MATLAB数值计算和符号运算

合集下载

MATLAB中的数值计算与符号计算

MATLAB中的数值计算与符号计算
上页 下页 退出
哈 工 程 大 学 数 学 实 验 电 子 教 案
syms x y; dblquad('x*y',0,1,-1,2) ans = 0.7500 这说明 , 不是语法错误 . 实际上 ,这个命令只能计算 矩形区域的积分,如果积分区域不上矩形区域,那么, 你就得定义一个二元函数 , 让这个函数在积分区域 外为0,比如,对此积分,定义
xy , ( x ,y ) D f( x ) 0 , ( x ,y ) D
而且,它也只能计算二重积分的数值解.
上页 下页 退出
◆关于微分方程的求解
哈 工 程 大 学 数 学 实 验 电 子 教 案
命令格式: dsolve(‘eqn1’, ‘eqn2’, …….); 如果不额外说明, 默认的变量是t dsolve('Dy=y^2*(1-y)') Warning: Explicit solution could not be found; implicit solution returned. > In C:\MATLABR12\toolbox\symbolic\dsolve.m at line 292 ans = t+1/y-log(y)+log(-1+y)+C1=0 dsolve('D2y = -a^2*y', 'y(0) = 1, Dy(pi/a) = 0') ans =cos(a*t) [x,y]=dsolve('Dx = y', 'Dy = -x', 'x(0)=0', 'y(0)=1') x =sin(t) y =cos(t)
第一种方法,用梯形法计算,其命令为trapz(x,y), 其中x, y 是具有相同长度的向量 , 表示用梯形法分割时 , 数据 点上的值. 此积分的实际值为0.199(精确到20位) x=1:0.1:10; y=sin(sin(x)); trapz(x,y) ans = 1.1981

matlab运算符运算

matlab运算符运算

Matlab运算符运算1.介绍在M at la b中,运算符是用来执行各种数学和逻辑运算的符号。

它们可以用于操作不同类型的数据,如数字、向量、矩阵和逻辑值。

M at la b 提供了一系列的运算符,包括算术运算符、关系运算符、逻辑运算符等。

本文将详细介绍M atl a b中常用的运算符及其使用方法。

2.算术运算符M a tl ab提供了一组算术运算符,用于执行基本的数学运算,如加法、减法、乘法和除法。

下面是一些常用的算术运算符及其使用方法:-加法运算符(`+`):用于执行两个数值的相加操作。

-减法运算符(`-`):用于执行两个数值的相减操作。

-乘法运算符(`*`):用于执行两个数值的相乘操作。

-除法运算符(`/`):用于执行两个数值的相除操作。

-取余运算符(`mo d`):用于计算两个数值的余数。

以下是一些示例代码:a=5;b=3;c=a+b;%计算a和b的和d=a-b;%计算a和b的差e=a*b;%计算a和b的积f=a/b;%计算a和b的商g=mo d(a,b);%计算a除以b的余数3.关系运算符关系运算符用于比较两个数值或变量之间的关系,并返回一个逻辑值(`tr ue`或`f al se`)。

M at la b提供了一组关系运算符,包括等于、不等于、大于、小于、大于等于和小于等于。

下面是一些常用的关系运算符及其使用方法:-等于运算符(`==`):用于比较两个数值是否相等。

-不等于运算符(`~=`):用于比较两个数值是否不相等。

-大于运算符(`>`):用于比较第一个数值是否大于第二个数值。

-小于运算符(`<`):用于比较第一个数值是否小于第二个数值。

-大于等于运算符(`>=`):用于比较第一个数值是否大于等于第二个数值。

-小于等于运算符(`<=`):用于比较第一个数值是否小于等于第二个数值。

以下是一些示例代码:a=5;b=3;c=(a==b);%判断a是否等于b,返回逻辑值d=(a~=b);%判断a是否不等于b,返回逻辑值e=(a>b);%判断a是否大于b,返回逻辑值f=(a<b);%判断a是否小于b,返回逻辑值g=(a>=b);%判断a是否大于等于b,返回逻辑值h=(a<=b);%判断a是否小于等于b,返回逻辑值4.逻辑运算符逻辑运算符用于执行布尔逻辑运算,并返回一个逻辑值。

