(新)集合与充要条件练习题
(完整版)集合与充要条件练习题
(完整版)集合与充要条件练习题一、选择题1.下列语句能确定一个集合的是()A 浙江公路技师学院高个子的男生B 电脑上的容量小的文件全体C 不大于3的实数全体D 与1接近的所有数的全体2.下列集合中,为无限集的是()A 比1大比5小的所有数的全体B 地球上的所有生物的全体C 超级电脑上所有文件全体D 能被百度搜索到的网页全体3.下列表示方法正确的是()2.0 (3)A NB QC RD Z Q π*∈-∈∈∈ 4.下列对象能组成集合的是()A.大于5的自然数B.一切很大的数C.路桥系优秀的学生D.班上考试得分很高的同学5.下列不能组成集合的是()A. 不大于8的自然数B. 很接近于2的数C.班上身高超过2米的同学D.班上数学考试得分在85分以上的同学6.下列语句不正确的是()A.由3,3,4,5构成一个集合,此集合共有3个元素B.所有平行四边形构成的集合是个有限集C.周长为20cm 的三角形构成的集合是无限集D.如果,,a Q b Q a b Q ∈∈+∈则7.下列集合中是有限集的是(){}{}{}{}2.|3..|2,.|10A x Z x B C x x n n Z D x R x ∈<=∈∈-=三角形8.下列4个集合中是空集的是() {}{}{}{}2222.|10.|.|0.|10A x R x B x x x C x x D x x ∈-=<-=+=9.下列关系正确的是().0.0.0.0A B C D ∈≠?10.用列举法表示集合{}2|560x x x -+=,结果是()A.3B.2C.{}3,2 D.3,211.绝对值等于3的所有整数组成的集合是()A.3B.{}3,3- C.{}3 D.3,-312.用列举法表示方程24x =的解集是(){}{}{}{}2.|4.2,2.2.2A x x B C D =--13.集合{}1,2,3,4,5也可表示成(){}{}{}{}.|5.|05.|05,.|05,A x x B x x C x x x N D x x x N <<<<<∈<≤∈14.下列不能表示偶数集的是(){}{}{}{}.|2,.|.,4,2,0,2,4,.|2,A x x k k Z B x x C D x x n n N =∈--=∈L L 是偶数15.下列表示集合{}1,1-不正确的是(){}{}{}{}22.|1.1.|1.|1A x x B x C x x D x ====16.对于集合{}{}2,6,2,4,6A B ==,则下列关系不正确的是()....A A B B A B C B A D A B ≠17.若,x A ∈则,x B ∈那么集合A,B 的关系可能是()....A A B B B A C A B D B A ∈∈??18.集合{},,a b c 的子集个数为().3.7.8.9A B C D 个个个个19.已知集合{}1,2,3,4,下列集合中,不是它的子集的是() {}{}{}.1234.3..012A B C D ?,,,,,20.已知{}{}24734,5(A B A B ==?=,,,,,则).{}{}{}{}.2,3.4.5,7.2,3,4,5A B C D21.若N={自然数},Z={整数},则()N Z ?=A.NB.Z C{0} D.{正整数}22.设集合{}{}|14,|05,M x x N x x =-≤<=≤≤则()M N =I {}{}{}{}.|45.|10.|15.|04A x x B x x C x x D x x ≤≤-≤≤-≤≤≤< 23.设集合{}{}|14,|05,M x x N x x =-≤<=≤≤则()M N =U {}{}{}{}.|45.|10.|15.|04A x x B x x C x x D x x ≤≤-≤≤-≤≤≤< 24.若全集U={整数},集合A={奇数},则()U A =eA.{偶数}B.{整数}C.{自然数} D{奇数}25.()21010x x -=-=是的 A 充分但非必要条件 B.必要但非充分条件C.充要条件 D 既非充分条件也非必要条件26.()0"0b 0ab a ==="是“且”的A 充分但非必要条件 B.必要但非充分条件C.充要条件 D 既非充分条件也非必要条件27.x>5是x>3的( )A 充分但非必要条件 B.必要但非充分条件C.充要条件 D 既非充分条件也非必要条件二、填空题:1.自然数集用大写字母______表示;整数集用大写字母______表示;有理数集用大写字母______表示;实数集用大写字母______表示;自然数集内排除0的集合用______表示;2.用符号“∈”或“?”填空11)3.14__;3)__;4)2__;6)__2R R N N Q Q π- 3.不大于4的实数全体,用性质描述法可表示为____;4.所有奇数组成的集合________;所有被3除余1的数组成的集合_______;5.绝对值小于6的实数组成的集合_______________;6.大于0而小于10的奇数组成的集合__________________;7.小于7的正整数组成的集合__________________;8.不含任何元素的集合叫做__________;记做___________;它是任何的集合的___________.9.{}a 与a 是完全不同的,a 表示一个________;而{}a 表示一个__________.10.用适当的符号填空: {}{}{}{}{}{}{}{}__,,;,,__,,;__0;__0;______.a a b c a b c c a b ??正三角形等腰三角形;平行四边形梯形已知{,,,},{,,},A a b c d B c d e ==则_______,_______,A B A B ==I U 已知A={10以内的质数},B={偶数},则______.A B =I用“充分条件”,“必要条件”或“充要条件”填空:1)416________;x ==2是x 的2)240b ac ->是方程20(0)ax bx c a ++=≠有实根的 __________; 3)0b =是直线y kx b =+过原点的______________;4)24a b >是方程20x ax b ++=有实根的 __________;5)若,,a b R ∈则220a b +=是0a b +=的_____________;解答题写出{1,2,3}的所有子集,并指出哪些不是真子集。
高中数学 第一章 集合与常用逻辑用语 1.4.1 充分条件与必要条件精品练习(含解析)新人教A版必修
1.4.1 充分条件与必要条件6.若“x>1”是“x>a”的充分条件,则a的取值X围是________.关键能力综合练一、选择题1.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( ) A.充分条件B.必要条件C.既是充分条件,也是必要条件D.既不充分又不必要条件2.设集合A={x|0≤x≤3},集合B={x|1≤x≤3},那么“m∈A”是“m∈B”的( ) A.充分条件B.必要条件C.既是充分条件也是必要条件D.既不充分又不必要条件3.设a,b∈R,则“(a-b)·a2<0”是“a<b”的( )A.充分不必要条件B.必要不充分条件C.既是充分条件,也是必要条件D.既不充分也不必要条件4.设集合M={x|x≥2},P={x|x>1},则“x∈M∪P”是“x∈M∩P”的( )A.充分不必要条件B.必要不充分条件C.既是充分条件,也是必要条件D.既不充分也不必要条件5.设x∈R,则“|x|<1”是“x3<1”的( )A.充分不必要条件B.必要不充分条件C.既是充分条件,也是必要条件D.既不充分也不必要条件6.设x,y是两个实数,则“x,y中至少有一个大于1”的一个充分不必要条件是( ) A.x+y=2 B.x+y>21.4 充分条件与必要条件1.4.1 充分条件与必要条件必备知识基础练1.解析:(1)若α为锐角,α不一定等于45°,因此p 不是q 的充分条件;反之,若α=45°,则α为锐角,因此p 是q 的必要条件.(2)由x >1可以推出x 2>1,因此p 是q 的充分条件;由x 2>1,得x <-1,或x >1,不一定有x >1.因此,p 不是q 的必要条件.(3)由(a -2)(a -3)=0可以推出a =2或a =3,不一定有a =3,因此p 不是q 的充分条件;由a =3可以得出(a -2)(a -3)=0.因此,p 是q 的必要条件.(4)二次函数y =ax 2+bx +c ,当Δ>0时,其图象与x 轴有交点,因此p 是q 的充分条件;反之若函数的图象与x 轴有交点,则Δ≥0,不一定是Δ>0,因此p 不是q 的必要条件.2.解析:当a =1时,|a |=1成立,但当|a |=1时,a =±1,所以a =1不一定成立,∴“a =1”是“|a |=1”的充分条件.故选A.答案:A3.解析:∵-2<x <1⇒x >1或x <-1,且x >1或x <-1⇒-2<x <1.∴“-2<x <1”是“x >1或x <-1”的既不充分条件,也不必要条件.答案:C4.解析:当x >1时,1x <1成立;当x <0时,也满足1x <1,故“x >1”是“1x<1”的充分不必要条件.答案:A5.解析:由于x =0⇒x 2=2x ,所以“x 2=2x ”是“x =0”的必要条件,“x =0”是“x2=2x”的充分条件.答案:必要充分6.解析:因为x>1⇒x>a,所以a≤1.答案:a≤1关键能力综合练1.解析:“便宜没好货”的意思是“好货”肯定“不便宜”,所以“不便宜”是“好货”的必要条件.答案:B2.解析:因为集合A={x|0≤x≤3},集合B={x|1≤x≤3},则由“m∈A”得不到“m∈B”,反之由“m∈B”可得到“m∈A”,故选B.答案:B3.解析:若(a-b)·a2<0,则必有a-b<0,即a<b;而当a<b时,不能推出(a-b)·a2<0,如a=0,b=1,所以“(a-b)·a2<0”是“a<b”的充分不必要条件.答案:A4.解析:因为M∪P={x|x>1},M∩P={x|x≥2},所以“x∈M∪P”是“x∈M∩P”的必要不充分条件.故选B.答案:B5.解析:由|x|<1,得-1<x<1,所以-1<x3<1;由x3<1,得x<1,不能推出-1<x<1.所以“|x|<1”是“x3<1”的充分不必要条件.故选A.答案:A6.解析:A项,x+y=2时,令x=y=1,不符合命题;而命题“x,y中至少有一个大于1”,令x=-1,y=2,x+y≠2,所以是非充分非必要条件;B项,x+y>2时,若x,y 都不大于1,则x+y≤2矛盾,可得x,y中至少有一个大于1;若“x,y中至少有一个大于1”,令x=-1,y=2,x+y<2,所以是充分不必要条件;C项,x2+y2>2时,令x=-2,y=0,不符合命题;若“x,y中至少有一个大于1”,令x=1.1,y=0,x2+y2<2,所以是非充分非必要条件;D项,xy>1时,令x=-1,y=-2,不符合命题;若“x,y中至少有一个大于1”,令x=-1,y=2,xy<1,所以是非充分非必要条件.答案:B7.解析:当a和b都是偶数时,则a+b也是偶数;当a+b为偶数时,a,b可以都为奇数.故填“充分不必要”.答案:充分不必要8.解析:令A={x|1≤x<4},B={x|x<m},因为p是q的充分条件,所以A⊆B.所以m≥4.答案:m≥49.解析:①ab=0即为a=0或b=0,即a,b中至少有一个为0;②a+b=0即a,b 互为相反数,则a,b可能均为0,也可能为一正一负;③由ab>0知a与b同号,即a,b都不为0.综上可知,“a,b都为0”能推出①②,③能推出“a,b都不为0”,所以使a,b都为0的必要条件是①②,使a,b都不为0的充分条件是③.答案:(1)①②(2)③10.解析:(1)数a能被6整除,则一定能被3整除,反之不一定成立.即p⇒q,q⇒p,∴p是q的充分不必要条件.(2)当a=-2,b=-1时,ab=2>1;当a=2,b=-1时,ab=-2<1,所以p既不是q的充分条件,也不是必要条件.(3)△ABC中,有两个角相等时为等腰三角形,不一定为正三角形,即p⇒q,且q⇒p,∴p是q的必要不充分条件.学科素养升级练1.解析:由x2-x-2<0,解得-1<x<2.又x2-x-2<0是-2<x<a的充分不必要条件,∴(-1,2)(-2,a),则a≥2.∴实数a的值可以是2,3,4.故选BCD.答案:BCD2.解析:因为甲是乙的必要条件,所以乙⇒甲.又因为丙是乙的充分条件,但不是乙的必要条件,所以丙⇒乙,但乙⇒丙,如图.综上,有丙⇒甲,但甲⇒丙,即丙是甲的充分条件,但不是甲的必要条件. 答案:A3.解析:若a =-1,b =12,则Δ=a 2-4b <0,关于x 的方程x 2+ax +b =0无实根,故p⇒q .若关于x 的方程x 2+ax +b =0有两个小于1的不等正根,不妨设这两个根为x 1,x 2,且0<x 1<x 2<1,则x 1+x 2=-a ,x 1x 2=b .于是0<-a <2,0<b <1,即-2<a <0,0<b <1,故q ⇒p . 所以p 是q 的必要条件,但不是充分条件.。
充要条件(练习及答案解析)-人教A版2019必修第一册高一数学教材配套练习
