数的倍数,第1个空格填入37,而37是质数,∴第2个空格所填入的数为1,∵前36个数的和是第37个数的倍数,∴前37个数的和是第37个数的倍数,∴前37个数的和为:1+2+3+⋯+37=703=37×19,且37与19都是质数,假设第37个数为x,则(37×19﹣x)一定能被x整除,∵x≠37,第2个空格所填入的数为1,∴x的值只能是19,故答案为:1,19.【点评】本题考查的是数字的变化规律,从题目中找出数字间的倍数关系是解题的关键.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】首先解出两个不等式的解集,再根据同小取小确定不等式组的解集.【解答】解:,解解不等式①,得:x<3,解不等式②,得:x≤7,∴原不等式组的解集为x<3.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1,∵x2﹣x﹣4=0,∴x2﹣x=4,∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.20.【分析】(1)根据等腰三角形三线合一的性质得出EF=DF,再证△GEF和△ADF全等,得出GF=AF,于是根据对角线相等的四边形是平行四边形推出四边形AEGD是平行四边形,再根据一组邻边相等的平行四边形是菱形即可得出四边形AEGD是菱形;(2)分别求出AF、EF的长,即可得出对角线AG、ED的长,根据菱形的面积公式计算即可.【解答】(1)证明:∵AE=AD,AF⊥BD,∴EF=DF,∵四边形ABCD是平行四边形,∴AD∥BC,∵EG∥BC,∴AD∥EG,∴∠GEF=∠ADF,在△GEF和△ADF中,,∴△GEF≌△ADF(ASA),∴GF=AF,∵EF=DF,∴四边形AEGD是平行四边形,∵AE=AD,∴四边形AEGD是菱形;(2)解:∵AF⊥BD,AF=BF,∴△AFB是等腰直角三角形,∵AB=4,∴由勾股定理得,,∵tan∠AEF=,∴,即,∴EF=,∵四边形AEGD是菱形,∴AG=2AF=,ED=2EF=,∴菱形AEGD的面积.【点评】本题考查了菱形的判定与性质,平行四边形的性质,勾股定理,锐角三角函数,菱形的面积等,熟练掌握这些知识点是解题的关键.21.【分析】设购买象棋x套,若购买围棋2x套,可得40×2x+30x=1000,解得x=9,即可判断不能恰好用1000元经费购买围棋和象棋,使所购买围棋的套数是所购买象棋套数的2倍.【解答】解:不能恰好用1000元经费购买围棋和象棋,使所购买围棋的套数是所购买象棋套数的2倍,理由如下:设购买象棋x套,若购买围棋2x套,根据题意得:40×2x+30x=1000,解得x=9,∵x是整数,∴x=9不符合题意,∴不能恰好用1000元经费购买围棋和象棋,使所购买围棋的套数是所购买象棋套数的2倍.【点评】本题考查一元一次方程的应用,解题的关键是读懂题意列出方程.22.【分析】(1)利用待定系数法求函数解析式,然后计算自变量为0时对应的函数值得到C点坐标;(2)先利用(1)中解析式计算x=2时,y=4,再把点(2,4)代入y=﹣3x+n中得到n=10,则利用一次函数的性质可判断当n≥10时满足条件.【解答】解:(1)根据题意得,解得,∴一次函数解析式为y=x+2,当x=0时,y=x+2=2,∴C(0,2);(2)当x=2时,y=x+2=4,把点(2,4)代入y=﹣3x+n得﹣6+n=4,解得n=10,∴当n≥10时,对于x<2的每一个值,函数y=﹣3x+n的值大于函数y=kx+b(k≠0)的值.【点评】本题考查了待定系数法求一次函数解析式:求一次函数y=kx+b,则需要两组x,y的值.也考查了一次函数的性质.23.【分析】(1)根据中位数和众数的概念,即可求解;(2)①根据方差的定义,即可求解;②根据题意可知,剩余两个山楂的重量应该尽可能大,且接近已有的三个山楂的重量,以保证方差最小,据此解答即可.(3)已知总重量和调查的平均数,用总数量除以调查的平均数先求出大概有多少个山楂,再用山楂数除以每串冰糖葫芦的山楂数即可求出能制作多少串冰糖葫芦.【解答】解:(1)根据甲的折线图可以看出,这组数据从小到大排列,中间第8个数为9.4,也就是说这组数据的中位数为9.4,所以m=9.4;根据乙同学的山楂重量数据可以发现,重量为10克出现的次数最多,也就是说这组数据的众数为10,所以n=10.故答案为:9.4,10.(2)①根据题意可知甲同学的5个冰糖葫芦重量分布于9.1﹣9.2之间,乙同学的5个冰糖葫芦重量分布于8.8﹣9.4,从中可以看出,甲同学的5个数据比乙同学的5个数据波动较小,所以,甲同学的5个冰糖葫芦重量的方差较小,故甲同学冰糖葫芦品相更好.②∵要求数据的差别较小,山楂重量尽可能大,∴可供选择的有9.3、9.6、9.9,当剩余两个为9.3、9.6,这组数据的平均数为9.48,方差为:[(9.3﹣9.48)2+(9.4﹣9.48)2+(9.5﹣9.48)2+(9.6﹣9.48)2+(9.6﹣9.48)2]×=0.0136,当剩余两个为9.6、9.9,这组数据的平均数为9.6,方差为:[(9.4﹣9.6)2+(9.5﹣9.6)2+(9.6﹣9.6)2+(9.6﹣9.6)2+(9.9﹣9.6)2]×=0.028,当剩余两个为9.3、9.9,这组数据平均数为9.54,方差为:[(9.3﹣9.54)2+(9.4﹣9.54)2+(9.5﹣9.54)2+(9.6﹣9.54)2+(9.9﹣9.54)2]×=0.0424,据此,可发现当剩余两个为9.3、9.6,方差最小,山楂重量也尽可能大.故答案为:甲;9.3、9.6.(3)7.6千克=7600克,7600÷9.5=800(个),800÷5=160(串),答:能制作160串冰糖葫芦.【点评】本题考查了平均数、众数、中位数和方差,熟记方差的计算公式以及方差的意义是解题的关键.24.【分析】(1)连接AC、OC、BC,由切线的性质证明CE⊥OC,而AB为⊙O的直径,所以∠OCE=∠ACB=90°,可证明∠ACE=∠B,由AF∥CE,得∠CAF=∠ACE=∠B,则=,由垂径定理得=,则=,即可证明=,所以AF=CD;(2)由⊙O的半径为6,AH=2OH,得OC=OA=2OH+OH=6,求得OH=2,因为==cos∠COE,所以OE==18,则AE=12.【解答】(1)证明:连接AC、OC、BC,则OC=OA,∵CE与⊙O相切于点C,∴CE⊥OC,∵AB为⊙O的直径,∴∠OCE=∠ACB=90°,∴∠ACE+∠OCA=90°,∠B+∠OAC=90°,∵∠OCA=∠OAC,∴∠ACE=∠B,∵AF∥CE,∴∠CAF=∠ACE=∠B,∴=,∵CD⊥AB,∴=,∴=,∴=+=+=,∴AF=CD.(2)解:∵⊙O的半径为6,AH=2OH,∴OC=OA=2OH+OH=6,∴OH=2,∵∠OHC=∠OCE=90°,∴==cos∠COE,∴OE===18,∴AE=OE﹣OA=18﹣6=12,∴AE的长为12.【点评】此题重点考查圆周角定理、切线的性质定理、平行线的性质、垂径定理、锐角三角函数与解直角三角形等知识,正确地作出辅助线是解题的关键.25.【分析】(1)利用已知条件得到:当x=0.5时,点P为AB的中点,当y1=1时,此时点Q在点C处,由题意计算当x=0.5时的y1即可;(2)补全表格中数据的对应点,并分别画出y1与y2关于x的函数图象即可;(3)①当△APQ是等腰三角形时,利用等边三角形的判定与性质解答即可求得a值,在x轴上描出横坐标为的点即可;②观察图象即可得出结论.【解答】(1)解:当x=0.5时,点P为AB的中点,∵点O为边长为1的等边三角形ABC的外心,∵y1=1,∴此时点Q在点C处,如图所示:∵△ABC为等边三角形,点P为AB的中点,点Q在点C处,∴∴y2=S△APQ:S△ABC=0.5,填报如下:x0.50.550.60.650.70.750.80.850.90.951 y110.84620.750.68420.63640.60.57140.54840.52940.51350.5 y20.50.46540.450.44470.44550.450.45710.46610.47650.48780.5(2)解:补全表格中数据的对应点,并分别画出y1与y2关于x的函数图象如图所示:(3)解:①连接AO并延长交BC于点D,连接OB,如图,∵△ABC为等边三角形,点O为△ABC外心,∴∠OBD=∠BAD=30°,AD⊥BC,,OA=OB,∴,∴,∴.当△APQ是等腰三角形时,AP=AQ,∵∠PAQ=60°,∴△PAQ为等边三角形,∴∠APQ=60°,∴∠APQ=∠ABC,∴PQ∥BC,∴∠AOP=∠ADB=90°.∴,∴.∴,∴b=,在x轴上标出横坐标为a的点,如图所示:②根据函数图象可知,函数y2的最大值为0.5,此时x=0.5或x=1.故答案为:0.5或1.【点评】本题主要考查了还是的图象与性质,描点法画出函数的图象,等边三角形的性质,等边三角形的外心的性质,直角三角形的性质,勾股定理,直角三角形的边角关系定理,特殊角的三角函数值,熟练掌握等边三角形的性质和函数图象的画法是解题的关键.26.【分析】(1)把A点的坐标代入解析式求得b=2a,然后利用对称轴公式即可求得;(2)由题意可知点A(﹣2,y1)在对称轴的左侧,C(m,y3)在对称轴的右侧,点A(﹣2,y1)关于直线x=t的对称点为(2t+2),B(2,y2)关于直线x=t的对称点为(2t ﹣2),分两种情况讨论,得到关于t的不等式组,解不等式组从而求得t的取值范围.【解答】解:(1)∵点A(﹣2,3)在抛物线y=ax2+bx+3(a>0)上,∴3=4a﹣2b+3,∴b=2a,∴t=﹣=﹣1;(2)∵a>0,∴抛物线y=ax2+bx+3(a>0)开口向上,当x>t时,y随x的增大而增大,∵当t+1<m<t+2时,都有y1>y3>y2,∴点A(﹣2,y1)在对称轴的左侧,C(m,y3)在对称轴的右侧,∵点A(﹣2,y1),B(2,y2),C(m,y3)在抛物线y=ax2+bx+3(a>0)上,∴点A(﹣2,y1)关于直线x=t的对称点为(2t+2),B(2,y2)关于直线x=t的对称点为(2t﹣2),当t≥2时,则,解得2≤t≤3;当t<2时,则,解得1≤t<2,故1≤t≤3.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.27.【分析】(1)根据等腰直角三角形的性质证明∠AEP=∠APE=67.5°,进而可以解决问题;(2)结合(1)即可补全图形,作CQ∥AP交BE于点Q,证明△BDF≌△CEQ(ASA),得BF=CQ,再根据等腰直角三角形的性质即可解决问题.【解答】解:(1)在△ABC中,∵∠ABC=∠ACB=45°,∴AB=AC,∠BAC=90°,∴∠ABE+∠AEB=90°,∵AM⊥BC,∴∠MAC=BAC=45°,BM=CM,∵AP=AE,∴∠AEP=∠APE=(180°﹣∠MAC)=(180°﹣45°)=67.5°,∵DF⊥BE,∴∠ABE+∠BDF=90°,∴∠BDF=∠AEP=67.5°;(2)如图,即为补全的图形,线段CF,MP,AB的数量关系为:CF=2MP+AB,证明:如图2,作CQ∥AP交BE于点Q,∵CO∥AP,BM=CM,∴==,∴CQ=2MP,∵AM⊥BC,∴∠AMC=90°,∵CQ∥AP,∴∠BCQ=∠AMC=90°,∴∠QCE=180°﹣∠ACB﹣∠BCQ=45°,∵∠DBF=∠ABC=45°,∴∠DBF=∠QCE,∵DG⊥BE,∴∠DGB=∠BAC=90°,∵∠DBG=∠ABE,∴∠D=∠E,∵AD=AE,AB=AC,∴AD﹣AB=AE﹣AC,∴BD=CE,∴△BDF≌△CEQ(ASA),∴BF=CQ,∵CF=BF+BC,BC=AB,∴CF=CQ+√AB=2MP+AB.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,平行线分线段成比例定理,解决本题的关键是得到△BDF≌△CEQ.28.【分析】(1)a=0,则直线l为x轴,据此求出P1,P2的对称点P1′,P2′,然后可以求出P1P1′和P2P2′的长度,用勾股定理求出Q1,Q2,Q3,Q4到原点的距离,判断是否符合新定义即可;(2)因为直线y=ax过圆心O,所以P′也在圆上,所以PP′不大于圆的直径,因为存在点S是点P关于直线l的“衍生点”,点T不是点P关于直线l的“衍生点”,所以线段AB上存在到O的距离不小于2的点,也存在不大于2的点,据此解答;(3)根据P所在位置分类讨论,得出PP′的取值范围,从而根据新定理求出MN的长度的最大值,从而得解.【解答】解:(1)当a=0时,直线l为y=0,即x轴,∵P1(,),P2(﹣,﹣),∴P1′(,﹣),P2′(﹣,),∴P1P1′=,P2P2′=,∵Q1(1,2),Q2(,),Q3(﹣1,﹣1),Q4(﹣,﹣),∴OQ1=,OQ2=,OQ3=,OQ4=2,∴点P1关于直线l的“衍生点”是Q2,点P2关于直线l的“衍生点”是Q3;故答案为:Q2,Q3;(2)∵直线l:y=ax过圆心O,∴P′也在⊙O上,∴PP′≤2,∵存在点S是点P关于直线l的“衍生点”,点T不是点P关于直线l的“衍生点”,∴线段AB上存在到O的距离不小于2的点,也存在不大于2的点,令x=0,则y=m,令y=0,则x=﹣m,∴A(﹣m,0),B(0,m),当OA=OB=2时,线段AB上所有点到O的距离都不大于2,此时,m=±2,又∵y=ax不能是y轴,∴(1,0)和(﹣1,0)不能同时是P和P′,∴m=±2符合题意;当O到线段AB的距离是2时,∵OA=OB,OA⊥OB,∴△AOB是等腰直角三角形,∴OA=2,∴m=±2,∴要满足线段AB上存在到O的距离不小于2的点,也存在不大于2的点,需要满足:﹣2≤m≤﹣2或2≤m≤2,∴﹣2≤m≤﹣2或2≤m≤2;(3)∵﹣1≤a≤1,∴在图中作直线y=x和直线y=﹣x,将⊙O分成四份,如图:①当P在或上时,当P,P′重合时,PP′=0,当PP′为直径时,PP′=2,∴0≤PP′≤2,∴D(s)=2,②当P在或上时,当PP′为直径时,PP′=2,当P在y轴上时,直线l为y=x或y=﹣x时,PP′取最小值,此时,PP′=,∴≤PP′≤2,∴D(s)=2﹣,综上所述,D(s)的最小值为2﹣.【点评】本题主要考查了圆的综合题,结合一次函数的图象、轴对称的性质、勾股定理等知识点,充分理解新定义,是本题解题的关键。

