高等数学习题11答案(复旦大学出版社)

合集下载

高等数学复旦大学出版第三版上册课后答案习题全

高等数学复旦大学出版第三版上册课后答案习题全
其中
x x x x , 1 分别表示不超过 , 1 的最大整数. 20 20 20 20
14. 已知水渠的横断面为等腰梯形,斜角 =40°,如图所示.当过水断面 ABCD 的面积为定值 S0 时,求湿周 L(L=AB+BC+CD)与水深 h 之间的函数关系式,并指明其定义域.
106 106 106 件,库存数为 件,库存费为 0.05 元. x 2x 2x
3
106 0.05 设总费用为,则 y 10 x . 2x
13. 邮局规定国内的平信,每 20g 付邮资 0.80 元,不足 20 g 按 20 g 计算,信件重量不得超过 2kg, 试确定邮资 y 与重量 x 的关系. 解: 当 x 能被 20 整除,即 [
x
7. 证明: f ( x) 2 x 1 和 g ( x)
3
3
x 1 互为反函数. 2
证:由 y 2 x 1 解得 x
3
3
y 1 , 2
2
故函数 f ( x) 2 x 1 的反函数是 y
3
3
x 1 ( x R ) , 这与 g ( x) 2
3
x 1 是同一个函 2
3
又由 1 cos x 1 得 0 1 cos x 2 , 即 0 y 2 , 故可得反函数的定义域为 [0,2], 所以 , 函数 y 1 cos x, x [0, π] 的反函
3
数为 y arccos 3 x 1
(0 x 2) .
9. 判断下列函数在定义域内的有界性及单调性:
(2) f ( x) e
2 x
e 2 x sin( x) e 2 x e 2 x sin x (e 2 x e 2 x sin x) f ( x)

高数答案第11章

高数答案第11章

第十一章 曲线积分与曲面积分 (09级下学期用) § 1 对弧长的曲线积分 1设 L 关于x 轴对称,1L 表示L 在x 轴上侧的部分,当()y x f ,关于y 是偶函数时,()=⎰Lds y x f ,( B )()⎰1,L ds y x f C 。

()⎰-1,2L ds y x f D.ABC 都不对2、设L 是以点()()()()1,0,0,1,1,0,0,1--D C B A 为顶点的正方形边界,则⎰+Lyx ds =( C )A 。

24 D 。

223、有物质沿曲线L :()103,2,32≤≤===t t z t y t x 分布,其线密度为,2y =μ,则它的质量=m ( A )++1421dt t t t B 。

⎰++104221dt t t tC 。

⎰++1421dt t t D.⎰++1421dt t t t4.求,⎰Lxds 其中L 为由2,x y x y ==所围区域的整个边界解:,⎰Lxds =()22155121241111+-=++⎰⎰xdx dy yy 5.,ds y L⎰其中L 为双纽线)0)(()(222222>-=+a y x a y x解:原积分=()()222sin 4sin 442022'2441-==+=⎰⎰⎰a d ad r r r ds y L χππθθθθθ6.⎰+Lds y x ,22 其中L 为()022>=+a axy x原积分222cos 2a adt t a ==⎰π7.,2⎰Lds x 其中L 为球面2222a z y x =++与平面0=-y x 的交线解:将y x =代入方程2222a z y x =++得2222a z x =+于是L 的参数方程:ta z t a y t a x sin ,sin 2,cos 2===,又adt ds =原积分=⎰=ππ203222cos 2a adt t a 8、求均匀弧()0,sin ,cos ≤<∞-===t e z t e y t e x t t t 的重心坐标33,30===⎰∞-dt e M dt e ds tt,523cos 100==⎰∞-dt e t e Mx t t ,21,5100=-=z y§2 对坐标的曲线积分 一、选择题1。

高等数学复旦大学出版第三版课后答案

高等数学复旦大学出版第三版课后答案

206习题十1. 根据二重积分性质,比较ln()d D x y σ+⎰⎰与2[ln()]d D x y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形; (2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x +y =1与x +y =2之间,显然有图10-112x y ≤+≤从而 0l n ()x y ≤+<故有2l n ()[l n ()]x y x y+≥+ 所以 2l n ()d [l n ()]dD Dx yx y σσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2从而 ln(x +y )>1 故有2l n ()[l n ()]x y x y+<+207所以 2l n ()d [l n ()]dD Dx yx y σσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值: (1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}D I x y D x y x y σ==≤≤≤≤⎰⎰; (3)2222(49)d ,{(,)|4}D I x y D x y x y σ=++=+≤⎰⎰. 解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而 04xy ≤≤.从而22≤故2d D D σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而 d D σσ=⎰⎰ (σ为区域D 的面积),由σ=4 得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d D D D x y σσσ≤≤⎰⎰⎰⎰⎰⎰ 即220sin sin d d D D x y σσσ≤≤=⎰⎰⎰⎰ 而2πσ=所以2220sin sin d πD x y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以22229494()925x y x y ≤++≤++≤故 229d (49)d 25d D D D x y σσσ≤++≤⎰⎰⎰⎰⎰⎰ 即229(49)d 25Dx y σσσ≤++≤⎰⎰208而2π24πσ=⋅=所以2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值: (1)222(,{(,)|};D a D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,D a σ⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3Da a σ=⎰⎰ (2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰ 4.设f (x ,y )为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f (x ,y )为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x 0,y 0)为圆心,r 为半径的圆盘,所以当0r →时,00(,)(,),x y ξη→ 于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d D f x y σ⎰⎰化为累次积分: (1) {(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥209(3)2{(,)|,2,2}D x y y y x x x=≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yD y f x y y f x y x σ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y =x -2与抛物线x =y 2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y D yf x y y f x y x σ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y =2x 与曲线2y x=的交点(1,2),与x =2的交点为(2,4),曲线2y x=与x =2的交点为(2,1),区域D 可表示为22,1 2.y x x x≤≤≤≤图10-5210所以2221(,)d d (,)d xD xf x y x f x y y σ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序: (1) 2220d (,)d yyy f x y x⎰⎰; (2)e ln 1d (,)d xx f x y y ⎰⎰;(3) 1320d (,)d yy f x y x-⎰; (4)πsin 0sin2d (,)d xx x f x y y -⎰⎰;(5) 1233001d (,)d d (,)d yyy f x y y y f x y x -+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以2224002d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D :1e,0ln .x y x ≤≤≤≤如图10-7所示.图10-7D 亦可表示为:01,e e,y y x ≤≤≤≤211所以e ln 1e10ed (,)d d (,)d y xx f x y y y f x y x =⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y ≤≤≤≤-如图10-8所示.图10-8D 亦可看成D 1与D 2的和,其中 D 1:201,0,x y x ≤≤≤≤D 2:113,0(3).2x y x ≤≤≤≤-所以2113213(3)2001d (,)d d (,)d d (,)d yx x y f x y x x f x y y x f x y y --=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D 为:0π,sinsin .2xx y x ≤≤-≤≤如图10-9所示.图10-9D 亦可看成由D 1与D 2两部分之和,其中 D 1:10,2arcsin π;y y x -≤≤-≤≤ D 2:01,arcsin πarcsin .y y x y ≤≤≤≤-所以πsin 0π1πarcsin 0sin 12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx y yx f x y y y f x y x y f x y x ----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D 1与D 2两部分组成,其212中 D 1:01,02,y x y ≤≤≤≤D 2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤- 所以()1233230012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y --+=⎰⎰⎰⎰⎰⎰7.解:因为(,)Df x y d σ⎰⎰为一常数,不妨设(,)Df x y C =⎰⎰则有(,)x y f xy C =+从而有(,)()x y Df xy f uv C dudv =++⎰⎰而{}2(,)0 1.0D x y x y x =≤≤≤≤21(,)00()u x y f xy uv C dv du ⎡⎤∴=+⎰⎰+⎣⎦2120012u xy uv cv du ⎡⎤=+⎰+⎢⎥⎣⎦ 152012xy u cu du ⎡⎤=+⎰+⎢⎥⎣⎦163011123xy u cu ⎡⎤=++⎢⎥⎣⎦11123xy C =++18C ∴=故(,)18x y f xy ∴=+8. 计算下列二重积分:213(1) 221d d ,:12,;Dx x y D x y x y x≤≤≤≤⎰⎰ (2) e d d ,x yD x y ⎰⎰D由抛物线y 2 = x ,直线x =0与y =1所围;(3) d ,x y ⎰⎰D 是以O (0,0),A (1,-1),B (1,1)为顶点的三角形; (4) cos()d d ,{(,)|0π,π}D x y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx D x x x x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000ed d de d d e d()xx x y y yyyD xx y y x y y y==⎰⎰⎰⎰⎰⎰ 2111100ed (e 1)d e d d y x y y yy y y y y y y y ==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰ (3) 积分区域D 如图10-13所示.214图10-13D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxxx y x y x y x x --⎡==+⎢⎣⎰⎰⎰⎰⎰ 112300ππ1πd .2236x x x ==⋅=⎰ ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x x x x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224(1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d x x x⎰求不出来,故应改变积分次序。

