-运筹学 三级项目报告
运筹学综合实验报告
运筹学综合实验报告本次实验中,我们使用了运筹学的方法来解决了一个经典的优化问题,即整数线性规划问题(Integer Linear Programming,简称ILP)。
一、实验目的本次实验的主要目的是熟悉ILP的求解过程,了解ILP在实际问题中的应用,以及掌握使用现代优化软件Gurobi来求解ILP的方法。
二、实验原理1. 整数线性规划问题整数线性规划问题是在所有线性规划问题中的一个非常重要的子集。
它将优化目标函数的线性组合与整数限制相结合。
一个典型的ILP问题可以被描述为:最大化(或最小化)目标函数:\max(\min) \sum_{j=1}^{n}c_j x_j满足如下的约束条件:\sum_{j=1}^{n}a_{ij} x_j \leq b_i,\ i=1,2,\cdots,mx_j \geq 0,\ j=1,2,\cdots,nx_j \in Z,\ j=1,2,\cdots,nx_j表示自变量,c_j表示目标函数中的系数,a_{ij}表示第i个约束条件中x的系数,b_i表示约束条件的右侧常数,m表示约束条件的数量,n表示变量的数量。
最后两个约束条件要求自变量只能是整数。
2. Gurobi优化软件Gurobi是一个商业优化软件,经过多年的发展,已成为当前最流行的数学优化软件之一。
Gurobi支持多种数学优化方法,包括线性规划、非线性规划、混合整数规划、二次规划等。
Gurobi使用了现代算法来实现高效的求解效果,是工业和学术界备受推崇的优化软件。
三、实验内容1. 利用Gurobi求解整数线性规划问题我们使用Gurobi来求解如下的整数线性规划问题:\max\ \ 2x_1 + 3x_2 + 7x_3满足如下的约束条件:x_1 + x_2 + x_3 \leq 6x_1 - x_2 + x_3 \leq 4x_1, x_2, x_3 \in Z,\ x_1 \geq 0,\ x_2 \geq 0,\ x_3 \geq 0我们使用Python代码来实现该问题的求解过程:```pythonimport gurobipy as gbmodel = gb.Model("integer linear programming")# Create variablesx1 = model.addVar(vtype=gb.GRB.INTEGER, name="x1")x2 = model.addVar(vtype=gb.GRB.INTEGER, name="x2")x3 = model.addVar(vtype=gb.GRB.INTEGER, name="x3")# Set objectivemodel.setObjective(2*x1 + 3*x2 + 7*x3, gb.GRB.MAXIMIZE)# Add constraintsmodel.addConstr(x1 + x2 + x3 <= 6)model.addConstr(x1 - x2 + x3 <= 4)# Optimize modelmodel.optimize()# Print resultsprint(f"Maximum value: {model.objVal}")print(f"x1 = {x1.x}")print(f"x2 = {x2.x}")print(f"x3 = {x3.x}")```运行该代码,得到的输出结果为:```Optimize a model with 2 rows, 3 columns and 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Coefficient statistics:Matrix range [1e+00, 1e+00]Objective range [2e+00, 7e+00]Bounds range [0e+00, 0e+00]RHS range [4e+00, 6e+00]Found heuristic solution: objective 9.0000000Presolve time: 0.00sPresolved: 2 rows, 3 columns, 6 nonzerosVariable types: 0 continuous, 3 integer (0 binary)Root relaxation: objective 1.500000e+01, 2 iterations, 0.00 secondsNodes | Current Node | Objective Bounds | WorkExpl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time0 0 15.00000 0 1 9.00000 15.00000 66.7% - 0sH 0 0 14.0000000 15.00000 7.14% - 0s0 0 15.00000 0 1 14.00000 15.00000 7.14% - 0sExplored 1 nodes (2 simplex iterations) in 0.03 secondsThread count was 4 (of 4 available processors)Solution count 2: 14 9Optimal solution found (tolerance 1.00e-04)Best objective 1.400000000000e+01, best bound 1.400000000000e+01, gap 0.0000%Maximum value: 14.0x1 = 2.0x2 = 4.0x3 = 0.0```经过Gurobi的求解,我们得到了最大值为14,同时x_1=2, x_2=4, x_3=0时取到最优值。
运筹学实践报告
运筹学实践报告运筹学实践报告运筹学,是使用数学、计算机科学和工程技术等理论和方法,对复杂的问题进行优化、创新和预测的学科。
在现代经济、科学、工程、管理等领域中,都有着广泛的应用。
本文将介绍本人在对车辆运输问题应用运筹学的实践报告。
1. 问题的背景本次实践是企业进行运输管理时遇到的问题。
该企业是一家以物流为主营业务的公司,为满足客户的需求,要将所需的货物从地点A运输到地点B。
企业的运输车辆比较多,在保证货物安全的情况下,如何最大化运输效益,成为了他们的难点之一。
2. 运筹学方法的应用为了解决以上问题,本人运用了运筹学中的方法。
首先,需要对问题进行数学建模,得到运输成本的数学模型。
其次,使用数学模型进行求解,得出运输最优方案,并对模型进行模拟验证。
最后,将模型应用在实际中,达到优化运输的目的。
2.1 数学建模车辆运输成本的大小与许多因素有关,包括路线长度、车速、用油量、车辆负载、维护费用等。
为了简化模型,考虑以下因素:车辆数、路线长、油量、维护费用。
我们用C表示总运输成本,F1表示油量费用,F2表示维护费用,N表示车辆数,L表示路线长,则C可表示为:C=F1+F2F1=a*L F2=b*L*Na、b为系数。
2.2 模型求解将模型输入到运筹算法中,使用 MATLAB 软件编写实现,结果如下:当车辆数为 1 时,C=227;当车辆数为 2 时,C=212;当车辆数为 3 时,C=208;当车辆数为 4 时,C=206。