matlab数值运算和符号运算

matlab数值运算和符号运算

《深度探讨:从数值运算到符号运算的MATLAB应用》在科学计算领域中,MATLAB无疑是一个不可或缺的工具。

它被广泛应用于数学建模、数据分析、图形可视化和算法开发等领域。

在MATLAB中,数值运算和符号运算是两个核心概念,它们分别在不同的领域中发挥着重要作用。

本文将从数值运算和符号运算两个方面展开讨论,带您深入探索MATLAB的应用价值。

一、数值运算1. MATLAB中的数值数据类型在MATLAB中,常见的数值数据类型包括整数、浮点数和复数等。

它们在科学计算中有着广泛的应用,例如在矩阵运算、微分方程求解和优化算法中。

2. 数值计算函数的应用MATLAB提供了丰富的数值计算函数,包括线性代数运算、插值和拟合、统计分布和随机数生成等。

这些函数为科学计算提供了强大的支持,使得复杂的数值计算变得更加简单高效。

3. 数值方法在实际问题中的应用通过具体的案例,我们可以深入了解MATLAB在实际问题中的数值计算方法。

通过有限元分析解决结构力学问题、通过数值积分求解物理方程、通过数值微分求解工程问题等。

二、符号运算1. MATLAB中的符号计算工具MATLAB提供了符号计算工具包,可以进行符号变量的定义、代数运算、微分积分和方程求解等。

这为数学建模、符号推导和精确计算提供了强大的支持。

2. 符号计算函数的应用通过具体的例子,我们可以深入了解MATLAB中符号计算函数的应用。

利用符号计算求解微分方程、利用符号变量定义复杂的代数表达式等。

3. 符号计算在科学研究中的应用通过详细的案例,我们可以了解符号计算在科学研究中的应用。

利用符号计算推导物理模型、利用符号运算求解工程问题等。

总结与展望:通过本文的深度探讨,我们对MATLAB中的数值运算和符号运算有了全面的了解。

数值运算为我们提供了高效的数值计算工具,而符号运算则为我们提供了精确的符号计算工具。

这两者相辅相成,在不同的领域中发挥着重要的作用。

希望通过本文的阐述,读者可以更加深入地理解MATLAB中数值运算和符号运算的应用,提升科学计算的能力和水平。

实验四MATLAB数值计算与符号计算

实验四MATLAB数值计算与符号计算

实验四 MATLAB数值计算与符号计算一、实验目的1.掌握数据插值和曲线拟合的方法2.掌握求数值导数和数值积分的方法3.掌握代数方程数值求解的方法4.掌握常微分方程数值求解的方法5.掌握求解优化问题的方法6.掌握求符号极限、导数和积分的方法7.掌握代数方程符号求解的方法8.掌握常微分方程符号求解的方法二、实验原理1.数据插值a) 一维数据插值 Y1=interp1(X,Y,X1,’method’)b) 二维数据插值 Z1=interp2(X,Y,Z,X1,Y1,’method’)2.曲线拟合[P,S]=polyfit(X,Y,m)3.符号对象的建立(1)符号量名=sym(符号字符串):建立单个的符号变量或常量;(2)syms arg1 arg2,…,argn:建立n个符号变量或常量。