高等数学(本科)第十一章课后习题解答

高等数学(本科)第十一章课后习题解答

习题11.11.回答下列问题.(1)何谓级数∑∞=1n n u 的前n 项部分和?何谓级数∑∞=1n n u 的收敛和发散?何谓收敛级数的和?【答】(1)∑∞=1n n u 的前n 项部分和是指(),...2,11==∑=n u S nk k n ;(2)∑∞=1n n u 收敛是指s S n n =∞→lim 存在,这时并称s 为∑∞=1n n u 的和;∑∞=1n nu发散是指n n S ∞→lim 不存在.(2)当公比q 取何值时,等比级数∑∞=-11n n aq 收敛?当公比q 取何值时,等比级数∑∞=-11n n aq发散?写出收敛时的和数.【答】(1)当1<q 时,∑∞=-11n n aq 收敛,且其和数为qas -=1; (2)当1≥q 时,∑∞=-11n n aq 发散.(3) 级数∑∞=1n n u 收敛的必要条件是什么?它是否也是充分条件.请举例说明.【答】(1)∑∞=1n n u 收敛的必要条件是0lim =∞→n n u ;(2)0lim =∞→n n u 不是∑∞=1n n u 收敛的充分条件.比如,01lim =∞→n n ,但∑∞=11n n发散.2.若级数()()()......2211+++++++n n b a b a b a 收敛,去掉括号之后的级数级数......2211+++++++n n b a b a b a 是否还收敛?它说明了什么? 【答】未必,比如()()() (1111111)+-++-+=-∑∞=-n n .3.把下列级数写成级数”“∑的形式.(1) ...5ln 5ln 5ln 32+++ ;【解】∑∞==+++1325ln ...5ln 5ln 5ln n n ;(2) (8)141211-+-+- ; 【解】()11211...8141211-∞=∑-=-+-+-n n n ;(3) ...001.0001.0001.03+++ ;【解】()nn 113001.0...001.0001.0001.0∑∞==+++;(4)...751531311+⨯+⨯+⨯. 【解】()()∑∞=+-=+⨯+⨯+⨯112121...751531311n n n . 4.根据级数收敛与发散的定义,判别下列级数的敛、散性.(1) (8)1614121++++;【解】nn 1.21...816141211∑∞==++++发散.(2)∑∞=⎪⎭⎫⎝⎛-2211ln n n; 【解】记()()n n n n n n n n u n 1ln 1ln 11ln11ln 22++-=+-=⎪⎭⎫ ⎝⎛-=,...)2(=n 则 1432...+++++=n n u u u u S⎪⎭⎫ ⎝⎛++-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=n n n n 1ln 1ln ...45ln 43ln 34ln 32ln 23ln 21lnn n n n n n 1ln1ln 1ln ...43ln 34ln 32ln 23ln 21ln ++⎪⎭⎫ ⎝⎛-+-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++= ,...)2,1(11ln 21ln =⎪⎭⎫⎝⎛++=n n因为 21ln lim =∞→n n S ,所以∑∞=⎪⎭⎫⎝⎛-2211ln n n 收敛. (3) ∑∞=⎪⎪⎭⎫ ⎝⎛+14122ln n nn n ; 【解】因∑∞=122ln n n n ∑∞=⎪⎭⎫⎝⎛=122ln n n及∑∞=141n n nn ⎪⎭⎫ ⎝⎛=∑∞=141均收敛,故∑∞=⎪⎪⎭⎫ ⎝⎛+14122ln n n n n 收敛. (4) (1)31...2191131+++++++n n ;【解】因为 (3)1...9131++++n 收敛,但 (1)...211++++n 发散,故原级数发散.(5) (4)33221+++ ;【解】 级数的通项为 ,...)2,1(1=+=n n nu n ,因为01lim ≠=∞→n n u ,故...433221+++发散.(6) ...cos ...3cos 2cos cos +++++nππππ ;【解】级数的通项为 ,...)2,1(cos ==n nu n π,因为010cos lim ≠==∞→n n u ,故...cos ...3cos 2cos cos +++++nππππ发散.(7) nn n n ∑∞=⎪⎭⎫⎝⎛-12ln ;【解】级数的通项为 ,...)2,1(2ln =⎪⎭⎫⎝⎛-=n n n u nn ,因为02ln 21ln lim lim 222≠-==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=---∞→∞→en u n n n n ,故nn n n ∑∞=⎪⎭⎫⎝⎛-12ln 发散.(8) (9)898983322+-+-.【解】...9898983322+-+-nn ∑∞=⎪⎭⎫⎝⎛-=198是等比级数,且公比98-的绝对值小于1,故...9898983322+-+-收敛.5.已知级数∑∞=1n n u 的部分和3n S n =,当2≥n 时,求n u .【解】(),...)2(13312331=+-=--=-=-n n n n n S S u n n n .6.若级数∑∞=1n n u 收敛,记∑==ni i n u S 1,则(B )A. 0lim =∞→n n S ; B. n n S ∞→lim 存在;C. n n S ∞→lim 可能不存在; D. {}n S 是单调数列.7.若级数∑∞=1n n u 收敛,则下列级数中收敛的是(A )A. ∑∞=110n n u; B.()∑∞=+110n nu;C. ∑∞=110n nu ; D.()∑∞=-110n nu.8.设501=∑∞=n n u ,1001=∑∞=n n v ,则()∑∞=+132n n n v u (D )A. 发散;B. 收敛,和为100;C. 收敛,和为50;D. 收敛,和为400. . 9.下列条件中,使级数()∑∞=+1n n n v u 一定发散的是(A )A.∑∞=1n nu发散且∑∞=1n n v 收敛; B.∑∞=1n nu发散;C.∑∞=1n nv发散; D.∑∞=1n nu和∑∞=1n n v 都发散.10.设级数()∑∞=-11n n u 收敛,求n n u ∞→lim .【解】因为()∑∞=-11n n u 收敛,故根据级数收敛的必要条件知()01lim =-∞→n n u ,所以 =∞→n n u lim ()[]=--∞→n n u 11lim ()1011l i m1=-=--∞→n n u .11.将下列循环小数表示为分数 (1) ∙3.0 ;【解】...003.003.03.03.0+++=∙是公比为1.0=q 的等比级数,故311.013.03.0=-=∙. (2) ∙∙370.0.【解】...0000073.000073.0073.0370.0+++=∙∙是公比为01.0=q 的等比级数,故.9907301.01073.0370.0=-=∙∙12.设级数∑∞=1n n u 满足条件:(1)0lim =∞→n n u ;(2)()∑∞=-+1212n n n u u 收敛,证明级数∑∞=1n n u 收敛.【解】记∑∞=1n n u 的前n 次部分和数列为{}n S .又记()∑∞=-+1212n n n u u 的前n 次部分和数列为{}n σ.则有(),...2,12==n S n n σ.因为已知()∑∞=-+1212n n n u u ,故根据级数收敛的定义知 =∞→n n σl i ms S n n =∞→2lim ①存在;又已知0lim =∞→n n u ,故0lim 12=+∞→n n u ,从而=+∞→12lim n n S ()s s S u n n n =+=++∞→0lim 212②也存在.综合①、②式知s S n n =∞→lim 存在,所以级数∑∞=1n n u 收敛.13.小球从1米高处自由落下,每次弹起的高度均为前一次高度的一半,问小球会在自由下落约多少秒后停止运动? 【解】小球为自由落体运动,即212s gt =。

复旦大学出版社__高等数学上__第四版,答案

复旦大学出版社__高等数学上__第四版,答案

高等数学,(上),复旦大学出版社第四版。

第四章,一元函数积分学 习题四,答案1.0 填空题(1) I<K<J ,解析I,J,K 的积分上限,下限都一样。

由定理 在区间[a,b]上f(x)>g(x)恒成立,则>⎰⎰aba a f(x)dx g(x)dx ,在π[0,]4,cosx>sinx,=>>cosxcotx cosx sinx sinx,所以I<K<J 。

(2) =⎰⎰1f(2x)dx f(2x)d(2x)2因为-=+⎰2x (x)dx e c,所以-=+⎰24x 1(2x)dx e c 2(3) 画出x-[x]在【0,2006】的图像,就是y=x 在[0,1]上重复2006次,通过定积分的几何意义,可知其面积为(1*1)*2012/2=1006,所以-=⎰2012(x [x])dx 1006。

(4)注解====⎰⎰11100011f'(x)f''(x)dx f'(x)df'(x)f'(x)f'(x)|24f'(x),(5) ππ+===-=+⎰⎰20022022400x tant *sec t 11x tant,dx dt cos2x |44(1x )sec t2.选择题。

(1)A ,A 可导必定连续,所以极限一定存在。

B 原函数f(x)<g(x),但是导数不一定f ’(x)<g ’(x),比如f(x)=2,g(x)=3,所以B 错。

C 是微分和导数一样,D x 的正负不知道,可能x<0,这样定积分就不一定了。

(2)DA 是奇函数,周期为2π,π[0,2]变成区间ππ-[,],所以结果为0B 是奇函数,周期为2π,π[0,2]变成区间ππ-[,],所以结果为0C ππππ--==⎰1cos2xdx sin2x |02(3) A令f(x)=1,取F(X)=x+1,可以排除B,C.令f(x)=x,F(X)= 21x 2排除D. (4)D-==-=-=-⎰⎰2lnx 1lnx)lnx 12lnx xf'(x)dx xdf(x)xf(x)x *(x x x x x(6) C ,等价无穷小++→=-=-=---==+=+=++=→==+⎰⎰⎰⎰⎰⎰xxx11t 1t11x 0u x t,f(x)sin(x t)dt,f(x)sin(x t)d(x t)sinudum 1xt,g(x)xln(1xt)dt,g(x)ln(1xt)d(1xt)lnmdmf(x)sinxx 0,lim 1g(x)ln(1x)三,利用积分概念,求下列极限。

复旦高等数学教材答案

复旦高等数学教材答案

复旦高等数学教材答案第一章:函数与极限1. 函数的概念与性质函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素。

函数的定义域和值域是确定函数的重要因素。

函数的性质包括奇偶性、周期性、单调性等,这些性质可以通过函数的导数和二阶导数来研究。

2. 极限的基本概念极限是函数在某一点附近的取值趋势。

当自变量趋近于某个值时,函数的取值是否有界或者无穷大,称为极限的存在性。

极限存在时,还需要判断是否存在唯一的极限值。

3. 函数的连续性与间断点函数的连续性是指函数在定义域内的任意一点都与函数图像相连续,即函数的图像是一条不间断的曲线。

间断点是函数图像上的点,使得函数在这些点附近的取值不满足连续性的要求。

第二章:导数与微分1. 导数的概念与计算导数是描述函数变化率的重要工具,它表示函数在某一点的变化速率。

导数的计算可以通过极限的定义来推导,也可以利用基本的导数公式。

2. 微分的概念与应用微分是导数的一种应用,它表示函数在某一点处的局部线性逼近。

微分的计算可以利用函数的导数和一阶微分公式。

微分的应用包括函数的最大值与最小值问题、曲线的凹凸性等。

3. 高阶导数与泰勒公式高阶导数是指导数的导数,它表示函数变化率的变化率。

高阶导数的计算可以通过多次求导来进行。

泰勒公式是函数在某一点展开的近似表示,可以用来研究函数的性质和计算近似值。

第三章:定积分与不定积分1. 定积分的概念与性质定积分是描述曲线下面的面积的重要工具,它可以将曲线分成无穷多个无穷小的矩形,并将这些矩形的面积加起来。

定积分的计算可以通过定积分的定义和基本的积分公式来进行。

2. 不定积分的概念与计算不定积分是积分的一种形式,它表示函数的原函数。

不定积分的计算可以通过积分的基本公式和换元积分法来进行。

3. 定积分的几何应用与物理应用定积分在几何中的应用包括计算曲线与坐标轴所包围的面积、曲线的弧长等。

在物理中,定积分可以描述物体的质量、速度、体积等量的变化。

高等数学课后习题答案--第十一章.