由此可知,当车辆数为4时,运输成本最小。
2.3 模拟验证为了验证模型的可靠性,我使用 ArcGIS 出租车数据进行了模拟验证。
结果表明,运输成本减少了近20%,证明该模型的可行性和有效性。
3. 实际应用将该模型应用于实际车辆运输管理中,达到了优化成本的目的。
在相应的平台上,对可利用资源进行优化配送,实现了成本控制和资源优化的目标。
4. 总结运筹学在车辆运输管理中的应用,大大提高了运输效率,使企业在保证货物安全的同时降低成本。
运筹学实践教学报告范文(3篇)
第1篇一、引言运筹学作为一门应用数学分支,广泛应用于经济管理、工程技术、军事决策等领域。
本报告旨在通过运筹学实践教学,验证理论知识在实际问题中的应用效果,提高学生的实践能力和创新能力。
以下是对本次实践教学的总结和反思。
二、实践教学内容1. 线性规划问题本次实践教学选择了线性规划问题作为研究对象。
通过建立线性规划模型,我们尝试解决生产计划、资源分配等实际问题。
- 案例一:生产计划问题某公司生产A、B两种产品,每单位A产品需消耗2小时机器时间和3小时人工时间,每单位B产品需消耗1小时机器时间和2小时人工时间。
公司每天可利用机器时间为8小时,人工时间为10小时。
假设A、B产品的利润分别为50元和30元,请问如何安排生产计划以获得最大利润?- 建模:设A产品生产量为x,B产品生产量为y,目标函数为最大化利润Z = 50x + 30y,约束条件为:\[\begin{cases}2x + y \leq 8 \\3x + 2y \leq 10 \\x, y \geq 0\end{cases}\]- 求解:利用单纯形法求解该线性规划问题,得到最优解为x = 3,y = 2,最大利润为240元。
- 案例二:资源分配问题某项目需要分配三种资源:人力、物力和财力。
人力为50人,物力为100台设备,财力为500万元。
根据项目需求,每种资源的需求量如下:- 人力:研发阶段需20人,生产阶段需30人;- 物力:研发阶段需30台设备,生产阶段需50台设备;- 财力:研发阶段需100万元,生产阶段需200万元。
请问如何合理分配资源以满足项目需求?- 建模:设人力分配量为x,物力分配量为y,财力分配量为z,目标函数为最大化总效用U = x + y + z,约束条件为:\[\begin{cases}x \leq 20 \\y \leq 30 \\z \leq 100 \\x + y + z \leq 500\end{cases}\]- 求解:利用线性规划软件求解该问题,得到最优解为x = 20,y = 30,z = 100,总效用为150。
运筹学实验报告
运筹学实验报告一、实验名称线性规划问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
②掌握利用计算机软件求解线性规划最优解的方法。
2、实验任务①结合已学过的理论知识,建立正确的数学模型;②应用运筹学软件求解数学模型的最优解③解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:5、试验体会或心得通过上机实践,基本上学会使用软件求解运筹学中常见的数学模型。
学会了对具体方法与模型的学习,在分析问题,设置变量是要有清晰的思路。
对问题的分析、建模,锻炼了我思考能力,同时提高了分析和建模的能力。
认识到了运筹学在经营管理中作为提高决策水平的方法和工具的作用,了解了运筹学在分析与解决实际问题过程中的基本思想和基本思路,更好的铺垫了以后的学习。
运筹学模型的建立与求解,是对实际问题的概括与提炼,是对实际问题的数学解答。
而通过本次的实验,我也深刻的体会到这一点。
将错综复杂的实例问题抽象概括成数学数字,再将其按要求进行求解得到结果,当然还有对结果的检验与分析也是不可少的。
在这一系列的操作过程中,不仅可以体会到数学问题求解的严谨和规范,同时也有对运筹学解决问题的喜悦。
二、实验名称整数规划与运输问题1、实验目的:①学习建立数学模型的方法,并懂得区别运筹学中不同分支的数学模型的特点。
②掌握利用计算机软件求解最优物资调运方案的方法。
③掌握利用计算机软件求解整数规划的方法。
2、实验任务①结合已学过的理论知识,建立正确的数学模型;②应用运筹学软件求解数学模型的最优解③解读计算机运行结果,结合所学知识给出文字定性结论3、实验仪器设备:计算机4、实验步骤:5、试验体会或心得通过上机实践,基本上学会使用软件求解运筹学中常见的数学模型。
学会了对具体方法与模型的学习,在分析问题,设置变量是要有清晰的思路。
对问题的分析、建模,锻炼了我思考能力,同时提高了分析和建模的能力。
运筹学实验报告内容
运筹学实验报告内容班级:1103101班小组成员:王凤辉(110330210)王蕊(110330204)一.线性规划某公司用ABC三种设备生产甲乙两种产品,有关数据见下表,要求:确定获利最大的产品生产计划。
产品甲产品乙有效台时设备A 5 10 50 设备B 1 1 1 设备C 0 1 4 单件利润 1 3解:1.导入已知数据,确定目标单元格,可变单元格,约束条件。
2.调用规划求解模块,填写目标单元格、可变单元格、约束和选项。
保存规划求解结果3.运行得结果,如下。
二.运输问题某食品公司从三个加工厂A1、A2 、A3将其生产的糖果运往四个门市部B1、B2、B3、B4销售,各加工厂每天的生产量、各门市部每天的销售量和各加工厂运往各门市部每吨糖果的运价如下表所示,问:该食品公司应如何调运可使总运输费用最小?表1 产销平衡表销售B1B2B3B4产量点加工厂A1 3 11 3 10 7A2 1 9 2 8 4A37 4 10 5 9 销量 3 6 5 6解:步骤一:导入已知数据,输入相应公式。
步骤二:调用规划求解模块,填写目标单元格、可变单元格、约束和选项。
保存规划求解结果步骤三:点击确定,运行得结果。
如下。
步骤四:相关分析如下三.目标规划某化工厂生产两种用于轮船上的黏合剂A 和B。
这两种黏合剂的强度不同, 所需的加工时间也不同, 生产1 升的A 需要20 分钟, 生产1 升的B 需要25 分钟。
这两种黏合剂都以一种树脂作为原料, 1 升树脂可以制造1 升A, 或者1 升B。
树脂的保质期是2 周, 目前树脂的库存为300升。
已经正常工作下每周有5 个工作日, 每个工作日有8个工时, 工厂期望在未来两周达到以下目标:目标1: 保持工厂满负荷运转;目标2: 加班时间控制在20 工时以内;目标3: 至少生产100 升A;目标4: 至少生产120 升B;目标5: 使用完所有的树脂。
假设目标1 和目标2 的优先权为P1, 且重要程度相等; 目标3 和目标4 的优先权为P2, 且重要程度相等; 目标5 的优先权为P3, 建立目标规划模型并求解。
运筹学实验报告
运筹学实验报告导言运筹学是一门研究如何有效地进行决策、规划、控制和优化的学科。
它在不同领域中都有广泛应用,例如物流管理、生产调度、资源分配等。
本实验报告将介绍一个基于运筹学方法的实际案例,展示其在实践中的应用和效果。
问题描述我们选取了一个假设情景作为研究案例:一家电子公司正在考虑如何优化其供应链。
供应链的核心问题是如何在最小的时间和成本内将产品从制造商运送到最终客户手中。
该公司一直面临着供应链效率低下、库存过高等问题,因此需要进行优化。
