十以内的质数与合数
漫谈质数与合数[权威资料]
![漫谈质数与合数[权威资料]](https://img.taocdn.com/s3/m/2aee4c826aec0975f46527d3240c844769eaa095.png)
漫谈质数与合数本文档格式为WORD,感谢你的阅读。
摘要:设p为不含2、5的质数或合数,1/p,j=n,p不能表示成6r±1的是合数,循环节位数不能整除p-1的是合数。
p为合数,ab=p,(a-1)/n=c,(b-1)/n=d,则(p-1)/n=ncd+c+d,能整除。
商小于39的除9、15、33是合数外都是质数,10000以内1228个质数中,商小于39的有1196个。
关键词:质数;合数;循环节位数;同循合数G640 B 1002-7661(2014)16-177-03自然数1不是质数也不是合数,是一个特殊的数。
大于1位的正整数如果因数只有1和其自身,这个数是质数。
如果因数有三个或以上的,这个数是合数。
有些合数从尾数就能观察出来,除2、5外,凡尾数是0、5和偶数的都是合数。
质数除2、3外,都可以表示成6r+1或6r-1,反之,不能表示成6r+1或6r-1的,都是合数。
这样的合数尾数凡是1、3、7、9的,都是3 的倍数。
6r±1数相互的积仍是6r±1的数。
这样的合数如何识别它呢?尾数是5的都是合数,其它的,方法是:(1)奇数减1,偶数能表示为ab+a+b的是合数(ab≠0),否则是质数。
也就是:设u为奇数,以u2为首项,以2u为公差,数列的各项均为合数。
(2)设p 为分母,求出1/p的循环节位数,若位数是3的倍数,但p是6r-1数,则p是合数;若位数是5的倍数,但尾数不是1,则p是合数(循环节位数是3的倍数,质数都是6r+1数;循环节位数是5的倍数,质数的尾数都是1)。
(3)6的倍数能表示成6nr+n+r或6nr-n-r 的,再乘以6加1是合数,否则是质数。
6的倍数能表示成6nr+n-r或6nr-n+r的,再乘以6减1是合数,否则是质数。
(4)凡尾数是4或9的,乘以6加1是合数。
凡尾数是1或6的,乘以6减1是合数。
6的倍数是方数的,再乘以6减1是合数。
或曰,方数乘以36减1是合数。
质数和合数分解质因数

范围和要求
1.知识点范围 A 质数、合数的概念 B 判断一个数是质数还是合数的方 法 C 掌握分解质因数的方法
范围和要求
2.要求 A 理解质数、合数的意义 B 熟练地掌握判断一些常见数是质数, 还是合数的方 法 C 熟悉20以内的质数,会查质数表 D 初步掌握用短除法分解质因数的方法 E 知道因数、质因数与分解质因数间的联系与区别
例题:把下面各数分解质因数,并分别写 出它们所有的约数。
分解质因数 15 18 20 约 数
15=3 5
1、3、5、15
18=2 3 3 1、2、3、6、9、18 20=2 2 5 1、2、4、5、10、20
小结
质数、因数、质因数、分解质因数
一个数除了1和它本身,不再有别的约数,这个数 叫做质数。它是1个独立存在的数。比如17是质数,因 为它只有1和17两个约数。
知识点精讲
一、质数和合数
1 的约数: 1
5 的约数: 1、5 12 的约数: 1、2、3、4、6、12 16 的约数: 1、2、4、8、16 17 的约数: 1、17 21 的约数: 1、3、7、21 25 的约数: 1、5、25 29 的约数: 1、29 32 的约数: 1、2、4、8、16、32 36 的约数: 1、2、3、4、6、9、12、18、36 37 的约数: 1、37
× (×
(
(
所有的合数都是偶数吗?
所有的偶数都是合数吗?
×
×
)
)
知识点精讲
二、分解质因数
6 2 3 28 4 7 2 2 6= 2 3 7
28= 2 2 7
每个合数都可以写成几个质数相乘的形式。 其中每个质数都是这个合数的因数,叫做质因 数。 把一个合数用质因数相乘的形式表示出来, 叫做分解质因数。
分解质因数

2、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
一、100以内的素数
10 以内的素数:2,3,5,7 100以内的素数:2,3,5,7,11,13,17,19,23,29,31,37, 41,43,47,53,59,61,67,71,73,79,83,89,97
分解质因数
主要学习内容
1
100以内质因数
2
组合质数Biblioteka 3分解质因数的运用
质数与合数的意义
1、自然数可以按照约数的个数进行分类: (1)像2,3,5,7,11,13,17,19等只能被1和自身整除的 自然数叫质数。 (2)像4,6,8,9,10,12,14,15等除了能被1和自身整除 外,还能被其他整数整除的自然数叫做合数。
文本
因为2是唯一的偶质数,如果两个质数的和是奇数,
则其中一个数一定是2
四、分解质因数
一、分解质因数标准:
(1)找质因数时,一般要从小到大找
(2)写成乘积时,质因数从小到大排列
(3)相同因数写成乘方
二、分解质因数的方法
(1)短除法(常用)
(2)单兵作战法(算式文)本 (3)枚举拆10法(找0时)
10:2×5 100:2×5×2×5 1000:2×5×2×5×2×5 一组2和5可以有一个0
(1)4、8、24分解质因数 (2)18×12分解质因数 (3)1×2×文3本×4……×10的乘积末 尾有几个0?