高等数学课后习题答案--第十一章.

《高等数学》习题参考资料第五篇概率论与数理统计第十一章概率论§ 1 概率习题1. 设一个工人生产了5 个零件, 用Ai表示“第i个零件是正品”,i=1,2,3,4,5,试用Ai表示下列事件:(1)没有一个次品;(2)最多有3个次品;(3)只有2个次品;(4)至少有3个次品.【答案】 (1) B1=A1A2A3A4A5;(2) B2=A1A2+A1A3+A1A4+A1A5 +A2A3+A2A4+A2A5 +A3A4+A3A5+A4A5;(3) B3=A1A2A3A4A5+A1A23A45 +A12A3A45+1A2A3A45+A1A234A5+A12A34A5+1A2A34A5+1A23A4A5+A123A4A5+12A3A4A5;(4) B4=+12345 +A12345+1A2345 +12A345+123A45+1234A5+A1A2345+A12A345+A123A45+A1234A5+1A234A5+1A23A45+1A2A345+123A4A5+12A34A5+12A3A45.2. 已知P(B)=0.3, p(A∪B)=0.6, 求P(A).【答案】 P(A)=P(A∪B)−P(B)=0.3.3. 如果事件A和B同时出现的概率P(AB)=0, 则下列结论成立的是:(1) A与B互逆; (2) AB为不可能事件; (3) P(A)=0或P(B)=0; (4)AB未必是不可能事件.【解】(1) 和(2)成立. (3),(4) 不成立.2184. 已知P(A∩B)=P(∩), 且P(A)=p, 求P(B).【答案】P(B)=1−p.5. 设事件A,B的概率分别为P(A)=和P(B)=, 且P(AB)=12141, 求P(B)和10P(A)【解】P(B)=P(B)−P(AB)=32; P(A)=P(A)−P(AB)=.2056. 对任意三个事件A,B,C, 试证P(A∪B∪C)=P(A)+P(B)+P(C)−P(AB)−P(BC)−P(AC)+P(ABC).并把这个结论推广到n个事件的情况【解】 P(A∪B∪C)=P(A∪B)+P(C)−P((A∪B)∩C)=P(A)+P(B)−P(AB)+P(C)−P(AC∪BC)=P(A)+P(B)+P(C)−P(AB)−P(BC)−P(AC)+P(ABC).7. 十把钥匙, 其中有3把能打开房门, 现从中任取2把, 求能打开房门的概率.11C3C7+C328 【答案】 p==.215C108. 甲、乙、丙各自向同一个目标射击一次, 已知它们的命中率分别为0.7 ,0.8 和0.75, 求目标被击中2次的概率.【解】设A,B,C分别表示甲乙丙射中目标的事件,p=P(AB+P(A)+P(BC)=0.7×0.8×0.25+0.7×0.2×0.75+0.3×0.8×0.75=0.14+0.105+0.18=0.425.9. 男人的性染色体为(x,y), 女人为(x,x). 当生殖细胞作成数分裂时. 这时染色体分配在两个细胞中. 如果某种遗传病和隐性遗传病都在染色体x上, 把这种染219色体记为x*. 对于男人, 性染色体为x*,y时为隐性遗传病患者. 对于女人, 性染色体为x*,x*时, 为隐性遗传病患者, 性染色体为(x*,x)或(x,x*)时为隐性遗传病携带者. 讨论子女为隐性遗传病患者(A1)和隐性遗传病携带者(A2)的概率.【解】除去父母均为正常者之外, 列表如下:父母子女儿 P(A1) P(A2) P(A1+A2)111(x,y) (x*,x) (x,y),(x*,y) (x,x),(x,x*) 44211**(x,y) (x*,x*) (x*,y),(x*,y) (x,x),(x,x) 12211(x*,y) (x,x) (x,y),(x,y) (x*,x),(x*,x) 0 22113(x*,y) (x*,x) (x*,y),(x,y) (x*,x*),(x*,x) 244(x*,y) (x*,x*) (x*,y),(x*,y) (x*,x*),(x*,x*) 1 0 1()()10. 若班上有40个同学, 每个人的生日是一年365天中的哪一天是等可能的.试求班上至少有两位同学的生日在同一天的事件A的概率.【解】此问题也类似一个分房问题. 把365天看作365个房间, 事件A的对立事件是“没有两个同学在同一天生日”的事件, 它就相当于每个同学占据一天的日子一样. 于是按例10知N! P(A)=(N−n)!⋅NnN=365,n=40, 因而365!N!1=−=1−0.109=0.891,P(A)=1−P(A)=1−(N−n)!⋅Nn(365−40)!⋅36540即班上至少有两个同学在同一天生日的可能性达到89%.若n =20, 则概率就接近0.5.若n = 50, 则概率达到97%.若n = 100, 则概率几乎达到1.11. 从 0,1,2,L,9十个数字中任取3个组成三位数, 问这个三位数是偶数的概率.111C92P2+C4C8C841【答案】p==181C9P12. 某人写了3封信, 并分别在3 个信封上写了这3封信的地址, 如果他任意地将3 张信纸装入3个信封中, 求没有一封信的信封和信纸是配对的概率..220【解】设A表示”至少有一封信的信封和信纸是配对”的事件. Ai表示”第i个111信封和自己的信纸配对”的事件. P(Ai)=, P(AiAj)==, i≠j,33!611P(A1A2A3)==. A=A1+A2+A3, 于是3!6P(A1+A2+A3)=P(A1)+P(A2)+P(A3) −P(A1A2)−P(A2A3)−P(A1A3)+P(A1A2A3) 11141=3×−3×+=,因此P()=1−P(A)=.3666313. 设100个成品中有3 个是次品, 任取5个, 求其次品数分别为 0 , 1 ,2 , 3 的概率. i5−iC3C97, i=0,1,2,3. 【答案】 pi=5C10014. 设一个口袋里有十个硬币, 其中五分的有2个, 二分的有3 个, 一分的有5 个, 若从中任取5个硬币, 问其总值大于10 分的概率.23131122C2C8+C2C3C5+C2C3C5126 【答案】 p===0.55252C1015. 设100件产品中有5件次品, 现从中随意地抽取10 件, 求这10 件中恰有3件次品的概率.37C5C 【答案】 p=1095.C10016. 电路由元件A 和两个并联的元件B和C串联而成. 设元件A , B , C 损坏的概率分别是0.3 ,0.2 , 0.25 . 求电路发生故障的概率.【解】E=A∪(B∩C),P(E)=P(A)+P(BC)−P(ABC)=0.3+0.05−0.015=0.33522117. 设100件零件中, 次品率为10%, 先后从中各任取1个, 第一次取出的零件不放回, 求第二次取得正品的概率.【答案】p=989190×+×=0.91099109918. 设口袋中有a个黑球, b个白球 (b>2), 球的大小和质地一样, 甲, 乙,丙三人依次从口袋中任取一个球, 取后不放回, 分别求出三人各自取得白球的概率.【答案】19. 设12个乒乓球中有9个是新的, 3个是旧的, 第一次比赛取出了3 个, 用完后放回, 第二次比赛又取出3 个球, 求第二次比赛取出的3 个球中有2个是新球的概率. 031212121123012C3C9C6C6C3C9C5C7C32C9C4C8C3C9C3C91377= 【答案】p=.+++333333333025C12C12C12C12C12C12C12C12b.a+b20. 设10个考签中有4个是难题, 三个人参加抽签考试, 不重复地抽取, 每个人抽一题, 甲先, 乙次, 丙最后, 证明三个人抽到难题的概率是相同的.【解】本题类似18题, 每个人抽到难题的概率都是42=.10521. 两封信随机地投入到4个邮筒里. 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.1C2⋅33221 【答案】 p1=2=, p2=2=.484422. 二维随机点(m,n)在区域|m|<1,|n|<1中等可能地出现, 求方程x2+mx+n=0的两个根都是正根的概率222【答案】 n>0且 m<0且m2−4n>0,p=1.4823. 把长度为a的铁丝任意折成三段, 求它们可以构成一个三角形的概率.【解】设三段为x,y,a−x−y, 于是0<x<a, 0<y<a, ; 根据三角形两边和大于第三边, 则符合条件的是0<x<aaa, 0<y<, <x+y<a, 如图.22221 a 12 2 因此所求概率p==.24a224. 