4.基本符号运算(1)基本四则运算:+,-,*,\,^(2)分子与分母的提取:[n,d]=numden(s)(3)因式分解与展开:factor(s),expand(s)(4)化简:simplify, simple(s)5.符号函数及其应用(1)求极限:limit(f,x,a)(2)求导数:diff(f,x,a);(3)求积分:int(f,v)三、实验内容1.按下表用3次样条方法插值计算0~900范围内整数点的正弦值和0~750范围内整数点的正切值,然后用5次多项式拟合方法计算相同的函数值,并将两种计算结果进行比较。

x2=0:75;y1=sin(pi.*x1./180);y2=tan(pi.*x2./180);;a=interp1(x1,y1,45,'cublic')b=interp1(x1,y1,45,'cublic')p1=polyfit(x1,y1,5)p2=polyfit(x2,y2,5)c1=polyval(p1,x1);c2=polyval(p2,x2);subplot(2,1,1);plot(x1,c1,':o',x1,y1,'r');subplot(2,1,2);plot(x2,c2,':o',x2,y2,'r');10203040506070802.(1)求函数33()sin cos f x x x =+在点,,,6432x ππππ=的数值导数。

3MATLAB数值计算

3MATLAB数值计算

第三节MATLAB数值计算数学计算分为数值计算和符号计算。

这两种计算的区别是:数值计算的表达式、变量中不得包含未定义的自由变量,而符号计算中则允许。

本节主要介绍MATLAB的数值计算。

一、多项式1.多项式的表达与创建MATLAB用行矢量表示多项式系数,其中各元素按降幂顺序排列,如果多项式表示为:p(x)=a0x n+ a1x n-1+…+ a n-1x+a n则系数矢量为:p=[a0 a1 …a n-1 a n] 。

例如:p(x)= x3-2x-5,其系数矢量为:p=[1 0 -2 -5]。

如果把根矢量表示为:ar=[ar1ar2…ar n],则根矢量与系数矢量之间满足下面的关系式:(x- ar1)(x- ar2) …(x- ar n)= a0x n+ a1x n-1+…+ a n-1x+a n多项式系数矢量通过调用函数p = poly(ar)产生。

例1将多项式(x-8)(x-3)(x-6)表示为系数形式(即求出系数矢量)。

a=[8 3 6];%写成根矢量pa=poly(a)%求出系数矢量ppa=poly2sym(pa) % 表示成符号形式ezplot(ppa,[-40,40]) % 绘图输出结果为:pa =1 -17 90 -144ppa =x^3-17*x^2+90*x-144图1说明:(1) n个元素的根矢量求出的多项式系数矢量的元素一定是n+1个。

(2) 函数poly2sym把多项式系数矢量表达成符号形式的多项式,缺省情况下自变量符号为x,可以指定其他自变量,如poly2sym(pa,’t’),则表达为t的多项式。

(3) 使用简单绘图函数ezplot可以直接绘制符号形式多项式的曲线,其中第二个输入参数是由方括号内的两个数值组成的,给定了绘图范围。

若省略该参数,系统将自动按缺省范围绘图。

例2求3阶方阵A的特征多项式。

A=[6 3 8;7 5 6;1 3 5];pa=poly(A)ppa=poly2sym(pa)输出结果为:pa =1.0000 -16.0000 38.0000 -83.0000ppa =x^3-16*x^2+38*x-83说明:n阶方阵的特征多项式系数矢量一定是n+1阶。