五、分解质因数的运用
1、三个连续自然数的乘积是210,其中最大的数为___
2、四个连续奇数的积是19305,这四个奇数最大的是___
利用短除法,19305=3×3×3×5×11×13=9×15×11×13
合数与质数典型例题及答案

合数与质数答案典题探究例1.在横线内填上合适的质数.26=23+312=7+5=13+13=7+19=3+23=2×13.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数,据此填空即可.解答:解:26=23+3 12=7+5=13+13=7+19=3+23=2×13故答案为:23,3,13,13,7,19,3,23,2,13,7,5.点评:明确质数的意义,是解答此题的关键.例2.寻找符合条件的数:小于100,并且由3个不同质数相乘得到.考点:合数与质数.专题:数的整除.分析:只要把这个小于100的数,分解质因数即可得出.解答:解:2×3×7=42点评:此题考查了一个数分解质因数的方法.例3.自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有多少个?考点:合数与质数.专题:数的整除.分析:根据个位数字与十位数字都是质数,可得这个两位质数的个位数字和十位数字只能是:2、3、5、7.解答:4解:因为N是质数,且其个位数字和十位数字都是质数,那么十位数字和个位数字只能是:2、3、5、7,所以符合题意的两位数质数有:23,37,53,73,有4个;答:这样的自然数有4个.点评:此题考查了质数的灵活应用,理解十位数字与个位数字都是质数的两位质数是由:2、3、5、7组成的是本题的关键.例4.一个式子有8个空“空格”,在这些“空格”里,填进20以内各不相同的质数,使A是整数,并且尽可能大.A=(2+3+5+11+13+17+19)÷7.考点:合数与质数;整数的除法及应用.分析:根据质数的意义可知,20以内的质数有2、3、5、7、11、13、17、19;它们的和为2+3+5+7+11+13+17+19=77,则算式中除数应用为77的约数,能被77整除的只有7和11,因此A最大为(77﹣7)÷7=10.解答:解:20以内的质数的质数的和为:2+3+5+7+11+13+17+19=77,77=7×11,所以要使A最大,则A=[2+3+5+11+13+17+19]÷7=70÷7=10,即A能取得的最大整数是10.故答案为:2,3,5,11,13,17,19,7.点评:首先根据质数的意义确定20以内的质数并求出它们的和是完成本题的关键.演练方阵A档(巩固专练)一.选择题(共10小题)1.(•龙湖区)2、3、5、7都是()A.奇数B.偶数C.质数考点:合数与质数.分析:自然数中,能被2整除的数为偶数,不能被2整除的数为奇数;自然数中,除了1和它本身外,没有别的因数的数为质数.根据以上定义对题目中的数字进行分析即能得出正确选项.解答:解:根据偶数、奇数及质数的定义可知:在2、3、5、7这四个数字中,2为偶数,3,5,7为奇数,2、3、5、7全是质数.故选:C.点评:通过本题可以看出,2既为质数,同时也是偶数.2.(•新余模拟)一个两位数,个位和十位上的数字都是合数,并且互质,这个两位数最小是()A.89B.28C.49考点:合数与质数.专题:整数的认识.分析:自然数中,除了1和它本身外,还有别的因数的数为合数.由此可知,小于10的合数有4,6,8,9.即这个两位数由有4,6,8,9中的两个合数组成.又这两个数互质,只有公因数1的两个数为互质数,而这4个数中,9与4,8互质,所以这个两位数最小是49..解答:解:根据合数的意义可知,这个两位数由有4,6,8,9中的两个合数组成,而这4个数中,9与4,8互质,所以这个两位数最小是49.故选:C.点评:首先根据合数的定义确定组成这个两位数的数的取值范围,然后根据互质数的意义确定是完成本题的关键.3.(•石阡县模拟)一个合数至少有()个因数.A.3个B.3个以上C.3个或3个以上考点:合数与质数.专题:数的整除.分析:合数是指一个大于1的自然数,除了1和它本身两个因数外,还有其它的因数,说明一个合数有3个或3个以上的因数.据此做出选择即可.解答:解:一个合数有3个或3个以上的因数.故选:C.点评:此题考查合数的意义,关键是看这个数有几个因数,有3个或3个以上的因数的数一定是合数.4.(•北海)下面()组中的两个数是合数,又是互质数.A.7和8B.10和12C.15和16考点:合数与质数.专题:数的整除.分析:合数是含有1和它本身两个因数外还含有其它因数的数,互质数是只有公因数1的两个数,据此依次分析选择.解答:解:A、7和8是互质数,但7是质数,不是合数,所以不合题意;B、10和12都是合数,但是10和12不是互质数,所以不合题意;C、15和16都是合数,15和16又是互质数,所以符合题意;故选:C.