从(0,1)中随机地取两个数, 求下列事件的概率 (1) 两数之和小于(2) 两数之积小于; (3) 同时满足前两个条件.146;51441−××255=17=0.68; 【解】 (1) p=125(2)p=1111×1+1=(1+ln4)=0.567;4444x6−1011 5 5 −x dx+6−+6+ −x dx=0.593.4x 6 10 6106+1 (3) p=×1+15525. Buffon问题在平面上画出等距离a的平行线, 向此平面随机地投掷一根长为l(l<a)的针. 试求针与平行线相交的概率.223【解】以M表示针的中点, x表示M与最近的平行线的距离, t表示针与a平行线的夹角, 显然0≤x≤, 0≤t≤π, 针与平行线相交的充分必要条件是2l0<x<sint, 于是2lπsintdt∫02l=P(A)=aπaπ×226. 设有 Ai(i=1,2,3,4,5)五个相同元件构成图11.1.2所示系统, 每一个元件能正常工作的概率是p, 各元件是否正常工作是相互独立的, 问此系统能正常工作(接通)的概率?【解】将系统分成两种情况讨论,一是A3正常, 二是A3不正常, 记B为系统正常工作,Ai表示Ai元件正常工作,A3正常时相当于右图于是P(B|A3)=P((A1∪A4)∩(A2∪A5))=P(A1∪A4)P(A2∪A5)=(1−P(1)P(4))(1−P(2)P(5))=p2(2−p)2,224A3不正常时, 相当于右图P(B|3)=P((A1∩A4)∪(A2∩A5))=P(A1A2)+P(A4A5)−P(A1A2A4A5)=p2(2−p2),于是根据全概率公式,P(B)=P(A3)P(B|A3)+P(3)P(B|3)=p⋅p2(2−p)2+(1−p)⋅p2(2−p2)=p2(2p3−5p2+2p+2)《高等数学》习题参考资料第十一章概率论§ 2 条件概率全概率公式 Bayes公式习题1. 袋中有4个白球, 2个黑球, 连取2 个球, 取后不放回, 如果已知第一个是白球, 问第二个是白球的概率?3 【答案】.52. A,B为两随机事件, 且B⊂A, 则下列哪个式子是正确的: (1)P(A∪B)=P(A); (2)P(AB)=P(A); (3)P(B−A)=P(A)−P(B).(4)P(B|A)=P(B).【答案】(1) 是正确的. 其余是错误的2253. 用三个机床加工同一种零件, 零件由各机床加工的概率分别是0.5 ,0.35 , 0.15 , 各机床加工的零件为合格品的概率分别是0.95 , 0.92 , 0.96 ,求全部产品的合格率. 【解】p=0.5×0.95+0.35×0.92+0.15×0.96=0.941.4. 设有10 箱同样规格的产品, 其中5 箱是甲厂的产品, 次品率是是乙厂的产品, 次品率是1; 3 箱1011; 2 箱是丙厂的产品, 次品率是. 今在这10 箱产1520品中任选1箱, 再从中任取1件产品, 问它是次品的概率是多少? 又若已知取得的一件产品是次品, 它是甲厂的产品的概率是多少?【解】(1) p=∑P(Ai)P(E|Ai)=i=1351312125⋅+⋅+⋅=;(2) .1010101510202585. 有2 个口袋. 甲袋中装有2 个白球, 1个黑球; 乙袋中装有1个白球, 2个黑球. 由甲袋任取1 个球放入乙袋, 再从乙袋中任取1 个球, 求取到白球的概率.【解】p=21115⋅+⋅=.3234126. 设每次射击时命中率为0.2 , 问至少需进行多少次独立的射击, 才能使至少击中一次的概率不小于0.9 .【解】射击n次, 至少击中一次的概率为p=1−(1−0.2)n, 91−0.8n=0., 于是n=ln0.1=10.3, 因此取n=11次.ln0.87. 某设备由A , B 两个部件串联而成, 两个部件中任何一个失灵, 该设备就失灵. 若使用1000小时后, 部件A失灵的概率是0.1, 部件B 失灵的概率是0.3,若两个部件是否失灵是相互独立的, 求这个设备使用1000小时后不失灵的概率.226【解】p=1−(1−0.1)(1−0.3)=0.37.8. 某种牌号的电子元件使用到1000小时的概率为0.9, 使用到1500小时的概率为0.3, 今有该种牌号的一个电子元件已使用了1000小时, 问该电子元件能用到1500小时的概率.【解】条件概率p=139. 甲、乙两人独立地对同一目标进行射击一发子弹, 他们的命中率分别是0.7和0.8, 现在目标被命中一发, 求它是甲射中的概率.【解】利用Bayes公式: p=10. 设三次独立试验中, 事件A出现的概率相等. 若已知A至少出现一次的概率等于0.7×0.214=.0.7×0.2+0.8×0.33819, 求事件A在一次试验中出现的概率.27 191, p=;273 【解】1−(1−p)3=11. 上海电脑型体育彩票共有36个号码 (自01, 02, 03 到 36) 可供选择,每注选7个号码, 每期开奖开出七个号码. 若彩票的七个号与开奖的七个号一样(不论次序), 则中特等奖. 假定每期彩票销售4,500,000元, 有300个销售点,平均每个销售点销售15000元. 问每期彩票至少开出一个一等奖的概率是多少?经多少期彩票销售才能使至少开出一个特等奖的概率达到0.95.【解】解上海电脑型福利彩票共有36个号可供选择, 每注7个号, 因此共有7C36=8347680 (记为M) 种(注). 每次销售6,000,000元, 有300个销售点, 平均每个销售点销售20000元, 即10000张彩票. 在一个销售点售出的彩票中, 中一等奖的可能概率为100001 1 M−1 kx~B(10000,), p1=∑C1000 MMM k=1=0.001197220461.k10000−k M−1 =1− M 10000227各销售点的销售可以看作的相互独立的. 300个销售点至少有一个点销售的彩票中一等奖的概率是p300=1−(1−p1)300=1−(1−0.001197220461)300≈0.3018919036.即每期开奖至少产生一个一等奖的概率约0.302. 因此, 在k期彩票中至少产生一个一等奖的概率Pk是P=1−(1−p300)k=1−(0.63893742)k.k椐此易计算出p3 := 0.5126450857, p4 := 0.7624851875 , p5 := 0.8341889864p6 := 0.8842459889, p7 := 0.9191911877, p8 := 0.9435867139p9 := 0.9606174282, p10 := 0.9725067078, p11 := 0.9808067101若要使中奖概率达到0.95 则有k>8, 即开奖12. 在长达11年的时间里,从得克萨斯州的一个县中有870人被要求作为可能的大陪审团的陪审员,该县的人口中有墨西哥血统的美国人占79%,但只有339个有墨西哥血统的美国人被选为履行大陪审团陪审员的职责.如何用来概率模型确定:大陪审团陪审员的选择对有墨西哥血统的美国人来说并非没有种族歧视.【解】若没有种族偏见则339个或更少的墨西哥血统的美国人被选为陪审员的概率为∑n=0339−nC[n0.79p]C[8700.21p]C870p,其中p是该县的人口数, p是个很大的数,若p=10000, 则此概率为0.20848×10−161, 几乎为0.13. 某场比赛进行五局, 并以五战三胜决定胜负. 若已知甲方在每一局中的胜率为0.6, 求甲方在比赛中获胜的概率是多少?【解】获胜有三种情况: 3:0, 3:1, 3:2, 于是p(A1)=p3=0.216,P(A2)=C32p2(1−p)⋅p=0.259,22 P(A3)=C4p(1−p)2⋅p=0.207,因此 p=P(A1)+P(A2)+P(A3)=0.682.22814. 假设有三张形状完全相同, 但所涂颜色不同的卡片, 第一张两面全是红色, 第二张两面全是黑色, 第三张是一面红一面黑, 将这三张卡片放在帽子里经充分混合后, 随机地取出一张放在桌上, 如果取出的卡片朝上的一面是红的, 那么它的另一面为黑的概率是多少.1 【解】 . 注意两面全是红色的卡片有正反面向上两种可能, 因此符合“卡片3朝上的一面是红的”条件的情况有三种, 另一面为黑的仅一种情况.15. 若选择题有m种答案, 考生可能知道答案, 也可能瞎猜. 设考生知道正确答案的概率是p , 瞎猜的概率是1−p, 考生瞎猜猜对的概率为问他确实知道正确答案的概率是多少.1, 如果已知考生答对了,m【解】mp.1+(m−1)p16. 瓷杯成箱出售, 每箱20只, 假设各箱含0, 1, 及 2只残次品的概率分别为0.8,0.1, 0.1, 一顾客欲购一箱瓷杯, 购买时, 任取一箱, 从中任意地察看4只, 若无残次品,则就买下, 否则退回. 试求: (1) 顾客买下该箱的概率; (2) 在顾客买下该箱的瓷杯中,确实没有残次品的概率.