方法选择为了解决供应链问题,我们选择了线性规划方法进行建模和求解。
线性规划是一种经典的运筹学方法,通过建立目标函数和约束条件来实现优化。
我们将考虑运输成本、库存成本和交货时间等因素,以最小化总成本为目标进行优化。
数据收集与分析首先,我们需要收集与供应链相关的数据,包括产品库存量、制造商的运输能力、客户的需求等信息。
通过对这些数据进行分析,我们可以获得对供应链瓶颈和优化潜力的洞察。
模型建立与求解根据数据分析的结果,我们可以建立数学模型来描述供应链的运作。
假设有n个制造商和m个客户,我们需要决策每个制造商向每个客户运送的产品数量。
我们定义决策变量x_ij表示制造商i 向客户j运送的产品数量。
通过设定合适的约束条件,如制造商的运输能力限制、客户的需求限制等,我们可以建立如下的线性规划模型:minimize ∑(c_ij * x_ij) for all i, jsubject to:∑(x_ij) <= supply_i for all i∑(x_ij) >= demand_j for all jx_ij >= 0 for all i, j其中c_ij表示从制造商i到客户j运输一个产品的成本,supply_i表示制造商i的运输能力,demand_j表示客户j的需求。
接下来,我们可以使用线性规划求解器对模型进行求解。
求解过程将得到最优的运输方案,包括每个制造商向每个客户运输的产品数量。
《运筹学》实验报告
《运筹学》实验报告专业:工商管理专业班级:11-2班:胡坤学号:8指导老师:雷莹前言第十一周、十二周,我们在雷莹老师的指导下,用计算机进行了有关运筹学的一系列实验。
本实验报告即是对这次试验的反馈。
本这次试验是为了帮助我们顺利完成有关《运筹学》课程容的学习。
在先期,雷老师带领我们进行了《运筹学》理论课程的学习,不仅使我们了解和掌握了运筹学的相关知识,而且让我们认识到运筹学的现实意义,认识到现代社会数学与人们生产、生活之间的紧密联系和对人们生产、生活的巨大促进作用。
然而,与此同时,现代社会同时是一个计算机时代,我们只拥有理论知识还不够,必须把理论知识和计算技术结合起来,这样才能进一步提高生产力。
我相信这也是老师要求我们做这次试验的目的和初衷。
在实验中,我们主要是利用WinQSB软件进行相关试验,根据实验指导书中详细给出的各个实验的基本步骤和容,独立完成各项实验。
本次实验中共包含4个实验,分别是线性规划实验、运输问题实验、整数规划实验,以及网络优化实验。
每个实验均与理论课中讲解的容相对应。
部分实验容用于使我们了解WinQSB软件的基本操作,而其它实验容要求我们能够根据给出的问题,进行分析、建模和求解。
通过完成各项实验任务,使我们得以巩固已有的理论课程学习容,为将来进一步的学习和实际应用打下基础。
线性规划实验通过对以下问题的分析,建立线性规划模型,并求解:某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D。
已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价分别见下表1和2。
该厂应如何安排生产,使利润收入为最大?表2实验报告要求(1)写出自己独立完成的实验容,对需要建模的问题,给出问题的具体模型;(2)给出利用WinQSB软件得出的实验结果;(3)提交对实验结果的初步分析,给出自己的见解;实验过程:一、建立模型设Ac是A产品中用c材料,同理得出Ap、Ah、Bc、Bp、Bh、Dc、Dp、Dh⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧≤++≤++≤++≤++≥++≤++≥++++++++++++++++=60Dh Bh Ah 100Dp Bp Ap 100Dc Bc Ac 5.0Bh Bp Bc Bp 25.0Bh Bp Bc Bc 25.0Ah Ap Ac Ap 5.0Ah Ap Ac Ac Dh Bh Ah 35-Dp Bp Ap 25-Dc Bc Ac 65-Dh Dp Dc 25Bh Bp Bc 35)(50 max )()()()()(H P C A A A z二、求解过程三、实验分析实验结果表明,在题目的要求下,该工厂只能生产A产品才能盈利,并且在使用c材料100个单位、p材料50个单位、h材料50个单位时,即生产200个单位的A产品时,才能获得最大利润,最大利润为500。
大学生运筹学实训报告范文
一、引言运筹学是一门应用数学的分支,它运用数学模型、统计方法和计算机技术等工具,对复杂系统进行优化和决策。
为了更好地理解和掌握运筹学的理论和方法,提高实际操作能力,我们开展了大学生运筹学实训。
以下是本次实训的报告。
二、实训目的1. 理解运筹学的基本概念、原理和方法;2. 学会运用运筹学解决实际问题;3. 提高团队协作和沟通能力;4. 培养独立思考和创新能力。
三、实训内容1. 线性规划(1)实训目的:通过线性规划实训,掌握线性规划问题的建模、求解和结果分析。
(2)实训内容:以生产问题为例,建立线性规划模型,运用单纯形法求解最优解。
2. 整数规划(1)实训目的:通过整数规划实训,掌握整数规划问题的建模、求解和结果分析。
(2)实训内容:以背包问题为例,建立整数规划模型,运用分支定界法求解最优解。
3. 非线性规划(1)实训目的:通过非线性规划实训,掌握非线性规划问题的建模、求解和结果分析。
(2)实训内容:以旅行商问题为例,建立非线性规划模型,运用序列二次规划法求解最优解。
4. 网络流(1)实训目的:通过网络流实训,掌握网络流问题的建模、求解和结果分析。
(2)实训内容:以运输问题为例,建立网络流模型,运用最大流最小割定理求解最优解。
5. 概率论与数理统计(1)实训目的:通过概率论与数理统计实训,掌握概率论与数理统计的基本概念、原理和方法。
(2)实训内容:以排队论为例,建立概率模型,运用排队论公式求解系统性能指标。
四、实训过程1. 组建团队,明确分工;2. 针对每个实训内容,查阅相关资料,了解理论背景;3. 根据实际问题,建立数学模型;4. 选择合适的算法,进行编程实现;5. 对结果进行分析,总结经验教训。
五、实训成果1. 理解了运筹学的基本概念、原理和方法;2. 掌握了线性规划、整数规划、非线性规划、网络流和概率论与数理统计等运筹学工具;3. 提高了团队协作和沟通能力;4. 培养了独立思考和创新能力。
六、实训心得1. 运筹学是一门实用性很强的学科,它可以帮助我们解决实际问题,提高工作效率;2. 在实训过程中,我们要注重理论联系实际,将所学知识应用于实际问题的解决;3. 团队协作和沟通能力在实训过程中至关重要,要学会与团队成员共同进步;4. 实训过程中,我们要敢于尝试,勇于创新,不断提高自己的实践能力。
管理运筹学实验报告(三次实验)
湖北科技学院管理运筹学实验报告年级 10级专业工商管理学生姓名学号指导教师吴睿经济与管理学院工商管理系2012年3月《管理运筹学》实验报告(一)实验时间:实验地点:经管院实验室专业班级:10工管姓名:学号:成绩:【实验内容】线性规划问题的计算机求解【实验目的】1、掌握线性规划问题的计算机求解方法;2、通过“管理运筹学”软件(2.5版)等教学软件的应用,深化和拓展学生对线性规划理论知识的认识,提高学生的科学素养,培养学生利用计算机技术解决实际问题的能力。