2018年中考数学一模分类汇编 函数操作

2018年中考数学一模分类汇编 函数操作

函数操作2018西城一模25.如图,P 为⊙O 的直径AB 上的一个动点,点C 在»AB 上,连接PC ,过点A 作PC 的垂线交⊙O 于点Q .已知5cm AB =,3cm AC =.设A 、P 两点间的距离为cm x ,A 、Q 两点间的距离为cm y .BA某同学根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究. 下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x 与y 的几组值,如下表:(说明:补全表格对的相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当2AQ AP =时,AP 的长度均为__________cm .2018石景山一模25.如图,半圆O 的直径5cm AB =,点M 在AB 上且1cm AM =,点P 是半圆O 上的 动点,过点B 作BQ PM ⊥交PM (或PM 的延长线)于点Q .设cm PM x =,cm BQ y =.(当点P 与点A 或点B 重合时,y 的值为0)小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小石的探究过程,请补充完整:(1(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ 与直径AB 所夹的锐角为60︒时,PM 的长度约为 cm .B2018平谷一模25.如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B出发,沿B→C→A 以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y 厘米.B小新根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小新的探究过程,请补充完整:(1经测量的值是(保留一位小数).(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;2018怀柔一模25.如图,在等边△ABC中, BC=5cm,点D是线段BC上的一动点,连接AD,过点D作DE⊥AD,垂足为D,交射线AC与点E.设BD为x cm,CE为y cm.小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:((2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当线段BD 是线段CE 长的2倍时,BD 的长度约为________cm .2018海淀一模25.在研究反比例函数1y x=的图象与性质时,我们对函数解析式进行了深入分析. 首先,确定自变量x 的取值范围是全体非零实数,因此函数图象会被y 轴分成两部分;其次,分析解析式,得到y 随x 的变化趋势:当0x >时,随着x 值的增大,1x 的值减小,且逐渐接近于零,随着x 值的减小,1x 的值会越来越大,由此,可以大致画出1y x=在0x >时的部分图象,如图1所示:利用同样的方法,我们可以研究函数y 的图象与性质. 通过分析解析式画出部分函数图象如图2所示.(1)请沿此思路在图2中完善函数图象的草图并标出此函数图象上横坐标为0的点A ;(画出网格区域内的部分即可)(2)观察图象,写出该函数的一条性质:____________________;(3)若关于x(1)a x =-有两个不相等的实数根,结合图象,直接写出实数a 的取值范围:___________________________.2018朝阳一模25.如图,AB是⊙O的直径,AB=4cm,C为AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=60°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x cm,DE=y cm (当x的值为0或3时,y的值为2),探究函数y随自变量x的变化而变化的规律.(1)通过取点、画图、测量,得到了x与y的几组对应值,如下表:x/cm 0 0.40 0.55 1.00 1.80 2.29 2.61 3y/cm 2 3. 68 3.84 3.65 3.13 2.70 2 (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:点F 与点O 重合时,DE 长度约为 cm(结果保留一位小数).2018东城一模25. 如图,在等腰△ABC 中,AB =AC ,点D ,E 分别为BC ,AB 的中点,连接AD .在线段AD 上任取一点P ,连接PB ,PE .若BC =4,AD =6,设PD =x (当点P 与点D 重合时,x 的值为0),PB +PE =y .小明根据学习函数的经验,对函数y 随自变量x 的变换而变化的规律进行了探究. 下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x 与y 的几组值,如下表:(说明:补全表格时,相关数值保留一位小数). (参考数据:2 1.414≈3 1.732≈5 2.236≈)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;x 0 1 2 3 4 5 6 y5.24.24.65.97.69.5(3)函数y 的最小值为______________(保留一位小数),此时点P 在图1中的位置为________________________.2018丰台一模25.如图,Rt △ABC 中,∠ACB = 90°,点D 为AB 边上的动点(点D 不与点A ,点B 重合),过点D 作ED ⊥CD 交直线AC 于点E .已知∠A = 30°,AB = 4cm ,在点D 由点A 到点B 运动的过程中,设AD = x cm ,AE = y cm.小东根据学习函数的经验,对函数y 随自变量x的变化而变化的规律进行了探究. 下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(2)在下面的平面直角坐标系xOy 中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当AE =12AD 时,AD 的长度约为 cm .A B C ED2018房山一模25. 如图,Rt △ABC ,∠C=90°,CA=CB=42cm ,点P 为AB 边上的一个动点,点E 是CA 边的中点, 连接PE ,设A ,P 两点间的距离为x cm ,P ,E 两点间的距离为y cm. 小安根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.AEBC下面是小安的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:①写出该函数的一条性质: ; ②当2PE PA =时,AP 的长度约为 cm. 2018门头沟一模25.在正方形ABCD 中,4AB cm = AC 为对角线,AC 上有一动点P ,M 是AB 边的中点,连接PM 、PB , 设A 、P 两点间的距离为xcm ,PM PB +长度为ycm .小东根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.D A(3)结合画出的函数图象,解决问题: PM PB的长度最小值约为__________ cm .2018大兴一模 25.如图,在△ABC 中,AB=4.41cm,BC=8.83cm,P 是 BC 上一动点,连接 AP,设 P,C 两点间的距离为 x cm,P,A 两点间的距离为 y cm.(当点 P 与点 C 重合时, x 的值为 0)小东根据 学习函数的经验,对函数 y 随自变量 x 的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了 x 与 y 的几组值,如下表:x/c 0 0.4 1.0 1.5 1.8 2.5 3.6 4.0 4.3 5.0 5.5 6.0 6.6 7.5 8.0 8.8m300500000002003y/c 7.6 7.2 6.8 6.3 6.1 5.6 4.84.4 4.1 3.9 3.8 3.8 3.9 4.0 4.4m580912775972261(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当 PA=PC 时,PC 的长度约为 果保留一位小数)cm.(结2018 顺义一模25.如图,P 是半圆弧 A»B 上一动点,连接 PA、PB,过圆心 O 作 OC∥BP 交 PA 于点 C,连接CB.已知 AB=6cm,设 O,C 两点间的距离为 x cm,B,C 两点间的距离为 y cm.PCAO小东根据学习函数的经验,对函数 y随自变量 x 的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了 x 与 y 的几组值,如下表:x/cm 00.5 11.5 2y/cm 33.1 3.5 4.0(说明:补全表格时相关数据保留一位小数)2.5 3 5.3 6(2)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;图1(3)结合画出的函数图象,解决问题:直接写出△OBC 周长 C 的取值范围是.2018 通州一模25. 如图 1,⊙ O 的半径为 4cm , AB 为⊙ O 直径,点 C 为半圆上一动点,点 D 为弧 AC 的中点.连接 DE ,过点 C 作 CE AB ,垂足为点 E .如果 DE 2OE ,求线段 AE 的长. 小何根据学习函数的经验,将此问题转化为函数问题解决.小何假设 AE 的长度为 xcm ,线段 DE 的长度 为 ycm .(当点 C 与点 A 重合时,AE 长度为 0),对 函数 y 随自变量 x 的变化而变化的规律进行探究.下面是小何的探究过程,请补充完整:(说明:相关数据保留一位小数)(1)通过取点、画图、测量,得到了 x 与 y 的几组值,如下表:x/cm 012345678y/cm 01.6 2.5 3.3 4.0 4.75.8 5.7当 x 6cm 时,点 E 的位置如图 2 所示.请你在图 2 中帮助小何完成作图,并使用刻度尺度量出线段 DE 的长度,填写在表格空白处.图2 (2)建立直角坐标系,描出以补全后的表中各组对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象解决问题: 当 DE 2OE 时, AE 的长度约为_________ cm.2018 燕山一模 26.已知 y 是 x 的函数,自变量 x 的取值范围是 x≠0 的全体实数,下表是 y 与 x 的几组对应值.x… -3 -2 -1 -12 -131 31 21y…25 63 2-12 -185 -513855 1817 83 22 3…m29…6小华根据学习函数的经验,利用上述表格所反映出的 y 与 x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是-2 时,函数值是;(2)如图,在平面直角坐标系 xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;y 6 5 4 3 2 1-4 -3 -2 -1O -1 -2 -3 -41 2 3 4 5x(3)在画出的函数图象上标出 x=2 时所对应的点,并写出 m=(4)结合函数的图象,写出该函数的一条性质:.。

2018年中考数学《几何图形的动点问题》同步提分训练含答案解析

2018年中考数学《几何图形的动点问题》同步提分训练含答案解析

2018年中考数学提分训练: 几何图形的动点问题一、选择题1.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B,C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x 的大致图象是()A. B. C. D.2.如图1,在矩形ABCD中,动点E从A出发,沿方向运动,当点E到达点C时停止运动,过点E做,交CD于F点,设点E运动路程为x, ,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是( )A. B. C. 6 D. 53.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④4.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B. C. D.5.如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别为AM,MR的中点,则EF的长随M点的运动( )A. 变短B. 变长C. 不变D. 无法确定二、填空题6.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为________.(结果不取近似值)7.如图,在平面直角坐标系中,A(4,0)、B(0,-3),以点B为圆心、2 为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为________.8.如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC 在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=________;(2)当△ABC的边与坐标轴平行时,t=________。

2018年中考数学试题分类汇编27 图形的相似与位似

2018年中考数学试题分类汇编27 图形的相似与位似

图形的相似与位似一、选择题1. (2018•安徽省,第9题4分)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x 的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠P AD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论.2. (2018•广西玉林市、防城港市,第7题3分)△ABC与△A′B′C′是位似图形,且△ABC 与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.12考点:位似变换.分析:利用位似图形的面积比等于位似比的平方,进而得出答案.解答:解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC 的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.点评:此题主要考查了位似图形的性质,利用位似图形的面积比等于位似比的平方得出是解题关键.3.(2018年天津市,第8题3分)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D. 1:2考点:平行四边形的性质;相似三角形的判定与性质.分析:根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.解答:解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.点评:此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.4.(2018•毕节地区,第12题3分)如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于()A.B.C.D.考点:相似三角形的判定与性质分析:根据已知条件得出△ADC∽△BDE,然后依据对应边成比例即可求得.解答:解:∵∠C=∠E,∠ADC=∠BDE,△ADC∽△BDE,∴=,又∵AD:DE=3:5,AE=8,∴AD=3,DE=5,∵BD=4,∴=,∴DC=,故应选A.点评:本题考查了相似三角形的判定和性质:对应角相等的三角形是相似三角形,相似三角形对应边成比例.5.(2018•武汉,第6题3分)如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C 的坐标为()A.(3,3)B.(4,3)C.(3,1)D.(4,1)考点:位似变换;坐标与图形性质分析:利用位似图形的性质结合两图形的位似比进而得出C点坐标.解答:解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的坐标为:(3,3).故选:A.点评:此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.6. (2018年江苏南京,第3题,2分)若△ABC∽△A′B′C′,相似比为1:2,则△ABC与△A′B′C′的面积的比为()A.1:2 B.2:1 C.1:4 D.4:1 考点:相似三角形的性质分析:根据相似三角形面积的比等于相似比的平方计算即可得解.解答:∵△ABC∽△A′B′C′,相似比为1:2,∴△ABC与△A′B′C′的面积的比为1:4.故选C.点评:本题考查了相似三角形的性质,熟记相似三角形面积的比等于相似比的平方是解题的关键.7. (2018年江苏南京,第6题,2分)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()(第2题图)A.(,3)、(﹣,4)B.(,3)、(﹣,4)C.(,)、(﹣,4)D.(,)、(﹣,4)考点:矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质。