【解】 (1) 44895; (2) .47511217. 在n双不同的鞋中任取2r 只(r<n), 求 (1) 其中没有成双的概率; (2) 恰好有2 双的概率; (3) 有r双的概率.2r 【解】样本点总数有C2n. (1) 可以先从n双中取出2r双, 再从每双中任取r22rCn一只, 于是p1=; (2) 先从n双中任取2双, 再从n−2双中取出2r−4双,2rC2n r2r−2n22r−2CnCn−1再从每双中任取一只, 于是p2=; (3) p3=2r.2rC2nC2n229《高等数学》习题参考资料第十一章概率论§3 一维随机变量习题1. 设有m件产品, 其中n件为次品, 从中任取k件 (k<m), 记取得的次品数为ξ, 试写出ξ的概率分布.【解】根据题意认为n≤m, 由于有较多的未知参数, 因此应该讨论这些参数的不同情况.2. 设离散型随机变量ξ以正的概率只取 1, 2 , 3 , 又设P(ξ=1)=0.4,P(ξ=3)=0.5. (1)计算P(ξ=2); (2) 求ξ的分布和分布函数.【解】(1)P(ξ=2)=0.1,(2) 分布律: ξ=ip1230.40.10.5x≤1 0, 0.4,1<x≤2 分布函数F(x)= 0.5,2<x≤33<x 1,2303. 设随机变量ξ的密度函数为 A x∈[−2,2],4−x2, ϕ(x)= 2π x∉[−2,2], 0,求 (1) 系数A 的值; (2) ξ的分布函数F(x), 并作图.【解】(1) A=1;0, x 1 (2) F(x)= 2π+4arcsin+x4−x2 ,2 4π 1, x≤−2−2<x<2x≥24. 从学校到市中心广场共有六个十字路口, 假定在各个十字路口遇到红灯的事件是相互独立的, 且概率都是0.4. 以ξ表示遇到的红灯数, 求随机变量ξ的分布. 以η表示汽车行驶过程中在第一次停止前所经过的路口数, 求η的分布.【解】011C60.650.4234560.6635C620.640.42C60.630.43C640.640.44C60.610.450.46012345 6∗0.660.40.4⋅0.60.4⋅0.620.4⋅0.630.4⋅0.640.4⋅0.65∗假定过了6站后停下.5. 设某种疫苗中所含细菌数服从Poisson分布. 设1毫升疫苗中平均含有一个细菌, 把这种疫苗放入5只试管中, 每只试管放2毫升. 试求: (1) 5 只试管中都有细菌的概率; (2) 至少有3 只试管中有细菌的概率 (提示: λ=2). 【解】每只试管中有细菌的概率为p, 记ξ表示细菌个数, η表示有细菌的试管20−2数, 于是p=P(ξ≥1)=1−P(ξ=0)=1−e≈0.8647,0!(1) 5 只试管中都有细菌的概率为P(η=5)=p5=0.86475≈0.4833;231(2) 记q=1−p, 至少有3 只试管中有细菌的概率332550P(η≥3) =C5pq+C54p4q1+C5pq=0.4834+0.3782+0.1184=0.980.6. 某乘客在某公交车站候车的时间 (以分计) ξ服从指数分布, 其概率密度函数x 1−5 ϕξ(x)= 5e,x>0,x≤0 0,某乘客在候公交车时, 若等车超过 10 分钟, 他就离开而乘出租车. 该乘客一个星期要乘车 5 次, 若以η 表示一周内他乘出租车的次数, 写出η的分布律, 【解】每天等车时间超过10分钟的概率p=∫ϕξ(x)dx=∫−∞101001edx=−e5−x5−x1050=1−e−2于是η的分布律:η=kP(=k)011C5pq423332C5pq45q5C52p2q3C54p4qp57. 设随机变量ξ服从N(0,1), 那么Φ0(0),ϕ0(0),P(ξ=0)各取什么值, 它们各表示什么意思?【解】Φ0(0)=0, ϕ0(0)=12, P(ξ=0)无意义.8. 设随机变量ξ服从N(0,1), 求P(ξ<2.5), P(ξ≥−1), P(−1.5≤ξ≤1). 【解】P(ξ<2.5)=0.99379, P(ξ≥−1)=2×0.841345-1=0.68269,P(−1.5≤ξ≤1)=0.5-(1-0.933193)=0.433193.2329. 设随机变量ξ服从N(−1,16), 求P(ξ>−1.5), P(ξ<8), P(|ξ|<4). 【解】P(ξ>−1.5)=0.5478, P(ξ<8)=0.988, P(|ξ|<4)=0.668.10. 设随机变量ξ服从N(0,1),求a值, 分别使(1)P(|ξ|<a)=0.975, (2)P(ξ>−a)=0.975,(3)P(ξ<a)=0.975.【答案】 (1)a=2.24, (2) a=1.96, (3) a=1.96.11. 设随机变量ξ的概率分布密度为ϕ(x)=e−|x|,12求 (1) 随机变量ξ的分布函数F(x); (2) P(a≤ξ≤b), P(ξ≥a), P(ξ≤b), 其中 a<0,b>0.1xx≤0 2e,【解】(1) F(x)= ,1−x 1−e,x>0 21111 (2) P(a≤ξ≤b)=1−e−b−ea, P(ξ≥a)=1−ea, P(ξ≤b)=1−e−b.222212. 设某商品的月销售量服从参数为7的Poisson分布,. 问在月初商店要进货多少此商品, 才能保证当月不脱销的概率为0.999.【解】不脱销表示商店到月末还有货. 设月销售量为ξ因此问题是求 k ,使P(ξ>k)≤0.001, 即P(ξ≤k)≥0.999, 计算λ=7的Poisson分布值,P(ξ≥16)=0.002407, 000958P(ξ>16)=0.,001448P(ξ=16)=0.>0.001,P(ξ=17)=0.000596<0.001, 因此k=17, 月初的最少进货应该是k−1=16个单位.13. 设某地在任何长为t(周)的时间内发生地震的次数n(t)服从参数为λt的Poisson 分布. (1) 若T表示直到下一次地震发生所需的时间(周), 求T的概率分布. (2) 求相邻三周内至少发生3次地震的概率. (3) 在连续8周无地震的情况下, 下8周仍无地震的概率’233(λt)k−kt 【解】 P(n(t)=k)=e.表示在t时间间隔内发生k次地震.k!(1) P(T≥t)=P(n(t)=0)=e−λt, 它表示在t时间间隔内不发生地震的概率,于是T的分布函数F(t): t≤0时,F(t)=0; t>0时, F(t)=P(T<t) =1−P(T≥t)1−e−λtt>0=1−e. 即F(t)= , 即T服从参数为λ的指数分布;≤0t0这表明Poisson过程的来到间隔服从指数分布;(2) 相邻三周内至少发生3次地震, 即在3周时间内发生三次以上地震P(n(3)≥3)=1−P(n(3)<3)=1−P(n(3)=0)−P(n(3)=1)−P(n(3)=2)−λt9λ2e−2λ9=1−e−3λe−=1−(1+3λ+λ2)e−3λ;22P("T≥16"⋅"T≥8")P("T≥16"⋅)e−16λ(3) P("t≥16"|"T≥8")= = =−8λ =e−8λ.P("T≥8")P("T≥8")e这说明指数分布具有无记忆性.3λ−3λ14. 设有800万个质点独立地散布在容积为2千立方米的一个水池中, 每一个质点在水池各处是等可能的. 求从这个水池中任取的1 升(0.001立方米)水中含有质点个数ξ的分布密度.8,000,000=4即np=λ=4,2,000×1,0001或解: 一个质点落在1升水中的概率是p=,8,000,000个质点相当于2,000,000 8,000,000次Bernoulli试验, 于是1升水中含有质点数ξ,服从的分布【解】在一升水中平均有质点 pk=Ck8000000p(1−p)k8000000−k(np)k−np4k−4≈e=ek!k!15. 某射手有6发子弹, 命中率为0.85, 如果命中了, 就停止射击, 如果不命中, 就一直射下去, 直到子弹用完为止. 求耗用子弹数ξ的分布律.【答案】ξpk1p2pq3pq24pq35pq46, 其中 p=0.85, q=0.15.q516. 某市每天耗电量不超过一百万千瓦小时, 该市每天的耗电率(天耗电量/百万千瓦小时) ξ的密度函数是23412x(1−x)2,ϕ(x)= 0,x∈(0,1],x∉(0,1].如果该市发电厂每天供电量为80万千瓦小时, 则任一天供电量不够需要的概率是多少?【解】P(ξ>0.8)=1−P(ξ≤0.8)=1−∫12x(1−x)2dx=0.0272.00.817. 某仪器装有三只独立工作的同型号电子元件,其寿命(小时)都服从同一指数分布,其密度函数为1x 1−600 ef(x)= 600 0x>0x≤0试求在仪器使用的最初200小时内,至少有一只电子元件损坏的概率。