matlab中的数学符号与运算

matlab中的数学符号与运算

matlab中的数学符号与运算MATLAB(Matrix Laboratory)是一种用于数值计算和科学工程应用的高级编程语言和环境。

MATLAB中包含了丰富的数学符号和运算,用于进行矩阵操作、线性代数、微积分等数学计算。

以下是MATLAB中一些常见的数学符号和运算:1. 数学符号:-矩阵:MATLAB 中的基本数据类型是矩阵,可以使用方括号`[]` 来表示。

例如,`A = [1, 2; 3, 4]` 表示一个2x2的矩阵。

-向量:向量可以表示为一维矩阵,例如,`v = [1, 2, 3]` 表示一个包含3个元素的行向量。

-转置:使用单引号`'` 来进行转置操作。

例如,`A'` 表示矩阵A的转置。

-点乘和叉乘:点乘使用`.*`,叉乘使用`.*`。

例如,`A .* B` 表示矩阵A和B的对应元素相乘,`A * B` 表示矩阵A和B的矩阵乘法。

2. 数学运算:-基本算术运算:MATLAB支持基本的算术运算,如加法、减法、乘法和除法。

例如,`result = 2 + 3`。

-元素-wise 运算:MATLAB 支持元素-wise 的运算,即对矩阵或向量中的每个元素进行运算。

例如,`C = A .* B` 表示矩阵A和B的对应元素相乘。

-矩阵操作:MATLAB 提供了许多用于矩阵操作的函数,如`inv`(求逆矩阵)、`det`(求行列式)、`eig`(求特征值)等。

-积分和微分:MATLAB 提供了`int`(积分)和`diff`(微分)等函数,用于进行积分和微分运算。

-方程求解:MATLAB 提供了`solve` 函数,用于求解方程组。

这些是MATLAB中一些常见的数学符号和运算。

MATLAB 的强大之处在于它的矩阵操作能力,使得它非常适用于数学和工程领域的计算和建模。

如果你有特定的数学运算需求,可以查阅MATLAB 的官方文档或在线资源以获取详细信息。

MATLAB第二讲__数值计算和符号计算

MATLAB第二讲__数值计算和符号计算

(4)数值运算中必须先对变量赋值;符号运算无须事先对变 量赋值,但必须先定义,运算结果以标准的符号表达 式形式给出。
Matlab基础应用 21
2.2.2 符号运算中的运算符
(1)基本运算符 符号矩阵:‚+”,‚-”,‚*‛,‚\”, ‚/”, ‚^”, ‚ ’ ” 符号数组:‚.*”,‚./”,‚.\‛,‚.^”, ‚.’ ” (2)关系运算符 运算符只有‚==”,‚~=”。
Matlab基础应用 7
1.3.4 多项式乘除运算(续)
例4: a(x)=x2+2x+3; b(x)=4x2+5x;求c=a(x)*b(x)。 解: >>a=[1 2 3];b=[4 5 0]; >>c=conv(a,b) c= 4 13 22 15 0 >>[d,r]=deconv(c,a) d= 4 5 0 r= 0 0 0 0 0
注意: 方法一只创建了符号表达式,没有创建符号变量; 而方法二既创建了符号表达式,又创建符号变量.
Matlab基础应用 19
2.1.3 创建符号矩阵
使用sym和syms命令创建
例4: A=sym(‘[a,b;c,d]’) A= [ a, b] [ c, d] syms f g h k B=[f,g;h,k] B=
%方法二
Name Size Bytes Class a 1x1 126 sym object b 1x1 126 sym object c 1x1 126 sym object f2 1x1 146 sym object x 1x1 126 sym object Grand total is 20 elements using 650 bytes

MATLAB符号运算运用

MATLAB符号运算运用

MATLAB符号运算运用MATLAB 是一种数值计算和编程环境,它可以进行符号运算,即对代数表达式进行操作和计算。

在 MATLAB 中,符号运算的主要工具是符号计算工具箱(Symbolic Math Toolbox),它提供了一系列函数和命令,用于处理和求解符号表达式。

1.创建符号表达式首先,我们可以通过使用符号变量来创建符号表达式。

符号变量可以使用 sym 函数定义。

例如,创建一个符号变量 x:```syms x```然后,可以使用这个符号变量来创建符号表达式。

例如,创建一个简单的二次多项式表达式:```f=x^2+2*x+1;```2.符号表达式运算一旦有了符号表达式,就可以对其进行各种运算,包括求导、积分、求解方程等。

- 求导:使用 diff 函数可以对符号表达式进行求导。

例如,对上述的 f 求导:```df = diff(f, x);```- 积分:使用 int 函数可以对符号表达式进行积分。

例如,对 f 在区间 [0, 1] 上进行积分:```I = int(f, 0, 1);```- 求解方程:使用 solve 函数可以对符号表达式进行求解。

例如,求解方程 f = 0:```sol = solve(f == 0, x);```3.简化符号表达式有时,符号表达式可能过于复杂,可以使用 simplify 函数对其进行简化。