2018中考数学真题分类汇编解析版-18.1.平行四边形

2018中考数学真题分类汇编解析版-18.1.平行四边形

一、选择题1.(2018安徽,9,4分) □ABCD 中,E ,F 是对角线BD 上不同的两点,下列条件中,不能..得出四边形AECF 一定为平行四边形的是( )A .BE =DFB .AE =CFC .AF ∥CED .∠BAE =∠DCF答案:B ,解析:如图,由□ABCD 得AB =CD ,AB ∥CD ,所以∠ABE =∠CDF ,结合选项A 和D 的条件可得到△ABE ≌△CDF ,进而得到AE =CF ,AE ∥CF ,判断出四边形AECF 一定为平行四边形;结合选项C 的条件可得到△ABF ≌△CDE ,所以AF =CE ,判断出四边形AECF 一定为平行四边形;只有选项B 不能判断出四边形AECF 一定为平行四边形.2.(2018·达州市,8,3分) △ABC 的周长为19,点D 、E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M .若BC =7,则MN 的长为( ) .A .32B .2C .52D .3M DN EB A C第8题图答案:C ,解析:∵△ABC 的周长为19,BC =7, ∴AB +AC =12.∵∠ABC 的平分线垂直于AE ,垂足为N ,∴BA =BE ,N 是AE 的中点. ∵∠ACB 的平分线垂直于AD ,垂足为M ,∴AC =DC ,M 是AD 的中点. ∴DE =AB +AC -BC =5. ∵MN 是△ADE 的中位线,∴MN =12DE =52.故选C.3. (2018·达州市,9,3分)如图,E 、F 是平行四边形ABCD 对角线AC 上两点,AE =CF =14AC ,连接DE 、DF 并延长,分别交AB 、BC 于点G 、H ,连接GH ,则ADG BGHS S的值为( ).A .12 B .23 C .34D .1GH F ECAB D第9题图答案:C ,解析:如图,过点H 作HM ∥AB 交AD 于M ,连接MG .设S 平行四边形ABCD =1.∵AE =CF =14AC ,∴S △ADE =14S △ADC =18S 平行四边形ABCD =18,S △DEC =38.∴S △AEG =19S △DEC =124.∴S △ADG =S △ADE +S △AEG =18+124=16.∵CH AD =13,∴S △AMG =23S △ADG =19.∵AG CD =13,∴S △GBH =2 S △AMG =29.∴ADG BGH S S =1629=34.故选C.M GHFE C AB D4.(2018·泸州,7,3分) 如图2, □ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE +EO =4,则□ABCD 的周长为( )E ODA CBA .20B .16C .12D .8答案:B ,解析:∵四边形ABCD 是平行四边形,∴AO =OC .∵E 是AB 的中点,∴AB =2AE ,OE 是△ABC 的中位线,∴BC =2OE .∵AE +EO =4,∴AB +BC =2×4=8.∴□ABCD 的周长为2×8=16.5.(2018·台州市,8,4) 如图,在▱ABCD 中,AB =2,BC =3,以C 为圆心,适当长为半径画弧, 交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于1/2PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( ) A .1/2 B.1 C .56 D .23答案:B ,解析:∵由题意可知CE 是∠BCD 的平分线, ∴∠BCE =∠DCE .∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC . ∴∠DCE =∠E . ∴∠BCE =∠E . ∴BE =BC . ∵AB =2,BC =3, ∴AE =3−2=1.6. 在ABCD 中,若∠BAD 与∠CDA 的角平分线交于点E ,则△AED 的形状是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定答案:B ,解析:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠BAD+∠ADC=180°,∵∠BAD 与∠CDA 的角平分线交于点E ,∴∠EAD 12∠BAD ,∠EDA=12∠CDA ,∴∠EAD+∠EDA=12(∠BAD+∠CDA )=12×180°=90°,∴∠AED=90°,故△AED 是直角三角形.7.(2018·湖州市,8,3分)如图,已知在△ABC 中,∠BAC >90°,点D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 是延长线上的点F 出,连接AD ,则下列结论不一定正确的是( )FEDC BA第8题图A .AE =EFB .AB =2DEC . △ADF 和△ADE 的面积相等D . △ADE 和△FDE 的面积相等答案.C 解析:连接CF.由折叠的性质可知CD =DF ,CD =EF ,∴DE 是CF 垂直平分线.又∵DC =DF =DB ,∴△BFC 是直角三角形,∴BF ⊥FC ,∴DE ∥BF.又∵点D 是BC 的中点,∴DE 是△ABC 的中位线,∴AE =EC =EF ,AB =2DE ,S △ADE =S △FDE ,故选项A 、B 、D 正确;由题意无法得出AD 与EF 平行,∴△ADF 与△ADE 的面积不一定相等,故不一定正确的是选项 C.FEDC BA二、填空题1. (2018·山东淄博,15,4分)在如图所示的□ABCD 中,AB =2,AD =3,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处,且AE 过BC 的中点O ,则△ADE 的周长等于__________.DEOBCA答案:10 解析:由题意知AD =AE =3,DC =CE =2,所以△ADE 的周长=10.2.(2018·株洲市,18,3分) 如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠P AB ,则AP =______________.答案.6,解析:S △ABD =21AB ·DN =21BD ·AM ,∵BD =CD ,∴21AB ·DN =21CD ·AM ,∵四边形ABCD 是平行四边形,∴AB =CD ,∴DN =AM ,∵DN =32,∴AM =32.∵∠ABD =∠MAP +∠P AB ,∠ABD =∠MAP +∠P ,∴∠MAP =∠P ,∵AM ⊥BD ,∴∠P =45°,在Rt △APM 中,sinP =AP AM ,∴AP =P AM sin =2223=6.3.(2018·衡阳市,17题,3分) 如图,□ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M ,△CDM 的周长为8,那么□ABCD 的周长是 .(第17题图)答案.16,解析:由平行四边形的性质可知点O 是AC 的中点,又因为OM ⊥AC ,所以OM 是AC 的垂直平分线,进而可知AM =CM ;根据△CDM 的周长为8,即CM +MD +CD =AM +MD +CD =8,而AM +DM =AD ,所以AD +CD =8,故□ABCD 的周长是16.4.(2018·临沂,17,3分)如图,在□ABCD 中,AB =10,AD =6,AC ⊥BC .则BD = .ODC BA第17题图答案.413,解析:过点D 作DE ⊥BC 于点E ,∵□ABCD ,∴AD =BC =6,∵AC ⊥BC ,∴AC=22610-=8=DE ,∵BE =BC +CE =6+6=12,∴BD =13481222=+.5.(2018·泰州市,13,3分)如图,□ABCD 中,AC 、BD 相交于点O ,若AD =6,AC +BD =16,则△BOC的周长为 .13.答案:14,解析:□ABCD 中,BC =AD =6,∵OB =OD ,OA =OC ,AC +BD =16,∴OB +OC =8, ∴△BOC 的周长=OB +OC +BD =14.6.(2018·泰州市,14,3分)如图,四边形ABCD 中,AC 平分∠BAD ,∠ACD =∠ABC =90°,E 、F 分别为AC 、CD 的中点,∠D =α,则∠BEF 的度数为 .(用含α的式子表示)14.答案,270°﹣3α.解析:∵∠ACD =90°,∠D =α,∴∠DAC =90°﹣α,∵AC 平分∠BAD ,∴∠BAC =∠DAC =90°﹣α,∵∠ABC =90°,AE =CE ,∴BE =AE =EC ,∴∠EBA =∠EAB =90°﹣α,∴∠CEB =∠EBA +∠EAB =180°﹣2α,∵AE =CE 、CF =DF ,∴EF ∥AD ,∴∠CEF =∠DAC =90°﹣α,∴∠BEF =∠CEB +∠CEF =180°﹣3α.7.(2018·南京,14,2) 如图,在△ABC 中,用直尺和圆规作AB 、AC 的垂直平分线,分别交AB 、AC 于点D 、E ,连接DE .若BC =10cm ,则DE =cm.答案:5,解析:根据垂直平分线的定义可知D 、E 分别是AB 、AC 的中点,所以DE 是△ABC 的中位线,∴DE =12BC =5.三、解答题 1.(2018·金华市,20,8分)如图,在6×6的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.思路分析:利用数形结合的思想,先确定底边长,在确定高的长即可画出题目要求图形. 解答过程:图1:以点A 为顶点的三角形图3:以点A 为对角线交 点的平行四边形图2:以点A 为顶点的 平行四边形AA A2.(2018·重庆B 卷,24,10)如图,在□ABCD 中,∠ACB =45°,点E 在对角线AC 上,BE =BA ,BF ⊥AC 于点F ,BF 的延长线交AD 于点G .点H 在BC 的延长线上,且CH =AG ,连接EH . (1)若BC =122,AB =13,求AF 的长; (2)求证:EB =EH .【思路分析】(1)在Rt △FBC 中,由sin ∠FCB =BFBC,求出BF =122×sin45°=122×22=12;在Rt △ABF 中,由勾股定理,得AF =22221312AB BF -=-=5.(2)本题有两种证法,一是在BF 上取点M ,使AM =AG ,连接ME 、GE .通过证明四边形AMEG 是正方形,进而得到∠AMB =∠HCE =45°,BM =CE ,AM =CH ,于是△AMB ≌△CHE ,从而EH =AB ,进而EB =EH .第二种方法是连接EG ,GH .通过证明△GBE ≌△GHE (SAS )锁定答案. 【解题过程】 解:(1)∵BF ⊥AC ,∴∠BFC =∠AFB =90°.在Rt △FBC 中,sin ∠FCB =BFBC,而∠ACB =45°,BC =122, ∴sin45°=122BF. ∴BF =122×sin45°=122×22=12. 在Rt △ABF 中,由勾股定理,得AF =22221312AB BF -=-=5.(2)方法一:如下图,在BF 上取点M ,使AM =AG ,连接ME 、GE .MABC DEF G H∵∠BFC =90°,∠ACB =45°,∴△FBC 是等腰直角三角形. ∴FB =FC .∵在□ABCD 中,AD ∥BC , ∴∠GAC =∠ACB =45°.24题图HG FEDC BA∴∠AGB =45°.∵AM =AG ,AF ⊥MG ,∴∠AMG =∠AGM =45°,MF =GF . ∴∠AMB =∠ECG =135°. ∵BA =BE ,BF ⊥AE , ∴AF =EF .∴四边形AMEG 是正方形. ∴FM =FE . ∴BM =CE . 又∵CH =AG , ∴CH =AM .∴△AMB ≌△CHE . ∴EH =AB . ∴EH =EB .方法二:如下图,连接EG ,GH .A BC DE FGH∵BF ⊥AC 于点F ,BA =BE , ∴∠ABF =∠EBF . ∵GB =GB ,∴△GBA ≌△GBE (SAS ). ∴∠AGB =∠EGB .在△FBC 中,∵∠BFC =90°,∠ACB =45°, ∴∠FBC =45°.∵在□ABCD 中,AD ∥BC ,∴∠GAC =∠ACB =45°,∠AGB =∠FBC =45°. ∴∠EGB =45°. ∵CH =AG ,∴四边形AGHC 是平行四边形. ∴∠BHG =∠GAC =45°. ∴∠BHG =∠GBH =45°. ∴GB =GH ,∠BGH =90°. ∴∠HGE =∠BGE =45°. ∵GE =GE ,∴△GBE ≌△GHE (SAS ). ∴EH =EB .【知识点】勾股定理 等腰三角形的性质 全等三角形 平行四边形 3.(2018·无锡市,21,8)如图,平行四边形ABCD 中,E 、F 分别是边BC 、AD 的中点, 求证:∠ABF =∠CDE .思路分析:先根据平行四边形性质以及中点的定义证明AF =CE ,再证△ABF ≌△CDE ,得到∠ABF =∠CDE .解答过程:证明:∵四边形 ABCD 为平行四边形 ,∴AB =CD ,AD =AB ,∠C =∠A , ∵E 、F 分别是边BC 、AD 的中点,∴CE =12BC , AF =12AD ,∴AF =CE , ∴△ABF ≌△CDE (SAS ),∴∠ABF =∠CDE .4.(2018江苏宿迁,22,8分)(本小题满分8分)如图,在□ABCD 中,点E ,F 分别在边CB 、AD 的延长线上,且BE=DF ,EF 分别与AB ,CD 交于点G ,H ,求证:AG=CH .HGFED BCA思路分析:由□ABCD 可知AD=BC ,AD ∥BC ,∠A=∠C ,再根据BE=DF ,可证得:AF=CE ,根据ASA 证明△AGF ≌△CHE 得证.解:证明:∵四边形ABCD 是平行四边形 ∴AD=BC ,AD ∥BC ,∠A=∠C , ∴∠F=∠E ∵BE=DF∴AD+DF=CB+BE ,即AF=CE在△AGF 和△CHE 中⎪⎩⎪⎨⎧∠=∠=∠=∠E F CE AF CA∴△AGF ≌△CHE (AAS ) ∴AG=CH5.(2018·连云港,22,10分)如图,矩形ABCD 中,E 是AD 的中点,延长CE 、BA 交于点F ,连接AC 、DF .(1)求证:四边形ACDF 是平行四边形;(2)当CF 平分∠BCD 时,写出BC 与CD 的数量关系,并说明理由.思路分析:(1)因为四边形ACDF 已经具备AF ∥DC 或AE =ED ,根据平行四边形的判定条件,必须证明△F AE ≌△CDE 即可;(2)因为CF 平分∠BCD ,所以∠DCE =45°,可得△CDE 是等腰直角三角形,从而BC =BF =2AB =2CD .解答过程:(1)证明:因为四边形ABCD 是矩形,所以AB ∥CD ,所以∠F AE =∠CDE . 因为E 是AD 的中点,所以AE =DE .又因为∠FEA =∠CED ,所以△F AE ≌△CDE ,所以CD =F A . 又因为CD ∥F A ,所以四边形ACDF 是平行四边形. (2)BC =2CD .因为CF 平分∠BCD ,所以∠DCE =45°. 因为∠CDE =90°,所以△CDE 是等腰直角三角形, 所以CD =DE .因为E 是AD 的中点,所以AD =2CD . 因为AD =BC ,所以BC =2CD .6.(2018·黄冈市,20,8分)如图,在□ABCD 中,分别以BC ,CD 作等腰△BCF ,△CDE ,使BC =BF ,CD =DE ,∠CBF =∠CDE ,连接AF ,AE . (1)求证:△ABF ≌△EDA ;(2)延长AB 与CF 相交于G ,若AF ⊥AE ,求证:BF ⊥BC .GFADBCE思路分析:(1)要证△ABF ≌△EDA ,需具备三个条件,由条件易证AB =ED 、BF =DA 、∠ABF =∠EDA ,故运用“SAS ”证明即可;(2)要证BF ⊥BC ,只需证明∠FBC =90°,而AF ⊥AE ,则∠F AE =90°,问题转化为证∠FBC=∠F AE ,即证明∠CBG +∠GBF =∠EAD +∠DAB +∠BAF ,而∠CBG =∠DAB 可通过AD ∥BC 证出,最终只需证明∠GBF =∠EAD +∠BAF ,这个可以由(1)中的全等证出.解答过程:(1)∵四边形ABCD 是平行四边形∴AD ∥BC ,AD =BC ,AB =CD ,∠ABC =∠ADC ∵BC =BF ,CD =DE ∴AB =DE ,BF =AD又∠ABC =∠ADC ,∠CBF =∠CDE ∴∠ABF =∠ADE在△ABF 和△EDA 中,AB =DE ,∠ABF =∠ADE ,BF =AD ∴△ABF ≌△EDA ;(2)由(1)知∠EAD =∠AFB ,∠GBF =∠AFB +∠BAF 由平行四边形ABCD 可知:AD ∥BC ∴∠DAG =∠CBG∴∠FBC =∠FBG +∠CBG =∠EAD +∠F AB +∠DAG =∠EAF =90° ∴BF ⊥BC .7.(2018·永州市,22,10分)如图,在△ABC 中,∠ACB =90°,∠CAB =30°,以线段AB 为边向外作等边△ABD ,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F . (1)求证:四边形BCFD 为平行四边形; (2)若AB =6,求平行四边形BCFD 的面积.思路分析:(1)利用同旁内角互补,两直线平行证明BC ∥AD ,利用内错角相等,两直线平行证明BD ∥CE ,于是可得四边形BCFD 为平行四边形;(2)过B 作BG ⊥CF ,垂足为G ,在Rt △BEG 中,利用∠BEG 的正弦可求得BG 的长,根据等边三角形的性质可求得BD 的长,再根据平行四边形的面积等于底乘以高计算即可.解答过程:证明:∵△ABD 是等边三角形,∴∠ABD =∠BAD =60°,又∠CAB =30°,∴∠CAD =∠CAB +∠BAD =30°+60°=90°,∵∠ACB =90°,∴∠CAD +∠ACB =90°+90°=180°,∴BC ∥AD .在Rt △ABC 中,∠ACB =90°,E 是线段AB 的中点,∴CE =AE ,∴∠ACE =∠CAB ,∵∠CAB =30°,∴∠ACE =∠CAB =30°,∴∠BEC =∠ACE +∠CAB =30°+30°=60°,∵∠ABD =60°,∴∠ABD =∠BEC ,∴BD ∥CE ,又BC ∥AD ,∴四边形BCFD 为平行四边形;(2)过B 作BG ⊥CF ,垂足为G ,∵AB =6,点E 是线段AB的中点,∴BE =3,在Rt △BEG中,∠BEG =60°,sin ∠BEG =BEBG,∴BG =BE ·sin ∠BEG =3×sin60°=3×23=233.∵△ABD 是等边三角形,∴BD =AB =6,∴平行四边形BCFD 的面积为BD ·BG =6×233=93.。