点评:本题主要考查互质数、合数的意义.5.(•汉阳区)一个数如果只有2个因数,那么这个数一定是()A.偶数B.奇数C.质数D.合数考点:合数与质数.专题:整数的认识.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.即质数只有两个因数,即1和它本身.解答:解:根据质数的意义可知,一个数如果只有2个因数,那么这个数一定是质数.故选:C.点评:自然数中,质数只有两个因数,1只有一个因数,零有没因数,合数最少有三个因数.6.(•蕲春县模拟)是一个最简分数,a和c一定是()A.质数B.合数C.互质数D.不一定考点:合数与质数.分析:首先弄清什么样的分数是最简分数,据此解答.解答:解:分数的分子和分母只有公约数1的分数叫做最简分数,由此得一个最简分数的分子和分母一定是互质数.故选C.点评:此题主要考查最简分数的意义及互质数的概念.7.(•黄岩区)一个比l大的数除了1和它本身之外,没有其他的因数,这个数是()A.质数B.合数C.奇数D.偶数考点:合数与质数.专题:数的整除.分析:根据质数和合数的含义:除了1和它本身以外,不含其它因数的数是质数;除了1和它本身外,还含有其它因数的数是合数;据此解答即可.解答:解:由质数的含义可知:一个比l大的数除了1和它本身之外,没有其他的因数,这个数是质数;故选:A.点评:明确质数的含义,是解答此题的关键.8.(•渝北区)下面的数是质数的是()A.1B.2C.4考点:合数与质数.专题:综合判断题.分析:自然数中,除了1和它本身外没有别的因数的数为质数,除了1和它本身外还有别的因数的数为合数.据此对各选项中的数字进行分析即能得出正确选项.解答:解:A、1不是质数也不是合数;B、2是质数;C、4是合数;故选:B.点评:自然数中,质数与合数是根据因数的多少进行定义的.9.(•安岳县模拟)下列叙述正确的是()A.互质的两个数没有公因数B.两个分数大小相等,分数单位也一定相等C.小兰完成的作业量一定,她已完成的作业和未完成的作业量成反比例D.两个面积相等的三角形,不一定能拼成一个平行四边形考点:合数与质数;分数的意义、读写及分类;辨识成正比例的量与成反比例的量;三角形的特性.专题:综合判断题.分析:A,根据互质数的意义,公因数只有1的两个数叫做互质数.所以互质的两个数没有公因数.此说法错误.B,两个分数的大小相等,分数单位不一定相同,如:和相等,但是它们的分数单位不同.所以两个分数相等,分数单位也一定相同.此说法错误.C,根据反比列的意义,两种相关联的量,如果它们对应的两个数的积一定,这两种相关联的量成反比列.所以,小兰完成的作业量一定,她已完成的作业和未完成的作业量成反比例.此说法错误.D,因为只有两个完全一样的三角形,才能拼成一个平行四边形,两个三角形的面积相等,不一定完全一样,所以,两个面积相等的三角形,不一定能拼成一个平行四边形.此说法正确.解答:解:根据上面的分析知:说法正确的是:两个面积相等的三角形,不一定能拼成一个平行四边形.故选:D.点评:此题考查的目的是理解互质数的意义、分数单位的意义、反比列的意义,明确:只有两个完全一样的三角形,才能拼成一个平行四边形.10.(•华亭县模拟)正方形的边长是质数,它的周长一定是(),它的面积一定是()A.质数B.合数C.既不是质数也不是合数考点:合数与质数;正方形的周长;长方形、正方形的面积.分析:正方形的边长是质数,设这个质数是a,则它的周是4a,它的面积是a2,然后根据约数个数分析,是质数还是合数,据此解答.解答:解:正方形的边长是质数,设这个质数是a,则它的周是4a,4a含有1、2、4、a、2a、4a,含有6个约数,它的面积是a2,a2含有:1、a、a2共计3个约数,即4a和a2含有至少3个约数,所以都是合数;故选:B.点评:本题主要考查质数合数的意义,注意本题设这个质数是a,则它的周长是4a,它的面积是a2,然后根据约数个数分析.二.填空题(共10小题)11.(•台州)的分数单位是,再添上14个这样的分数单位是最小的素数.考点:合数与质数.分析:根据分数的意义和最小的素数(质数)是2来进行分析,然后填出即可.解答:解:的分数单位是.因为:+=2;所以:再添上14个这样的分数单位是最小的素数.故答案为:,14.点评:此题考查分数的认识与质数合数.12.(•浙江)在6、10、18、51这四个数中,51既是合数又是奇数.10和51互质.考点:合数与质数;奇数与偶数的初步认识.分析:合数的含义:在自然数中除了1和它本身外还有其它因数的数;奇数的含义:在自然数中不能被2整除的数叫作奇数;在自然数中,如果两个数的公因数只有1,那么这两个数称为互质数.解答:解:在6、10、18、51这四个数中,合数有:6,10,18,51;奇数有:51;互质的数是:10与51;所以在6、10、18、51这四个数中,51即是合数又是奇数,10与51互质.