1.4.2 充要条件基础练巩固新知夯实基础1.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.在下列三个结论中,正确的有()⊆x2>4是x3<-8的必要不充分条件;⊆在⊆ABC中,AB2+AC2=BC2是⊆ABC为直角三角形的充要条件;⊆若a,b⊆R,则“a2+b2≠0”是“a,b不全为0”的充要条件.A.⊆⊆B.⊆⊆C.⊆⊆D.⊆⊆⊆3.“x,y均为奇数”是“x+y为偶数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设a,b是实数,则“a>b”是“a2>b2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是()A.m=-2B.m=2C.m=-1D.m=16.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的________________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)7.在平面直角坐标系中,点(x+5,1-x)在第一象限的充要条件是.8.已知集合M={x|x<-3或x>5},P={x|(x-a)·(x-8)≤0}.(1)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的充要条件;(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分不必要条件;(3)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的一个必要不充分条件.能力练综合应用核心素养9.设x ⊆R ,则“x >12”是“2x 2+x -1>0”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.有下述说法:①a>b>0是a 2>b 2的充要条件;②a>b>0是的充要条件;③a>b>0是a 3>b 3的充要条件.其中正确的说法有( )A.0个B.1个C.2个D.3个11.“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A.m >14B.0<m <1C.m >0D.m >112.设集合A ={x ⊆R |x -2>0},B ={x ⊆R |x <0},C ={x ⊆R |x (x -2)>0},则“x ⊆A ⊆B ”是“x ⊆C ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件13.设计如图所示的四个电路图,条件p :“开关S 闭合”;条件q :“灯泡L 亮”,则p 是q 的充分不必要条件的电路图是________.14.下列不等式:⊆x <1;⊆0<x <1;⊆-1<x <0;⊆-1<x <1.其中,可以为x 2<1的充分条件的所有序号为________.15.求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.16.设x ,y ⊆R ,求证:|x +y |=|x |+|y |成立的充要条件是xy ≥0.【参考答案】1. A 解析:a =1时,N ⊆M ,但当a 取-1时,也满足N ⊆M 。
高中数学 第一章 集合与常用逻辑用语 1.4.2 充要条件精品练习(含解析)新人教A版必修第一册-新
1.4.2 充要条件2.设条件p :|x |≤m (m >0),q :-1≤x ≤4,若p 是q 的充分条件,则m 的最大值为________,若p 是q 的必要条件,则m 的最小值为________.3.(情境命题—学术情境)设a ,b ,c 为△ABC 的三边,求证:方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根的充要条件是A =90°.1.4.2 充要条件必备知识基础练1.解析:(1)由a >0且b >0⇒a +b >0且ab >0,并且由a +b >0且ab >0⇒a >0且b >0,所以p 是q 的充要条件.(2)由⎩⎪⎨⎪⎧α>2,β>2,根据不等式的性质可得⎩⎪⎨⎪⎧α+β>4,αβ>4.即p ⇒q ,而由⎩⎪⎨⎪⎧α+β>4,αβ>4不能推出⎩⎪⎨⎪⎧α>2,β>2.如:α=1,β=5满足⎩⎪⎨⎪⎧α+β>4,αβ>4,但不满足α>2.所以p 是q 的充分不必要条件. 2.解析:作出“⇒”图,如右图所示,可知:p ⇒q ,r ⇒q ,q ⇒s ,s ⇒r .(1)p ⇒q ⇒s ⇒r ,且r ⇒q ,q 能否推出p 未知,∴p 是r 的充分条件. (2)∵s ⇒r ⇒q ,q ⇒s ,∴s 是q 的充要条件. (3)共有三对充要条件,q ⇔s ;s ⇔r ;r ⇔q . 3.证明:①充分性:如果b =0,那么y =kx . 当x =0时,y =0.所以一次函数y =kx +b (k ≠0)的图象过原点(0,0).②必要性:因为一次函数y =kx +b (k ≠0)的图象过原点(0,0), 所以0=0+b ,所以b =0.综上,一次函数y =kx +b (k ≠0)的图象过原点(0,0)的充要条件是b =0. 4.证明:必要性:由于方程ax 2+bx +c =0(a ≠0)有一正根和一负根, 所以Δ=b 2-4ac >0,x 1·x 2=ca<0, 所以ac <0.充分性:由ac <0可得b 2-4ac >0及x 1·x 2=c a<0,所以方程ax 2+bx +c =0(a ≠0)有两个不相等的实根,且两根异号, 即方程ax 2+bx +c =0(a ≠0)有一正根和一负根.综上可知,关于x 的方程ax 2+bx +c =0(a ≠0),有一正根和一负根的充要条件是ac <0. 5.解析:解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件. 答案:A6.解析:a 2+b 2>0,则a ,b 不同时为零;a ,b 中至少有一个不为零,则a 2+b 2>0.故选D.答案:D7.解析:充分性:当a =3时,A ={1,3},B ={1,2,3},可以推出A ⊆B ,故充分性成立;必要性:若A ⊆B ,则{1,a }⊆{1,2,3},可得a =2或a =3,故必要性不成立.所以“a =3”是“A ⊆B ”的充分不必要条件.答案:A关键能力综合练1.解析:当x =1时,x 3=x 成立.若x 3=x ,x (x 2-1)=0,得x =-1,0,1;不一定得到x =1.答案:A2.解析:不等式2x 2+x -1>0,即(x +1)(2x -1)>0,解得x >12或x <-1,所以由x >12可以得到不等式2x 2+x -1>0成立,但由2x 2+x -1>0不一定得到x >12,所以“x >12”是“2x 2+x-1>0”的充分而不必要条件.答案:A3.解析:函数y =x 2+mx +1的图象关于直线x =1对称的充要条件是-m2×1=1,即m=-2,故选A.答案:A4.解析:M ∩N =N ⇔N ⊆M ⇔M ∪N =M . 答案:C5.解析:由{x |x >5}是{x |x ≤-1或x ≥3}的真子集,可知p 是q 的必要不充分条件. 答案:B6.解析:由A ∪B =C 知,x ∈A ⇒x ∈C ,x ∈C ⇒x ∈A .所以x ∈C 是x ∈A 的必要不充分条件. 答案:B 7.答案:充要8.解析:由题意可知:1≤x ≤2⇒x ≤m ,反之不成立,所以m ≥2,即m 的最小值为2. 答案:29.解析:x =4±16-4m2=2±4-m ,因为x 是整数,即2±4-m 为整数,所以4-m为整数,且m ≤4,又m ∈N *,取m =1,2,3,4.验证可得m =3,4符合题意,所以m =3,4时可以推出一元二次方程x 2-4x +m =0有整数根.答案:3或410.解析:设A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1,B ={x |a ≤x ≤a +1}, 由p 是q 的充分不必要条件,可知A B ,∴⎩⎪⎨⎪⎧a ≤12,a +1>1或⎩⎪⎨⎪⎧a <12,a +1≥1,解得0≤a ≤12,故所某某数a 的取值X 围是0≤a ≤12.学科素养升级练1.解析:因为由x >2且y >3⇒x +y >5,但由x +y >5不能推出x >2且y >3,所以x >2且y >3是x +y >5的充分不必要条件.故A 错误;因为由x >1⇒|x |>0,而由|x |>0不能推出x >1,所以x >1是|x |>0的充分不必要条件.故B 正确;因为由b 2-4ac <0不能推出ax 2+bx +c <0(a ≠0)的解集为R (a >0时解集为∅),而由ax 2+bx +c <0(a ≠0)的解集为R ⇒b 2-4ac <0,所以b 2-4ac <0是ax 2+bx +c <0(a ≠0)的解集为R 的必要不充分条件.故C 错误;由三角形的三边满足勾股定理⇒此三角形为直角三角形,由三角形为直角三角形⇒该三角形的三边满足勾股定理,故D 正确.答案:BD2.解析:条件p :|x |≤m ,可得:-m ≤x ≤m .条件q :-1≤x ≤4, 若p 是q 的充分条件,则-m ≥-1,且m ≤4,解得0<m ≤1, 则m 最大值为1,p 是q 的必要条件,则-m ≤-1且m ≥4,解得m ≥4,则m 的最小值为4, 故答案为:1,4 答案:1,43.证明:①必要性:设方程x 2+2ax +b 2=0与x 2+2cx -b 2=0有公共根x 0, 则x 20+2ax 0+b 2=0,x 20+2cx 0-b 2=0, 两式相减,可得x 0=b 2c -a,将此式代入x 20+2ax 0+b 2=0整理得b 2+c 2=a 2, 故A =90°.②充分性:∵A =90°,∴b 2+c 2=a 2,∴b 2=a 2-c 2. 将此式代入方程x 2+2ax +b 2=0,可得x2+2ax+a2-c2=0,即(x+a-c)(x+a+c)=0,将b2=a2-c2代入方程x2+2cx-b2=0,可得x2+2cx+c2-a2=0,即(x+c-a)(x+c+a)=0,故两方程有公共根x=-(a+c).∴方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是A=90°.。
新高考高中数学1.2.3充分条件、必要条件类型题
命题判断、充分条件、必要条件类型题数学思想:集合与补集,数型结合、正难则反一、判断命题的真假例1:(正面)设集合A,B,有下列四个命题。
①A⊈B⇔与对任意x∈A,都有x∉B;②A⊈B⇔A∩B=φ;③A⊈B⇔B⊆A⊆⊆A⊈B⇔⊆⊆x⊆A⊆⊆⊆x⊆B⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆ ⊆ ⊆点评:正确的命题要有充分的依据,不一定正确的命题要举出反例,这是最基本的数学思维方式,也是两种不同的解题方向,有时举出反例可能比进行推理论证更困难,二者同样重要。
例2:判断下列命题的真假.(反面)(1)若a>b,则ac2>bc2;(2)正项等差数列的公差大于零。
解:(1)假命题,当c=0时,ac2=b c2;(2)假命题,如数列20,17,14,11,8.点评:判断一个命题为假命题,只要举一个反例即可。
例3:(利用等价命题判断命题的真假)命题“若a>-6,则a>-3”以及它的逆命题、否命题、逆否命题中真命题的个数为A.1B.2C.3D.4因为原命题为假命题,所以其逆否命题为假命题。
因为其逆命题若“a>-3,则a>-6”为真命题,故选B。
点评:因为原命题与其逆否命题的真假性保持一致,原命题的否命题与原命题的逆命题也互为逆否命题,所以判断原命题与其逆命题、否命题、逆否命题的真假性时,只需判断两组逆否命题中的各一个命题的真假性即可。
四种命题中,真命题的个数只能是0,2或4个。
二、判断充分条件、必要条件以及充要条件的方法例4:(集合思想)已知p:|x|<1.q:x2+x-20<0,试判断┐p是┐q的什么条件。
解:设p、q对应集合P,Q,则P={x|-1<x<1),Q={x|-5<x<4).因为P⫋Q,所以p=>q,且q⇏p,所以p是q的充分不必要条件。
所以┐q➩┐p,┐p⇏┐q,所以┐p是┐q的必要不充分条件。
点评:若给出两个条件,通过数轴或者veen图得到两个条件的范围大小,从而得出结论。
新教材人教A版高中数学必修一充要条件 同步练习(含解析)