2018年北京市中考数学试题(含答案解析版)

2018年北京市中考数学试题(含答案解析版)

2018年北京市高级中等学校招生考试数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个。

1. 下列几何体中,是圆柱的为2. 实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是(A )>4a (B )>0b c - (C )>0ac (D )>0c a +3. 方程式⎩⎨⎧=-=-14833y x y x 的解为 (A )⎩⎨⎧=-=21y x (B )⎩⎨⎧-==21y x (C )⎩⎨⎧=-=12y x (D )⎩⎨⎧-==12y x 4. 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积。

已知每个标准足球场的面积为7140m 2,则FAST 的反射面总面积约为(A )231014.7m ⨯ (B )241014.7m ⨯ (C )25105.2m ⨯(D )26105.2m ⨯5. 若正多边形的一个外角是o60,则该正多边形的内角和为(A )o 360 (B )o540 (C )o 720 (D )o900 6. 如果32=-b a ,那么代数式b a a b a b a -⋅⎪⎪⎭⎫ ⎝⎛-+222的值为 (A )3 (B )32(C )33 (D )347. 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()02≠=+=a c bx ax y 。

下图记录了某运动员起跳后的x与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为(A)10m (B)15m (C)20m (D)22.5m8. 上图是老北京城一些地点的分布示意图。

在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()3,6--时,表示左安门的点的坐标为()6,5-;②当表示天安门的点的坐标为()0,0,表示广安门的点的坐标为()6,12--时,表示左安门的点的坐标为()12,10-;③当表示天安门的点的坐标为()1,1,表示广安门的点的坐标为()5,11--时,表示左安门的点的坐标为()11,11-;④当表示天安门的点的坐标为()5.1,5.1,表示广安门的点的坐标为()5.7,5.16--时,表示左安门的点的坐标为(),5.16,5.16-。

2018年中考数学试题分类汇编知识点28全等三角形

2018年中考数学试题分类汇编知识点28全等三角形

知识点28 全等三角形一、选择题1. (2018贵州安顺,T5,F3)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定.....△ABE≌△ACD( )A.∠B=∠CB. AD = AEC. BD = CED. BE=CD【答案】D【解析】选项A,当AB=AC,∠A=∠A,∠B=∠C时,△ABE≌△ACD(ASA),故此选项不符合题意;选项B,当AB=AC,∠A=∠A,AE=AD时,△ABE≌△ACD(SAS),故此选项不符合题意;选项C,由AB=AC,BD=CE,得AB-AD=AD,AC-CE=AE,即AD=AE, △ABE≌△ACD(SAS),故此选项不符合题意;选项D,当AB=AC,∠A=∠A,BE=CD时,不能判定△ABE与△ACD全等,故此选项符合题意. 故答案选D.【知识点】全等三角形的判定定理.2. (2018四川省成都市,6,3)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【答案】C【解析】解:因为∠ABC=∠DCB,加上题中的隐含条件BC=BC,所以可以添加一组角或是添加夹角的另一组边,可以证明两个三角形全等,故添加A、B、D均可以使△ABC≌△DCB.故选择C.【知识点】三角形全等的判定;二、填空题1.(2018浙江金华丽水,12,4分)如图,△ABC 的两条高AD ,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是 .【答案】答案不唯一,如CA =CB ,CE =CD 等.【解析】已知两角对应相等,可考虑全等三角形的判定ASA 或AAS .故答案不唯一,如CA =CB ,CE =CD 等.【知识点】全等三角形的判定2. (2018浙江衢州,第13题,4分)如图,在△ABC 和△DEF 中,点B ,F ,C ,E 在同一直线上,BF =CE ,AB ∥DE ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________________(只需写一个,不添加辅助线)第13题图【答案】AC//DF,∠A=∠D 等【解析】本题考查了全等三角形的判定,解题的关键是了解全等三角形的判断方法. 因为已知AB//DE ,BF=CE,这样可以看作时已知一角和一边对应相等,利用判定方法进行判断写出即可.【知识点】全等三角形的判定1. (2018湖北荆州,T12,F3)已知:AOB ∠,求作:AOB ∠的平分线.作法:①以点O 为圆心,适当长为半径画弧,分别交OA ,OB 于点M ,N ;②分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在AOB ∠内部交于点C ;③画射线OC .射线OC 即为所求.上述作图用到了全等三角形的判定方法,这个方法是 .【答案】SSS【解析】由作图可得OM=ON ,MC=NC ,而OC=OC ,∴根据“SSS ”可判定∆MOC ≌∆NOC.【知识点】作图—基本作图;三角形全等的判定.三、解答题1. (2018四川省南充市,第18题,6分)如图,已知AB AD =,AC AE =,BAE DAC ∠=∠. 求证:C E ∠=∠.【思路分析】根据等式的基本性质,求得∠BAC =∠DAE ,再利用SAS 证明三角形全等,最后利用全等三角形的性质即可得证.【解题过程】证明:∵∠BAE =∠DAC ,∴∠BAE -∠CAE =∠DAC -∠CAE .∴∠BAC =∠DAE . --------------------------------------- 2分在△ABC 与△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE (SAS). ---------------------- 5分 ∴∠C =∠E . ------------------------------------------------ 6分【知识点】全等三角形的判定2. (2018湖南衡阳,20,6分)如图,已知线段AC ,BD 相交于点E ,AE=DE ,BE=CE.(1)求证:△ABE ≌△DCE ;(2)当AB =5时,求CD 的长.【思路分析】(1)根据已知条件,直接利用SAS 证明△ABE ≌△DCE 即可;(2)根据三角形全等的性质,可知CD=AB ,据此解答即可.【解题过程】解:(1)证明:在△ABE 和△DCE 中,AE=DE AEB=DEC BE=CE ⎧⎪⎨⎪⎩∠∠,∴△ABE ≌△DCE .(2)∵△ABE ≌△DCE ,∴CD =AB .∵AB =5,∴CD =5.【知识点】全等三角形的判定、全等三角形的判性质3. (2018江苏泰州,20,8分)(本题满分8分)如图,90A D ==∠∠°,AC DB =,AC 、DB 相交于点O .求证:OB OC =.【思路分析】根据“HL ”可证Rt△ABC ≌Rt△DCB ,得∠A CB =∠DBC ,从而得证OB OC =.【解题过程】在Rt△ABC 和Rt△DCB 中AC DB BC CB =⎧⎨=⎩∴Rt△ABC ≌Rt△DCB (HL )∴∠A CB =∠DBC ,∴OB OC =.【知识点】三角形全等4. (2018四川省宜宾市,18,6分)如图,已知∠1=∠2,∠B=∠D ,求证:CB=CD.【思路分析】先根据三角形外角的性质得到∠BAC=∠DAC ,然后根据AAS 判定△ABC 与△ADC 全等,从而根据性质得到CB=CD. 【解题过程】证明:∵∠1=∠2,∠B=∠D ,∴∠DAC=∠BAC ,在△ACD 和△ABC 中,D DAC BAC AC AC B ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ACD (AAS ),∴CB=CD .【知识点】三角形全等的判定;三角形外角的性质1. (2018山东菏泽,17,6分)如图,AB ∥CD ,AB=CD ,CE=BF .请写出DF 与AE 的数量关系,并证明你的结论.【思路分析】先由AB ∥CD ,得出∠B=∠C ;再由CE=BF ,得出CF=BE ;由“SAS”判定△ABE ≌△DCF即可得证.【解析】解:DF=AE .证明:∵AB ∥CD ,∴∠B=∠C .∵CE=BF ,∴CE -EF=BF -EF ,即CF=BE .在△ABE 和△DCF 中,AB CD B C BE CF ⎧⎪⎨⎪⎩,∠∠,,=== ∴△ABE ≌△DCF .∴DF=AE .【知识点】平行线的性质;全等三角形的判定与性质;2. (2018广东广州,18,9分)如图,AB 与CD 相交于点E ,AE =CE ,DE =BE .求证:∠A =∠C .【思路分析】先根据题中条件AE =CE ,DE =BE ,∠AED =∠CEB 证明△AED ≌△CEB ,从而∠A =∠C .【解析】在△AED 和△CEB 中,=AE CE AED CEB DE BE =⎧⎪⎨⎪=⎩∠∠,∴△AED ≌△CEB (SAS ),∴∠A =∠C .【知识点】全等三角形的判定和性质3. (2018陕西,18,5分)如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交于点G 、H .若AB =CD ,求证:AG =DH .【思路分析】要证AG=DH,需转化为证明AH=DG较简单,即证明△ABH≌△DCG,结合两组平行线利用AAS即可完成证明过程.【解题过程】证明:∵AB∥CD,∴∠A=∠D.∵EC∥BF,∴∠CGD=∠AHB.∵AB=CD,∴△ABH≌△DCG∴AH=DG.∴AH-GH=DG-GH.即AG=DH.【知识点】全等三角形的判定和性质,平行线的性质。