故答案为:51,10,51.点评:此题主要考查的是合数、奇数和互质数的知识.13.(•万州区)一个质数和比它小的每一个非零自然数都互质.正确.考点:合数与质数.分析:自然数中,除了1和它本身外,没有别的因数的数为质数;假如这个质数与比它小的某个非零自然数不互质,那么这个质数与这个非零自然数就有“除1和其本身之外的”公约数,这个结论和质数的定义相矛盾,即“一个素数肯定与比它小的任意非零自然数互质.”解答:解:根据质数的定义可知,一个质数和比它小的每一个非零自然数都互质的说法是正确的.故答案为:正确.点评:一个质数和比它大的非零自然数中只与它的倍数不互质,除了其倍数外,与其它自然数都互质.14.(•福田区模拟)如果a和b是大于0的相邻的自然数,那么a和b一定是互质数.√.(判断对错)考点:合数与质数.专题:数的整除.分析:在自然数中,只有公因数1的两个数为互质数.根据自然数的排列规律及公因数的意义可知,任何一对大于0的相邻的两个自然数只有公因数1,所以如果a和b是大于0的相邻的自然数,那么a和b一定是互质数.解答:解:根据互质数的意义可知,如果a和b是大于0的相邻的自然数,那么a和b一定是互质数是正确的.故答案为:√.点评:明确任何一对大于0的相邻的两个自然数只有公因数1是完成本题的关键.15.(•芜湖县)有公约数1的两个数叫做互质数.×.(判断对错)考点:合数与质数.专题:数的整除.分析:根据互质数的意义,公因数只有1的两个数叫做互质数.1是任何两个非0自然数的公因数.解答:解:公因数只有1的两个数叫做互质数.1是任何两个非0自然数的公因数.所以有公约数1的两个数叫做互质数.出说法错误.故答案为:×.点评:此题考查的目的是理解掌握互质数的概念及意义.16.(•中山市模拟)质数只有1个因数.错误.(判断对错)考点:合数与质数.专题:整数的认识.分析:自然数中,除了1和它本身外,没有别的因数的数为质数.由此可知,质数共有2个因数,即1和它本身.解答:解:根据质数的意义可知,质数共有2个因数,即1和它本身.故答案为:错误.点评:自然数中,只有1只有一个因数,即它本身.17.(•上海模拟)既是合数又是偶数的最小自然数是4.考点:合数与质数;奇数与偶数的初步认识.分析:根据质数与合数、奇数与偶数的意义,是2的倍数的数叫做偶数;不是2的倍数的数叫做奇数;一个自然数如果只有1和它本身两个因数,这样的数叫做质数;一个自然数如果除了1和它本身还有别的因数,这样的数叫做合数;由此解答.解答:解:根据合数、偶数的意义,既是合数又是偶数的最小自然数是4.故答案为:4.点评:解答本题主要明确自然数,合数、质数、奇数、偶数的概念.18.(•贵州模拟)相同两个素数的和等于它们的积,这个素数是2.考点:合数与质数.专题:数的整除.分析:一个自然数如果只有1和它本身两个因数,这样的数叫做质数(素数),在所有的质数中,相同两个素数的和等于它们的积,得出2+2=2×2,所以这个素数是2.解答:解:相同两个素数的和等于它们的积,这个素数是2;故答案为:2.点评:此题考查了质数的含义.19.(•通州区模拟)一个非零自然数,不是质数就是合数.×.(判断对错)考点:合数与质数.专题:综合判断题.分析:根据质数与合数的意义:一个自然数,如果只有1和它本身两个因数,这样的数叫做质数;一个自然数,如果除了1和它本身还有别的因数,这样的数叫做合数;1既不是质数也不是合数.解答:解:因为,1既不是质数也不是合数,所以,一个非零自然数,不是质数就是合数.此说法是错误的.故答案为:×.点评:解答此题的关键是理解质数、合数的意义.20.(•临川区模拟)最小的质数占最小的合数的50%.考点:合数与质数;百分数的实际应用.专题:综合填空题.分析:最小的质数是2,最小的合数是4,进而用2除以4,计算得出百分数的结果即可.解答:解:最小的质数是2,最小的合数是4,那么:2÷4=0.5=50%.故答案为:50%.点评:明确求一个数占另一个数的百分之几,用除法计算;也考查了最小的质数是2,最小的合数是4.三.解答题(共10小题)21.两个质数的积一定是奇数,如3×5=15、11×83=913×.考点:合数与质数;奇数与偶数的初步认识.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数,则最小的质数是2;能被2整数的数为偶数.由此可知,2与其它质数的积一定是偶数.解答:解:由于最小的质数是2,则2与其它质数的积一定是偶数.故答案为:×.点评:除了2之外,任意两个质数的积一定是奇数.22.判断27,28,29,30是素数,还是合数.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.除了1和它本身外,还有别的因数的数为合数.据此分析即可.解答:解:在27,28,29,30中,素数为29,合数为27,28,30.