1.4.2 充要条件【新教材】人教A版(2019)高中数学必修第一册同步练习(含解析)一.单选题1.设a,b是实数,则“a+b>0”是“ab>0”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2.已知a,b∈R,则“a>|b|”是“a|a|>b|b|”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.在下列结论中,正确的有()①x2>4是x3<−8的必要不充分条件;②在△ABC中,AB2+AC2=BC2是△ABC为直角三角形的充要条件;③若a,b∈R,则“a2+b2≠0”是“a,b不全为0”的充要条件.A. ①②B. ②③C. ①③D. ①②③4.三角形全等是三角形面积相等的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5.设非空集合A,B,则A∩B≠⌀是A⊆B的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件6.已知命题p:四边形的一组对边平行且相等,命题q:四边形是矩形,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件7.设集合A={x∈R|x−2>0},B={x∈R|x<0},C={x∈R|x(x−2)>0},则“x∈A∪B”是“x∈C”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件8.设x∈R,则“|x−2|<1”是“x2+x−2>0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件9.设A,B是两个集合,则“A∩B=A”是“A⊆B”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件10.若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补.记φ(a,b)=√a2+b2−a−b,则φ(a,b)=0是a与b互补的()A.必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分又不必要条件二.多选题11.已知实系数一元二次方程ax2+bx+c=0(a≠0),下列结论正确的是()A. Δ=b2−4ac≥0是这个方程有实根的充要条件B. Δ=b2−4ac=0是这个方程有实根的充分条件C. Δ=b2−4ac>0是这个方程有实根的必要条件D. Δ=b2−4ac<0是这个方程没有实根的充要条件12.下列各式中,是x2<1的充分条件的有()A.x<1B. 0<x<1C. −1<x<1D. −1<x<0三.填空题13.不等式x2−3x+2<0成立的充要条件是________.14.已知x∈R,若“x2>1”是“x<k”的必要不充分条件,则实数k的最大值为________.15.设集合A={1,2},B={a2},则“a=1”是“B⊆A”的条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)16.已知甲、乙、丙、丁四个命题,甲是乙的充分不必要条件,丙是乙的充要条件,丁是丙的必要不充分条件,则丁是甲的条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)17.已知m>0,p:(x+1)(x−5)≤0,q:1−m≤x≤1+m.若p是q的充分条件,则实数m的取值范围是________.四.解答题18.指出下列各组命题中p是q的什么条件.在“充分不必要条件”“必要不充分条件”“充要条件”“既不充分又不必要条件”中选出一种,并说明理由.(1)设x,y是实数,p:x>y,q:|x|>|y|.(2)p:a∈N,q:a∈Z.(3)p:点D在△ABC的边BC的中线上,q:S△ABD=S△ACD.(4)p:小王的学习成绩优秀,q:小王是“三好学生”.19.指出下列命题中,p是q的什么条件.(1)p:数a能被6整除,q:数a能被3整除.(2)p:|x|>1,q:x2>1.(3)p:△ABC有两个角相等,q:△ABC是正三角形.>2,q:x2−ax+5>0.20.已知p:x+1x−2(1)若¬p为真,求x的取值范围;(2)若¬q是¬p的充分不必要条件,求实数a的取值范围.答案和解析1.【答案】D【解析】【分析】本题考查了必要条件、充分条件与充要条件的判断、比较大小、不等式性质的相关知识,试题难度较易【解答】解:本题采用特殊值法:当a=3,b=−1时,a+b>0,但ab<0,故不是充分条件;当a=−3,b=−1时,ab>0,但a+b<0,故不是必要条件.所以“a+b>0”是“ab>0”的既不充分也不必要条件.2.【答案】A【解析】【分析】本题考查必要条件、充分条件与充要条件的判断,属于基础题型,由题意,若a>|b|,可得a|a|> b|b|成立;当a=1,b=−2时,满足a|a|>b|b|,但a>|b|不一定成立,即可求解;【解答】解:由题意,若a>|b|,则a>|b|≥0,则a>b,因为y=x|x|在R上单调递增,则a|a|>b|b|成立;当a=1,b=−2时,满足a|a|>b|b|,但a>|b|不一定成立,所以a>|b|是a|a|>b|b|的充分不必要条件.故选A.3.【答案】C【解析】【分析】本题考查了必要条件、充分条件与充要条件的判断的相关知识,试题难度一般【解答】解:对于结论①,由x3<−8⇒x<−2⇒x2>4,但是x2>4⇒x>2或x<−2⇒x3>8或x3<−8,不一定有x3<−8,故①正确;对于结论②,当B=90∘或C=90∘时不能推出AB2+AC2=BC2,故②错;对于结论③,由a2+b2≠0⇒a,b不全为0,反之,由a,b不全为0⇒a2+b2≠0,故③正确.故选C.4.【答案】A【解析】【分析】本题考查充分条件、必要条件以及充要条件的判断,由题意根据充分必要条件的定义进行判断即可.【解答】解:若三角形全等,则三角形的面积相等,即充分性成立;若两个三角形的面积相等,则三角形不一定全等,故必要性不成立,所以三角形全等是三角形面积相等的充分不必要条件.故选A.5.【答案】B【解析】【分析】本题考查了必要条件、充分条件与充要条件的判断,由必要条件、充分条件与充要条件的判断定义可得答案【解答】解:由非空集合A,B且A⊆B得A∩B≠⌀,但A∩B≠⌀不一定可推出A⊆B,故A∩B≠⌀是A⊆B的必要不充分条件故选B6.【答案】B【解析】【分析】本题考查充分条件、必要条件以及充要条件的判定,由题意根据充分必要条件的定义进行判断即可.解:一组对边平行且相等的四边形是平行四边形,但不一定是矩形,而矩形一定是平行四边形,所以p⇏q,q⇒p,故p是q的必要不充分条件.故选:B.7.【答案】C【解析】【分析】本题考查了必要条件、充分条件与充要条件的判断,化简集合A,C,求出A∪B,判断出A∪B与C的关系是相等的即充要条件.【解答】解:A={x∈R|x−2>0}={x|x>2},A∪B={x|x>2或x<0},C={x∈R|x(x−2)>0}={x|x>2或x<0},∴A∪B=C∴“x∈A∪B”是“x∈C”的充要条件故选:C.8.【答案】A【解析】【分析】本题主要考查充分条件和必要条件的判断,属于基础题.根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.【解答】解:由“|x−2|<1”得1<x<3,由x2+x−2>0得x>1或x<−2,即“|x−2|<1”是“x2+x−2>0”的充分不必要条件,故选:A.【解析】【分析】本题考查充分条件和必要条件的判断,集合的交集及集合的关系,属于基础题.根据充分条件和必要条件的判断即可求解此题.【解答】解:A,B是两个集合,则“A∩B=A”可得“A⊆B”,反之也成立,所以,“A∩B=A”是“A⊆B”充要条件.故选C.10.【答案】C【解析】【分析】本题主要考查了充分必要条件的判定,属于基础题.根据题目定义,从充分性与必要性两个方面进行判定即可.【解答】解:若φ(a,b)=√a2+b2−a−b=0,则√a2+b2=(a+b),两边平方解得ab=0,故a,b至少有一为0,不妨令a=0则可得|b|−b=0,故b≥0,即a与b互补;若a与b互补时,易得ab=0,故a,b至少有一为0,若a=0,b≥0,此时√a2+b2−a−b=√b2−b=0,同理若b=0,a≥0,此时√a2+b2−a−b=√a2−a=0,即φ(a,b)=0,故φ(a,b)=0是a与b互补的充要条件.故选C.11.【答案】ABD【解析】【分析】本题考查了必要条件、充分条件与充要条件的判断、二次函数的零点与一元二次方程解的关系的相关知识,试题难度较易【解答】解:可利用Δ=b2−4ac的值判断方程根的情况,Δ=0方程有两相等实根;Δ>0方程有两不等实根;Δ<0方程无实根.A对,Δ≥0⇔方程ax2+bx+c=0有实根;B对,Δ=0⇒方程ax2+bx+c=0有实根;C错,Δ>0⇒方程ax2+bx+c=0有实根,但ax2+bc+c=0有实根⇏Δ>0;D对,Δ<0⇔方程ax2+bx+c=0无实根.故选ABD.12.【答案】BCD【解析】【分析】本题主要考查的是充分条件的判断,属于基础题.可先解不等式x2<1,再结合充分条件进行判断.【解答】解:由x2<1得−1<x<1,由BCD都能推出x满足−1<x<1,故选BCD.13.【答案】1<x<2【解析】【分析】本题考查了必要条件、充分条件与充要条件的判断、一元二次不等式的解法的相关知识,试题难度较易【解答】解:x2−3x+2<0⇔1<x<2,故不等式x2−3x+2<0成立的充要条件是1<x<2.故答案为1<x<2.14.【答案】−1【解析】【分析】直接根据题意及必要不充分条件,知“x<k”可以推出“x2>1”,反之不成立,从而可得k的最大值.【解答】解:因x2>1得x<−1或x>1,又“x2>1”是“x<k”的必要不充分条件,知“x<k”可以推出“x2>1”,反之不成立.则k的最大值为−1.故答案为−1.15.【答案】充分不必要【解析】【分析】本题考查充分、必要条件的判定,以及集合包含关系的判定,属于基础题.直接根据题意及必要条件、充分条件的判断即可得出答案.【解答】解:根据题意集合A={1,2},B={a2},若a=1,则B={a2}={1},则“B⊆A“,故充分性成立,当集合A={1,2},B={a2},若“B⊆A“,则可得a2=1或a2=2,故必要性不成立,故“a=1”是“B⊆A”的充分不必要条件.故答案填:充分不必要.16.【答案】必要不充分【解析】【分析】本题考查充分条件、必要条件以及充要条件的判定.根据充分必要条件的定义进行求解即可.【解答】解:甲是乙的充分不必要条件,故甲⇒乙,乙⇏甲,丙是乙的充要条件,故丙⇒乙,乙⇒丙,丁是丙的必要不充分条件,故丁⇏丙,丙⇒丁,显然丁不能推出甲,而甲能推出乙,乙能推出丙,丙能推出丁,故甲能推出丁,即丁是甲的必要不充分条件.故答案填:必要不充分.17.【答案】[4,+∞)【解析】【分析】本题考查充分条件的判定、集合关系中的参数取值问题.化简p ,根据题意得出{1−m ≤−11+m ≥5,由此即可求出结果. 【解答】解:由(x +1)(x −5)≤0得−1≤x ≤5,∴p :−1≤x ≤5,∵q :1−m ≤x ≤1+m ,m >0,p 是q 的充分条件,∴满足[−1,5]⊆[1−m,1+m ],∴{1−m ≤−11+m ≥5,解得m ≥4, ∴m 的取值范围为[4,+∞).故答案为[4,+∞).18.【答案】解:(1)当x >y 时,|x|>|y|不一定成立,当|x|>|y|时,x >y 也不一定成立,故p 是q 的既不充分又不必要条件;(2)当a ∈N 时,a ∈Z 一定成立,当a ∈Z 时,a ∈N 不一定成立,故p 是q 的充分不必要条件;(3)当点D 在△ABC 的边BC 的中线上时,S △ABD =S △ACD ,当S△ABD=S△ACD时,点D不一定在△ABC的边BC的中线上,故p是q的充分不必要条件;(4)当小王的学习成绩优秀时,小王不一定是三好学生,但小王是三好学生时,小王的学习成绩一定优秀,故p是q的必要不充分条件.【解析】本题主要考查充分条件、必要条件及充要条件的判断,属于基础题.(1)根据p与q的关系,结合充分条件、必要条件及充要条件的判断,可得结论;(2)根据a∈N与a∈Z的关系,结合充分条件、必要条件及充要条件的判断,可得结论;(3)根据点D在△ABC的边BC的中线上与S△ABD=S△ACD的关系,结合充分条件、必要条件及充要条件的判断,可得结论;(4)根据小王的学习成绩优秀与小王是三好学生的关系,结合充分条件、必要条件及充要条件的判断,可得结论.19.【答案】解:(1)因为p⇒q,但q不能⇒p,所以p是q的充分不必要条件.(2)因为p⇒q,但q⇒p,所以p是q的充要条件.(3)因为p不能⇒q,但q⇒p,所以p是q的必要不充分条件.【解析】本题主要考查了充分条件,必要条件,充要条件的判断,属于基础题.欲判断p是q的什么条件,根据充分条件,必要条件,充要条件的方法,只须判断p与q,谁能推出谁的问题即可.20.【答案】解:(1)p:x+1x−2>2,化为:x−5x−2<0,即(x−2)(x−5)<0,解得:2<x<5,由¬p为真,可得:x≤2或x≥5,∴x的取值范围是(−∞,2]∪[5,+∞).(2)¬q是¬p的充分不必要条件,则q是p的必要不充分条件.故q:x2−ax+5>0对于任意2<x<5恒成立,故a<x+5x ,∵x+5x≥2√5,当且仅当x=√5时取等号.故a<2√5.>2,化为:(x−2)(x−5)<0,解得x范围,由¬p为真,可得x的取值范围.【解析】(1)p:x+1x−2(2)¬q是¬p的充分不必要条件,可得:q是p的必要不充分条件.于是q:x2−ax+5>0对于任意2<x<5恒成立,转化为a<x+5,利用基本不等式的性质即可得出.x本题考查了简易逻辑的判定方法、不等式的解法,考查了推理能力与计算能力,属于基础题.。
高中数学命题与充要条件练习题附答案精选全文完整版