【实验要求】1、记录实验结果、填写实验结论、保存实验输出结果,课后打印上交;2、填写实验报告按时保质保量上交。
【实验过程】(一)安装并了解“管理运筹学”2.0版软件(参阅教材P434的附录说明);(二)实验分组及内容安排A组(学号为单号者用):1、第二章例1中(P10、28)若单位产品Ⅰ可获利80元,单位产品Ⅱ可获利20元,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= 。
2、第二章例2中(P16、32)若A,B两种原料至少为450吨,而公司共有650个加工工时,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= ;约束条件1、2、3的对偶价格分别为、、。
3、第二章习题第8题(1)中(参见P26、35)若某公司准备把160万元投资到基金A和B,而其他条件不变,则用计算机软件求得此时总的投资风险指数为,购买基金A和B的数量分别为和。
4、请用计算机软件求解第四章习题6(P59)中的问题。
可求得应该每天安排生产雏鸡饲料、蛋鸡饲料、肉鸡饲料各吨、吨、吨,所获最大利润为百元。
B组(学号为双号者用):1、第二章例1中(P10、28)若原料A的资源限制为500kg,原料B的资源限制为200kg,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= 。
2、第二章例2中(P16、32)若每吨原料A的价格为1万元,每吨原料B的价格为4万元,其他条件不变,则用计算机软件求得目标函数最优值为,最优解为X1= ,X2= ;约束条件1、2、3的对偶价格分别为、、。
运筹学实验报告
运筹学实验报告运筹学实验报告2实验内容:线性规划问题的建模和求解。
“炼油厂生产计划安排”,“长征医院的护士值班计划”两题目任选其一,每个小组最多3名同学,共同完成实验报告。
一、问题提出长征医院是长宁市的一所区级医院,该院每天各时间区段内需求的值班护士数如表1所示.该医院护士上班分五个班次,每班8h,具体上班时间为第一班2:00~10:00,第二班6:00~14:00,第三班10:00~18:00,第四班14:00~22:00,第五班18:00~2:00(次日).每名护士每周上5个班,并被安排在不同日子,有一名总护士长负责护士的值班安排计划.值班方案要做到在人员或经济上比较节省,又做到尽可能合情合理.下面是一些正在考虑中的值班方案:方案1 每名护士连续上班5天,休息2天,并从上班第一天起按从上第一班到第五班顺序安排.例如第一名护士从周一开始上班,则她于周一上第一班,周二上第二班,……,周五上第五班;另一名护士若从周三起上班,则她于周三上第一班,周四上第二班,……,周日上第五班,等等.方案2 考虑到按上述方案中每名护士在周末(周六、周日)两天内休息安排不均匀.于是规定每名护士在周六、周日两天内安排一天、且只安排一天休息,再在周一至周五期间安排4个班,同样上班的五天内分别顺序安排5个不同班次.在对第1、2方案建立线性规划模型并求解后,发现方案2虽然在安排周末休息上比较合理,但所需值班人数要比第1方案有较多增加,经济上不太合算,于是又提出了第3方案.方案3 在方案2基础上,动员一部分护士放弃周末休息,即每周在周一至周五间由总护士长给安排三天值班,加周六周日共上五个班,同样五个班分别安排不同班次.作为奖励,规定放弃周末休息的护士,其工资和奖金总额比其他护士增加a%.根据上述,帮助长征医院的总护士长分析研究:(x)对方案1、2建立使值班护士人数为最少的线性规划模型并求解;(b)对方案3,同样建立使值班护士人数为最少的线性规划模型并求解,然后回答a的值为多大时,第3方案较第2方案更经济;二、问题简述从该医院各时间段护士值班表可看出:五个时间段所需护士人数分别为18,20,19,17,12。
运筹学实验报告(题目)
运筹学实验报告(题目)运筹学实验报告指导老师:姓名:学号:班级:目录例题实验一人力资源分配问题实验二配料问题实验三套裁下料问题实验四成本收益平衡问题实验五投资问题例题实验目的:1掌握Excel并熟悉它的使用环境。
2、准备好系统中的Office安装盘,然后选择【工具】|【加载宏】菜单命令,在弹出的【加载宏】对话框中选择【规划求解】3、在Excei中,对已有的问题进行规划求解。
实验内容:1、对下面线性规划问题进行求解;max z =3x1+x2+2x312x1+3x2+6x3+3x4=98x1+x2-4x3+2x5=103x1-x6=0Xj>=0 j=1,2,3,4,5,6一、第一步:打开Excel菜单栏中的工具菜单,出现一个子菜单,单击“规划求解”选项。
第二步:出现规划求解参数的对话框。
该对话框用来输入规划的目标函数,决策变量和约束条件。
第三步:在规划求解参数对话框内填写参数所在的地址如下:在设置目标单元格一栏内,填入表示目标函数值的单元格地址B16,并选择最大值选项;在可变单元格一栏内,填入决策变量的单元格地址B14:C14。
第四步:单击添加按钮,出现添加约束对话框,在单元格引用位置一栏内,填入约束条件左边的值所在的单元格地址B19:B21;选择<=;在约束值一栏内,填入约束条件左边的值的单元格地址D19:D21。
选择确定,得到一个填写完毕的规划求解参数对话框第五步:单击对话框内的选项按钮,出现规划求解选项对话框。
该对话框用来输入规划求解运算中的有关参数,例如是否线性模型、是否假定非负、迭代次数、精度等。
大部分参数已经按一般要求设置好了,只需设置是否采用线性模型,以及是否假定非负。
在本实验中,选择“采用线性模型”;选择“假定非负”。
然后就进行规划求解。
1.2(a)自变量X1 X2 X3 X4 X5 X6约束条件系数12 3 6 3 0 0 9 =8 1 -4 0 2 0 10 =3 0 0 0 0 -1 0 = 目标函数系数 3 1 2 0 0 0 3解0 0 1.5 0 8 0所以该问题有最优解:X=(0,0,1.5,0,8,0)实验(一)人力资源分配问题实验目的:1、根据题目要求,在有限的人力资源约束下进行建模。
运筹学实验报告
数学与计算科学学院
实验报告
实验项目名称Lingo、MATLAB关于线性问题的求解所属课程名称运筹学
实验类型综合
实验日期2014年10月12日
班级统计1201班
学号201247100126
姓名杨赛波
附录1:源程序
附录2:实验报告填写说明
1.实验项目名称:要求与实验教学大纲一致.
2.实验目的:目的要明确,要抓住重点,符合实验教学大纲要求.
3.实验原理:简要说明本实验项目所涉及的理论知识.
4.实验环境:实验用的软、硬件环境.
5.实验方案(思路、步骤和方法等):这是实验报告极其重要的内容.概括整个实验过程.
对于验证性实验,要写明依据何种原理、操作方法进行实验,要写明需要经过哪几个步骤来实现其操作.对于设计性和综合性实验,在上述内容基础上还应该画出流程图、设计思路和设计方法,再配以相应的文字说明.对于创新性实验,还应注明其创新点、特色. 6.实验过程(实验中涉及的记录、数据、分析):写明具体实验方案的具体实施步骤,包括实验过程中的记录、数据和相应的分析.
7.实验结论(结果):根据实验过程中得到的结果,做出结论.
8.实验小结:本次实验心得体会、思考和建议.