点评:本题考查了学生对于合数与质数意义的理解与应用.23.写出大于85而小于98的所有素数.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1与它本身之外,没有别的因数的数为质数.据此意义完成即可.解答:解:大于85而小于98的所有素数为:89、97.点评:完成本题要注意将大于85而小于98中的数分解质因数,以确定它们因数的个数.24.四个质数的乘积是和的11倍,这样的数和是多少?考点:合数与质数.专题:数的整除.分析:因为四个质数的乘积是和的11倍,可知四个数里面一定有一个是11,设其余三个是abc,那么abc=a+b+c+11,因为b+c≥4,所以11<3(b+c)容易知道b+c≤bc,因此abc<a+4bc,4≤bc<a/(a﹣4)或a<4得到a=2,3,5,同理b,c,据此解答即可.解答:解:4个质数的乘积是和的11倍,可知四个数里面一定有一个是11,设其余三个是abc,那么abc=a+b+c+11,因为b+c≥4,所以11<3(b+c)容易知道b+c≤bc,因此abc<a+4bc,4≤bc<a/(a﹣4)或a<4得到a=2,3,5,同理b=2,3,5,c=2,3,5,经过验证这4个质数为2,2,5,112+2+5+11=20答:这样的数和是20.点评:解答本题的关键是:四个质数的乘积是和的11倍,可以推算出期中一个质数是11.25.有一个三位数,百位数字是最小的质数,个位数是一位数中最大的偶数,这个数最小是多少?最大是多少?(直接写数)考点:合数与质数;奇数与偶数的初步认识.专题:整数的认识;数的整除.分析:我们知道最小的质数是2,一位数中最大的偶数是8.所以这个三位数百位上是2,个位上是8,要想最小,十位为0,最大十位为9,据此解答即可.解答:解:由分析可得这个数最小是208;最大是298.答:这个数最小是208;最大是298.点评:本题是考查整数的写法、质数与合数的意义、自然数的意义.26.我校少先队员排队做操,每排人数相等且都在1人以上.想一想,总共有多少人?在正确答案的下面划线.41人43人47人49人.考点:合数与质数.专题:数的整除.分析:由“每排人数相等且都在1人以上”说明总人数能分成几个相同的数,即合数;而41、43、47都是质数,故不能分成几个相同的数,因此总人数为49.解答:解:由题意,总人数能分成几个相同的数,而41、43、47都是质数,故不能分成几个相同的数,因此总人数为49.答:五(3)班有49人.点评:此题重点考查了合数与质数的概念,并由此解决问题.27.在横线填上合适的质数.10=3+736=17+1991=13×785=17×524=11+13=17+7.考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.据此意义将题目中的数分解成两个质数相加的形式即可.解答:解:10=3+736=17+1991=13×785=17×524=11+13=7+17故答案为:3,7;17,19;13,7;17,5;11,13,17,7.点评:如果两个质数的和是奇数,则这两个质数其中一个一定为2.28.写出60的全部因数,其中质数有2、3、5,偶数有2、4、6、10、12、20、30、60.考点:合数与质数;奇数与偶数的初步认识.专题:数的整除.分析:先根据找一个数因数的方法,找出60的所有因数,然后根据质数和合数的意义,奇数和偶数的意义进行分类.解答:解:60=1×60=2×30=3×20=4×15=5×12=6×10所以60的因数有1、2、3、4、5、6、10、12、15、20、30、60,在这些因数中,质数有2、3、5;偶数有2、4、6、10、12、20、30、60.故答案为:2、3、5,2、4、6、10、12、20、30、60.点评:熟练掌握找一个数因数的方法,以及正确的对自然数进行分类是解决本题的关键.B档(提升精练)一.选择题(共10小题)1.(•天河区)下面说法正确的是()A.两个质数的和一定是质数B.假分数的倒数都小于1C.分数的大小一定,它的分子和分母成正比例D.面积相等的两个三角形一定能拼成一个平行四边形考点:合数与质数;倒数的认识;分数的基本性质;三角形的周长和面积.专题:综合判断题.分析:根据题意,对各题进行依次分析、进而得出结论.解答:解:A、两个质数的和一定是质数,说法错误,如:3+5=8,8是合数;B、假分数的倒数都小于1,说法错误,如;C、因为:分子÷分母=分数的值(一定),它的分子和分母成正比例;D、因为:面积相等的两个三角形一定能拼成一个平行四边形,说法错误;故选:C.点评:此题涉及的知识点较多,但都比较简单,属于基础题,只要认真,容易完成,注意平时基础知识的积累.2.(•高台县)下列说法正确的是()A.1既不是质数也不是合数B.最小的合数是2C.