可编辑修改精选全文完整版1.已知x∈R,命题“若x2>0,则x>0”的逆命题、否命题和逆否命题中,正确命题的个数是()A.0B.1C.2 D.3解析:选C.命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;否命题是“若x2≤0,则x≤0”,是真命题;逆否命题是“若x≤0,则x2≤0”,是假命题.综上,以上3个命题中真命题的个数是2.故选C.2.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的()A.逆命题B.否命题C.逆否命题D.否定解析:选B.命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.3.(2018·陕西质量检测(一))设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析:选A.由(a-b)a2<0可知a2≠0,则一定有a-b<0,即a<b;但是a<b即a -b<0时,有可能a=0,所以(a-b)a2<0不一定成立,故“(a-b)a2<0”是“a<b”的充分不必要条件,选A.4.在△ABC中,角A,B,C的对边分别为a,b,c,则“sin A>sin B”是“a>b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C.设△ABC外接圆的半径为R,若sin A>sin B,则2R sin A>2R sin B,即a>b;若a>b,则a2R>b2R,即sin A>sin B,所以在△ABC中,“sin A>sin B”是“a>b”的充要条件,故选C.5.有下列命题:①“若x+y>0,则x>0且y>0”的否命题;②“矩形的对角线相等”的否命题;③“若m ≥1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题; ④“若a +7是无理数,则a 是无理数”的逆否命题. 其中正确的是( ) A .①②③ B .②③④ C .①③④D .①④解析:选C .①的逆命题为“若x >0且y >0,则x +y >0”为真,故否命题为真; ②的否命题为“不是矩形的图形对角线不相等”,为假命题; ③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m ≥1”. 因为当m =0时,解集不是R ,所以应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1.所以③是真命题;④原命题为真,逆否命题也为真.6.(2018·石家庄模拟)“log 2(2x -3)<1”是“4x >8”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A .由log 2(2x -3)<1⇒0<2x -3<2⇒32<x <52,4x >8⇒2x >3⇒x >32,所以“log 2(2x -3)<1”是“4x >8”的充分不必要条件,故选A .7.已知直线l ,m ,其中只有m 在平面α内,则“l ∥α”是“l ∥m ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选B .当l ∥α时,直线l 与平面α内的直线m 平行、异面都有可能,所以l ∥m 不一定成立;当l ∥m 时,根据直线与平面平行的判定定理知直线l ∥α,即“l ∥α”是“l ∥m ”的必要不充分条件,故选B .8.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( ) A .a ≥4 B .a >4 C .a ≥1D .a >1解析:选B .要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4,所以a >4是命题为真的充分不必要条件.9.(2017·高考浙江卷)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C .因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d ,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5,故选C .10.(2018·惠州第三次调研)设函数y =f (x ),x ∈R ,“y =|f (x )|是偶函数”是“y =f (x )的图象关于原点对称”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选C .设f (x )=x 2,y =|f (x )|是偶函数,但是不能推出y =f (x )的图象关于原点对称.反之,若y =f (x )的图象关于原点对称,则y =f (x )是奇函数,这时y =|f (x )|是偶函数,故选C .11.(2018·贵阳检测)设向量a =(1,x -1),b =(x +1,3),则“x =2”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .依题意,注意到a ∥b 的充要条件是1×3=(x -1)(x +1),即x =±2.因此,由x =2可得a ∥b ,“x =2”是“a ∥b ”的充分条件;由a ∥b 不能得到x =2,“x =2”不是“a ∥b ”的必要条件,故“x =2”是“a ∥b ”的充分不必要条件,选A .12.(2018·郑州第一次质量预测)已知命题p :1a >14,命题q :∀x ∈R ,ax 2+ax +1>0,则p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A .命题p 等价于0<a <4.命题q ,对∀x ∈R ,ax 2+ax +1>0,必有⎩⎪⎨⎪⎧a =01>0或⎩⎪⎨⎪⎧a >0a 2-4a <0,则0≤a <4,所以命题p 成立是命题q 成立的充分不必要条件,故选A . 13.下列命题中为真命题的是________. ①命题“若x >1,则x 2>1”的否命题; ②命题“若x >y ,则x >|y |”的逆命题; ③命题“若x =1,则x 2+x -2=0”的否命题; ④命题“若x 2>1,则x >1”的逆否命题.解析:对于①,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故①为假命题;对于②,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知②为真命题;对于③,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故③为假命题;对于④,命题“若x 2>1,则x >1”的逆否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x 2=4>1,故④为假命题.答案:②14.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限.在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是________.解析:原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y =f (x )的图象不过第四象限,则函数y =f (x )是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.答案:115.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,解得-3≤a <0,故-3≤a ≤0. 答案:[-3,0]16.(2018·长沙模拟)给出下列命题:①已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的充分不必要条件; ②“x <0”是“ln(x +1)<0”的必要不充分条件;③“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的充要条件;④“平面向量a 与b 的夹角是钝角”的充要条件是“a·b <0”.其中正确命题的序号是________.(把所有正确命题的序号都写上)解析:①因为“a =3”可以推出“A ⊆B ”,但“A ⊆B ”不能推出“a =3”,所以“a =3”是“A ⊆B ”的充分不必要条件,故①正确;②“x <0”不能推出“ln(x +1)<0”,但“ln(x +1)<0”可以推出“x <0”,所以“x <0”是“ln(x +1)<0”的必要不充分条件,故②正确;③f (x )=cos 2ax -sin 2ax =cos 2ax ,若其最小正周期为π,则2π2|a |=π⇒a =±1,因此“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件,故③错误;④“平面向量a 与b 的夹角是钝角”可以推出“a·b <0”,但由“a·b <0”,得“平面向量a 与b 的夹角是钝角或平角”,所以“a·b <0”是“平面向量a 与b 的夹角是钝角”的必要不充分条件,故④错误.正确命题的序号是①②.答案:①②1.(2017·高考天津卷)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选A .因为⎪⎪⎪⎪θ-π12<π12⇔-π12<θ-π12<π12⇔0<θ<π6, sin θ<12⇔θ∈⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,⎝⎛⎭⎫0,π6⎝⎛⎭⎫2k π-7π6,2k π+π6,k ∈Z ,所以“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. 2.下列选项中,p 是q 的必要不充分条件的是( ) A .p :x =1,q :x 2=x B .p :|a |>|b |,q :a 2>b 2 C .p :x >a 2+b 2,q :x >2ab D .p :a +c >b +d ,q :a >b 且c >d解析:选D.A 中,x =1⇒x 2=x ,x 2=x ⇒x =0或x =1⇒/ x =1,故p 是q 的充分不必要条件;B 中,因为|a |>|b |,根据不等式的性质可得a 2>b 2,反之也成立,故p 是q 的充要条件;C 中,因为a 2+b 2≥2ab ,由x >a 2+b 2,得x >2ab ,反之不成立,故p 是q 的充分不必要条件;D 中,取a =-1,b =1,c =0,d =-3,满足a +c >b +d ,但是a <b ,c >d ,反之,由同向不等式可加性得a >b ,c >d ⇒a +c >b +d ,故p 是q 的必要不充分条件.综上所述,故选D.3.已知p :x ≥k ,q :(x +1)(2-x )<0,如果p 是q 的充分不必要条件,则实数k 的取值范围是( )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1]解析:选B .由q :(x +1)(2-x )<0,得x <-1或x >2,又p 是q 的充分不必要条件,所以k >2,即实数k 的取值范围是(2,+∞),故选B .4.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是________.解析:因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3},x ∈B 成立的一个充分不必要条件是x ∈A ,所以A B ,所以m +1>3,即m >2.答案:m >25.已知集合A =⎩⎨⎧⎭⎬⎫y |y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716,因为x ∈⎣⎡⎦⎤34,2,所以716≤y ≤2, 所以A =⎩⎨⎧⎭⎬⎫y |716≤y ≤2.由x +m 2≥1,得x ≥1-m 2, 所以B ={x |x ≥1-m 2}.因为“x ∈A ”是“x ∈B ”的充分条件,所以A ⊆B ,所以1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 6.已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解:因为mx 2-4x +4=0是一元二次方程,所以m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,所以⎩⎪⎨⎪⎧Δ1=16(1-m )≥0,Δ2=16m 2-4(4m 2-4m -5)≥0,解得m ∈⎣⎡⎦⎤-54,1. 因为两方程的根都是整数, 故其根的和与积也为整数,所以⎩⎪⎨⎪⎧4m∈Z ,4m ∈Z ,4m 2-4m -5∈Z .所以m 为4的约数. 又因为m ∈⎣⎡⎦⎤-54,1, 所以m =-1或1.当m =-1时,第一个方程x 2+4x -4=0的根为非整数; 而当m =1时,两方程的根均为整数, 所以两方程的根均为整数的充要条件是m =1.。
202新数学复习第一章集合与常用逻辑用语2充分条件与必要条件含解析
课时作业2 充分条件与必要条件一、选择题1.“x=1”是“x2-3x+2=0”的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:x=1成立,则x2-3x+2=0成立,反之不成立.2.“a3〉b3”是“ln a〉ln b"的(B)A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:ln a>ln b⇒a>b>0⇒a3〉b3,所以必要性成立.a3>b3⇒a〉b>0或0〉a>b,则当0>a〉b时,充分性不成立.故选B。
3.已知a,b∈R,条件甲:a>b〉0;条件乙:错误!〈错误!。
则甲是乙的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a〉b>0时,不等式a〉b两边同时除以ab,得错误!>错误!;当错误!>错误!时,若b=1,a=-1,则有b>a。
所以条件甲是条件乙的充分不必要条件.4.p:(2-x)(x+1)〉0;q:0≤x≤1。
则p成立是q成立的(A)A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件解析:若p成立,则x满足-1<x<2,则p成立是q成立的必要不充分条件,故选A.5.已知p:错误!〈1,q:2 019x〉2 019,则p是q的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由错误!〈1得,错误!<0,即错误!〉0,得x〈0或x〉1,故p:x〈0或x〉1;由2 019x〉2 019得x〉1,故q:x〉1。