9.指导教师评语及成绩:指导教师依据学生的实际报告内容,给出本次实验报告的评价.。
运筹学实验报告
运筹学实验报告运筹学实验报告一、引言运筹学是一门研究如何有效地进行决策和规划的学科。
它利用数学、统计学和计算机科学的方法,帮助解决各种实际问题。
本次实验旨在通过实际案例,探讨运筹学在实践中的应用。
二、问题描述我们选择了一个物流配送问题作为本次实验的研究对象。
假设有一家电商公司,需要将一批商品从仓库分配给不同的客户。
每个客户的需求量和距离仓库的距离都不同。
我们的目标是找到一种最优的配送方案,以最小化总配送成本。
三、数学模型为了解决这个问题,我们采用了整数规划模型。
首先,我们定义了以下变量:- Xij:表示将商品从仓库i分配给客户j的数量- Di:表示仓库i的供应量- Dj:表示客户j的需求量- Cij:表示将商品从仓库i分配给客户j的单位运输成本然后,我们建立了以下约束条件:1. 每个仓库的供应量不能超过其库存量:∑Xij ≤ Di2. 每个客户的需求量必须得到满足:∑Xij ≥ Dj3. 分配的商品数量必须是非负整数:Xij ≥ 0最后,我们的目标是最小化总配送成本:Minimize ∑Cij*Xij四、实验步骤1. 收集数据:我们收集了仓库的库存量、客户的需求量和单位运输成本的数据,并进行了整理和清洗。
2. 建立数学模型:根据收集到的数据,我们建立了上述的整数规划模型。
3. 求解模型:我们使用了运筹学软件对模型进行求解,并得到了最优的配送方案和总配送成本。
4. 分析结果:我们对结果进行了分析,比较了不同方案的优劣,并提出了一些建议。
五、实验结果与分析经过运筹学软件的求解,我们得到了最优的配送方案和总配送成本。
通过与其他方案的比较,我们发现该方案在成本上具有明显的优势。
同时,我们还发现一些仓库和客户之间的距离较远,可能会导致运输时间和成本增加。
因此,我们建议公司可以考虑优化仓库和客户的布局,以减少运输成本。
六、实验总结本次实验通过运筹学的方法,解决了一个物流配送问题。
我们通过建立数学模型、求解模型和分析结果,得出了最优的配送方案和总配送成本。
运筹学实验报告(1)
运筹学实验报告一、实验目的:通过实验熟悉单纯形法的原理,掌握matlab循环语句的应用,提高编程的能力和技巧,体会matlab在进行数学求解方面的方便快捷。
二、实验环境:Matlab2012b,计算机三、实验内容(包含参数取值情况):构造单纯形算法解决线性规划问题Min z=cxs.t. Ax=bxj>=0,j=1,…,n函数功能如下:function[S,val]=danchun(A1,C,N)其中,S为最优值,Val为最优解,A1为标准形式LP问题的约束矩阵及最后一列为资源向量(注:资源向量要大于零),A1=[A+b];C是目标函数的系数向量,C=c;N为初始基的下标(注:请按照顺序输入,若没有初始基则定义N=[])。
先输入A1,C,N三个必要参数,然后调用danchun(A1,C,N)进行求解。
在此函数中,首先判断N的长度是否为空,若为空,则flag=1,进入初始解问题的迭代求值,添加辅助问题,构建单纯形表,求g所对应的RHS值,若其>0,则返回该问题无解,若其=0,则返回A1,C,N三个参数,继续构造单纯形表求解。
A1为经过变换后的系数及资源向量,C为单纯形表的第一行,N为经过辅助问题求解之后的基的下标。
否则,直接构建单纯形表,对该问题进行求解,此时flag=2,多次迭代后找到解。
另外,若在大于零的检验数所对应的系数均小于零时,会显示“此问题无界”。
若找到最优解和最优值时,会输出“val”和“S=”以及具体数值。
四、源程序(在matlab中输入edit后回车,写在.M文件中,并保存为danchun.M)function[S,val]=danchun(A1,C,N)if(length(N)==0)gN=zeros(1,length(A1(:,1)));gC=[-C,gN,0];%原文题的检验数的矩阵G=[zeros(1,length(C)),-ones(1,length(gN)),0];val=zeros(1,length(C));%val为最优解;for i=(length(C)+1):length(C)+length(A1(:,1))%生成基变量gN(i-length(C))=i;endNn=gN;%%%%%%%ll=zeros(1,length(N));%比值最小原则%生成除了最上端两行的表的矩阵gb=A1(:,length(C)+1);A1(:,length(C)+1)=[];l=zeros(length(gN),length(gN));gA=[A1,l,gb];for i=1:length(gb)gA(i,gN(i))=1;endfor i=1:length(gN)%J为基本可行基所对应的检验数J(i)=G(gN(i));endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);endendflag=1;elseflag=2;A=A1;Z=[-C,0];%单纯形表的第一行val=zeros(1,length(C));%val为最优解;ll=zeros(1,length(N));%比值最小原则end%%初始解问题while flag==1for i=1:length(gN)%J为基本可行基所对应的G的检验数J(i)=G(gN(i));JZ(i)=Z(gN(i));%JZ为基本可行基所对应的Z的检验数endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);Z=Z-(JZ(i)/gA(i,gN(i)))*gA(i,:);endG1=G;%G1为检验数G1(:,length(G1))=[];D=max(G1);%找到检验数的最大值if(D<=0)%检验数都小于0if(G(length(G))>=1)disp('此情况无解');flag=0;elseif(G(length(G))>=0)for i=1:length(gN)if(max(gN)<=length(A1(1,:)));flag=2;for j=1:length(Nn)a=Nn(1);gA(:,a)=[];Z(a)=[];endA=gA;N=gN;break;endendendendelse%检验数大于0for i=1:length(G)if(G(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(gN)if(gA(j,i)>0)ll(j)=gA(j,length(G))/gA(j,i);%求比值elsell(j)=10000;endendd=min(ll);for k=1:length(ll)%找到进基和离基if(ll(k)==d)gN(k)=i;gA(k,:)=gA(k,:)/gA(k,i);for m=1:k-1gA(m,:)=-(gA(m,i)/gA(k,i))*gA(k,:)+gA(m,:);endfor n=k+1:length(ll)gA(n,:)=-(gA(n,i)/gA(k,i))*gA(k,:)+gA(n,:);endbreak;endendendendendendwhile(flag==2)for i=1:length(N)%J为基本可行基所对应的检验数J(i)=Z(N(i));endfor i=1:length(N)%找到基本可行基的检验数,将其赋值为0if(J(i)~=0)Z=Z-(J(i)/A(i,N(i)))*A(i,:);endendZ1=Z;%Z1为检验数Z1(:,length(Z1))=[];D=max(Z1);%找到检验数的最大值if(D<=0)%检验数都小于0disp('已找到最优解和最优值')for i=1:length(N)val(N(i))=A(i,length(Z));endS=Z(length(Z));disp('val');disp(val);flag=0;else%检验数大于0for i=1:length(Z)if(Z(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(N)if(A(j,i)>0)ll(j)=A(j,length(Z))/A(j,i);%求比值elsell(j)=10000;endendd=min(ll);if(d==10000)disp('此问题无界')flag=0;break;endfor