负数比正数大考点:合数与质数;正、负数大小的比较.专题:整数的认识.分析:在自然数中,1既不是质数也不是合数;除了1和它本身外,没有别的因数的数为质数,除了1和它本身外,还有别的因数的数为合数;在数轴上,负数位于0的左边,正数位于0的右边,借助数轴比较数的大小,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,正数都比负数大.解答:解:下列说法正确的是:1既不是质数也不是合数.故选:A.点评:根据质数与合数,正数与负数的含义进行解答即可.3.(•泗县模拟)在1~25的自然数中,合数有()A.14B.15C.16考点:合数与质数.专题:压轴题.分析:根据合数的定义即可解决问题.解答:解:在1~25的自然数中合数有:4、6、8、9、10、12、14、15、16、18、20、21、22、24、25,共15个,故选:B.点评:此题考查了合数的定义.4.(•龙海市模拟)在1、2.3、2、6、﹣4、5%、23、9、51中,素数有()个.A.1个B.2个C.3个考点:合数与质数.专题:数的认识.分析:根据质数(又叫素数)的意义,一个自然数,如果只有1和它本身两个因数,这样的数叫做质数(素数).由此解答.解答:解:在1、2.3、2、6、﹣4、5%、23、9、51中,素数有:2,23.答:在这组数中素数有2和23.故选:B.点评:此题考查的目的是使学生理解质数(素数)的意义,明确质数与合数是在非0自然数范围内,根据一个非0自然数因数个数的多少分成质数、合数和1三部分.5.(•萝岗区)两个质数的积一定是()A.奇数B.偶数C.质数D.合数考点:合数与质数.专题:压轴题;数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.最小的质数是2,除了2之外,其它质数都为奇数.根据数的奇偶性可知,2与其它质数相乘的积一定是偶数;除了2之外,其它两个质数相乘的积是奇数,即两个质数的积可能是偶数也可是质数;又在自然数中,除了1和它本身外,还有别的因数的数为合数.两质数相乘的积的因数,除了1和它本身外,还有这两个质数是它的因数,即共有4个因数.一定为合数.解答:解:根据质数的意义及数的奇偶性可知,个质数的积可能是偶数也可是质数;根据合数的意义可知,两质数相乘的积,一定为合数.故选:D.点评:完成本题要注意最小的质数是2,2同时为偶数.6.(•楚州区)所有素数的积是()A.奇数素数B.奇数合数C.偶数合数D.偶数素数考点:合数与质数.专题:数的整除.分析:在自然数中,除了1和它本身外,没有别的因数的数为质数.则最小的质数是2,除了1和它本身外,还有别的因数的数为合数.由于素数有无数个,则所有所有素数的积的因数也有无数个,则它们的积是合数,又最小的素是2,2为偶数,根据数的奇偶性可知,所有素数的积是偶合数.解答:解:所有所有素数的积的因数也有无数个,则它们的积是合数,又最小的素是2,2为偶数,根据数的奇偶性可知,所有素数的积是偶合数.故选:C.点评:除了2之外,所有素数为奇数,则除2之外所有素数的积是奇数合数.7.(•玉溪模拟)在下面与3有关的四句话中,正确的一句话是()A.3是一个自然数,它既是质数也是奇数B.一个自然数的末位是3的倍数,这个自然数一定能被3整除C.任何一个偶数都能被2整除,但不能被3整除D.如果m是一个不为零的自然数,那么3和m一定是互质数考点:合数与质数;奇数与偶数的初步认识;找一个数的倍数的方法.专题:数的整除.分析:根据所学的有关知识,将下列四个选项逐一进行分析、判断,即可选择出正确的一项.解答:解:A、根据自然数、质数、奇数的定义可知,3是一个自然数,它既是质数也是奇数,所以此选项说法正确;B、举例说明:如26,末位数字是6,是3的倍数,但是这个自然数26不能被3整除,所以此选项说法错误;C、举例说明:24,是偶数,能被2整除,也能被3整除,所以此选项说法错误;D、互质数是指两个数的最大公因数是1,如果m=21,则3和m的最大公约数是3,所以不是互质数,此选项说法错误.故选:A.点评:此题主要考查质数、倍数、奇数、偶数、互质数的意义及应用,此类问题可以采用举反例的方法进行判断选择.8.(•天河区)两个数既是合数,又是互质数,它们的最小公倍数是90,这两个数分别是()A.9和10B.2和45C.6和15D.30和3考点:合数与质数;求几个数的最小公倍数的方法.专题:数的整除.分析:在自然数中,除了1和它本身外还有别的因数的数为合数.公因数只有1的两个数为互质数.又互质的两个数的最小公倍数一定是这两个互质数相乘的积,据此分析即可.解答:解:由于90=2×45=18×5=15×6=9×10,在这几组数中,2、5不是合数,15与6不互质,符合条件的只有10与9,故选:A.点评:明确互质的两个数的最小公倍数一定是这两个互质数相乘的积并据此分析是完成本题的关键.。