所以p 是q的必要不充分条件.6.设A,B是两个集合,则“A∩B=A”是“A⊆B”的(C) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由A∩B=A可得A⊆B,由A⊆B可得A∩B=A。
所以“A∩B=A"是“A⊆B"的充要条件.故选C.7.设θ∈R,则“0〈θ〈错误!”是“0<sinθ<错误!"的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析:当0<θ〈错误!时,利用正弦函数y=sin x的单调性知0〈sinθ〈错误!;当0<sinθ〈错误!时,2kπ<θ<2kπ+错误!(k∈Z)或2kπ+错误!<θ〈2kπ+π(k∈Z).综上可知“0〈θ〈错误!"是“0<sinθ〈错误!"的充分不必要条件,故选A.8.在等比数列{a n}中,“a1,a3是方程x2+3x+1=0的两根"是“a2=±1"的(A)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:在等比数列{a n}中,a1·a3=a2,2.由a1,a3是方程x2+3x+1=0的两根可得a1·a3=1,所以a2,2=1,所以a2=±1,所以“a1,a3是方程x2+3x+1=0的两根”是“a2=±1”的充分条件;由a2=±1得a1·a3=1,满足此条件的一元二次方程不止一个.所以“a1,a3是方程x2+3x+1=0的两根”是“a2=±1"的充分不必要条件,故选A.9.“不等式x2-x+m〉0在R上恒成立”的一个必要不充分条件是(C)A.m>错误!B.0〈m<1C.m>0 D.m〉1解析:若不等式x2-x+m〉0在R上恒成立,则Δ=(-1)2-4m<0,解得m〉错误!,因此当不等式x2-x+m〉0在R上恒成立时,必有m>0,但当m>0时,不一定推出不等式在R上恒成立,故所求的必要不充分条件可以是m〉0。
充要条件练习题
课时作业(三)[学业水平层次]一、选择题1.(2013·福建高考)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解析】 ∵A ={1,a },B ={1,2,3},A ⊆B ,∴a ∈B 且a ≠1,∴a =2或3,∴“a =3”是“A ⊆B ”的充分而不必要条件.【答案】 A2.(2014·镇海高二检测)已知命题甲:“a ,b ,c 成等差数列”,命题乙:“a b +c b =2”,则命题甲是命题乙的( )A .必要而不充分条件B .充分而不必要条件C .充要条件D .既不充分也不必要条件【解析】 若a b +c b =2,则a +c =2b ,由此可得a ,b ,c 成等差数列;当a ,b ,c 成等差数列时,可得a +c =2b ,但不一定得出a b +c b=2,如a =-1,b =0,c =1.所以命题甲是命题乙的必要而不充分条件.【答案】 A3.(2014·湖南省株洲二中期中考试)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】若φ=0,则f(x)=cos(x+φ)=cos x为偶函数,充分性成立;反之,若f(x)=cos(x+φ)为偶函数,则φ=kπ(k∈Z),必要性不成立,故选A.【答案】 A4.(2014·山东省实验中学月考)“a=-1”是“函数f(x)=ax2+2x-1只有一个零点”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【解析】本题综合考查函数零点与充要条件的判断.当a=-1时,函数f(x)=ax2+2x-1=-x2+2x-1只有一个零点1;但若函数f(x)=ax2+2x-1只有一个零点,则a=-1或a=0.所以“a=-1”是“函数f(x)=ax2+2x-1只有一个零点”的充分不必要条件,故选B.【答案】 B二、填空题5.“b2=ac”是“a、b、c成等比数列”的________条件.【解析】“b2=ac”“a,b,c成等比数列”,如b2=ac =0;而“a,b,c成等比数列”⇒“b2=ac”.【答案】必要不充分6.“a=-1”是“l1:x+ay+6=0与l2:(3-a)x+2(a-1)y+6=0平行”的________条件.【解析】 若直线l 1:x +ay +6=0与l 2:(3-a )x +2(a -1)y +6=0平行,则需满足1×2(a -1)-a ×(3-a )=0,化简整理得a 2-a -2=0,解得a =-1或a =2,经验证得当a =-1时,两直线平行,当a =2时,两直线重合,故“a =-1”是“l 1:x +ay +6=0与l 2:(3-a )x +2(a -1)y +6=0平行”的充要条件.【答案】 充要7.在下列各项中选择一项填空:①充分不必要条件;②必要不充分条件;③充要条件;④既不充分也不必要条件.(1)记集合A ={-1,p,2},B ={2,3},则“p =3”是“A ∩B =B ”的________;(2)“a =1”是“函数f (x )=|2x -a |在区间[12,+∞)上是增函数”的________.【解析】 本题考查命题的充要条件的判断.(1)当p =3时,A ={-1,2,3},此时A ∩B =B ;若A ∩B =B ,则必有p =3.因此“p =3”是“A ∩B =B ”的充要条件.(2)当a =1时,f (x )=|2x -a |=|2x -1|在[12,+∞)上是增函数;但由f (x )=|2x -a |在区间[12,+∞)上是增函数不能得到a =1,如当a =0时,函数f (x )=|2x -a |=|2x |在区间[12,+∞)上是增函数.因此“a =1”是“函数f (x )=|2x -a |在区间[12,+∞)上是增函数”的充分不必要条件.【答案】 (1)③ (2)①三、解答题8.(2014·陕西省西工大附中月考)下列各题中,p 是q 的什么条件,q 是p 的什么条件,并说明理由.(1)p :|x |=|y |,q :x =y ;(2)在△ABC ,p :sin A >12,q :A >π6.【解】 (1)因为|x |=|y |⇒x =y 或x =-y ,但x =y ⇒|x |=|y |, 所以p 是q 的必要不充分条件,q 是p 的充分不必要条件.(2)因为A ∈(0,π)时,sin A ∈(0,1],且A ∈⎝ ⎛⎦⎥⎤0,π2时,y =sin A 单调递增,A ∈⎣⎢⎡⎭⎪⎫π2,π时,y =sin A 单调递减,所以sin A >12⇒A >π6,但A >π6 sin A >12.所以p 是q 的充分不必要条件,q 是p 的必要不充分条件.9.设a ,b ,c 分别是△ABC 的三个内角A 、B 、C 所对的边,证明:“a 2=b (b +c )”是“A =2B ”的充要条件.【证明】 充分性:由a 2=b (b +c )=b 2+c 2-2bc cos A 可得1+2cos A =c b =sin C sin B .即sin B +2sin B cos A =sin(A +B ).化简,得sin B =sin(A -B ).由于sin B >0且在三角形中,故B =A -B ,即A =2B .必要性:若A =2B ,则A-B=B,sin(A-B)=sin B,sin(A+B)=sin A cos B+cos A sin B,sin(A-B)=sin A cos B-cos A sin B. ∴sin(A+B)=sin B(1+2cos A).∵A、B、C为△ABC的内角,∴sin(A+B)=sin C,即sin C=sin B(1+2cos A).∴sin Csin B=1+2cos A=1+b2+c2-a2bc=b2+c2-a2+bcbc,即cb=b2+c2+bc-a2bc.化简得a2=b(b+c).∴“a2=b(b+c)”是“A=2B”的充要条件.[能力提升层次]1.如果A是B的必要不充分条件,B是C的充要条件,D是C 的充分不必要条件,那么A是D的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【解析】由条件,知D⇒C⇔B⇒A,即D⇒A,但A D,故选A.【答案】 A2.(2014·马鞍山四校联考)设有如下命题:甲:相交两直线l、m 在平面α内,且都不在平面β内.乙:l、m中至少有一条与β相交.丙:α与β相交.那么当甲成立时()A.乙是丙的充分不必要条件B.乙是丙的必要不充分条件C .乙是丙的充分必要条件D .乙既不是丙的充分条件,又不是丙的必要条件【解析】 当l 、m 中至少有一条与β相交时,α与β有公共点,则α与β相交,即乙⇒丙,反之,当α与β相交时,l 、m 中也至少有一条与β相交,否则若l 、m 都不与β相交,又都不在β内,则l ∥β,m ∥β,从而α∥β,与α与β相交矛盾,即丙⇒乙,故选C.【答案】 C3.已知f (x )是R 上的增函数,且f (-1)=-4,f (2)=2,设P ={x |f (x +t )<2},Q ={x |f (x )<-4},若“x ∈P ”是“x ∈Q ”的充分不必要条件,则实数t 的取值范围是________.【解析】 因为f (x )是R 上的增函数,f (-1)=-4,f (x )<-4,f (2)=2,f (x +t )<2,所以x <-1,x +t <2,x <2-t .又因为“x ∈P ”是“x ∈Q ”的充分不必要条件,所以2-t <-1,即t >3.【答案】 (3,+∞)4.已知数列{a n }的前n 项和S n =p n +q (p ≠0且p ≠1),求证:数列{a n }为等比数列的充要条件为q =-1.【证明】 充分性:因为q =-1,所以a 1=S 1=p -1.当n ≥2时,a n =S n -S n -1=p n -1(p -1),显然,当n =1时,也成立.因为p ≠0,且p ≠1,所以a n +1a n=p n (p -1)p n -1(p -1)=p , 即数列{a n }为等比数列,必要性:当n =1时,a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1). 因为p ≠0,且p ≠1,所以a n +1a n=p n (p -1)p n -1(p -1)=p . 因为{a n }为等比数列,所以a 2a 1=a n +1a n=p ,即p 2-p p +q =p . 所以-p =pq ,即q =-1. 所以数列{a n }为等比数列的充要条件为q =-1.。
专题5 充要条件(解析版)
专题5 充要条件题组1 充要条件的判断1.设集合A={x∈R|x-2>0},B={x∈R|x<0},C={x∈R|x(x-2)>0},则“x∈(A∪B)”是“x∈C”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C【解析】A∪B={x∈R|x<0或x>2},C={x∈R|x<0或x>2},∵A∪B=C,∴x∈(A∪B)是x∈C的充要条件.2.若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补.记φ(a,b)=-a-b,那么φ(a,b)=0是a与b互补的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件【答案】C【解析】若φ(a,b)=0,即=a+b,两边平方得ab=0,故具备充分性.若a≥0,b≥0,ab=0,则不妨设a=0.φ(a,b)=-a-b=-b=0,故具备必要性.故选C.3.方程ax2+2x+1=0至少有一个负实根的充要条件是()A.0<a≤1B.a<1C.a≤1D.0<a≤1或a<0【答案】C【解析】方法一(直接法):当a=0时,x=-,符合题意;当a≠0时,若方程两根一正一负(没有零根),解得a<0; 若方程两根均负,解得0<a≤1.综上所述,充要条件是a≤1.方法二 (排除法):当a =0时,原方程有一个负实根,可以排除A ,D ;当a =1时,原方程有两个相等的负实根,可以排除B.故选C.4.在下列三个结论中,正确的有( )①x 2>4是x 3<-8的必要不充分条件;②在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充要条件;③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为0”的充要条件.A .①②B .②③C .①③D .①②③【答案】C【解析】①,x 2>4即2x >或2x <-,x 3<-8即2x <-,因为2x >或2x <-成立时,2x <-不一定成立,所以x 2>4是x 3<-8的不充分条件;因为2x <-成立时,2x >或2x <-一定成立,所以x 2>4是x 3<-8的必要条件.即x 2>4是x 3<-8的必要不充分条件.所以该命题正确.②,AB 2+BC 2=AC 2成立时,ABC 为直角三角形一定成立;当ABC 为直角三角形成立时,AB 2+BC 2=AC 2不一定成立,所以在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误.③,即判断“0,0a b ==”是“a 2+b 2=0”的什么条件,由于a 2+b 2=0即0,0a b ==,所以“0,0a b ==”是“a 2+b 2=0”的充要条件,所以“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确.故选:C. 题组2 寻求充要条件5.