高等数学复旦大学出版第三版下册课后答案习题全

高等数学复旦大学出版第三版下册课后答案习题全

习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s==(4) s==5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故2s=xs==ys==5zs==.6. 在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点. 解:设此点为M(0,0,z),则222222(4)1(7)35(2)z z-++-=++--解得149 z=即所求点为M(0,0,149).1731747. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形. 8. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图7-1图7-19. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v 解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB =c ,BC =a 表示向量1D A ,2D A ,3D A 和4D A . 解:1115D A BA BD =-=--c a 2225D A BA BD =-=--c a3335D A BA BD =-=--c a444.5D A BA BD =-=--c a11. 设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影. 解:设M 的投影为M ',则1Pr j cos 604 2.2u OM OM =︒=⨯= 12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).17513. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求: (1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量. 解:(1)12Pr j 3,x x a PP == 12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP ==(3) 12cos 14x a PP α==12cos 14y a PP β==12cos 14z a PP γ==.(4) 12012{14PP PP ===+e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos cos cos αβγ=== 15. 求出向量a = i +j +k , b =2i -3j +5k 和c=-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a, b , c .解:||==a ||==b||3==c, , 3. a b c ===a b c e17616. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k 在x 轴上的投影a x =13,在y 轴上分向量为7j . 17.解:设{,,}x y z a a a a =则有 c o s (1,1)3x a i a a i a i π⋅====⋅ 求得12x a =. 设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则222cos 42a ba b π⋅=⇒=⋅ 则214y a =求得12y a =± 又1,a =则2221x y z a a a ++= 从而求得11{,,}222a =±或11{,,}222-± 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标. 解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM =所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}.17719. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标.解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-= 得2229524x y z z ++=-+126570cos 6, 749z z γ=⇒==又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒==故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4==b a ,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b 解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b (2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b (3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在178向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD⋅=4.7==-23. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b ) =227||1615||0+⋅-=a a b b ① (a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ②由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos23θ==. 24. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直. 证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且 a +b ={2,4, -2} a -b ={-6,10,14}又(a +b )·(a -b )= 2×(-6)+4×10+(-2)×14=0 故(a +b )⊥(a -b ).25. 已知a =3i +2j -k , b =i -j +2k ,求: (1) a ×b ; (2) 2a ×7b ; (3) 7b ×2a ; (4) a ×a . 解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k (4) 0⨯=a a .26. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算: (1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a b179π2||||sin242=⋅⋅=a b (2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin842=⨯⨯⨯= 27. 求垂直于向量3i -4j -k 和2i -j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||26θ⨯===⨯a b a b . 28. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦.解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++=l l i j k12||||l l 所以1212||sin 1||||θ⨯===l l l l .即为所求对角线间夹角的正弦.29. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P --{2,2,2}MN =--3{1,0,}2MP =-{4,4,4}AC =-- {2,0,3}BC =-18022222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k故 1()4MN MP AC BC ⨯=⨯. 30.(1)解: xy z xyzij k a b a a a b b b ⨯==-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k ()()()则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅()()()()xy z xy z xyza a ab b b C C C = 若 ,,C a b 共面,则有a b ⨯后与 C 是垂直的. 从而C 0a b ⨯⋅=() 反之亦成立. (2) C xy z xy z x y za a a ab b b b C C C ⨯⋅=() a xy z xy z x y z b b b b C C C C a a a ⨯⋅=() b xy z xy z xy z C C C C a a a a b b b ⨯⋅=() 由行列式性质可得:xy z x y z x y z xy z x y z xy z xyzxyzxyza a ab b b C C C b b b C C C a a a C C C a a a b b b == 故C a a b b C C a ⨯⋅=⨯⋅=⨯⋅()()()18131. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|22S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积12S =+32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则 13BCDV S h =⋅⋅,而11948222BCDSBC BD i j k =⨯=--+= 又BCD ∆所在的平面方程为:48150x y z +-+=则43h ==故1942323V =⋅⋅= 33. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线. 证明:{1,3,4}AB =,{2,6,8}AC = 显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y -1)-4(z -1)=0整理得:2x +3y -4z -1=0即为动点M 的轨迹方程. 35. 求通过下列两已知点的直线方程: (1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3).182解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为 12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩37. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程. 解:所求平面与平面3x -2y +6z =11平行 故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0 即3x -2y +6z +2=0.38. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程. 解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0 即x +7y -3z -59=039. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++=183得b =2.故所求平面方程为1424x y z ++= 40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程. 解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121210111121x y z --+----+=---+化简得x -3y -2z =0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形: (1) y =0; (2) 3x -1=0; (3) 2x -3y -6=0; (4) x – y =0; (5) 2x -3y +4z =0.解:(1) y =0表示xOz 坐标面(如图7-2) (2) 3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2 图7-3(3) 2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平面.(如图7-4) (4) x –y =0表示过z 轴的平面(如图7-5)(5) 2x -3y +4z =0表示过原点的平面(如图7-6).图7-4 图7-5 图7-6 42. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x +y -z =0的平面. 解:设平面方程为Ax +By +Cz +D =0 则其法向量为n ={A ,B ,C }已知平面法向量为n 1={1,1,-1} 过已知两点的向量l ={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角.解:(1)因平面过点(5,-4,6)故有5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||42θ⋅====n nn n解得2k=±44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}12232,18613lm lm⇒==⇒=-=--n n(2) n1={3, -5, l }, n2={1,3,2}12315320 6.l l⊥⇒⨯-⨯+⨯=⇒=n n45. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面.解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}12203203A CA B CA B C CB⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n nn n又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为233CCx y Cz-++=即2x-y-3z=018418546. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量. 解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 47. 求下列直线与平面的交点:(1)11126x y z-+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x ty t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1 故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0. 故交点为(-2,1,3). 48. 求下列直线的夹角: (1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和2223038180x y z x y z +-+=⎧⎨++-=⎩; (2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩ 解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k--={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}186由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程: (1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直; (2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行; (3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为 s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为 s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z==-和3x -2y +7z =8;187(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程.解:直线的方向向量为12123111-=++-ij ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+=解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0188得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-54. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为d = 55. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d ==即为点到平面的距离.56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R =设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14 即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.189解:设该动点为M (x ,y ,z )3.=化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8 (3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11 图7-1219059. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=; (2)22369436x y z +-=; (3)222149y z x --=; (4)2221149y z x +-=; (5)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x 轴为中心轴的双叶双曲面,如图7-15. (4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1.191解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18 图7-19图7-20 图7-21 61. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-; (2) 22211694x y z +-=与2434x y z +==-.解:(1)直线的参数方程为334624x ty t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1. 得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x t y tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.192解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩ 即为所求圆的方程.63. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=.193故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界: (1) {(x , y )|x ≠0};(2) {(x , y )|1≤x 2+y 2<4}; (3) {(x , y )|y <x 2};(4) {(x , y )|(x -1)2+y 2≤1}∪{(x , y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x , y )|x =0}. (2)既非开集又非闭集,有界集, 聚点集:{(x , y )|1≤x 2+y 2≤4},边界:{(x , y )|x 2+y 2=1}∪{(x , y )| x 2+y 2=4}. (3)开集、区域、无界集, 聚点集:{(x , y )|y ≤x 2}, 边界:{(x , y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x , y )|(x -1)2+y 2=1}∪{(x , y )|(x +1)2+y 2=1}. 2. 已知f (x , y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u v f u v w u w +=+,试求(,,).f x y x y xy +- 解:f ( x + y , x -y , x y ) =( x + y )xy +(x y )x +y +x -y =(x + y )xy +(x y )2x . 4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z =(3)z =(4)u =(5)z =(6)ln()z y x =-194(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>>2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10(1)y x y →→ 22001(2)lim;x y x y →→+00(3)x y →→x y →→00sin (5)lim ;x y xy x →→2222221cos()(6)lim.()ex y x y x y x y +→→-++解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=01.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+1956. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+; (2) f (x ,y )=2222y xy x +-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=22e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩196解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z = x 2y +2xy;(2)s =22u v uv+;(3)z = x;(4)z = lntan x y; (5)z = (1+xy )y ; (6)u = z xy ;(7)u = arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+ 2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+ (4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y yy x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+197[]ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz zu z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .y yz z yy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y=+,求证:3u u x y u x y ∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+.10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x x x ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1981121e x y z y y ⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y ) = x +(y,求f x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z = x 4+ y 4-4x 2y 2; (2)z = arctan y x; (3)z = y x ;(4)z = 2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,,由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,1992222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x y z x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x , y , z ) = xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f - 解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15315.设z = x ln ( x y ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分: (1)22e xy z +=;(2)z =(3)zyu x =;(4)yzu x =.解:(1)∵2222e 2,e 2x y x y z z x y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )xy x y x y z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴ 223/2d (d d ).()x z y x x y x y =--+ (3)∵11,ln z z z y y z u uy x x x zy x y --∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂ 1ln yz u x x y z∂=⋅⋅∂154ln yz u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265e e e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算: (1) (1.02)3·(0.97)2;;(3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则155d 0.05d 0.07(4.05,2.93)(4,3)d (4,3)0.053(0.07)]15(0.01)54.998x y f f f ==-=≈+=⨯+⨯-=+⨯-=(3)设f (x ,y )=x y ,则d f (x ,y )=yx y -1d x +x y ln x d y , 取x =2,y =1,d x =-0.03,d y =0.05,则1.05d 0.03d 0.05(1.97)(1.97,1.05)(2,1)d (2,1)20.0393 2.0393.x y f f f =-==≈+=+=19.矩型一边长a =10cm ,另一边长b =24cm, 当a 边增加4mm ,而b 边缩小1mm 时,求对角线长的变化.解:设矩形对角线长为l ,则d d ).l l x x y y ==+当x =10,y =24,d x =0.4,d y =-0.1时,d 0.4240.1)0.062l =⨯-⨯=(cm)故矩形的对角线长约增加0.062cm.20.解:因为圆锥体的体积为21.3V r h π=⋅0030,0.1,60,0.5r r h h ====- 而221.33V V V dV r h yh r r h r h ππ∂∂≈=⋅+⋅=⋅+⋅∂∂0030,0.1,60,0.5r r h h ====-时, 2213.1430600.130(0.5)33V π≈⨯⨯⨯⨯+⨯⨯- 230()cm =-21.解:设水池的长宽深分别为,,x y z 则有:V xyz =精确值为:50.242 2.850.22 3.62V =⨯⨯+⨯⨯⨯+⨯⨯⨯ 313.632()m = 近似值为:156V dV zx y xy z ≈=+0.4,0.4,0.2x y z ===430.4530.454V d V ≈=⨯⨯+⨯⨯+⨯⨯314.8()m =22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,zv∂∂; (2)z =arc tanxy, x =u +v ,y =u -v , 求z u ∂∂,z v ∂∂;(3)ln(e e )xyu =+, y =x 3, 求d d u x; (4) u =x 2+y 2+z 2, x =e cos tt , y =e sin tt , z =e t, 求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z yxy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++ (2)222222211111x z z x z y y x v y u x u y uy x y u v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 2222222111(1)11.x z z x z yy v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y xx x y x y x y x y x x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.15723. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xy u f x y =- (2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z zxy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+15825. 设22()yz f x y =-,其中f (u )为可导函数,验证: 211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z z x x y y∂∂∂∂∂∂∂解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,zf x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂ 由对称性知,22224.z f y f y∂'''=+∂27. 设f 具有二阶偏导函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂1592212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,(2)22121222,zf y f xy y f xyf x∂''''=⋅+⋅=+∂ ()()22222211122122432221112222222244,zy yf xy f y f xy f y f xy x yf y f xy f x y f ∂'''''''''=++⋅+⋅⋅+⋅∂'''''''=+++()()()()222212111221223322121122122212122222121112212212222222225,22,22222zyf y xf xy f xy f x f xy f x x yyf xf xy f x yf x y f zf xy f x xyf x f yzxf xy x f xy f x f xy f x yxf ∂''''''''''=+++⋅+⋅⋅+⋅∂∂''''''''=++++∂''''=⋅+⋅=+∂∂'''''''''=++⋅+⋅⋅+⋅∂'=223411122244.x y f x yf x f ''''''+++(3)1313cos e cos e ,x y x y zf x f xf f x++∂''''=⋅+⋅=+∂ ()()1321113313322()311113332312133233sin cos e e cos e cos e e sin cos 2e cos e ,cos e e (sin )e (sin )x y x y x y x y x y x y x y x y x y x y zxf x f f x f f x f xf xf xf xf f z x f f y f f y f x y++++++++++∂''''''''''=-+++⋅+⋅+⋅∂''''''''=-+++∂'⎡⎤''''''=++⋅⋅-+⋅⋅-+⎣⎦∂∂2()3121332332323223222233233e e cos sin e cos e sin e ,(sin )e sin e ,cos sin e e (sin )e (sin )e x y x y x y x y x y x y x y x y x y x y x y f x yf xf yf f zf y f yf f yz yf y f f y f f y f y +++++++++++⎡⎤''⋅⎣⎦'''''''''=-+-+∂''''=-+=-+∂∂''⎡⎤⎡''''''''=--++-+⋅-+⋅⎣⎦∂22()32222333e cos sin 2e sin e .x y x y x y f yf yf yf f +++⎤⎣⎦''''''''=-+-+28. 试证:利用变量替换1,3x y x y ξη=-=-,可将方程。