北京市2021年中考数学一模试卷含答案解析

北京市2021年中考数学一模试卷含答案解析

中考数学一模试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)风和日丽春光好,又是一年舞筝时.放风筝是我国人民非常喜爱的一项户外娱乐活动.下列风筝剪纸作品中,不是轴对称图形的是()A.B.C.D.2.(2分)下面四幅图中,用量角器测得∠AOB度数是40°的图是()A.B.C.D.3.(2分)如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是()A.0 B.1 C.3 D.54.(2分)如图可以折叠成的几何体是()A.三棱柱B.圆柱C.四棱柱D.圆锥5.(2分)中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的“算筹”.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.6.(2分)一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是()A.3 B.4 C.6 D.127.(2分)“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟8.(2分)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2021年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是()A.①③B.②③C.②④D.③④二、填空题(本题共16分,每小题2分)9.(2分)若二次根式有意义,则x的取值范围是.10.(2分)林业部门要考察某种幼树在一定条件下的移植成活率,如图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为(结果精确到0.01).11.(2分)计算:=.12.(2分)如图,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC被分为60等份,如果小管口中DE正好对着量具上20份处(DE∥AB),那么小管口径DE的长是毫米.13.(2分)已知:a2+a=4,则代数式a(2a+1)﹣(a+2)(a﹣2)的值是.14.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,则BE=.15.(2分)如图,在平面直角坐标系xOy中,△OCD可以看作是△ABO经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO得到△OCD 的过程:.16.(2分)下面是“作已知角的角平分线”的尺规作图过程.已知:如图1,∠MON.求作:射线OP,使它平分∠MON.作法:如图2,(1)以点O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;(2)连结AB;(3)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于点P;(4)作射线OP.所以,射线OP即为所求作的射线.请回答:该尺规作图的依据是.三、解答题(本题共68分,第17~22题,每小题5分,第23题7分,第24题6分,第25题5分,第26题6分,第27题7分,第28题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:()﹣1﹣(π﹣)0+|1﹣|﹣2sin60°.18.(5分)解不等式组,并写出它的所有整数解.19.(5分)如图,在△ABC中,AB=AC,点D是BC边上一点,EF垂直平分CD,交AC于点E,交BC于点F,连结DE,求证:DE∥AB.20.(5分)关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数时,求此时方程的根.21.(5分)如图,在平面直角坐标系xOy中,函数y=的图象与直线y=x+1交于点A(1,a).(1)求a,k的值;(2)连结OA,点P是函数y=上一点,且满足OP=OA,直接写出点P 的坐标(点A除外).22.(5分)如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)连接CF,若∠ABC=60°,AB=4,AF=2DF,求CF的长.23.(7分)为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:甲91897786713197937291 81928585958888904491乙84936669768777828588 90886788919668975988整理、描述数据:按如下数据段整理、描述这两组数据分段学校30≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲1100378乙分析数据:两组数据的平均数、中位数、众数、方差如下表:统计量学校平均数中位数众数方差甲81.858891268.43乙81.9586m115.25经统计,表格中m的值是.得出结论:a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为.b可以推断出学校学生的数学水平较高,理由为.(至少从两个不同的角度说明推断的合理性)24.(6分)如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结BC,交⊙O于点D,点E是BC边的中点,连结AE.(1)求证:∠AEB=2∠C;(2)若AB=6,cosB=,求DE的长.25.(5分)如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B 出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x 秒,B、P两点间的距离为y厘米.小新根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小新的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x(s)01234567y(cm)0 1.0 2.0 3.0 2.7 2.7m 3.6经测量m的值是(保留一位小数).(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.26.(6分)在平面直角坐标系xOy中,抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2.(1)求b的值;(2)在y轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2,y2),其中x1<x2.①当x2﹣x1=3时,结合函数图象,求出m的值;②把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5时,﹣4≤y≤4,求m的取值范围.27.(7分)在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE 平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.(1)补全图1;(2)如图1,当∠BAC=90°时,①求证:BE=DE;②写出判断DF与AB的位置关系的思路(不用写出证明过程);(3)如图2,当∠BAC=α时,直接写出α,DF,AE的关系.28.(7分)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)风和日丽春光好,又是一年舞筝时.放风筝是我国人民非常喜爱的一项户外娱乐活动.下列风筝剪纸作品中,不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误.故选:B.2.(2分)下面四幅图中,用量角器测得∠AOB度数是40°的图是()A.B.C.D.【解答】解:A、正确.∠AOB=40°;B、错误.点O,边OA的位置错误;C、错误.缺少字母A;D、错误.点O的位置错误;故选:A.3.(2分)如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是()A.0 B.1 C.3 D.5【解答】解:∵如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,∴线段AB的中点为原点,即A、B对应的数分别为﹣2、2,则点C表示的数可能是3,故选:C.4.(2分)如图可以折叠成的几何体是()A.三棱柱B.圆柱C.四棱柱D.圆锥【解答】解:两个三角形和三个矩形可围成一个三棱柱.故选:A.5.(2分)中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的“算筹”.算筹是古代用来进行计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.例如3306用算筹表示就是,则2022用算筹可表示为()A.B.C.D.【解答】解:∵各位数码的筹式需要纵横相间:个位、百位、万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,∴2022用算筹可表示为故选:C.6.(2分)一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是()A.3 B.4 C.6 D.12【解答】解:由题意,得外角+相邻的内角=180°且外角=相邻的内角,∴外角=90°,360÷90=4,正多边形是正方形,故选:B.7.(2分)“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟【解答】解:由图象可得,赛跑中,兔子共休息了50﹣10=40分钟,故选项A错误,乌龟在这次比赛中的平均速度是500÷50=10米/分钟,故选项B错误,乌龟比兔子先到达60﹣50=10分钟,故选项C错误,乌龟追上兔子用了20分钟,故选项D正确,故选:D.8.(2分)中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2021年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是()A.①③B.②③C.②④D.③④【解答】解:①10岁之前,同龄的女生的平均身高与男生的平均身高基本相同,故该说法错误;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生,故该说法正确;③7~15岁期间,男生的平均身高不一定高于女生的平均身高,如11岁的男生的平均身高低于女生的平均身高,故该说法错误;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大,故该说法正确.故选:C.二、填空题(本题共16分,每小题2分)9.(2分)若二次根式有意义,则x的取值范围是x≥2.【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.10.(2分)林业部门要考察某种幼树在一定条件下的移植成活率,如图是这种幼树在移植过程中幼树成活率的统计图:估计该种幼树在此条件下移植成活的概率为0.88(结果精确到0.01).【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.88.故答案为:0.88.11.(2分)计算:=2m+3n.【解答】解:=2m+3n.故答案为:2m+3n12.(2分)如图,测量小玻璃管口径的量具ABC上,AB的长为10毫米,AC被分为60等份,如果小管口中DE正好对着量具上20份处(DE∥AB),那么小管口径DE的长是毫米.【解答】解:∵DE∥AB∴△CDE∽△CAB∴CD:CA=DE:AB∴20:60=DE:10∴DE=毫米∴小管口径DE的长是毫米.故答案为:13.(2分)已知:a2+a=4,则代数式a(2a+1)﹣(a+2)(a﹣2)的值是8.【解答】解:原式=2a2+a﹣(a2﹣4)=2a2+a﹣a2+4=a2+a+4,当a2+a=4时,原式=4+4=8,故答案为:8.14.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,则BE=2.【解答】解:连接OC,如图,∵弦CD⊥AB,∴CE=DE=CD=4,在Rt△OCE中,∵OC=5,CE=4,∴OE==3,∴BE=OB﹣OE=5﹣3=2.故答案为2.15.(2分)如图,在平面直角坐标系xOy中,△OCD可以看作是△ABO经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABO得到△OCD 的过程:将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△OCD..【解答】解:将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△OCD,故答案为:将△ABO沿x轴向下翻折,在沿x轴向左平移2个单位长度得到△OCD.16.(2分)下面是“作已知角的角平分线”的尺规作图过程.已知:如图1,∠MON.求作:射线OP,使它平分∠MON.作法:如图2,(1)以点O为圆心,任意长为半径作弧,交OM于点A,交ON于点B;(2)连结AB;(3)分别以点A,B为圆心,大于AB的长为半径作弧,两弧相交于点P;(4)作射线OP.所以,射线OP即为所求作的射线.请回答:该尺规作图的依据是等腰三角形三线合一.【解答】解:利用作图可得到OA=OB,PA=PB,利用等腰三角形的性质可判定OP平分∠AOB.故答案为:等腰三角形的三线合一.三、解答题(本题共68分,第17~22题,每小题5分,第23题7分,第24题6分,第25题5分,第26题6分,第27题7分,第28题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:()﹣1﹣(π﹣)0+|1﹣|﹣2sin60°.【解答】解:原式=3﹣1+﹣1﹣2×=1.18.(5分)解不等式组,并写出它的所有整数解.【解答】解:,解不等式①,得x≤2,解不等式②,得x>﹣1,∴原不等式组的解集为﹣1<x≤2,∴适合原不等式组的整数解为0,1,2.19.(5分)如图,在△ABC中,AB=AC,点D是BC边上一点,EF垂直平分CD,交AC于点E,交BC于点F,连结DE,求证:DE∥AB.【解答】证明:∵AB=AC,∴∠B=∠C.∵EF垂直平分CD,∴ED=EC.∴∠EDC=∠C.∴∠EDC=∠B.∴DE∥AB.20.(5分)关于x的一元二次方程x2+2x+k﹣1=0有两个不相等的实数根.(1)求k的取值范围;(2)当k为正整数时,求此时方程的根.【解答】解:(1)∵关于x的一元二次方程有两个不相等的实数根,∴△>0,即22﹣4(k﹣1)>0,∴k<2;(2)∵k为正整数,∴k=1,此时方程为x2+2x=0,解得x1=0,x2=﹣2.21.(5分)如图,在平面直角坐标系xOy中,函数y=的图象与直线y=x+1交于点A(1,a).(1)求a,k的值;(2)连结OA,点P是函数y=上一点,且满足OP=OA,直接写出点P 的坐标(点A除外).【解答】解:(1)∵直线y=x+1经过点A(1,a),∴a=1+1=2,∴A(1,2).∵函数y=的图象经过点A(1,2),∴k=1×2=2;(2)设点P的坐标为(x,),∵OP=OA,∴x2+()2=12+22,化简整理,得x4﹣5x2+4=0,解得x1=1,x2=﹣1,x3=2,x4=﹣2,经检验,x1=1,x2=﹣1,x3=2,x4=﹣2都是原方程的根,∵点P与点A不重合,∴点P的坐标为(﹣1,﹣2),(2,1),(﹣2,﹣1).22.(5分)如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)连接CF,若∠ABC=60°,AB=4,AF=2DF,求CF的长.【解答】(1)证明:∵BF平分∠ABC,∴∠ABF=∠CBF.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠AFB=∠CBF.∴∠ABF=∠AFB.∴AB=AF.∵AE⊥BF,∴∠BAO=∠FAE∵∠FAE=∠BEO∴∠BAO=∠BEO.∴AB=BE.∴AF=BE.∴四边形ABEF是平行四边形.∴□ABEF是菱形.(2)解:∵AD=BC,AF=BE,∴DF=CE.∵AF=2DF∴BE=2CE.∵AB=BE=4,∴CE=2.过点A作AG⊥BC于点G.∵∠ABC=60°,AB=BE,∴△ABE是等边三角形.∴BG=GE=2.∴AF=CG=4.∴四边形AGCF是平行四边形.∴□AGCF是矩形.∴AG=CF.在△ABG中,∠ABC=60°,AB=4,∴AG=.∴CF=.23.(7分)为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:甲91897786713197937291 81928585958888904491乙84936669768777828588 90886788919668975988整理、描述数据:按如下数据段整理、描述这两组数据分段学校30≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲1100378乙0014285分析数据:两组数据的平均数、中位数、众数、方差如下表:统计量学校平均数中位数众数方差甲81.858891268.43乙81.9586m115.25经统计,表格中m的值是88.得出结论:a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为300.b可以推断出甲学校学生的数学水平较高,理由为两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.(至少从两个不同的角度说明推断的合理性)【解答】解:整理、描述数据:分段学校30≤x≤3940≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲1100378乙0014285故答案为:0,0,1,4,2,8,5;分析数据:经统计,乙校的数据中88出现的次数最多,故表格中m的值是88.故答案为:88;得出结论:a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为400×=300(人).故答案为:300;b (答案不唯一)可以推断出甲学校学生的数学水平较高,理由为两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.故答案为:甲,两校平均数基本相同,而甲校的中位数以及众数均高于乙校,说明甲校学生的数学水平较高.24.(6分)如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结BC,交⊙O于点D,点E是BC边的中点,连结AE.(1)求证:∠AEB=2∠C;(2)若AB=6,cosB=,求DE的长.【解答】(1)证明:∵AC是⊙O的切线,∴∠BAC=90°.∵点E是BC边的中点,∴AE=EC.∴∠C=∠EAC,∵∠AEB=∠C+∠EAC,∴∠AEB=2∠C.(2)连结AD.∵AB为直径作⊙O,∴∠ABD=90°.∵AB=6,,∴BD=.在Rt△ABC中,AB=6,,∴BC=10.∵点E是BC边的中点,∴BE=5.∴.25.(5分)如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B 出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米.小新根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小新的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x(s)01234567y(cm)0 1.0 2.0 3.0 2.7 2.7m 3.6经测量m的值是 3.0(保留一位小数).(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.【解答】解:(1)经测量,当t=6时,BP=3.0.(当t=6时,CP=6﹣BC=3,∴BC=CP.∵∠C=60°,∴当t=6时,△BCP为等边三角形.)故答案为:3.0.(2)描点、连线,画出图象,如图1所示.(3)在曲线部分的最低点时,BP⊥AC,如图2所示.26.(6分)在平面直角坐标系xOy中,抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2.(1)求b的值;(2)在y轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2,y2),其中x1<x2.①当x2﹣x1=3时,结合函数图象,求出m的值;②把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5时,﹣4≤y≤4,求m的取值范围.【解答】解:(1)∵抛物线y=﹣x2+2bx﹣3的对称轴为直线x=2,∴﹣=2,即﹣=2∴b=2.(2)①∴抛物线的表达式为y=﹣x2+4x﹣3.∵A(x1,y),B(x2,y),∴直线AB平行x轴.∵x2﹣x1=3,∴AB=3.∵对称轴为x=2,∴A(,m).∴当时,m=﹣()2+4×﹣3=﹣.②当y=m=﹣4时,0≤x≤5时,﹣4≤y≤1;当y=m=﹣2时,0≤x≤5时,﹣2≤y≤4;∴m的取值范围为﹣4≤m≤﹣2.27.(7分)在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE 平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.(1)补全图1;(2)如图1,当∠BAC=90°时,①求证:BE=DE;②写出判断DF与AB的位置关系的思路(不用写出证明过程);(3)如图2,当∠BAC=α时,直接写出α,DF,AE的关系.【解答】解:(1)补全图如图1;(2)①延长AE,交BC于点H.∵AB=AC,AE平分∠BAC,∴AH⊥BC,BH=HC.∵CD⊥BC于,∴EH∥CD.∴BE=DE;②延长FE,交AB于点M.∵AB=AC,∴∠ABC=∠ACB.∵EF∥BC,∴∠AMF=∠AFM.∴AM=AF.∴ME=EF.∵∠MBE=∠FED,在△BEM和△DEF中,,∴△BEM≌△DEF.∴∠ABE=∠FDE.∴DF∥AB;(3).证明:∵DF∥AB,∴∠EDF=∠ABD,∵EF∥BC,∴∠DEF=∠DBC,∵BD是∠ABC的平分线,∴∠ABD=∠CBD,∴∠EDF=∠DEF,∴DF=EF,∵tan=,∴.28.(7分)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为60°;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;(3)⊙O的半径为,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.【解答】解:(1)∵点A(2,0),B(0,2),∴OA=2,OB=2,在Rt△AOB中,由勾股定理得:AB==4,∴∠ABO=30°,∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°,∵AB∥CD,∴∠DCB=180°﹣60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°,故答案为:60°;(2)如图2,∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于E.∴D(4,5)或(﹣2,5).∴直线CD的表达式为:y=x+1或y=﹣x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,∵⊙O的半径为,且△OQ'D是等腰直角三角形,∴OD=OQ'=2,∴P'D=3﹣2=1,∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=﹣x,再作圆的两条切线,且平行于直线y=﹣x,如图4,∵⊙O的半径为,且△OQ'D是等腰直角三角形,∴OD=OQ'=2,∴BD=3﹣2=1,∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,﹣1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(0,﹣5),∴当﹣5≤m≤﹣1时,以QP为边的“坐标菱形”为正方形;综上所述,m的取值范围是1≤m≤5或﹣5≤m≤﹣1.精品Word 可修改欢迎下载。