k=1:length(ll)%找到进基和离基if(ll(k)==d)N(k)=i;A(k,:)=A(k,:)/A(k,i);for m=1:k-1A(m,:)=-(A(m,i)/A(k,i))*A(k,:)+A(m,:);endfor n=k+1:length(ll)A(n,:)=-(A(n,i)/A(k,i))*A(k,:)+A(n,:);endbreakendendendendendend五、运行结果与数据测试参考例题:例1:Min z=3x1+x2+x3+x4s.t. -2x1+2x2+x3=43x1+2x+x4=6Xj>=0,j=1,2,3,4在workspace中写入,形式如下:>> A=[-2 2 1 0 43 1 0 1 6]A =-2 2 1 0 43 1 0 1 6>> C=[3 1 1 1]C =3 1 1 1>> N=[3 4]N =3 4>> danchun(A,C,N)已找到最优解和最优值val0 2 0 4ans =6例2:初始解问题Min z=5x1+21x3s.t. x1-x2+6x3-x4=2x1+x2+2x3-x5=1xj>=0,j=1,…,5在workspace中写入,形式如下:>> A=[1 -1 6 -1 0 21 12 0 -1 1]A =1 -1 6 -1 0 21 12 0 -1 1 >> C=[5 0 21 0 0]C =5 0 21 0 0>> N=[]N =[]>> danchun(A,C,N)已找到最优解和最优值val0.5000 0 0.2500 0 0ans =7.7500六、求解实际问题(即解决附件中的实验题目)实验题目列出下列问题的数学模型,并用你自己的单纯形算法程序进行计算,最后给出计算结果。
运筹学综合实验报告
《运筹学》实验报告实验名称:综合实践运用班级:组员:学院:完成时间:2011年12月指导教师:1 实验目的1、掌握运筹学概念、原理、模型以及实际应用意义。
2、理解掌握运筹学综合实践应用。
2 实验内容案例B4童心玩具厂下一年度的现金流(万元)如表中所示,表中负号表示2该月现金流出大于流入,为此该厂需要借款。
借款有两种方式:一是于上一年末借一年期贷款,一次得全部贷款额,从一月底起每月还息1%,于12月归还本金和最后一次利息;二是得到短期贷款,每月出获得,于月底归还,月息 1.5%。
当该厂有多余现金时,可短期存款,月初存入,月末取出,月息0.4%。
问该厂应如何进行存款操作,既能弥补可能出现的负现金流,又可以使年末现金总量最大?3 实验具体方法及步骤3.1 案例分析从案例中可以知道,该厂全年可以进行的借贷次数不限,借贷类型有两种,分别是长贷和短贷,为保证厂方的现金充足,可以在借贷了长贷的情况下依据实际情况借贷短贷。
其中长贷(用y表示)只借贷一次,在年初发生,以后每个月都将要还长贷的0.01%y的利息,总共要还12个月,还息日期为每个月的月底,也即是下一个月份的月初还息;而每个月还可以进行短期贷款(用wi表示),可贷款12个月,并于月底也就是下个月出还段贷款息1.5%wi,也就是说每个月的月初将进行一次短贷贷款,并还上一个月的短贷息 1.5%wi;而每个月若是有现金余留,可将现金(用zi表示)存款,利息为0.4%zi,总共为12个月综上可知,第一个月现金余额须为长贷额+短贷额-月底存款额要大于第一个月的现金需求额,从第二个月开始:上一个月的存款本息+本月贷款额-长贷利息-上个月短贷本息-月底存款额要大于本月的现金需求3.2 建立模型设长期贷款为y,wi表示第i个月的短期贷款额,zi为第i个月的短期存款额,i=1,2,3,4,5,6,7,8,9,10,11,12,目标函数为年底的最多现金额Max Z(目标函数为第12个月份所遗留的现金额,即求第12个月份的现金余额最大),其中约束条件共有12个,分别代表每个月份的现金约束,则线性模型可建立为:Max Z=(1+0.004)x12-(1+0.01)y-(1+0.015)w12S.t{y+w1-z1>=12 第1个月(1+0.004)z1-0.01y-(1+0.015)w1-z2+w2>=10 第2个月(1+0.004)z2-0.01y-(1+0.015)w2-z3+w3>=8 第3个月(1+0.004)z3-0.01y-(1+0.015)w3-z4+w4>=10 第4个月(1+0.004)z4-0.01y-(1+0.015)w4-z5+w5>=4 第5个月(1+0.004)z5-0.01y-(1+0.015)w5-z6+w6>=-5 第6个月(1+0.004)z6-0.01y-(1+0.015)w6-z7+w7>=7 第7个月(1+0.004)z7-0.01y-(1+0.015)w7-z8+w8>=2 第8个月(1+0.004)z8-0.01y-(1+0.015)w8-z9+w9>=-15 第9个月(1+0.004)z9-0.01y-(1+0.015)w9-z10+w10>=-12 第10个月(1+0.004)z10-0.01y-(1+0.015)w10-z11+w11>=7 第11个月(1+0.004)z11-0.01y-(1+0.015)w11-z12+w12>=-45 第12个月}该案例线性模型使用LINGO软件进行求解,编辑如下程序:求解得到结果如图所示,为:结果解析:本实验结果为小组3成员各自独立完成并且结果一致所得。
运筹学实训实验报告
一、实验背景运筹学是一门应用数学的分支,它运用数学模型和算法来解决各种优化问题。
随着现代科技的发展,运筹学在各个领域的应用越来越广泛,如生产管理、物流运输、资源分配等。
为了提高学生运用运筹学知识解决实际问题的能力,我们开展了运筹学实训实验。
二、实验目的1. 熟悉运筹学的基本概念和常用方法;2. 掌握线性规划、整数规划、运输问题、目标规划等运筹学模型;3. 学会运用计算机软件解决实际问题;4. 培养学生的团队合作精神和创新意识。
三、实验内容本次实验主要包括以下内容:1. 线性规划:以生产计划问题为例,建立数学模型,并运用Excel规划求解器求解最优解。
2. 整数规划:以人员排班问题为例,建立数学模型,并运用Lingo软件求解最优解。
3. 运输问题:以物流配送问题为例,建立数学模型,并运用Lingo软件求解最优解。
4. 目标规划:以投资组合问题为例,建立数学模型,并运用Lingo软件求解最优解。
四、实验步骤1. 线性规划实验(1)问题分析:某企业需要生产甲、乙两种产品,已知生产甲、乙两种产品所需的原料、劳动力及设备等资源消耗量,以及产品的售价和利润。
(2)模型建立:根据问题分析,建立线性规划模型,目标函数为最大化利润,约束条件为资源消耗量不超过限制。
(3)求解:运用Excel规划求解器求解最优解。
2. 整数规划实验(1)问题分析:某公司需要安排员工值班,要求每天至少有3名员工值班,且员工值班时间不能超过一周。
(2)模型建立:根据问题分析,建立整数规划模型,目标函数为最小化员工值班成本,约束条件为员工值班时间不超过限制。
(3)求解:运用Lingo软件求解最优解。
3. 运输问题实验(1)问题分析:某物流公司需要将货物从A、B两个仓库运送到C、D两个销售点,已知各仓库的货物量、各销售点的需求量以及运输成本。
(2)模型建立:根据问题分析,建立运输问题模型,目标函数为最小化运输成本,约束条件为各仓库的货物量不超过需求量。
运筹学实训报告范文模板
一、实习概况1. 实习时间:20XX年X月至20XX年X月2. 实习地点:[实习单位名称]3. 实习目的:通过本次运筹学实训,加深对运筹学基本理论和方法的理解,提高解决实际问题的能力,培养团队协作精神。
二、实习内容1. 实训课程概述:本次实训主要围绕运筹学的核心内容展开,包括线性规划、整数规划、网络流、非线性规划、决策分析等。
2. 实训项目:(1)线性规划问题建模与求解(2)整数规划问题建模与求解(3)网络流问题建模与求解(4)非线性规划问题建模与求解(5)决策分析案例研究三、实训过程1. 线性规划问题建模与求解(1)问题描述:以某企业生产计划问题为例,建立线性规划模型,求解最优生产方案。
(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。
(3)求解方法:运用单纯形法进行求解。
(4)结果分析:比较不同方案的成本和产量,得出最优生产方案。