设集合U ={(x ,y )|x ∈R ,y ∈R },若A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},则点P (2,3)∈A ∩(∁U B )的充要条件是( )A.m >-1,n <5B.m <-1,n <5C.m >-1,n >5D.m <-1,n >5【答案】A【解析】A ∩(∁U B )满足∵P (2,3)∈A ∩(∁U B ),则∴6.已知关于x 的一元二次方程mx 2-4x +4=0①,x 2-4mx +4m 2-4m -5=0②,求使方程①②都有实数根的充要条件.【答案】方程①有实数根的充要条件是即m ≤1且m ≠0.方程②有实数根的充要条件是Δ2=(-4m )2-4(4m 2-4m -5)≥0,即m ≥-.∴方程①②都有实数根的充要条件是-≤m ≤1,且m ≠0,即-≤m <0或0<m ≤1. 题组3 充要条件的证明7.求证:方程mx 2-2x +3=0有两个同号且不相等的实根的充要条件是0<m <.【答案】证明 (1)充分性:当0<m <时,Δ=4-12m >0,所以方程mx 2+2x +3=0有两个不相等的实根,设为x 1,x 2.由一元二次方程根与系数的关系可知,x 1x 2=>0,故方程mx 2-2x +3=0有两个同号且不相等的实根.即0<m <⇒方程mx 2-2x +3=0有两个同号且不相等的实根.(2)必要性:若方程mx 2-2x +3=0有两个同号且不相等的实根,则∴0<m <,即方程mx 2-2x +3=0有两个同号且不相等的实根⇒0<m <.综上可知,方程mx 2-2x +3=0有两个同号且不相等的实根的充要条件是0<m <.8.求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.【答案】见解析.【解析】充分性:若0ac <,则240b ac ->,且0c a<,∴方程20ax bx c ++=方程有一正根和一负根;必要性:若一元二次方程20ax bx c ++=有一正根和一负根,则240b ac ∆=->,12,0,0c x x ac a =<∴<,即可得结论.试题解析:(1)必要性:因为方程20ax bx c ++=有一正根和一负根,所以240b ac ∆=->为12120(,c x x x x a=<方程的两根),所以ac <0. (2)充分性:由ac <0可推得Δ=b 2-4ac >0及x 1x 2=<0(x 1,x 2为方程的两根).所以方程ax 2+bx +c =0有两个相异实根,且两根异号,即方程ax 2+bx +c =0有一正根和一负根.综上所述,一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.9.已知,a b 是实数,求证:44221a b b --=成立的充分条件是221a b -=,该条件是否为必要条件?试证明你的结论.【答案】必要条件,证明见解析.【解析】由44221a b b --=,即442210a b b ---=由()()()()244242222221111a b b a b a b a b -++=-+=++--则由()()222222442111021a b a b a b a b b -=⇒++--=⇒--=所以44221a b b --=成立的充分条件是221a b -=另一方面如果()()442222221110a b b a b a b --=⇒++--=因为2210a b ++≠,故()()2222221101a b a b a b ++--=⇒-=,所以44221a b b --=成立的必要条件是221a b -=.题组4 由充分、必要条件求参数的范围10.已知p :<1,q :x 2+(a -1)x -a >0,若p 是q 的充分不必要条件,则实数a 的取值范围是() A.(-2,-1]B.[-2,-1]C.[-3,1]D.[-2,+∞)【答案】A 【解析】不等式<1等价于-1<0,即>0,解得x >2或x <1,所以p 为(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即q 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综上可知,a 的取值范围为(-2,-1].11.已知p :|x -4|>6,q :x 2-2x +1-a 2>0(a >0),若p 是q 的充分不必要条件,则实数a 的取值范围为________.【答案】0<a ≤3【解析】依题意,可得p :A ={x |x <-2或x >10},q :B ={x |x <1-a 或x >1+a ,a >0}.∵p 是q 的充分不必要条件,∴A ⊆B 且A ≠B ,⇒0<a ≤3,∴实数a 的取值范围是0<a ≤3.12.已知p :,q :{x |1-m ≤x ≤1+m ,m >0},若q 是p 的必要不充分条件,则实数m的取值范围是________.【答案】[9,+∞) 【解析】由已知,p ⇒q ,q ⇏p . 13.已知M ={x |(x +3)(x -5)>0},P ={x |x 2+(a -8)x -8a ≤0}.(1)求a 的一个值,使它成为M ∩P ={x |5<x ≤8}的一个充分不必要条件;(2)求a 的一个取值范围,使它成为M ∩P ={x |5<x ≤8}的一个必要不充分条件.【答案】M ={x |x <-3或x >5},P ={x |(x +a )(x -8)≤0}.(1)显然,当-3≤-a ≤5,即-5≤a ≤3时,M ∩P ={x |5<x ≤8}.取a =0,由M ∩P ={x |5<x ≤8}不能推出a =0.所以a =0是M ∩P ={x |5<x ≤8}的一个充分不必要条件.(2)当M ∩P ={x |5<x ≤8}时,-5≤a ≤3,此时有a ≤3,但当a ≤3时,推不出M ∩P ={x |5<x ≤8}.所以a ≤3是M ∩P ={x |5<x ≤8}的一个必要不充分条件.14.命题2:03x P x ->-;命题2:2210q x ax a b +++-> (1)若4b =时,22210x ax a b +++->在x R ∈上恒成立,求实数a 的取值范围;(2)若p 是q 的充分必要条件,求出实数a ,b 的值【答案】(1)(1,3)-;(2)52a =-,12b =. 【解析】(1)若22230x ax a +++>在x R ∈上恒成立,则()244230a a ∆=-+<, 所以有13a -<<,所以实数a 的范围为()1,3-;(2)()()2023033x x x x x ->⇔-->⇒>-或2x <, 根据条件22210x ax a b +++->的解集是()(),23,-∞⋃+∞,即方程22210x ax a b +++-=的二根为2和3, 根据韦达定理有525,221612a a ab b ⎧-==-⎧⎪⇒⎨⎨+-=⎩⎪=⎩, 所以52a =-,12b =. 15.已知{}2320P x x x =-+≤,{}11S x m x m =-≤≤+.(1)是否存在实数m ,使x P ∈是x S ∈的充要条件?若存在,求出m 的取值范围,若不存在,请说明理由;(2)是否存在实数m ,使x P ∈是x S ∈的必要条件?若存在,求出m 的取值范围,若不存在,请说明理由.【答案】(1)不存在实数m ,使x P ∈是x S ∈的充要条件(2)当实数0m ≤时,x P ∈是x S ∈的必要条件【解析】(1){}{}232012P x x x x x =-+≤=≤≤. 要使x P ∈是x S ∈的充要条件,则P S =,即11,12,m m -=⎧⎨+=⎩此方程组无解,则不存在实数m ,使x P ∈是x S ∈的充要条件;(2)要使x P ∈是x S ∈的必要条件,则S ⊆P ,当S =∅时,11m m ->+,解得0m <;当S ≠∅时,11m m -≤+,解得0m ≥要使S ⊆P ,则有11,1+2m m -≥⎧⎨≤⎩,解得0m ≤,所以0m =, 综上可得,当实数0m ≤时,x P ∈是x S ∈的必要条件.题组5 含有否定性语句的命题处理16.设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若p是q的必要不充分条件,求实数a的取值范围.【答案】设A={x|(4x-3)2≤1},B={x|x2-(2a+1)x+a(a+1)≤0},易知A=,B={x|a≤x≤a+1}.由p是q的必要不充分条件,从而p是q的充分不必要条件,即AB,∴或故所求实数a的取值范围是.17.已知p:2x2-9x+a<0,q:且p是q的充分条件,求实数a的取值范围.【答案】由得即2<x<3.∴q:2<x<3.设A={x|2x2-9x+a<0},B={x|2<x<3},∵p⇒q,∴q⇒p.∴B⊆A.∴2<x<3满足不等式2x2-9x+a<0.设f(x)=2x2-9x+a,要使2<x<3满足不等式2x2-9x+a<0,需即∴a≤9.故所求实数a的取值范围是(-∞,9].17.设p:实数x满足x2-4ax+3a2<0,其中a<0,q:实数x满足x2-x-6≤0或x2+2x-8>0,且p是q 的必要不充分条件,求a的取值范围.【答案】设A={x|x满足p}={x|x2-4ax+3a2<0,a<0}={x|3a<x<a,a<0},B={x|x满足q}={x|x2-x-6≤0或x2+2x-8>0}={x|x2-x-6≤0}∪{x|x2+2x-8>0}={x|-2≤x≤3}∪{x|x<-4或x>2}={x|x<-4或x≥-2}.∵p是q的必要不充分条件,∴q⇒p,且p⇏q.则{x|x满足q}{x|x满足p},而{x|x满足q}=∁R B={x|-4≤x<-2},{x|x满足p}=∁R A={x|x≤3a或x≥a(a<0)},∴{x|-4≤x<-2}{x|x≤3a或x≥a(a<0)},则或即-≤a<0或a≤-4.∴a的取值范围为.。
集合考点充分条件与必要条件教案以及练习
1.4集合充分条件与必要条件1.4.1充分条件与必要条件充分条件与必要条件命题真假“若p,则q”为真命题“若p,则q”为假命题推出关系指由p通过推理可以得出q,即由p可以推出q,记作p⇒q由条件p不能推出结论q,记作p⇏q续表命题真假“若p,则q”为真命题“若p,则q”为假命题条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件1.“x>0”是“x≠0”的()A.充分条件B.必要条件C.既不是充分也不是必要条件D.不确定A解析:x>0⇒x≠0;x≠0时,x可为正值或负值,故选A.2.“-12<x<3”的一个必要条件是()A.-12<x<3B.-12<x<0C .-3<x <12D .-1<x <6D 解析:因为-12<x <3⇒-1<x <6,但-1<x <6D ⇒/-12<x <3,所以“-12<x <3”的一个必要条件是“-1<x <6”.3.“角A =60°”是“三角形ABC 是等边三角形”的________条件. 必要 解析:角A =60°D ⇒/三角形ABC 是等边三角形,但三角形ABC 是等边三角形⇒角A =60°,所以“角A =60°”是“三角形ABC 是等边三角形”的必要条件.4.“△ABC 为直角三角形”是“其三边关系为a 2+b 2=c 2”的________条件.必要 解析:△ABC 为直角三角形,则三边符合勾股定理,但须知哪个角为直角,若a 2+b 2=c 2,则△ABC 为以C 为直角的三角形.5.“x <0”是“x >2或x <1”的________条件.充分 解析:因为x <0⇒ x >2或x <1,但x >2或x <1D ⇒/x <0,所以“x <0”是“x >2或x <1”的充分条件.【例1】给出下列四组命题:(1)p :两个三角形相似,q :两个三角形全等; (2)p :一个四边形是矩形,q :四边形的对角线相等; (3)p :A ⊆B ,q :A ∩B =A . 试分别指出p 是q 的什么条件.解:(1)∵两个三角形相似D ⇒/两个三角形全等,但两个三角形全等⇒两个三角形相似,∴p 是q 的必要条件. (2)∵矩形的对角线相等,∴p ⇒q ,而对角线相等的四边形不一定是矩形,∴qD⇒/p.∴p是q的充分条件.(3)∵p⇒q,且q⇒p,∴p既是q的充分条件,又是q的必要条件.充分条件、必要条件的判断方法在判定p是q的什么条件时,首先分清什么是p,什么是q,再分清谁推谁.例如p⇒q,则称p是q的充分条件,q是p的必要条件.下列哪些命题中,p是q的充分条件?(1)在△ABC中,p:∠A>∠B,q:BC >AC.(2)对于实数x,y,p:x=2且y=6,q:x+y=8.(3)已知x,y∈R,p:x=1,q:(x-1)(x-2)=0.解:(1)在△ABC中,由大角对大边知,∠A>∠B⇒BC>AC,所以p是q的充分条件.(2)对于实数x,y,因为x=2且y=6⇒x+y=8,所以p是q的充分条件.(3)由x=1⇒(x-1)(x-2)=0,故p是q的充分条件.故(1)(2)(3)命题中p是q的充分条件.【例2】是否存在实数p,使4x+p<0是x>2或x<-1的充分条件?若存在,求出p的取值范围;若不存在,说明理由.解:令A={x|x>2或x<-1};由4x+p<0,得x<-p4,令B=⎩⎨⎧⎭⎬⎫x⎪⎪⎪x<-p4,当B⊆A时,即-p4≤-1,即p≥4,此时x <-p4≤-1,∴当p ≥4时,4x +p <0是x >2或x <-1的充分条件.【例3】已知P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P ”是“x ∈Q ”的必要条件,则实数a 的取值范围是________.{a |-1≤a ≤5} 解析:因为“x ∈P ”是“x ∈Q ”的必要条件,所以Q ⊆P , 所以⎩⎨⎧a -4≤1,a +4≥3,即⎩⎨⎧a ≤5,a ≥-1,所以-1≤a ≤5.