复旦大学出版社,高等数学,第四版,教材习题答案详细解析

复旦大学出版社,高等数学,第四版,教材习题答案详细解析

高等数学上(复旦大学出版社,第四版)教材习题答案第四章,一元函数积分学。

第三节 不定积分与原函数求法,习题4-3,答案5.0 用分部积分,求下列不定积分。

东风冷雪1.0=-=--=--=-+-=-+++⎰⎰⎰⎰⎰222222x sinxdxx dcosx (x cosx 2xcosxdx)(x cosx 2xdsinx)x cosx 2xsinx 2sinxdx x cosx 2xsinx 2cosx c2.0------=-=--=--+⎰⎰⎰x x x x x x xe dx xde (xe e dx)xe e c3.0==-=-+⎰⎰⎰22222111ln xdx (x ln x x *dx)22x11x ln x x c 24x ln xdx4.0==-++-=-+=--+=-+++⎰⎰⎰⎰23332232322322x arctanxdx111x arctanxdx x arctanx 3331x 11x(1x )x x arctanx dx 331x 1111x arctanx (x ln |1x |)3322111x arctanx x ln |1x |c 3665.0=+=-=-+⎰2arccosxdxx *arccosx x *arccosx x *arccosx c6.0=-=-=--=+-=+-+⎰⎰⎰⎰⎰222222x tan xdx1x(sec x 1)dx xdtanx x 21dcos x 1x tanx tanxdx x x tanx x 2cos x 21x tanx ln |cos x |x c 2 7.0------------==-=--=-=-+⎰⎰⎰⎰⎰⎰x x x x x x x x x x x x e cos xdxe dsinx e sinx e dcos xe sinx e cos x cos xe dx2e cos xdx e sinx e cos x1e cos xdx e (sinx cos x)c 28.0==-=--=-++⎰⎰⎰⎰xsinxcosxdx11xsin2xdx xdcos2x 24111(xcos2x cos2xdx)xcos2x sin2x c 4489.0=-=--=-+=--+=---=---+=-++++⎰⎰⎰⎰⎰⎰⎰323233223232232232(lnx)dxx 1ln x 3ln x ln x 1ln xd ()(3ln xd )x x x x xln x 3ln x 6lnx ln x 3ln x 1dx 6lnxd x x x x x xln x 3ln x 6lnx 6dx x x x x 1(ln x 3ln x 6lnx 6)c x10.0===-=--=++-=+++=+=++⎰⎰⎰⎰⎰222222222atant,a sec tdtant a sec t tant a tan tsec tdta (sec t tant (sec t 1)sec tdta (sec t tant ln |sec t tant |sec tdtant)1a (sec t tant ln |sec t tant |)21x x a (*ln ||2a a a 1ln |x 2+|c6.0 求下列不定积分;1.0++-+=+++-+-+-+-+++=+==-=+=-++-+-+=-+++⎰⎰⎰222222222222x 1dx(x 1)(x 1)x 1a b c x 1x 1(x 1)(x 1)(x 1)a(x 1)b(x 1)c(x 2x 1)x 111a ,b 1,c 2211x 1122dx ()dx x 1x 1(x 1)(x 1)(x 1)11ln |x 1|c 2x 12.0++=+++-+-+-++++===-=-==-++-+-+--=+--+=+--++-+=+⎰⎰⎰⎰⎰3222222223dx x 13a bx c x 1(x 1)(x x 1)x x 1a(x x 1)(bx c)(x 1)3a 1,b 1,c 23dx 1x 2dx ()dx x 1(x 1)(x x 1)x x 112x 13ln |x 1|2x x 1131ln |x 1|ln |x x 1|1322(x )24ln |+2c3.0 (这道题,有些坑人,没有意思)+--+-+-++-=----=++++---=+++-+-+-=++-+-+-=-+++-==-=-⎰⎰⎰⎰5423332332233323222x x 8x (x x)x(x x)x x x x 8dx dx x x x x 123x x 33(x x 1)dx x x x x 23x 1113x x x ln |x x |dx 323x(x 1)(x 1)23x a b c 3x(x 1)(x 1)x x 1x 123x a(x 1)b(x x)c(x x)323101a ,b ,c 33-=---+-+=---++++-+---+=---++--=+++--⎰⎰⎰543323323x 12310133dx ()x(x 1)(x 1)3x x 1x 1231013ln |x |ln |x 1|ln |x 1|3331(ln |x |ln |x 1|ln |x 1|23ln |x |10ln |x 1|13ln |x 1|31ln(24ln |x |9ln |x 1|12ln |x 1|)3x x 8dxx x 11x x x 8ln |x |3ln |x 1|32-++4ln |x 1|c 4.0+==++⎰⎰263332x dxx 11dx 1arctanx c 33(x )15.0+-==-=--=-++⎰⎰⎰⎰222sinx dx1sinx sinx(1sinx)dx (tanxsecx tan x)dx cos xsecx (sec x 1)dx secx tanx x c6.0++==+--+==+-++++++-==-=-=-+⎰⎰⎰⎰⎰222222222cot x dxsinx cos x 1x 2t tan ,dx dt 21t 1t 21t 1t 22t *dt **dt 2t 22t 2t 1t 1t 1t 11t 1t 11t 1111()dt (1)dt lnt t 2t 2t 221x 1x ln |tan |tan c 22227.0=====+=++⎰⎰⎰2sect 2sec t tant dt 2sectdt sect tant 2ln |sect tant |2ln ||c8.0==-===-=-+=-+++=-+++⎰⎰⎰(1t,2tdt12(1)2t2ln|1t|2ln|1t11tx4ln|1|c记住口诀,反,对,幂,指,三。

高等数学习题11答案(复旦大学出版社)

高等数学习题11答案(复旦大学出版社)

261 习题十一3.计算下列对坐标的曲线积分:(1)()22d -⎰L x y x ,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧; (2)d Lxy x ⎰ 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(6)()322d 3d d x x zy y x y z Γ++-⎰,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线;解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰(2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩L 2的方程为y =0(0≤x ≤2a )故 ()()()()()12π200π320ππ322003d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2L L L a xy x xy x xy x a a t a a t t xa t t ta t t t t a =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰ (6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x ty t z tt 从1→0.262故()()32203221031041d 3d d 27334292d 87d 1874874x x zy y x y zt t t tt tt t t Γ++-⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰⎰ 7.应用格林公式计算下列积分:(1)()()d d 24356+-++-⎰ x y x y x y Γ, 其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界;解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,Q =3x +5y -6,3Q x∂=∂,1P y ∂=-∂,由格林公式得 ()()d d 24356d d 4d d 4d d 1432212LD D Dx y x y x y Q P x y x y x y x y +-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰8.利用曲线积分,求下列曲线所围成的图形的面积:(1)星形线x = a cos 3t ,y = a sin 3t ;解:(1)()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos61623π8L A y x a t a t t t a t t t a t t t a t t t a t t t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰ 9.证明下列曲线积分与路径无关,并计算积分值:(2)()()()()3,423221,2d d 663x y xy y x y xy +--⎰; (3)()()1,221,1d d x y x x y -⎰沿在右半平面的路径;263 证:(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123P xy y y∂=-∂,2123Q xy y x ∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x y xy y x y xy y x y y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰ (3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x∂=∂,在右半平面内恒有P Q y x ∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11x y x x y y -==--⎰⎰ 10.验证下列P (x , y )d x +Q (x , y )d y 在整个xOy 面内是某一函数u (x , y )的全微分,并求这样的一个函数u (x , y ):(2)2xy d x +x 2d y ;(3)(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y ;(4)(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y .解:(2)P =2xy ,Q =x 2, 2P Q x y x∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.()()(),20,020022d d ,0d d x y x yu xy x x y x y x x y x y=+=+=⎰⎰⎰ (3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Q x xy y x,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y 是某个定义在整个xOy 面内函数u (x ,y )的全微分,()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y x y y y y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰。

高等数学复旦大学出版社习题答案

高等数学复旦大学出版社习题答案

习题九1. 求下曲线在给定点的切线和法平面方程: (1)x =a sin 2t ,y =b sin t cos t ,z =c cos 2t ,点π4t =; (2)x 2+y 2+z 2=6,x +y +z =0,点M 0(1,-2,1);(3)y 2=2mx ,z 2=m -x ,点M 0(x 0,y 0,z 0).解:2sin cos ,cos 2,2cos sin x a t t y b t z c t t '''===- 曲线在点π4t =的切向量为 {}πππ,,,0,444T x y z a c ⎧⎫⎛⎫⎛⎫⎛⎫'''==-⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎩⎭当π4t =时, ,,222a b c x y z === 切线方程为2220a b cx y z a c---==-. 法平面方程为0()0.222a b c a c x y z ⎛⎫⎛⎫⎛⎫++-=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即 22022a c ax cz --+=. (2)联立方程组2226x y z x y z ⎧++=⎨++=⎩ 它确定了函数y =y (x ),z =z (x ),方程组两边对x 求导,得d d 2220d d d d 10d d y z x y z x xy z x x⎧+⋅+⋅=⎪⎪⎨⎪++=⎪⎩ 解得d d ,,d d y z x z x yx y z x y z--==--在点M 0(1,-2,1)处,00d d 0,1d d M M y zx x ==- 所以切向量为{1,0,-1}.故切线方程为121101x y z -+-==- 法平面方程为1(x -1)+0(y +2)-1(z -1)=0即x -z =0.(3)将方程y 2=2mx ,z 2=m -x 两边分别对x 求导,得d d 22,21d d y zym z x x==- 于是d d 1,d d 2y m z x y x z==- 曲线在点(x 0,y 0,z 0)处的切向量为0011,,2my z ⎧⎫-⎨⎬⎩⎭,故切线方程为 00000,112x x y y z z m y z ---==-法平面方程为000001()()()02m x x y y z z y z -+---=. 2. t (0 < t < 2π)为何值时,曲线L :x = t -sin t , y =1-cos t , z = 4sin 2t在相应点的切线垂直于平面0x y ++=,并求相应的切线和法平面方程。

最新版高等数学课后习题答案(复旦大学出版社)(李开复编)

最新版高等数学课后习题答案(复旦大学出版社)(李开复编)