2022年北京市顺义区中考一模 数学 试卷(学生版+解析版)

2022年北京市顺义区中考一模 数学 试卷(学生版+解析版)
A. B. C. D.
2.一个几何体的三视图如图所示,该几何体是
A.直三棱柱B.长方体C.圆锥D.立方体
3.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()
A. B. C. D.
4.下列计算正确 是()
A. B.
C. D.
5.如图,直线 ,点B在直线a上, ,若∠1=40°,则∠2的度数为()
15.《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十……”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米……”问题:有3斗的粟(1斗=10升),若按照此“粟米之法”,则可以换得粝米为___升.
16.如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕顶点C顺时针旋转90°,得到矩形EFCG,连接AE,取AE 中点H,连接DH,则 _______.
(2)完成下面的证明.
证明:连接CD,EM.
∵PM=PE=CD=CO,EM=OD,
∴ (_________)(填推理依据).
∴ .
又∵ (________)(填推理依据).
∴ .
21.已知关于x的一元二次方程 有两个不相等的实数根.
(1)求m的取值范围;
(2)若方程有一个根是0,求方程的另一个根.
23.如图,在四边形ABCD中, , ,垂足为O,过点D作BD的垂线交BC的延长线于点E.
A.30B.60C.78D.156
第二部分非选择题
二、填空题(共16分,每题2分)
9.若二次根式 在实数范围内有意义,则实数 的取值范围是____________.
10.分解因式: _______________________.
11.如果 ,那么代数式 的值为_______.

北京市2018年中考数学一模分类汇编选择第8题无答案

北京市2018年中考数学一模分类汇编选择第8题无答案

选择第8题2018西城一模8.将A,B两位篮球运动员在一段时间内的投篮情况记录如下:下面有三个推断:①投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750.④投篮达到200次时,B运动员投中次数一定为160次.其中合理的是().A.①B.②C.①③D.②③2018石景山一模8.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.下图是对某球员罚球训练时命中情况的统计:下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.809,所以“罚球命中”的概率是0.809.其中合理的是A.①B.②C.①③D.②③2018平谷一模8.中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋势,7~15岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做生长速度峰值段,小明通过上网查阅《2016年某市儿童体格发育调查表》,了解某市男女生7~15岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论:①10岁之前,同龄的女生的平均身高一般会略高于男生的平均身高;②10~12岁之间,女生达到生长速度峰值段,身高可能超过同龄男生;③7~15岁期间,男生的平均身高始终高于女生的平均身高;④13~15岁男生身高出现生长速度峰值段,男女生身高差距可能逐渐加大.以上结论正确的是A.①③ B.②③ C.②④ D.③④2018怀柔一模8. 一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:下面有三个推断:①投掷1000次时,“兵”字面朝上的次数是550,所以“兵”字面朝上的概率是0.55②随着实验次数的增加,“兵”字面朝上的频率总在0.55附近,显示出一定的稳定性,可以估计“兵”字面朝上的概率是0.55③当实验次数为200次时,“兵”字面朝上的频率一定是0.55其中合理的是()A.①B. ②C. ①②D. ①③2018海淀一模8.如图1,矩形的一条边长为x ,周长的一半为y .定义(,)x y 为这个矩形的坐标. 如图2,在平面直角坐标系中,直线1,3x y ==将第一象限划分成4个区域. 已知矩形1的坐标的对应点A 落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中.图1 图2 则下面叙述中正确的是A. 点A 的横坐标有可能大于3B. 矩形1是正方形时,点A 位于区域②C. 当点A 沿双曲线向上移动时,矩形1的面积减小D. 当点A 位于区域①时,矩形1可能和矩形2全等2018朝阳一模8. 如图,△ABC 是等腰直角三角形,∠A =90°,AB =6,点P 是AB 边 上一动点(点P 与点A 不重合),以AP 为边作正方形APDE ,设AP =x ,正方形APDE 与△ABC 重合部分(阴影部分)的面积为y ,则下列能大致反映y 与x 的函数关系的图象是x2018东城一模8.如图1是一座立交桥的示意图(道路宽度忽略不计), A 为入口, F ,G 为出口,其 中直行道为AB ,CG ,EF ,且AB =CG =EF ;弯道为以点O 为圆心的一段弧,且错误!未找到引用源。

7.16古代数学(第3部分)-2018年中考数学试题分类汇编(word解析版)

7.16古代数学(第3部分)-2018年中考数学试题分类汇编(word解析版)

第七部分 专题拓展7.16 古代数学【一】知识点清单【二】分类试题汇编及参考答案与解析一、选择题1.(2018年湖南邵阳市-第10题-3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题: 一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是( )A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大、小和尚各100人【知识考点】一元一次方程的应用.【思路分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【解答过程】解:设大和尚有x 人,则小和尚有(100﹣x )人,根据题意得:3x+=100, 解得x=25则100﹣x=100﹣25=75(人)所以,大和尚25人,小和尚75人.故选:A .【总结归纳】本题考查了一元一次方程的应用,关键以和尚数和馒头数作为等量关系列出方程.2.(2018年浙江省嘉兴市舟山市-第7题-3分)欧几里得的《原本》记载,形如x 2+ax=b 2的方程的图解法是:画Rt △ABC ,使∠ACB=90°,BC=2a ,AC=b ,再在斜边AB 上截取BD=2a ,则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长【知识考点】解一元二次方程﹣配方法;勾股定理.【思路分析】表示出AD的长,利用勾股定理求出即可.【解答过程】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.【总结归纳】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.二、填空题1.(2018年贵州省遵义市-第15题-4分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.【知识考点】二元一次方程组的应用.【思路分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答过程】解:设一牛值金x两,一羊值金y两,根据题意得:,(①+②)÷7,得:x+y=2.故答案为:二.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2.(2018年湖北省襄阳市-第13题-3分)我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是元.【知识考点】二元一次方程组的应用.【思路分析】设该商品的价格是x元,共同购买该物品的有y人,根据“每人出8元,则多3元;每人出7元,则差4元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答过程】解:设该商品的价格是x元,共同购买该物品的有y人,根据题意得:,解得:.故答案为:53.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.(2018年湖南省湘潭市-第15题-3分)《九章算术》是我国古代最重要的数学著作之一,在“匀股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB=10,BC=3,求AC的长,如果设AC=x,则可列方程为.【知识考点】勾股定理的应用.【思路分析】设AC=x,可知AB=10﹣x,再根据勾股定理即可得出结论.【解答过程】解:设AC=x,∵AC+AB=10,∴AB=10﹣x.∵在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10﹣x)2.故答案为:x2+32=(10﹣x)2.【总结归纳】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.4.(2018年辽宁省大连市-第14题-3分)《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x 匹大马,y匹小马,根据题意可列方程组为.【知识考点】由实际问题抽象出二元一次方程组.【思路分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答过程】解:由题意可得,,故答案为:.【总结归纳】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.三、解答题1.(2018年甘肃省白银市/酒泉市/张掖市/武威市/定西市/陇南市-第21题-8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【知识考点】二元一次方程组的应用.【思路分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答过程】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。

【优质部编】2019-2020中考数学试题分项版解析汇编(第02期)专题2.1 方程(含解析)

【优质部编】2019-2020中考数学试题分项版解析汇编(第02期)专题2.1 方程(含解析)