集合法判断充分条件和必要条件的技巧设集合A ={x |x 满足条件p },B ={x |x 满足条件q },则有:(1)若A ⊆B ,则p 是q 的充分条件,若A⃘B ,则p 不是q 的充分条件. (2)若B ⊆A ,则p 是q 的必要条件,若B⃘A ,则p 不是q 的必要条件.已知M ={x | a -1<x <a +1},N ={x |-3<x <8},若M 是N 的充分条件,求a 的取值范围.解:∵M 是N 的充分条件,∴M ⊆N ,∴⎩⎨⎧a -1≥-3,a +1≤8,解得-2≤a ≤7.故a 的取值范围是{a |-2≤a ≤7}.课时分层作业(六)(25分钟50分)1.(5分)设x,y是两个实数,命题:“x,y中至少有一个数大于1”成立的充分条件是()A.x+y=2B.x+y>2C.x2+y2>2D.xy>1B解析:对于选项A,当x=1,y=1时,满足x+y=2,但命题不成立;对于选项C,D,当x=-2,y=-3时,满足x2+y2>2,xy>1,但命题不成立,也不符合題意.2.(5分)设x,y∈R,则“x≥2且y≥2”是“x2+y2≥4”的()A.充分条件B.必要条件C.既是充分条件也是必要条件D.既不是充分条件也不是必要条件A解析:当x≥2且y≥2时,x2+y2≥4,但是x=0,y=4时,满足x2+y2≥4,但不满足x≥2且y≥2,所以“x≥2且y≥2”是“x2+y2≥4”的充分条件.3.(5分)设a,b∈R,则“(a-b)a2<0”是“a<b”的()A.充分条件B.必要条件C.既是充分条件也是必要条件D.既不是充分条件也不是必要条件A解析:由(a-b)a2<0知,a2>0,a-b<0,即a<b成立;反之,当a<b时,由于a2可能为0,故(a-b)·a2≤0.因此“(a-b)a2<0”是“a<b”的充分条件,但不是必要条件.4.(5分)下列不等式:①x<1;②0<x <1; ③-1<x <0; ④-1<x <1.其中,可以为-1<x ≤1的充分条件的所有序号为________.②③④ 解析:由于-1<x ≤1,①显然不能使-1<x ≤1一定成立,②③④满足题意.5.(5分)设集合A ={x ∈R|x -2>0},B ={x ∈R|x <0},C ={x ∈R|x <0或x >5},则“x ∈A ∪B ”是“x ∈C ”的________条件.必要 解析:∵A ∪B ={x ∈R|x <0或x >2},C ={x ∈R|x <0或x >5}, ∴“x ∈A ∪B ”是“x ∈C ”的必要条件.6.(5分)若不等式a -1<x <a +1成立的充分条件是12<x <32,则实数a 的取值范围是________.12≤a ≤32 解析:因为不等式a -1<x <a +1成立的充分条件是12<x <32, ∴⎩⎪⎨⎪⎧12≥a -1,32≤a +1,∴12≤a ≤32. 7.(5分)若“x <m ”是“x >2或x <1”的充分不必要条件,则实数m 的取值范围是________.m ≤1 解析:由已知条件,知{x |x <m }{x |x >2或x <1},∴m ≤1.8.(5分)已知P ={x |a -4<x <a +4},Q ={x |1<x <3},“x ∈P ”是“x ∈Q ”的必要条件,则实数a 的取值范围是________.-1≤a ≤5 解析:因为“x ∈P ”是“x ∈Q ”的必要条件,所以Q ⊆P , 所以⎩⎨⎧a -4≤1,a +4≥3,即⎩⎨⎧a ≤5,a ≥-1,所以-1≤a ≤5.9.(10分)已知条件p :x <1-a 或x >1+a 和条件q :x <12或x >1,求使p 是q 的充分条件的a 的取值范围.解:要使p 是q 的充分条件,应有⎩⎪⎨⎪⎧1-a ≤12,1+a ≥1, 解得a ≥12.∴p 是q 的充分条件的a 的取值范围是⎩⎨⎧⎭⎬⎫a |a ≥12.。
(完整版)广东高职高考集合与充要条件测试
高职高考集合与充要条件1、①“全体著名文学家”构成一个集合;②集合{0}中不含元素;③{1,2},{2,1}是不同的集合;上面三个叙述中,正确的个数是( )A 、0B 、1C 、2D 、32、已知集合}12|{<<-=x x M ,则下列关系式正确的是() M A 、∈5 M B 、∉0 M C 、∈1 M D 、∈-2π3、在下列式子中,①}210{1,,∈ ②}210{}1{,,∈ ③}210{}210{,,,,⊆ ④{0,1,2}⊂∅≠ ⑤{0,1,2}={2,1,0},其中错误的个数是( )A 、1个B 、2个C 、3个D 、4个4、}3,2,1,0{}1,0{⊆⊆A ,则集合A 的个数有( )A 、2个B 、3个C 、4个D 、5个5、下列各式中,不正确的是( )A 、A A =B 、A A ⊆C 、A A ⊂≠D 、A A ⊇6、集合A={0,1,2,3,4,5},B={2,3,4},A B ⋃=( )A 、{0,1,2,3,4,5}B 、{2,3,4}C 、{0,1,2,2,3,3,4,4,5}D 、{1,2,3,4} 7、设全集{0,123456}U =,,,,,,集合{3456}A =,,,,则U C A =( ) A 、{0,3,4,5,6} B 、{3,4,5,6} C 、∅ D 、{0,1,2}8、225x =的充分必要条件是( )A 、55x x ==-且B 、55x x ==-或C 、5x =D 、5x =-9、设3{|23},{|},2A x xB x x =-≤<=≥则A B ⋃=( ) A 、{|2}x x <- B 、{|23}x x x <-≤或C 、{|23}x x x <->或D 、}2|{-≥x x 10、用适当的符号(,,,,⊂⊃∈∉=≠≠)填空:(1) a{,}a ba b(2) {a} {,}(3) {2,4,6,8} {4,6} (4) {2,3,4} {4,3,2}11、已知集合A={1,2,3,4},B={2,4,6},C={3,5,7},则A B⋂= 。
充要条件练习题
充要条件练习题
1.a+2b>0是使ax+b>0在x∈[0,1]是恒成立的
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件
2.已知P(a,3)则“a=0”是“点P的坐标满足不等式x+y-1≥0”的
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
3.x+y>2”是“x>1且y>1”的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
4.A,B是任意角,“A=B”是“sinA=sinB”的()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
5.(x+1)(x+2)>0是(x+1)(x2+2)>0的条件
A.必要不充分
B.充要
C.充分不必要
D.既不充分也不必要。
高中数学(必修一)第一章 充要条件 练习题及答案
高中数学(必修一)第一章 充要条件 练习题及答案学校:___________姓名:___________班级:_______________一、单选题1.若命题“若a M ∈,则b M ∉”为真命题,则下列命题中一定为真命题的是( )A .若a M ∉,则b M ∉B .若b M ∉,则a M ∈C .若a M ∉,则b M ∈D .若b M ∈,则a M ∉2.设x ∈R ,则“2x >”是“21x <”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件3.已知下列四组陈述句:①p :集合(){}**|3A x y x y x y =+=∈∈N N ,,,;q :集合{(1,2)}. ①p :集合A B C A ⊆⊆⊆;q :集合A B C ==.①p :{}21x x x n n ∈=+∈Z ,;q :{}61x x x n n ∈=-∈N ,.①p :某中学高一全体学生中的一员;q :某中学全体学生中的一员.其中p 是q 的必要而不充分条件的有( )A .①①B .①①C .①①D .①①4.已知,R a b ∈,则“1a >或1b >”是“2a b +>”的( )条件.A .充分非必要B .必要非充分C .充分必要D .既非充分又非必要 5. “2x π=”是“函数cos 2y x =取得最大值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.若数列{}n a 满足212n na p a +=(p 为常数,n ∈N ,1n ≥),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则( ).A .甲是乙的充分非必要条件B .甲是乙的必要非充分条件C .甲是乙的充要条件D .甲是乙的既非充分也非必要条件7.命题“2[1,3],20x x x a ∀∈---≤”为真命题的一个充分不必要条件可以是( )A .4a ≥B .3a ≥C .2a ≥D .1a ≥8.若α,β表示两个不同的平面,l 表示一条直线,且l α⊂,则“l β∥”是“αβ∥”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件9.已知集合{}{}22,1A xx x B x a x a =-≤=≤≤+∣∣,若B A ⊆,则实数a 的取值集合为( ) A .[]0,1 B .[]1,0- C .[]1,2- D .[]1,1-二、填空题10.下列说法错误的是_________________①若0xy ≥,则x y x y +>+①若220x y +≠,则0x ≠或0y ≠①“2a b x +>是x >的充分不必要条件 ①“0x ∀>,1x e x >+”的否定形式是“0x ∃≤,1x e x ≤+”11.直线mx +(2m -1)y +2=0与直线3x +my +3=0垂直的充要条件是__________.12.已知p :210x ≤≤,q :11a x a -<<+,R a ∈,且p 是q 成立的必要非充分条件,则实数a 的取值范围是________.三、多选题13.下列选项中,p 是q 的充要条件的是( )A .p :0xy >,q :0x >,0y >B .p :A B A ⋃=,q :B A ⊆C .p :三角形是等腰三角形,q :三角形存在两角相等D .p :四边形是正方形,q :四边形的对角线互相垂直平分四、解答题14.已知集合{|211}A x a x a =-≤≤+,{|03}B x x =≤≤.(1)若a =1,求A B ;(2)给出以下两个条件:①A ①B =B ;①“x A ∈“是“x B ∈”的充分不必要条件.在以上两个条件中任选一个,补充到横线处,求解下列问题:若_____________,求实数a 的取值范围.(如果选择多个条件分别解答,按第一个解答计分)参考答案与解析:1.D【分析】原命题与其逆否命题同真假,故找出题设命题的逆否命题即可.【详解】命题“若a M ∈,则b M ∉”的逆否命题为:“若b M ∈,则a M ∉”,因为原命题与其逆否命题同真假,故由原命题为真命题可知其逆否命题为真命题,故选:D【点睛】本题考查命题真假的判断,考查命题间的真假关系,属于基础题.2.A 【分析】根据分式不等式的解法求21x <的解集,结合充分必要性定义判断题设条件间的关系即可. 【详解】当21x<时,有0x <或2x >, 所以2x >是21x <的充分条件,但不是必要条件. 故选:A3.D【分析】逐个判断是否有q p ⇒且p q 即可.【详解】①若**3x y x y +=∈∈N N ,,,则12x y =⎧⎨=⎩或21x y =⎧⎨=⎩,①{(1,2),(2,1)}A =,即p :{(1,2),(2,1)}A =;故q p⇒且p q ,即p 是q 的必要而不充分条件,符合题意;①若A B C A ⊆⊆⊆,则根据子集的性质可得A B C ==,即p :A B C ==;故p 是q 的充要条件,不符题意;①对于21x n n =+∈Z ,,当31n k k =-∈Z ,时,61x k k =-∈Z ,, 故{}61x x n n =-∈N , {}21x x n n =+∈Z ,,①p 是q 的必要而不充分条件,符合题意;①易知p q ⇒且q p ,即p 是q 的充分而不必要条件,不符合题意;综上,p 是q 的必要而不充分条件的有①①.4.B【分析】根据充分必要条件的定义判断. 【详解】当1a >或1b >时,如2a =,3b =-,此时1a b +=2<,因此不充分, 若1a ≤且1b ≤,则2a b a b +≤+≤,因此是必要的.即为必要不充分条件.故选:B .5.D【分析】根据余弦函数的性质,结合充分条件、必要条件的判定方法,即可求解. 【详解】当2x π=时,函数cos 2cos 1y x π===-,故充分性不成立;当函数cos 2y x =取得最大值时,22,Z x k k π=∈,即,Z x k k π=∈,故必要性也不成立,综上可得:“2x π=”是“函数cos 2y x =取得最大值”的既不充分也不必要条件. 故选:D .6.B【分析】利用等比数列的性质以及正负进行判断即可.【详解】若{}n a 为等比数列,设其公比为q ,则()222112n n n n a a q p a a ++⎛⎫=== ⎪⎝⎭,p 为常数,所以{}2n a 成等比数列,即{}n a 是等方比数列,故必要性满足.若{}n a 是等方比数列,即{}2n a 成等比数列,则{}n a 不一定为等比数列,例如23452,2,2,2,2,...--,有()221224n na a +=±=,满足{}n a 是等方比数列,但{}n a 不是等比数列,充分性不满足. 