质数合数奇数偶数顺口溜

质数合数奇数偶数顺口溜
质数口诀:二、三、五、七和十一;十三后面是十七;十九、二三、二十九;三一、三七、四十一;四三、四七、五十三;五九、六一、六十七;七一、七三、七十九;八三、八九、九十七。
合数并无特定的口诀,100以内合数数量较多共有74个。
偶数:能被2整除的数叫偶数.如8、10等。
奇数:不能被2整除的数叫奇数.如:3、15等。
质数具有许多独特的性质:
(1)质数p的约数只有两个:1和p。
(2)初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。
(3)质数的个数是无限的。
(4)所有大于10的质数中,个位数只有1,3,7,9。
质数与合数

质数
合数
黄岩区滨江小学
网址:
作者:潘碧波 QQ:282570535
一个数,如果只有1和它本身两 个因数,这样的数叫做质数(或素 数)。像2、3、5、7、11等都是素数。 一个数,如果除了1和它本身 还有别的因数,这样的数叫做合数。 如4、6、8、9、10、12都是合数。 1既不是素数也不是合数。
100以内有哪些质数
先去 掉1
划去能被2(2除外) 整除的数
1 11 21 31 41 51 61 71 81
2 12 22 32 42 52 62 72 82
3 13 23 33 43 53 63 73 83
4 14 24 34 44 54 64 74 84
5 15 25 35 45 55 65 75 85
自学课文第24页,你知道吗?
黄岩区滨江小学
网址:
作者:潘碧波 QQ:282570535
分解质因数:
36= 2×2×3×3
35= 5×7 12= 2×2×3
24= 2×2×2×3
8= 2×2×2
16= 2×2×2×2
黄岩区滨江小学
网址:
22、 78、 35、 95、 27、 81、 77、 91、
黄岩区滨江小学
网址:
2 12 21 22 32 42 51 52 62 72 81 82
1
100以内的质数表 100以内的整数表 3 4 5 6 7 14 15 16 24 25 26 27 33 34 35 36 44 45 46 54 55 56 57 63 64 65 66 74 75 76 77 84 85 86 87
1 11 21 31 41 51 61 71 81 91 2 12 22 32 42 52 62 72 82 92 3 13 23 33 43 53 63 73 83 93 4 14 24 34 44 54 64 74 84 94 5 15 25 35 45 55 65 75 85 95 6 16 26 36 46 56 66 76 86 96 7 17 27 37 47 57 67 77 87 97 8 18 28 38 48 58 68 78 88 98 9 10 19 20 29 30 39 40 49 50 59 60 69 70 79 80 89 90 99 100
10质数和合数练习1课

7.神州十号飞船发射的年份是 一个四位数。 千位上是最小的质数。 百位上是最小的偶数。 十位上既不是质数也不是合数。 个位上的数比最小的合数小1。 神十发射的年份是(2013 )年
8.一个两位数由最小的奇数和 最小的合数组成,这个数是 ( 14或41 )
三.想一想 一个长方形的长和宽是质数,并
3.7
一
练习
一.用不重复的质数填空。
26 =( )×( )
=( )+( ) =( )-( )
二.填空 1.由最小的质数,最小的合数 以及最小的奇数组成的最小的 三位数是:( ) 2.10以内不同质数组成的5的倍 数中最大的三位数是( )。 3.既是偶数又是合数的最大的 两位数是( )。 三.小p9第3题
2,3,5,7和11;
13后面是17;
还有19别忘记。
7.读一读100以内的质数。
2 47 79 3 53 83 5 7 11 13 17
19 23
29
59 89
31
61 97
37
67
41
71
43
73
下列各数哪些是质数?哪些是合 数? 5 27 13 58 19 87 83
24 97
57
49
17
)
☆两个质数的积一定是(合数 ),两个合数 的积一定是( 合数)。
质数和合数
1.相邻的两个数有可能都是质 数.( ) 2.相邻的两个数有可能都是合 数。( ) 3.质数中没有偶数。 ( ) 4.奇数都是质数. ( )
5. 31, 41, 51, 61, 71都是质 数.( ) 6. 9, 15, 21, 25, 57,87都是 合数。 ( )
8.自然数怎么分类? 奇数 自然数 (按照是 否是2的倍 偶数(0也是偶数) 数) 奇数 偶数 (0)
质数与合数1-

私立明智学校 高威华
把咱们的一部分家产——所有的自然数分给你 们,但“1”我要自己留下,剩下的数你们根据数学 知识去分吧!