专题2.1 方程一、单选题1.【北京市2018年中考数学试卷】方程组的解为A. B. C. D.【答案】D【解析】分析:根据方程组解的概念,将4组解分别代入原方程组,一一进行判断即可.详解:将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.点睛:考查方程组的解的概念,能同时满足方程组中每个方程的未知数的值,叫做方程组的解.2.【山东省东营市2018年中考数学试题】小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A. 19 B. 18 C. 16 D. 15【答案】B点睛:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.【湖南省湘西州2018年中考数学试卷】若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A. 1 B.﹣3 C. 3 D. 4【点睛】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.4.【云南省昆明市2018年中考数学试题】关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m 的取值范围是()A. m<3 B. m>3 C.m≤3 D.m≥3【答案】A【解析】分析:根据关于x的一元二次方程x2-2x+m=0有两个不相等的实数根可得△=(-2)2-4m>0,求出m 的取值范围即可.详解:∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m>0,∴m<3,故选:A.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.5.【广西钦州市2018年中考数学试卷】某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A. 80(1+x)2=100 B. 100(1﹣x)2=80 C. 80(1+2x)=100 D. 80(1+x2)=100【答案】A【解析】【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.6.【四川省眉山市2018年中考数学试题】我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是().A. 8% B. 9% C. 10% D. 11%【答案】C点睛:本题考查了一元二次方程的应用,降低率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据降低率问题的数量关系建立方程是关键.【湖南省怀化市2018年中考数学试题】一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km 7.所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.= B.= C.= D.=【答案】C点睛:此题是由实际问题抽象出分式方程,主要考查了水流问题,找到相等关系是解本题的关键.8.【云南省昆明市2018年中考数学试题】甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.= B.=C.= D.=【答案】A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.故选:A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.9.【黑龙江省哈尔滨市2018年中考数学试题】方程的解为()A. x=﹣1 B. x=0 C. x= D. x=1【答案】D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.10.【山东省淄博市2018年中考数学试题】“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A. B.C. D.【答案】C点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=2【答案】A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选:A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.12.【湖南省张家界市2018年初中毕业学业考试数学试题】若关于的分式方程的解为,则的值为( )A. B. C. D.【答案】C点睛:此题主要考查了分式方程的解,正确解方程是解题关键.13.【台湾省2018年中考数学试卷】若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A. 24 B. 0 C.﹣4 D.﹣8【答案】A【解析】分析:利用加减法解二元一次方程组,求得a、b的值,再代入计算可得答案.详解:,①﹣②×3,得:﹣2x=﹣16,解得:x=8,将x=8代入②,得:24﹣y=8,解得:y=16,即a=8、b=16,则a+b=24,故选:A.点睛:本题主要考查二元一次方程组的解,解题的关键是熟练掌握加减消元法解二元一次方程组的能力.14.【新疆自治区2018年中考数学试题】某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x元,水笔每支为y元,那么根据题意,下列方程组中,正确的是()A. B. C. D.【答案】B点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.15.【湖南省常德市2018年中考数学试卷】阅读理解:,,,是实数,我们把符号称为阶行列式,并且规定:,例如:.二元一次方程组的解可以利用阶行列式表示为:;其中,,.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A. B. C. D.方程组的解为【答案】C【解析】【分析】根据阅读材料中提供的方法逐项进行计算即可得.【详解】A、D==2×(-2)-3×1=﹣7,故A选项正确,不符合题意;B、D x==﹣2﹣1×12=﹣14,故B选项正确,不符合题意;C、D y==2×12﹣1×3=21,故C选项不正确,符合题意;D、方程组的解:x==2,y==﹣3,故D选项正确,不符合题意,故选C.【点睛】本题考查了阅读理解型问题,考查了2×2阶行列式和方程组的解的关系,读懂题意,根据材料中提供的方法进行解答是关键.16.【广西壮族自治区桂林市2018年中考数学试题】若,则x,y的值为()A. B. C. D.【答案】D点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.17.【浙江省台州市2018年中考数学试题】甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A. 5 B. 4 C. 3 D. 2【答案】B【解析】分析:可设两人相遇的次数为x,根据每次相遇的时间,总共时间为100s,列出方程求解即可.详解:设两人相遇的次数为x,依题意有x=100,解得x=4.5,∵x为整数,∴x取4.故选:B.点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.18.【河北省2018年中考数学试卷】有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A. B.C. D.【答案】A【点睛】本题主要考查了等式的性质,正确得出物体之间的重量关系是解题关键.19.【湖南省邵阳市2018年中考数学试卷】程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人【答案】A【详解】设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25,则100﹣x=100﹣25=75(人),所以,大和尚25人,小和尚75人,故选A.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.20【湖北省恩施州2018年中考数学试题】.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元【答案】C【解析】分析:设两件衣服的进价分别为x、y元,根据利润=销售收入-进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240-两件衣服的进价后即可找出结论.详解:设两件衣服的进价分别为x、y元,根据题意得:120-x=20%x,y-120=20%y,解得:x=100,y=150,∴120+120-100-150=-10(元).故选:C.点睛:本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.【湖北省武汉市2018年中考数学试卷】将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A. 2019 B. 2018 C. 2016 D. 2013【答案】D【解析】【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题22.【上海市2018年中考数学试卷】方程组的解是_____.【答案】,【解析】【分析】方程组中的两个方程相加,即可得出一个一元二次方程,求出方程的解,再代入求出y即可.【详解】,②+①得:x2+x=2,解得:x=﹣2或1,把x=﹣2代入①得:y=﹣2,把x=1代入①得:y=1,所以原方程组的解为,,故答案为,.【点睛】本题考查了解二元二次方程组,根据方程组的结构特点灵活选取合适的方法求解是关键.这里体现的消元与转化的数学思想.23.【湖南省长沙市2018年中考数学试题】已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.【答案】2点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.24.【湖南省湘西州2018年中考数学试卷】对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=ll.请根据上述的定义解决问题:若不等式3※x<2,则不等式的正整数解是_____.【答案】1【解析】【分析】根据新定义可得出关于x的一元一次不等式,解之取其中的正整数即可得出结论.【详解】∵3※x=3x﹣3+x﹣2<2,∴x<,∵x为正整数,∴x=1,故答案为:1.【点睛】本题考查一元一次不等式的整数解以及实数的运算,通过解不等式找出x<是解题的关键.25.【山东省聊城市2018年中考数学试题】已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是_____.【答案】点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.26.【湖南省邵阳市2018年中考数学试卷】已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是_____.【答案】0【解析】【分析】设方程的另一个解是n,根据根与系数的关系可得出关于n的一元一次方程,解之即可得出方程的另一个解.【详解】设方程的另一个解是n,根据题意得:﹣3+n=﹣3,解得:n=0,故答案为:0.【点睛】本题考查了一元二次方程的解以及根与系数的关系,熟记一元二次方程ax2+bx+c=0(a≠0)的两根之和等于﹣、两根之积等于是解题的关键.27.【山东省烟台市2018年中考数学试卷】已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是_____.【答案】3<m≤5.点睛:本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.28.【江苏省淮安市2018年中考数学试题】若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a=_____.【答案】4【解析】分析:把x与y的值代入方程计算即可求出a的值.详解:把代入方程得:9﹣2a=1,解得:a=4,故答案为:4.点睛:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.29.【湖北省襄阳市2018年中考数学试卷】我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是_____元.【答案】53【解析】【分析】设该商品的价格是x元,共同购买该物品的有y人,根据“每人出8元,则多3元;每人出7元,则差4元”,即可得出关于x、y的二元一次方程组,解方程组即可得出结论.【详解】设该商品的价格是x元,共同购买该物品的有y人,根据题意得:,解得:,故答案为:53.【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是解题的关键.30.【四川省内江市2018年中考数学试题】已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b (x+1)+1=0的两根之和为__________.【答案】1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.31.【四川省内江市2018年中考数学试题】关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.【答案】k≥﹣4【解析】分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.详解:∵关于x的一元二次方程x2+4x-k=0有实数根,∴△=42-4×1×(-k)=16+4k≥0,解得:k≥-4.故答案为:k≥-4.点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.32.【四川省内江市2018年中考数学试卷】已知关于的方程的两根为,,则方程的两根之和为___________.【答案】1【解析】分析:设t=x+1,则方程a(x+1)2+b(x+1)+1=0化为at2+at+1=0,利用方程的解是x1=1,x2=2得到t1=1,t2=2,然后分别计算对应的x的值可确定方程a(x+1)2+b(x+1)+1=0的解.详解:设x+1=t,方程a(x+1)2+b(x+1)+1=0的两根分别是x3,x4,∴at2+bt+1=0,由题意可知:t1=1,t2=2,∴t1+t2=3,∴x3+x4+2=3故答案为:1点睛:本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.33.【四川省内江市2018年中考数学试】关于的一元二次方程有实数根,则的取值范围是__________.【答案】k≥﹣4.点睛:此题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.34.【山东省威海市2018年中考数学试题】用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为__.【答案】44﹣16.【解析】分析:图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b的值,即可得到图③中,阴影部分的面积.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得:,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6+6)2=44﹣16,故答案为:44﹣16.点睛:本题主要考查了二元一次方程组的应用以及二次根式的化简,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.35.【山东省威海市2018年中考数学试题】关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是__.【答案】m=4.点睛:考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0,方程有两个不相等的实数根;(2)△=0,方程有两个相等的实数根;(3)△<0方程没有实数根.36.【湖南省张家界市2018年初中毕业学业考试数学试题】关于x的一元二次方程有两个相等的实数根,则______.【答案】【解析】分析:根据题意可得△=0,进而可得k2-4=0,再解即可.详解:由题意得:△=k2-4=0,解得:k=±2,故答案为:±2.点睛:此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.37.【新疆自治区2018年中考数学试题】某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是_____元.【答案】4详解:设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据题意得:,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为:4.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.38.【山东省聊城市2018年中考数学试卷】若为实数,则表示不大于的最大整数,例如,,等. 是大于的最小整数,对任意的实数都满足不等式. ①,利用这个不等式①,求出满足的所有解,其所有解为__________.【答案】或1.【解析】分析: 根据题意可以列出相应的不等式,从而可以求得x的取值范围,本题得以解决.详解: ∵对任意的实数x都满足不等式[x]≤x<[x]+1,[x]=2x-1,∴2x-1≤x<2x-1+1,解得,0<x≤1,∵2x-1是整数,∴x=0.5或x=1,故答案为:x=0.5或x=1.点睛:本题考查了解一元一次不等式组,解答本题的关键是明确题意,会解答一元一次不等式.39.【山东省聊城市2018年中考数学试卷】已知关于的方程有两个相等的实根,则的值是__________.【答案】点睛:本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.三、解答题40.【湖南省郴州市2018年中考数学试卷】郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?【答案】(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.【解析】【分析】(1)设A种奖品每件x元,B种奖品每件y元,根据“如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据总价=单价×购买数量结合总费用不超过900元,即可得出关于a的一元一次不等式,解之取其中最大的整数即可得出结论.(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤,∵a为整数,∴a≤41,答:A种奖品最多购买41件.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据不等关系,正确列出不等式.41.【北京市2018年中考数学试卷】关于的一元二次方程.(1)当时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的,的值,并求此时方程的根.【答案】(1)原方程有两个不相等的实数根.(2),,.【解析】分析:(1)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(1)解:由题意:.∵,∴原方程有两个不相等的实数根.(2)答案不唯一,满足()即可,例如:解:令,,则原方程为,解得:.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.42.【湖北省随州市2018年中考数学试卷】己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若=﹣1,求k的值.【答案】(1)k>﹣;(2)k=3.【解析】【分析】(1)根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次方程,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=﹣2k﹣3、x1x2=k2,结合=﹣1即可得出关于k的分式方程,解之经检验即可得出结论.【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)根据根与系数的关系结合=﹣1找出关于k的分式方程.43.【湖北省孝感市2018年中考数学试题】已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.【答案】(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.44.【山东省东营市2018年中考数学试题】关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【答案】(1)sinA=;(2)△ABC的周长为或16.【解析】分析:(1)利用判别式的意义得到△=25sin2A-16=0,解得sinA=;(2)利用判别式的意义得到100-4(k2-4k+29)≥0,则-(k-2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.详解:(1)根据题意得△=25sin2A-16=0,∴sin2A=,∴sinA=±,∵∠A为锐角,∴sinA=;分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5,∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=2.∴△ABC的周长为10+2;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴AD=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为10+2或16.点睛:本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.45.【湖北省黄石市2018年中考数学试卷】已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.【答案】(1)m<1;(2)0.(2)由根与系数的关系得:x1+x2=2,即,解得:x1=2,x2=0,由根与系数的关系得:m=2×0=0.点睛:本题考查了根与系数的关系和根的判别式、一元二次方程的解,能熟记根与系数的关系的内容和根的判别式的内容是解此题的关键.46.【江苏省盐城市2018年中考数学试题】一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价。