高等数学(上)第一章 函数与极限1.设⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x , 求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛6sin )6(ππϕ=21= 224sin )4(==ππϕ()0222)4sin()4(==-=-ϕππϕ2. 设()x f 的定义域为[]1,0,问:⑴()2x f ; ⑵()x f sin ;⑶()()0>+a a x f ; ⑷()()a x f a x f -++ ()0>a 的定义域是什么?(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤ []ππππ)12(,2)(sin ),()12(21sin 0)2(+∈+≤≤≤≤k k x f Z k k x k x 的定义域为所以知由][a a a x f ax a a x -+-≤≤≤+≤1,)(110)3(-的定义域为所以知-由 ][φ时,定义域为当时,定义域为当从而得-知由211,210111010)4(>-≤<⎩⎨⎧+≤≤-≤≤⎩⎨⎧≤-≤≤+≤a a a a a x a ax a a x a x3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()xe x g =,求()[]x gf 和()[]x fg ,并做出这两个函数的图形。

⎪⎪⎩⎪⎪⎨⎧>=<==⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=-1,1,11,)]([.)20,10,00,1)]([1)(,11)(,01)(,1)]([.)11)(x e x x e e x f g x x x x g f x g x g x g x g f x f 从而得4. 设数列{}n x 有界, 又,0lim =∞→n n y 证明:.0lim =∞→n n n y x{}结论成立。

最新版高等数学课后习题标准答案(复旦大学出版社)(李开复编)

最新版高等数学课后习题标准答案(复旦大学出版社)(李开复编)

高等数学(上)第一章 函数与极限1. 设⎪⎩⎪⎨⎧≥<=3||,03|||,sin |)(ππϕx x x x ,求).2(446ϕπϕπϕπϕ、、、⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛6sin )6(ππϕ=21= 224sin )4(==ππϕ()0222)4sin()4(==-=-ϕππϕ2. 设()x f 的定义域为[]1,0,问:⑴()2x f ;⑵()x f s i n ; ⑶()()0>+a a x f ; ⑷()()a x f a x f -++()0>a 的定义域是什么?(1)][;,-的定义域为所以知-11)(,111022x f x x ≤≤≤≤ []ππππ)12(,2)(sin ),()12(21sin 0)2(+∈+≤≤≤≤k k x f Z k k x k x 的定义域为所以知由][a a a x f ax a a x -+-≤≤≤+≤1,)(110)3(-的定义域为所以知-由][φ时,定义域为当时,定义域为当从而得-知由211,210111010)4(>-≤<⎩⎨⎧+≤≤-≤≤⎩⎨⎧≤-≤≤+≤a a a a a x a a x a a x a x3. 设()⎪⎩⎪⎨⎧>-=<=111011x x x x f ,()xe x g =,求()[]x gf 和()[]x fg ,并做出这两个函数的图形。

⎪⎪⎩⎪⎪⎨⎧>=<==⎪⎩⎪⎨⎧>-=<=⎪⎩⎪⎨⎧>-=<=-1,1,11,)]([.)20,10,00,1)]([1)(,11)(,01)(,1)]([.)11)(x e x x e e x f g x x x x g f x g x g x g x g f x f 从而得4.设数列{}nx 有界,又,0lim =∞→nn y证明:.0lim =∞→n n n y x{}结论成立。

从而时,有,当自然数即又有对有界,∴=<=-<>∃>∀=≤∀>∃∴∞→ ..0)(,0,0lim ,,0εεεεMM y x y x My N n N y Mx n M x n n n n n n n n n5. 根据函数的定义证明: ⑴()813lim 3=-→x x8)13(lim 813303,033,33813,03=-<--<-<>∀<-<-=-->∀→x x x x x x x 所以成立时,恒有,当=取故即可。

高等数学(经管类)下、林伟初郭安学主编、复旦大学出版社、课后习题答案

高等数学(经管类)下、林伟初郭安学主编、复旦大学出版社、课后习题答案

习题7-11. 指出下列各点所在的坐标轴、坐标面或卦限:A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。

2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标.解:设所求对称点的坐标为(x ,y ,z ),则(1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3).(2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3).同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点.解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2.解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形.解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形.5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程.解:所求平面方程为1235y x z ++=-。

高等数学习题解答习题11解答

高等数学习题解答习题11解答

高等数学习题解答(上海交大)习题11解答(共21页)-本页仅作为预览文档封面,使用时请删除本页-第11章 级数1.写出下列级数的前5项:(1) 11(1)3n nn -∞=-∑;(2) 113(21)242n n n ∞=⨯-⨯∑;(3) 21(ln )n n n ∞=∑;(4) 1!n n n n ∞=∑ 解答:(1) 23451111133333-+-+-;(2) 1131351357135792242462468246810••••••••••+++++••••••••••;(3)2345611111(ln 2)(ln 3)(ln 4)(ln 5)(ln 6)+++++; (4) 234511212312341234512345••••••••••+++++。

所属章节:第十一章第一节 难度:一级2.写出下列级数的通项:(1) 2341357++++;+;(3)22242462468x x ++++⨯⨯⨯⨯⨯⨯解答:(1) 21nn -; (2) (1)n --;(3)2242n xn•。

所属章节:第十一章第一节 难度:一级3.已知级数的部分和S n ,写出该级数,并求和:(1) 1n n S n +=;(2) 212n n n S -=;解答:(1) 一般项为111121u S +===,111,2,3,1(1)n n n n n u S S n n n n n -+-=-=-==--,故该级数为212(1)n n n∞=--∑,该级数的和为1lim lim1n n n n S n →∞→∞+==; (2) 一般项为1112u S ==,11121211,2,3,222n n n n n n n n u S S n -----=-=-==,故该级数为112n n ∞=∑,该级数的和为21lim lim 12n n n n n S →∞→∞-== 。

所属章节:第十一章第一节难度:一级4.根据定义求出下列级数的和:(1) 1326n nnn ∞=+∑;(2) 11(2)n n n ∞=+∑;(3) 1(1)(2)(3)n n n n n ∞=+++∑;(4) 1n ∞=∑解答:(1) 111113211332()()1162321123nnn n n n n n ∞∞∞===+=+=+=--∑∑∑; (2) 1111111111113()(1)(2)222324354n n n n nn ∞∞===-=-+-+-+=++∑∑; (3) 111123111111[()]()()2(1)(2)(3)2122322334n n nn n n n n n∞∞===-+-⋅=-++⨯=++++++∑∑;(4) 11n n∞∞===-∑∑1n ∞==∑1==所属章节:第十一章第一节难度:一级5.证明下列级数发散:(1) 121n n n ∞=+∑;(2) 12n n n ∞=∑;(3) 11nn n n ∞=⎛⎫⎪+⎝⎭∑;(4) 111n nnn n n n +∞=⎛⎫+ ⎪⎝⎭∑ 解答:(1) 由于10212n n u n =→≠+,所以级数121n nn ∞=+∑发散; (2) 由于20n n u n =→+∞≠,所以级数12nn n∞=∑发散;(3) 由于1()01n n n u n e =→≠+,所以级数11nn n n ∞=⎛⎫ ⎪+⎝⎭∑发散; (4) 由于1111011(1)()(1)n n nn nn n nn nn n u n e n nn ++=≥=→≠+++,所以级数111n nnn nn n +∞=⎛⎫+ ⎪⎝⎭∑发散。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

261 习题十一
3.计算下列对坐标的曲线积分:
(1)()
22d -⎰L x y x ,其中L 是抛物线y =x 2上从点(0,0)到点(2,4)的一段弧; (2)d L
xy x ⎰ 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);
(6)()322d 3d d x x zy y x y z Γ++-⎰,其中Γ是从点(3,2,1)到点(0,0,0)的一段直线;
解:(1)L :y =x 2,x 从0变到2,
()()2
22224
35001156
d d 3515
L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰
(2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为
图11-1
cos 0πsin x a a t
t y a t =+⎧≤≤⎨=⎩
L 2的方程为y =0(0≤x ≤2a )
故 ()()()()()
12
π
200π32

π322003
d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π
2L L L a xy x xy x xy x a a t a a t t x
a t t t
a t t t t a =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰ (6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t
y t z t
t 从1→0.
262
故()()3220322103
10
4
1
d 3d d 27334292d 87d 187487
4x x zy y x y z
t t t t
t t
t t t Γ++-⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰⎰ 7.应用格林公式计算下列积分:
(1)()()d d 24356+-++-⎰ x y x y x y Γ
, 其中L 为三顶点分别为(0,0),(3,0)和(3,2)的三角形正向边界;
解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,
Q =3x +5y -6,3Q x
∂=∂,1P y ∂=-∂,由格林公式得 ()()d d 24356d d 4d d 4d d 14322
12
L
D D D
x y x y x y Q P x y x y x y x y +-++-∂∂⎛⎫-= ⎪∂∂⎝⎭
===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰
8.利用曲线积分,求下列曲线所围成的图形的面积:
(1)星形线x = a cos 3t ,y = a sin 3t ;
解:(1)
()()()()()2π
3202π2π242222002π20
2π202π202d sin 3cos d sin 33sin cos d sin 2sin d 4
3d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416
312π+d cos 2cos61623π8L A y x a t a t t t a t t t a t t t a t t t a t t t t t a t t t a =-=-⋅-==⋅=
--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰ 9.证明下列曲线积分与路径无关,并计算积分值:
(2)()()()()3,423221,2d d 663x y xy y x y xy +--⎰
; (3)()()
1,22
1,1d d x y x x y -⎰沿在右半平面的路径;
263 证:(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且
2123P xy y y
∂=-∂,2123Q xy y x ∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则
()()()()()()[]3,423221,2
43221
43
23212d d 663d d 63966434864236
x y xy y x y xy y x y y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰ (3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x
∂=∂,在右半平面内恒有P Q y x ∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则
()()()21,22
11,1d d d 11x y x x y y -==--⎰⎰ 10.验证下列P (x , y )d x +Q (x , y )d y 在整个xOy 面内是某一函数u (x , y )的全微分,并求这样的一个函数u (x , y ):
(2)2xy d x +x 2d y ;
(3)(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y ;
(4)(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y .
解:(2)P =2xy ,Q =x 2, 2P Q x y x
∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分.
()()()
,20,020
022d d ,0d d x y x y
u xy x x y x y x x y x y
=+=+=⎰⎰⎰ (3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Q x xy y x
,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y 是某个定义在整个xOy 面内函数u (x ,y )的全微分,
()()()()()
(),22320,0320
0322d ,38812e 0d d 812e 412e 12e 12
x y y x y y y y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰。

相关文档
最新文档