那我们根据约数的个数来 分吧!只有两个约数的数给老 二,有两个以上约数的数全归 我!
?
老大说:“那我 们根据约数的个数来分 吧!只有两个约数的数 分给老二,有两个以上 约数的数全归我! ”
合数
4 1、2、4
约数
合 数 21 1、3、7、21
约数
20 1、2、4、5、10、20
6 1、2、3、6
8 1 、2、4、8
9 1、3、9 10 1、2、5、10
22 1、2、11、22
24 1、2、3、4、6、8、12、24 25 1、5、25
12 1、2、3、4、6、12
14 1、2、7、14 15 1、3、5、15 16 1、2、4、8、16 18 1、2、3、6、9、18
26 1、2、13、26
27 1、3、9、27 28 1、2、4、7、14、28 30 1、2、3、5、6、10、15、30 32 1、2、4、8、16、32
只有1和它本身两个约数的数,我 们叫它质数。
除了1和它本身还有别的约数的数, 我们叫它合数。
1既不是质数,也不是合数。
判断下面各数是质数还是合数。
7 23 43 67 89
100以内的质数表:
2 11 29 47 71 97
3 13 31 53 73
5
17 19 37 41 59 61 79 83
7 23 43 67 89
7、 13、 15、8 、 2、11 、27、31 、 51 、 57 、 69 、 23 、 87 中的质数 有:
7、13、2、11、31、23
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十以内的质数与合数
质数(prime number)指的是大于1且只能被1和自身整除的自然数。
合数(composite number)则是大于1且可以被除了1和自身外的
其他自然数整除的数。
在十以内的自然数中,我们可以找到一些质数
和合数,它们在数学中有着重要的地位。
本文将介绍十以内的质数与
合数,并对它们的性质和应用进行探讨。
一、质数
1.2
在十以内的自然数中,2是唯一的质数。
质数2只能被1和2整除,没有其他因子。
它是最小的质数,也是所有自然数中唯一的偶数质数。
2.3、5、7
除了2以外,3、5、7都是十以内的质数。
它们都不能被其他自然
数整除,因此没有其他因子。
质数3、5和7分别是素数序列中的第二、第三和第四个数字。
二、合数
1.4、6、8、9、10
在十以内的自然数中,4、6、8、9和10都是合数。
它们都能被非
1和非自身的自然数整除,因此具有多个因子。
合数中最小的数是4,
也是最小的非质数,它可以被2整除。
2.性质与应用
质数和合数有许多有趣的性质和应用,以下是其中一些值得注意的方面:
2.1 质因数分解
每个正整数都可以唯一地表示为几个质数乘积的形式,这一过程被称为质因数分解。
质因数分解可以帮助我们理解数字的组成和性质。
举例来说,数值10可以被分解为2乘以5,而数值8可以被分解为2乘以2乘以2。
质因数分解在数论和代数中具有重要地位,被广泛应用于数学领域。
2.2 质数检测
质数与合数的判断是数学中的一个重要问题。
在实际应用中,我们需要判断一个数是否为质数。
目前存在一些质数检测算法,例如试除法、费马小定理和米勒-拉宾素性测试等。
这些算法通过数学推导和计算来判断一个数是否为质数,为密码学、计算机科学等领域的应用提供了基础。
2.3 质数与加密
质数在加密领域的应用十分广泛。
目前常见的公钥加密算法,如RSA算法和椭圆曲线密码算法,都依赖于大质数的处理。
质数的特殊性质,例如质因数分解的困难性,使得利用质数构建的加密算法具有较高的安全性。
2.4 数学研究与问题
质数和合数作为数学领域的基本概念,在数论和代数等分支中都有
广泛的研究。
数学家一直致力于寻找质数的规律和性质,探索它们之
间的关联和数学问题。
例如,费马大定理、哥德巴赫猜想等都与质数
有密切的关系。
综上所述,十以内的自然数中存在质数2、3、5和7,以及合数4、6、8、9和10。
质数具有较为特殊的性质和应用,如质因数分解和加
密算法等。
合数则是非质数的自然数,具有多个因子。
质数和合数作
为数学的基础概念,在数论、代数和密码学等领域都扮演着重要的角色,值得我们深入研究和探索。