2. 整数规划问题建模与求解(1)问题描述:以某企业投资组合优化问题为例,建立整数规划模型,求解最优投资方案。
(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。
(3)求解方法:运用分支定界法进行求解。
(4)结果分析:分析不同投资组合的风险和收益,得出最优投资方案。
3. 网络流问题建模与求解(1)问题描述:以某物流公司运输调度问题为例,建立网络流模型,求解最优运输方案。
(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。
(3)求解方法:运用最大流最小割定理进行求解。
(4)结果分析:分析不同运输路径的成本和时间,得出最优运输方案。
4. 非线性规划问题建模与求解(1)问题描述:以某工厂生产优化问题为例,建立非线性规划模型,求解最优生产方案。
(2)模型建立:根据实际问题,确定决策变量、目标函数和约束条件。
(3)求解方法:运用拉格朗日乘数法进行求解。
(4)结果分析:分析不同生产方案的成本和产量,得出最优生产方案。
5. 决策分析案例研究(1)问题描述:以某企业新产品研发项目为例,运用决策树法进行决策分析。
运筹学实践报告
运筹学实践报告
运筹学是一门涉及数学、统计学和计算机科学等多学科的学科,其目的在于优化决策和资源利用。
本次实践报告将介绍我们在一家生产型企业中应用运筹学的情况。
首先,我们通过对企业生产线的调研,发现了一些生产效率低下的问题。
我们使用线性规划模型对生产过程进行建模,优化了生产线的安排和人员的调配。
这些优化方案使得工厂的生产率提高了20%,经济效益明显。
其次,我们使用模拟方法对企业的库存管理进行优化。
我们建立了一个模拟模型来模拟不同库存管理策略的效果。
结果显示,采用合适的库存管理策略可以减少库存的数量和成本,并且可以提高生产效率。
最后,我们使用了运输问题来解决企业的物流问题。
我们使用整数规划方法来优化企业的货物运输方案,并确定了最优的运输路径和运输量。
我们的运输方案不仅降低了企业的运输成本,而且还提高了整体的运输效率。
在这份实践报告中,我们介绍了运筹学在生产、库存管理和物流等方面的应用。
这些优化方案通过数学建模和计算机模拟,帮助企业更好地利用资源,提高生产效率和经济效益。
- 1 -。
运筹学实践教学报告模板(3篇)
第1篇一、引言运筹学作为一门应用广泛的学科,其核心在于运用数学模型和算法解决实际问题。
为了更好地理解和掌握运筹学的理论和方法,本次实践教学报告以XX项目为例,详细阐述运筹学在实际问题中的应用过程。
二、项目背景与目标1. 项目背景XX项目是XX公司为提高生产效率、降低成本而提出的一个优化问题。
公司现有生产线,由于设备老旧、工艺流程不合理等原因,导致生产效率低下,成本较高。
为了解决这一问题,公司决定运用运筹学方法进行生产线优化。
2. 项目目标通过运筹学方法,对XX项目生产线进行优化,实现以下目标:- 提高生产效率,降低生产周期;- 降低生产成本,提高企业经济效益;- 优化生产线布局,提高生产线柔性。
三、运筹学方法选择与应用1. 方法选择针对XX项目的特点,本次实践选择了以下运筹学方法:- 线性规划(Linear Programming,LP)- 整数规划(Integer Programming,IP)- 模拟退火算法(Simulated Annealing,SA)2. 方法应用(1)线性规划首先,根据XX项目实际情况,建立了线性规划模型。
模型中包含决策变量、目标函数和约束条件。
通过求解线性规划模型,得到了最优的生产方案,包括各设备的生产能力分配、生产顺序安排等。
(2)整数规划由于部分设备的生产能力为整数,因此采用整数规划方法对模型进行改进。
通过求解整数规划模型,进一步优化了生产方案,使得设备利用率达到最大化。
(3)模拟退火算法为了提高生产方案的鲁棒性,采用模拟退火算法对优化后的生产方案进行全局搜索。
通过模拟退火算法,得到了一组更加优化的生产方案,提高了生产线的柔性。
四、结果与分析1. 结果经过运筹学方法的应用,XX项目生产线优化取得了以下成果:- 生产效率提高了XX%;- 生产周期缩短了XX天;- 生产成本降低了XX%;- 生产线柔性得到了显著提高。
2. 分析(1)线性规划方法的应用使得生产线设备利用率得到最大化,从而提高了生产效率;(2)整数规划方法的应用确保了设备生产能力的合理分配,避免了生产过程中的资源浪费;(3)模拟退火算法的应用使得生产方案具有更好的鲁棒性,提高了生产线的柔性。
运筹学案例项目报告
工商管理中的运筹学问题—建模及求解项目报告摘要:本项目报告主要研究内容为工商管理中的一般线性规划问题建模;运输问题建模;目标规划问题建模;整数规划问题建模;网络图绘制,以及其管理运筹学软件求解及分析。
主要围绕几个不同类型的实例来进行建模,并详细分析其解题方法来深入研究这些运筹学问题。
前言:本次项目报告的目的是为了帮助我们顺利的完成对运筹学课程内容的学习,能够熟练地运用运筹学的知识对生活中遇到的问题进行建模以及求解。
在全书范围内选取五个建模的主要问题:一般线性规划问题建模;运输问题建模;目标规划问题建模;整数规划问题建模;网络图绘制来进行调查建模练习。
在实验中,我们首先自己对于问题进行建模处理,之后主要利用管理运筹学软件进行问题求解并对结果进行分析。
通过完成这些实验,我们达到了预期的结果,对于运筹学的建模过程及求解有了一个更深刻的理解,既巩固了之前学习的理论知识,又对于实际应用有了一个全面的理解,为以后的进一步学习和实际应用打下了基础。
1.工商管理中的一般线性规划问题建模与管理运筹学软件求解及分析研究内容:在生产或经营等管理工作中,需要经常进行计划或规划。
需要做到:在现有各项资源条件的限制下,如何确定方案,使预期目标达到最优:或为了达到预期目标,确定使资源消耗为最少的方案。
通过线性规划问题的计算机软件这一工具去求解线性规划问题及其灵敏度分析。
现在我们来研究线性规划在工商管理中的应用,解决工商管理中的实际问题。
1.1项目过程1.1.1一般线性规划实际问题的描述:美佳工厂要用三种原料1,2,3混合调配出三种不同规格的产品甲,乙,丙,已知产品的规格要求.产品的单价.每天能供应的原材料数量及原材料单价,分别见表1-1和表1-2。
该工厂该如何安排生产,使利润收入为最大?表1-11.1.2实际问题求解数学模型:1.1.2.1问题分析:我们的目标是要使利润最大,这类问题用数学语言表达,先根据问题要达到的目标选取适当的变量,问题的目标通过用变量的函数形式表示,对问题的限制条件用有关变量的等式或者不等式表达,当变量连续取值且目标函数和约束条件均为线性时,建立线性规划模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)设在从 2:00 开始个时段上班人数分别为 x1,x2,x3,x4,x5,x6, 目标函数:minz=x1+x2+x3+x4+x5+x6 约束条件:x1+x2>=10; x2+x3>=15; x3+x4>=25; x4+x5>=20; x5+x6>=18; x1+x6>=12; x1,x2,x3,x4,x5,x6>=0 (2)设在从 2:00 开始个时段上班 正式工人数分别为 x1,x2,x3,x4,x5,x6, 合同工人数 x1',x2',x3',x4',x5',x6', 目标函数:minz=(x1+x2+x3+x4+x5+x6)*8*10+(x1'+x2'+x3'+x4'+x5'+x6')*8*15 约束条件:x1+x2+x1'+x2'>=10; x2+x3+x2'+x3'>=15; x3+x4+x3'+x4'>=25; x4+x5 +x4'+x5'>=20; x5+x6+x5'+x6'>=18; x1+x6 +x1'+x6'>=12; x1,x2,x3,x4,x5,x6,x1',x2',x3,'x4',x5',x6'>=0
1
[x,fval] = linprog(f,A,b,Aeq,beq,vlb);
大连东软信息学院
1.3 得到结论
118400 为最优解
2Leabharlann 大连东软信息学院二、问题二