【2018中考数学真题+分类汇编】二期9一元二次方程及其应用试题含解析396【2018数学中考真题分项汇编系列】

【2018中考数学真题+分类汇编】二期9一元二次方程及其应用试题含解析396【2018数学中考真题分项汇编系列】

一元二次方程及其应用一.选择题1.(2018•江苏淮安•3分)若关于x的一元二次方程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是()A.﹣1 B.0 C.1 D.2【分析】根据判别式的意义得到△=(﹣2)2﹣4(﹣k+1)=0,然后解一次方程即可.【解答】解:根据题意得△=(﹣2)2﹣4(﹣k+1)=0,解得k=0.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.2.(2018•江苏苏州•3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3 B.2 C.6 D.12【分析】由tan∠AOD==可设AD=3A.OA=4a,在表示出点D.E的坐标,由反比例函数经过点D.E列出关于a的方程,解之求得a的值即可得出答案.【解答】解:∵tan∠AOD==,∴设AD=3A.OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D.E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D.E的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k.3.(2018•内蒙古包头市•3分)已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A.6 B.5 C.4 D.3【分析】根据方程的系数结合根的判别式△≥0,即可得出m≤3,由m为正整数结合该方程的根都是整数,即可求出m的值,将其相加即可得出结论.【解答】解:∵a=1,b=2,c=m﹣2,关于x的一元二次方程x2+2x+m﹣2=0有实数根∴△=b2﹣4ac=22﹣4(m﹣2)=12﹣4m≥0,∴m≤3.∵m为正整数,且该方程的根都是整数,∴m=2或3.∴2+3=5.故选:B.【点评】本题考查了根的判别式以及一元二次方程的整数解,牢记“当△≥0时,方程有实数根”是解题的关键.4.(2018•上海•4分)下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【解答】解:∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.5. (2018•乌鲁木齐•4分)宾馆有50间房供游客居住,当毎间房毎天定价为180元时,宾馆会住满;当毎间房毎天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房毎天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A.(180+x﹣20)(50﹣)=10890 B.(x﹣20)(50﹣)=10890C.x(50﹣)﹣50×20=10890 D.(x+180)(50﹣)﹣50×20=10890【分析】设房价定为x元,根据利润=房价的净利润×入住的房间数可得.【解答】解:设房价定为x元,根据题意,得(x﹣20)(50﹣)=10890.故选:B.【点评】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系.6. (2018•嘉兴•3分)欧几里得的《原本》记载.形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是()A. 的长.B. 的长C. 的长D. 的长【答案】B【解析】【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.【解答】用求根公式求得:∵∴∴AD的长就是方程的正根.故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.6. (2018•贵州安顺•3分)一个等腰三角形的两条边长分别是方程的两根,则该等腰三角形的周长是()A. B. C. D. 或【答案】A【解析】试题分析:∵,∴,即,,①等腰三角形的三边是2,2,5,∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选A.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.7. (2018•广西桂林•3分)已知关于x的一元二次方程有两个相等的实根,则k的值为()A. B. C. 2或3 D. 或【答案】A【解析】分析:根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.详解:∵方程有两个相等的实根,∴△=k2-4×2×3=k2-24=0,解得:k=.故选:A.点睛:本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.8. (2018•广西南宁•3分)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【解答】解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.故选:A.【点评】此题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.9. (2018·黑龙江龙东地区·3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x ﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.【点评】此题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.10.(2018•福建A卷•4分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.11.(2018•福建B卷•4分)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【分析】根据方程有两个相等的实数根可得出b=a+1或b=﹣(a+1),当b=a+1时,﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,1是方程x2+bx+a=0的根.再结合a+1≠﹣(a+1),可得出1和﹣1不都是关于x的方程x2+bx+a=0的根.【解答】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.12.(2018•广东•3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.1.. (2018•广西北海•3分)某种植基地 2016 年蔬菜产量为 80 吨,预计 2018 年蔬菜产量达到 100 吨,求蔬菜产量的年平均增长率.设蔬菜产量的年平均增长率为ρ则可列方程为A. 80(1 + ):= 100B. 100(1 −):= 80C. 80(1 + 2) = 100D. 80(1 + :) = 100【答案】 A【考点】由实际问题抽象出一元二次方程【解析】由题意知,蔬菜产量的年平均增长率为,根据 2016 年蔬菜产量为 80 吨,则2017 年蔬菜产量为80(1 + )吨,2018 年蔬菜产量为80(1 + ) (1 + )吨. 预计 2018 年蔬菜产量达到 100 吨,即80(1 + )(1 + ) =100,即80(1 + ):= 100.故选 A.【点评】此题考查了一元二次方程的应用(增长率问题).解题的关键是在于理清题目的意思,找到 2017 年和 2018 年的产量的代数式,根据条件找出等量关系式,列出方程.14.(2018•广西贵港•3分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3 B.1 C.﹣1 D.﹣3【分析】据根与系数的关系α+β=﹣1,αβ=﹣2,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.【解答】解:∵α,β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1﹣2=﹣3,故选:D.【点评】本题主要考查一元二次方程根与系数的关系,熟练掌握根与系数关系的公式是关键.15.(2018•贵州铜仁•4分)关于x的一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=1,x2=3 D.x1=﹣1,x2=﹣3【分析】利用因式分解法求出已知方程的解.【解答】解:x2﹣4x+3=0,分解因式得:(x﹣1)(x﹣3)=0,解得:x1=1,x2=3,故选:C.16.(2018•贵州遵义•3分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣3【分析】直接利用根与系数的关系得出x1+x2=﹣b,x1x2=﹣3,进而求出答案.【解答】解:∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,则x1+x2﹣3x1x2=5,﹣b﹣3×(﹣3)=5,解得:b=4.故选:A.16.(2018年湖南省娄底市)关于x的一元二次方程x2﹣(k+3)x+k=0的根的情况是()A.有两不相等实数根 B.有两相等实数根C.无实数根 D.不能确定【分析】先计算判别式得到△=(k+3)2﹣4×k=(k+1)2+8,再利用非负数的性质得到△>0,然后可判断方程根的情况.【解答】解:△=(k+3)2﹣4×k=k2+2k+9=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,所以方程有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.17.(2018湖南湘西州4.00分)若关于x的一元二次方程x2﹣2x+m=0有一个解为x=﹣1,则另一个解为()A.1 B.﹣3 C.3 D.4【分析】设方程的另一个解为x1,根据两根之和等于﹣,即可得出关于x1的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个解为x1,根据题意得:﹣1+x1=2,解得:x1=3.故选:C.【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.18.(2018•上海•4分)下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【解答】解:∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.19. (2018•乌鲁木齐•4分)宾馆有50间房供游客居住,当毎间房毎天定价为180元时,宾馆会住满;当毎间房毎天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房毎天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A.(180+x﹣20)(50﹣)=10890 B.(x﹣20)(50﹣)=10890C.x(50﹣)﹣50×20=10890D.(x+180)(50﹣)﹣50×20=10890【分析】设房价定为x元,根据利润=房价的净利润×入住的房间数可得.【解答】解:设房价定为x元,根据题意,得(x﹣20)(50﹣)=10890.故选:B.【点评】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系.二.填空题1. (2018·湖南郴州·3分)已知关于x的一元二次方程x2+kx﹣6=0有一个根为﹣3,则方程的另一个根为 2 .【分析】根据根与系数的关系得出a+(﹣3)=﹣k,﹣3a=﹣6,求出即可.【解答】解:设方程的另一个根为a,则根据根与系数的关系得:a+(﹣3)=﹣k,﹣3a=﹣6,解得:a=2,故答案为:2.【点评】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键.2. (2018·湖南怀化·4分)关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m 的值是 1 .【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.3.(2018•江苏徐州•3分)若x1.x2为方程x2+x﹣1=0的两个实数根,则x1+x2= ﹣1 .【分析】直接根据根与系数的关系求解.【解答】解:根据题意得x1+x2=﹣1.故答案为﹣1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.4.(2018•江苏淮安•3分)一元二次方程x2﹣x=0的根是x1=0,x2=1 .【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握方程的解法是解本题的关键.5.(2018•江苏苏州•3分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n= ﹣2 .【分析】根据一元二次方程的解的定义把x=2代入x2+mx+2n=0得到4+2m+2n=0得n+m=﹣2,然后利用整体代入的方法进行计算.【解答】解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.【点评】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.6.(2018•山东烟台市•3分)已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是3<m≤5.【分析】根据根的判别式△>0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.【解答】解:依题意得:,解得3<m≤5.故答案是:3<m≤5.【点评】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(A.B.c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.7.(2018•山东聊城市•3分)已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.【分析】根据二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元一次方程,解之即可得出k的值.【解答】解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.8. (2018•达州•3分)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为.【分析】将n2+2n﹣1=0变形为﹣﹣1=0,据此可得m,是方程x2﹣2x﹣1=0的两根,由韦达定理可得m+=2,代入=m+1+可得.【解答】解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.【点评】本题主要考查根与系数的关系,解题的关键是将方程变形后得出m,是方程x2﹣2x﹣1=0的两根及韦达定理.9.(2018•资阳•3分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m= .【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【解答】解:∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2.故答案是:2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.11.(2018•贵州黔西南州•3分)三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的解,则此三角形周长是13 .【分析】求出方程的解,有两种情况:x=2时,看看是否符合三角形三边关系定理;x=4时,看看是否符合三角形三边关系定理;求出即可.【解答】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点评】本题考查了三角形的三边关系定理和解一元二次方程等知识点,关键是确定第三边的大小,三角形的两边之和大于第三边,分类讨论思想的运用,题型较好,难度适中.12.(2018湖南省邵阳市)(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是0 .【分析】设方程的另一个解是n,根据根与系数的关系可得出关于n的一元一次方程,解之即可得出方程的另一个解.【解答】解:设方程的另一个解是n,根据题意得:﹣3+n=﹣3,解得:n=0.故答案为:0.【点评】本题考查了根与系数的关系以及一元二次方程的解,牢记两根之和等于﹣、两根之积等于是解题的关键.13.2018湖南长沙3.00分)已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为 2 .【分析】设方程的另一个根为m,根据两根之和等于﹣,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为m,根据题意得:1+m=3,解得:m=2.故答案为:2.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣是解题的关键14. (2018湖南张家界3.00分)关于x的一元二次方程x2﹣kx+1=0有两个相等的实数根,则k= ±2.【分析】根据题意可得△=0,进而可得k2﹣4=0,再解即可.【解答】解:由题意得:△=k2﹣4=0,故答案为:±2.【点评】此题主要考查了根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.15. (2018•达州•3分)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为.【分析】将n2+2n﹣1=0变形为﹣﹣1=0,据此可得m,是方程x2﹣2x﹣1=0的两根,由韦达定理可得m+=2,代入=m+1+可得.【解答】解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.【点评】本题主要考查根与系数的关系,解题的关键是将方程变形后得出m,是方程x2﹣2x﹣1=0的两根及韦达定理.16. (2018•资阳•3分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m= .【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【解答】解:∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,故答案是:2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.三.解答题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·7分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.2. (2018·湖北随州·7分)己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若+=﹣1,求k的值.【分析】(1)根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次方程,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=﹣2k﹣3.x1x2=k2,结合+=﹣1即可得出关于k的分式方程,解之经检验即可得出结论.【解答】解:(1)∵关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根,∴△=(2k+3)2﹣4k2>0,解得:k>﹣.(2)∵x1.x2是方程x2+(2k+3)x+k2=0的实数根,∴x1+x2=﹣2k﹣3,x1x2=k2,∴+==﹣=﹣1,解得:k1=3,k2=﹣1,经检验,k1=3,k2=﹣1都是原分式方程的根.又∵k>﹣,∴k=3.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)根据根与系数的关系结合+=﹣1找出关于k 的分式方程.3.(2018•江苏苏州•8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.【分析】(1)解方程求出点A的坐标,根据勾股定理计算即可;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【解答】解:(1)由x2﹣4=0得,x1=﹣2,x2=2,∵点A位于点B的左侧,∴A(﹣2,0),∵直线y=x+m经过点A,∴﹣2+m=0,解得,m=2,∴点D的坐标为(0,2),∴AD==2;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,y=x2+bx+2=(x+)2+2﹣,则点C′的坐标为(﹣,2﹣),∵CC′平行于直线AD,且经过C(0,﹣4),∴直线CC′的解析式为:y=x﹣4,∴2﹣=﹣﹣4,解得,b1=﹣4,b2=6,∴新抛物线对应的函数表达式为:y=x2﹣4x+2或y=x2+6x+2.【点评】本题考查的是抛物线与x轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x轴的交点的求法是解题的关键.4.(2018•山东东营市•8分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A 是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【分析】(1)利用判别式的意义得到△=25sin2A﹣16=0,解得sinA=;(2)利用判别式的意义得到100﹣4(k2﹣4k+29)≥0,则﹣(k﹣2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.【解答】解:(1)根据题意得△=25sin2A﹣16=0,∴sin2A=,∴sinA=或,∵∠A为锐角,∴sinA=;(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,则△≥0,∴100﹣4(k2﹣4k+29)≥0,∴﹣(k﹣2)2≥0,∴(k﹣2)2≤0,又∵(k﹣2)2≥0,∴k=2,把k=2代入方程,得y2﹣10y+25=0,解得y1=y2=5,∴△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5 ∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=.∴△ABC的周长为;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴A D=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为或16.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.5. (2018•遂宁•8分)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.【分析】由方程根的个数,利用根的判别式可得到关于a的不等式,可求得a的取值范围,再由根与系数的关系可用a表示出x1x2和x1+x2的值,代入已知条件可得到关于a的不等式,则可求得a的取值范围.【解答】解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.【点评】本题主要考查根的判别式及根与系数的关系,掌握根的个数与根的判别式的关系及一元二次方程的两根之和、两根之积与方程系数的关系是解题的关键.6. (2018•杭州•10分)设一次函数(是常数,)的图象过A(1,3),B(-1,-1)(1)求该一次函数的表达式;(2)若点(2a+2,a2)在该一次函数图象上,求a的值;(3)已知点C(x1, y1),D(x2, y2)在该一次函数图象上,设m=(x1-x2)(y1-y2),判断反比例函数的图象所在的象限,说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.75
B 投中次数 8
14
23
3261
70
80
投中频率 0.800 0.700 0.767 0.800 0.700 0.717 0.743 0.763 0.778
0.80
下面有三个推断:
①投篮 30 次时,两位运动员都投中 23 次,所以他们投中的概率都是 0.767 .
②随着投篮次数的增加, A 运动员投中频率总在 0.750 附近摆动,显示出一定的稳定性,可
性,可以估计该球员“罚球命中”的概率是
0.812 ;
③ 由于该球员 “罚球命中” 的频率的平均值是 0.809 ,所以“罚球命中” 的概率是 0.809 .
其中合理的是
A.①
B.②
C.①③
D.②③
2018 平谷一模 8.中小学时期是学生身心变化最为明显的时期,这个时期孩子们的身高变化呈现一定的趋 势, 7~15 岁期间生子们会经历一个身高发育较迅速的阶段,我们把这个年龄阶段叫做 速度峰值段, 小明通过上网查阅 《2016 年某市儿童体格发育调查表》 ,了解某市男女生 岁身高平均值记录情况,并绘制了如下统计图,并得出以下结论: ①10 岁之前, 同龄的女生的平均身 高一般会略高于男生的平均身高; ②10~12 岁之间,女生达到生长速 度峰值段,身高可能超过同龄男生 ; ③7~15 岁期间, 男生的平均身高始 终高于女生的平均身高; ④13~15 岁男生身高出现生长速度 峰值段 ,男女生身高差距 可能 逐渐 加大. 以上结论正确的是
生长 7~15
A. ①③ B . ②③ C . ②④ D . ③④
2018 怀柔一模 8. 一粒木质中国象棋子“兵”, 它的正面雕刻一个“兵”字, 它的反面是平的 . 将它从一定
高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下
. 由于棋子的两面
不均匀, 为了估计“兵”字面朝上的概率, 某实验小组做了棋子下掷实验, 实验数据如下表:
选择第 8 题
2018 西城一模 8.将 A , B 两位篮球运动员在一段时间内的投篮情况记录如下:
投篮次数
10
20
30
40
50
60
70
80
90
100
A 投中次数 7
15
23
30
38
45
53
60
68
75
投中频率 0.700 0.750 0.767 0.750 0.760 0.750 0.757 0.750 0.756
3
“罚球命中”的频率 0.822 0.812
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 罚球次数
下面三个推断:
① 当罚球次数是 500 时,该球员命中次数是 411,所以“罚球命中”的概率是 0.822 ;
② 随着罚球次数的增加, “罚球命中”的频率总在 0.812 附近摆动,显示出一定的稳定
实验次数 n
20 60 100 120 140 160 500 1000 2000 5000
“兵”字面朝上次数 m 14 38 52 66 78 88 280 550 1100 2750
“兵”字面朝上频率
m n
0.6
0.7
0.52 0.55 0.56 0.55 0.56 0.55 0.55 0.55
以估计 A 运动员投中的概率是 0.750 .
④投篮达到 200 次时, B 运动员投中次数一定为 160 次.
其中合理的是(
).
A.①
B.②
C.①③
D.②③
2018 石景山一模 8.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响
很大.下图是对某球员罚球训练时命中情况的统计:
相关文档
最新文档