故选:B7.A【分析】充分不必要条件是指由结果不能推出条件,故放宽条件即可.【详解】由题知,命题“2[1,3],20x x x a ∀∈---≤”为真命题时,满足[1,3]x ∀∈-,22x x a -≤.则当[1,3]x ∈-时,222(1)13x x x -=--≤,所以命题“2[1,3],20x x x a ∀∈---≤”为真命题时,3a ≥.经验证,A 选项符合题意;8.C【分析】根据充分条件和必要条件的定义结合面面平行的判定分析判断即可.【详解】若l α⊂,l β∥,则平面α和平面β可能平行,也可能相交;若l α⊂,αβ∥,则l β∥,所以“l β∥”是“αβ∥”的必要不充分条件.故选:C .9.D【分析】根据二次不等式的求解,结合集合关系的区间端点大小关系求解即可【详解】{}()(){}[]222101,2A x x x x x x =-≤=-+≤=-∣∣,因为B A ⊆,故112a a ≥-⎧⎨+≤⎩,解得11a -≤≤ 故选:D10.①①①【分析】①当,x y 均为正数时结论是错误的;①220x y +≠出,x y 不同时为0,故正确;①只有0a ,0b 时,2a b x +>才可推出,x > ①命题的否定只否定结论,故错误.【详解】对于选项①:若0x ,0y ,则||||||x y x y +=+,故①错误;对于选项①:若0x =且0y =,则220x y +=,所以:若220x y +≠,则0x ≠或0y ≠,故①正确;对于选项①:当0a ,0b 时,若2a b x +>,则x >题中没有说明,a b 的范围,所以是不充分,当x >时,2a b x +>不一定成立,如:2,8,4a b x ==>=,2a b x +>为2852x +>=,不成立,故“2a b x +>是x >的即不充分也不必要条件,故①错误;对于选项①:“0x ∀>,1x e x >+”的否定形式是“0x ∃>,1x e x +”,故①错误.故答案为:①①①11.0m =或1m =-【分析】根据直线垂直的等价条件,结合充分条件和必要条件的定义进行判断【详解】当m=0时,两直线为y=2与x= -1,此时两直线垂直;当2m -1=0,即m=12时,两直线为x= -4与3x+12y+3=0,此时两直线相交不垂直;当m≠0且m ≠12时,两直线的斜截式方程为233,2121m y x y x m m m m -=-=----, 由两直线垂直可知3121m m m -⎛⎫⋅-=- ⎪-⎝⎭,解得m= -1, 故两直线垂直的充要条件是0m =或1m =-.【点睛】本题考查充分条件必要条件的判断及两直线垂直的条件,本题的关键是由两直线垂直得出参数m 的取值,易错点是忘记验证斜率不存在的情况,导致判断失误,12.[]3,9【分析】根据题意可得()1,1a a -+ []2,10,即可建立不等关系求解.【详解】因为p 是q 成立的必要非充分条件,所以()1,1a a -+ []2,10,所以12110a a -≥⎧⎨+≤⎩,解得39a ≤≤, 所以实数a 的取值范围是[]3,9.故答案为:[]3,9.13.BC【分析】根据充分条件、必要条件的定义判断即可;【详解】解:对于A :由0xy >,得0x >,0y >或0x <,0y <,故P 不是q 的充要条件,故A 错误; 对于B :由A B A ⋃=,则B A ⊆,若B A ⊆则A B A ⋃=,故P 是q 的充要条件,故B 正确;对于C :三角形是等腰三角形⇔三角形存在两角相等,故P 是q 的充要条件,故C 正确;对于D :四边形的对角线互相垂直且平分⇔四边形为菱形,故p 不是q 的充要条件,故D 错误; 故选:BC14.(1){|03}A B x x ⋃=≤≤ (2)1[,)2+∞【分析】(1)由并集定义计算;(2)若选择①,则由A ①B =B ,得A B ⊆,然后分类讨论:A =∅与A ≠∅两类求解;若选择①,得A 是B 的真子集,同样分类A =∅与A ≠∅求解.(1)当1a =时,集合{|12}A x x =≤≤,因为{|03}B x x =≤≤, 所以{|03}A B x x ⋃=≤≤;(2)若选择①,则由A ①B =B ,得A B ⊆.当A =∅时,即211a a ->+,解得2a >,此时A B ⊆,符合题意; 当A ≠∅时,即211a a -≤+,解得2a ≤,所以21013a a -≥⎧⎨+≤⎩,解得:122a ≤≤; 所以实数a 的取值范围是1[,)2+∞. 若选择①,则由“x A ∈“是“x B ∈”的充分不必要条件,得A ⫋B . 当A =∅时,211a a ->+,解得2a >,此时A ⫋B ,符合题意;当A ≠∅时,211a a -≤+,解得2a ≤,所以21013a a -≥⎧⎨+≤⎩且等号不同时取,解得122a ≤≤; 所以实数a 的取值范围是1[,)2+∞.。
充要条件题目
选择题下列哪一项是“一个四边形是正方形”的充要条件?A. 四边形的对角线相等B. 四边形的对角线互相垂直且平分C. 四边形是矩形且有一组邻边相等(正确答案)D. 四边形是菱形且有一个角是直角“两个三角形全等”的充要条件是下列哪一项?A. 两个三角形面积相等B. 两个三角形周长相等C. 两个三角形三边及三角分别相等(正确答案)D. 两个三角形有两边及一角相等下列哪一项是“一个数是偶数”的充要条件?A. 这个数能被2整除(正确答案)B. 这个数能被4整除C. 这个数的个位是0或2D. 这个数是整数“一个函数是常数函数”的充要条件是下列哪一项?A. 函数的值域只包含一个元素(正确答案)B. 函数的定义域只包含一个元素C. 函数的图像是一条水平线D. 函数在其定义域内单调下列哪一项是“一个集合是另一个集合的子集”的充要条件?A. 另一个集合中的每一个元素都是这个集合的元素B. 这个集合中的每一个元素都是另一个集合的元素(正确答案)C. 两个集合的元素个数相等D. 两个集合的并集等于它们的交集“一个四边形是平行四边形”的充要条件是下列哪一项?A. 四边形的对角线相等B. 四边形的对角线互相平分(正确答案)C. 四边形的两组对边分别平行D. 四边形的两组对角分别相等下列哪一项是“一个数是质数”的充要条件?A. 这个数只有两个正因数(正确答案)B. 这个数是奇数C. 这个数大于1且不是合数D. 这个数不能被2整除“一个数是正数”的充要条件是下列哪一项?A. 这个数大于0(正确答案)B. 这个数不是负数C. 这个数的平方是正数D. 这个数的绝对值是它本身下列哪一项是“一个角是直角”的充要条件?A. 这个角等于90度(正确答案)B. 这个角是平角的一半C. 这个角是锐角的两倍D. 这个角与某个锐角互余。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.下列语句能确定一个集合的是( )
A 浙江公路技师学院高个子的男生
B 电脑上的容量小的文件全体
C 不大于3的实数全体
D 与1接近的所有数的全体
2.下列集合中,为无限集的是( )
A 比1大比5小的所有数的全体
B 地球上的所有生物的全体
C 超级电脑上所有文件全体
D 能被百度搜索到的网页全体
3.下列表示方法正确的是( )
2.0 (3)
A N
B Q
C R
D Z Q π*∈-∈∈∈ 4.下列对象能组成集合的是( )
A.大于5的自然数
B.一切很大的数
C.路桥系优秀的学生
D.班上考试得分很高的同学
5.下列不能组成集合的是( )
A. 不大于8的自然数
B. 很接近于2的数
C.班上身高超过2米的同学
D.班上数学考试得分在85分以上的同学
6.下列语句不正确的是( )
A.由3,3,4,5构成一个集合,此集合共有3个元素
B.所有平行四边形构成的集合是个有限集
C.周长为20cm 的三角形构成的集合是无限集
D.如果,,a Q b Q a b Q ∈∈+∈则
7.下列集合中是有限集的是( )
{}
{}{}
{}2.|3..|2,.|10A x Z x B C x x n n Z D x R x ∈<=∈∈-=三角形 8.下列4个集合中是空集的是( ) {}
{}{}{}2222.|10.|.|0.|10A x R x B x x x C x x D x x ∈-=<-=+=
9.下列关系正确的是( )
.0.0.0.0A B C D ∈∅⊆∅∉∅≠∅
10.用列举法表示集合{}2|560x x x -+=,结果是( )
A.3 B.2 C.{}3,2 D.3,2
11.绝对值等于3的所有整数组成的集合是( )
A.3 B.{}3,3- C.{}3 D.3,-3
12.用列举法表示方程24x =的解集是( )
{}{}{}{}2.|4.2,2.2.2A x x B C D =--
13.集合{}1,2,3,4,5也可表示成( )
{}{}
{}{}.|5.|05.|05,.|05,A x x B x x C x x x N D x x x N <<<<<∈<≤∈
14.下列不能表示偶数集的是( )
{}{}
{}{}.|2,.|.,4,2,0,2,4,.|2,A x x k k Z B x x C D x x n n N =∈--=∈是偶数
15.下列表示集合{}1,1-不正确的是( )
{
}{}
{
}{}
22.|1.1.|1.|1A x x B x C x x D x ====
16.对于集合{}{}2,6,2,4,6A B ==,则下列关系不正确的是(
) ....A A B B A B C B A D A B ≠⊆⊇⊇
17.若,x A ∈则,x B ∈那么集合A,B 的关系可能是( )
....A A B B B A C A B D B A ∈∈⊆⊆
18.集合{},,a b c 的子集个数为( )
.3.7.8.9A B C D 个个个个
19.已知集合{}1,2,3,4,下列集合中,不是它的子集的是(
) {}{}{}.1234.3..012A B C D ∅,,,,,
20.已知{}{}24734,5(A B A B ==⋂=,,,,,则).
{}{}{}{}.2,3.4.5,7.2,3,4,5A B C D
21.若N={自然数},Z={整数},则()N Z ⋂=
A.N
B.Z C{0} D.{正整数}
22.设集合{}{}|14,|05,M x x N x x =-≤<=≤≤则()
M N = {}{}
{}{}.|45.|10.|15.|04A x x B x x C x x D x x ≤≤-≤≤-≤≤≤<
23.设集合{}{}|14,|05,M x x N x x =-≤<=≤≤则()
M N =
{}
{}{}{}.|45.|10.|15.|04A x x B x x C x x D x x ≤≤-≤≤-≤≤≤<
24.若全集U={整数},集合A={奇数},则()U A =
A.{偶数}
B.{整数}
C.{自然数} D{奇数}
25.
()21010x x -=-=是的 A 充分但非必要条件 B.必要但非充分条件
C.充要条件 D 既非充分条件也非必要条件
26.()0"0b 0ab a ==="是“且”的
A 充分但非必要条件 B.必要但非充分条件
C.充要条件 D 既非充分条件也非必要条件
27.x>5是x>3的( )
A 充分但非必要条件 B.必要但非充分条件
C.充要条件 D 既非充分条件也非必要条件
二、填空题:
1.自然数集用大写字母______表示;整数集用大写字母______表示;
有理数集用大写字母______表示;实数集用大写字母______表示;自然数集内排除0的集合用______表示;
2.用符号“∈”或“∉”填空
11)3.14__;3)__;4)2__;6)__2
R R N N Q Q π- 3.不大于4的实数全体,用性质描述法可表示为____;
4.所有奇数组成的集合________;所有被3除余1的数组成的集合_______;
5.绝对值小于6的实数组成的集合_______________;
6.大于0而小于10的奇数组成的集合__________________;
7.小于7的正整数组成的集合__________________;
8.不含任何元素的集合叫做__________;记做___________;它是任何的集合的___________.
9.{}a 与a 是完全不同的,a 表示一个________;而{}a 表示一个__________.
10.用适当的符号填空: {}{}{}{}{}{}{}{}__,,;
,,__,,;__0;__0;______.a a b c a b c c a b ∅∅正三角形等腰三角形;平行四边形梯形
已知{,,,},{,,},A a b c d B c d e ==则_______,_______,A B A B ==
已知A={10以内的质数},B={偶数},则______.A B =
用“充分条件”,“必要条件”或“充要条件”填空:
1)416________;x ==2是x 的
2)240b ac ->是方程20(0)ax bx c a ++=≠有实根的 __________; 3)0b =是直线y kx b =+过原点的______________;
4)24a b >是方程20x ax b ++=有实根的 __________;
5)若,,a b R ∈则220a b +=是0a b +=的_____________;
解答题
写出{1,2,3}的所有子集,并指出哪些不是真子集。
指出下列集合之间的关系,并用图表示:
A={三角形};B={正三角形};C={等腰三角形}D={直角三角形} 已知U={1,2,3,4,5,6,7,8,9},A={1,2,3,4,5},B={2,4,6,8},求 ,,,().U U U U U A B A B A B
已知U=R ,{}{|12},|0,,,U A x x B x x A B A B A =-≤≤=>求。