某医院昼夜 24 小时各时间段内需要的护士数量如下: 2:00~6:00 10 人; 6:00~10:00 15 人; 10:00~14:00 25 人; 14:00~18:00 20 人; 18:00~22:00 18 人; 22:00~2:00 12 人。护士分别于 2:00、 6:00、 10:00、 14:00、 18:00、 22:00 分六批上班,并连续工作 8 小时。试确定: (a)该医院至少应设多少名护士,才能满足值班需要; (b)若医院可聘用合同工护士,上班时间同正式工护士。若正式工护士报酬为 10 元 /小时,合同工护士为 15 元/小时,问医院聘用正式工和合同工护士各多少人成本 最低?
3
Aeq=[0 0 0 0 0 0 0 0 0 0 0 0]; beq=0; vlb=[0;0;0;0;0;0;0;0;0;0;0;0]; [x,fval] = linprog(f,A,b,Aeq,beq,vlb);
大连东软信息学院
2.3 得到结论
至少需要 53 名护士
4
大连东软信息学院
三、问题三
1.2 求解模型
f=[2800;4500;6000;7300;2800;4500;6000;2800;4500;2800]; A=[-1 -1 -1 -1 0 0 0 0 0 0;0 -1 -1 -1 -1 -1 -1 0 0 0;0 0 -1 -1 0 -1 -1 -1 -1 0;0 0 0 -1 0 0 -1 0 -1 -1]; b=[-15;-10;-20;-12]; Aeq=[0 0 0 0 0 0 0 0 0 0];` beq=0; vlb=[0;0;0;0;0;0;0;0;0;0];
2800
4500
6000
7300
租借仓库的合同每月初都可办理,每份合同具体规定租用面积数和期限。因此该厂可 根绝需要在任何一个月初办理租借合同,且每次办理时,可签一份,也可同时签若干份租 用面积和租借期限不同的合同,总的目标是使所付的租借费用最小。试根据上述要求,建 立一个线性规划的数学模型。
1.1 建立模型
设该厂第 i 月办理租借公司 组满 j 月租借面积为 xy 则该问题建立规划模型为 Minz=2800(x11+x21+x31+x41)+4500(x12+x22+x32)+6000(x13+x23)+7300x14 X11+x12+x13+x14=>15 X12+x13+x14+x21+x22+x23=>10 X13+x14+x22+x23+x31+x32=>20 X14+x23+x32+x41=>12 Xij=>0
如买进的杂粮当月到货,但需到下月才能卖出,且规定“货到付款”。公司希望本 季末库存为 2000 担,问应采取什么样的买进和卖出策略使 3 个月总的利润最大?
3.1 建立模型
设 xij 为 i 月买入,j 月卖出的粮食数量。Pj 为 j 月卖出粮食的价格。Maxz=∑3 j=1 pj∑j-1 1=0 ∑3 i=1 Qi ∑4 j=i+1 Qi 为 i 月买入粮食的价格 X01+x02+x03=x04=<5000 X02+x03+x04=x12+x13+x14=<5000 X03+x04+x13=x14+x23+x24=<5000 X04+x14+x24=x34=<5000
二、问题二............................................................................................................................................... 3 2.1 建立模型......................................................................................................................................... 3 2.2 求解模型........................................................................................................................................ 3 2.3 得到结论........................................................................................................................................ 3
四、问题四............................................................................................................................................... 8 4.1 建立模型......................................................................................................................................... 8 4.2 求解模型........................................................................................................................................ 8 4.3 得到结论........................................................................................................................................ 9
三、问题三............................................................................................................................................... 5 3.1 建立模型......................................................................................................................................... 5 3.2 求解模型........................................................................................................................................ 5 3.3 得到结论........................................................................................................................................ 6
2.2 求解模型
(1)c=[1;1;1;1;1;1]; A=[-1 0 0 0 0 -1;-1 -1 0 0 0 0;0 -1 -1 0 0 0;0 0 -1 -1 0 0;0 0 0 -1 -1 0;0 0 0 0 -1 -1]; b=[-10;-15;-25;-20;-18;-12]; vlb=[0;0;0;0;0;0]; aeq=[0 0 0 0 0 0];beq=0; [x,fval]=linprog(c,A,b,aeq,beq,vlb); (2) f=[80 80 80 80 80 80 120 120 120 120 120 120]; A=[-1 0 0 0 0 -1 -1 0 0 0 0 -1;-1 -1 0 0 0 0 -1 -1 0 0 0 0;0 -1 -1 0 0 0 0 -1 -1 0 0 0;0 0 -1 -1 0 0 0 0 -1 -1 0 0;0 0 0 -1 -1 0 0 0 0 -1 -1 0;0 0 0 0 -1 -1 0 0 0 0 -1 -1]; b=[-10;-15;-25;-20;-18;-12];