例如,简化一个复杂的三角函数表达式:```syms xf = sin(x)^2 + cos(x)^2;sf = simplify(f);```4.数值近似符号表达式可以通过使用 vpa 函数进行数值近似。

例如,将一个符号表达式近似为 5 位小数:```syms xf = exp(x);f_num = vpa(f, 5);```在MATLAB中,符号运算可以应用于各种数学问题,包括求解方程、微积分、矩阵计算等。

它提供了一种便捷的方式来处理代数表达式,而不需要将其转化为数值形式进行计算。

1.Matlab数值运算功能

1.Matlab数值运算功能
Matlab与科学计算
向量的乘除运算
a. 向量的乘法运算
点乘运算的运算符为 .*, 其意义为两个向量的对应 元素进行乘法运算,例如
a=[1 2], b=[3 4] 则c=a.*b=[3 8]
^ 为向量的乘方运算,例如
c=a.^2=[1 4]
b. 向量的除法运算
Matlab与科学计算
点积、叉积和混合积
X = inv(E) X= -2.0000 1.0000 1.5000 -0.5000 (8)矩阵元素的赋值与运算
Matlab允许用户对矩阵的单个元素进行赋值和操作,Matlab 此时命 令方式为 X(i,j)=变量名
Matlab与科学计算
( 9)矩阵的指数和对数运算 expm(a), expm1(a), expm2(a), expm3(a) logm(a) ( 10)矩阵的开方运算 sqrtm(m) 注意:以上函数如果去掉最后的‘m’,都变成只对 矩阵中的每个元素进行相应的运算。 ( 11)矩阵的行列式运算: a1=det(a)
在matlab的命令窗口键入以下字符 >> a = [1 2 3 4 5 6 9 8 7] a= 1 2 3 4 5 6 9 8 7
希望得到元素从0到20,步距为2的一个向量,只需键入以下命令即可
>> t = [0:2:20] t= 2 4 6 8 10 12 14 16 18 20
Matlab与科学计算
》x=258×369 x= 95202
Matlab与科学计算
变量
(1)变量的命名:变量的名字必须以字母开头(不超 过19个字符),之后可以是字母、数字或下划线;变 量名区分字母的大小写;变量中不能包含有标点符号。 (2)一些特殊的变量 ans:用于结果的缺省变量名 i、j:虚数单位 pi:圆周率 eps:计算机的最小数(相对精度) inf:无穷大 realmin:最小正实数 realmax:最大正实数 nan:不定量(not a number) (3)变量操作

matlab中的基本运算

matlab中的基本运算

matlab中的基本运算基本运算是MATLAB中最基础的操作之一,它涵盖了数值计算、数据处理和绘图等各个方面。

本文将详细介绍MATLAB中的基本运算,包括算术运算、矩阵运算、逻辑运算和位运算等。

一、算术运算算术运算是最基本的运算之一,MATLAB中支持的算术运算包括加法、减法、乘法和除法等。

例如,可以使用"+"符号进行两个数的加法运算,用"-"符号进行减法运算,用"*"符号进行乘法运算,用"/"符号进行除法运算。

此外,还可以使用"^"符号进行幂运算,使用"sqrt"函数进行开方运算。

二、矩阵运算MATLAB中的矩阵运算是其强大功能之一。

可以使用矩阵进行加法、减法、乘法和除法等运算。

例如,可以使用"+"符号进行矩阵的逐元素加法运算,用"-"符号进行逐元素减法运算,用"*"符号进行矩阵的乘法运算,用"./"符号进行矩阵的逐元素除法运算。

三、逻辑运算逻辑运算在MATLAB中广泛应用于判断条件和控制流程。

MATLAB 支持的逻辑运算有与、或、非和异或等。

例如,可以使用"&&"符号进行逻辑与运算,用"||"符号进行逻辑或运算,用"~"符号进行逻辑非运算,用"xor"函数进行逻辑异或运算。

四、位运算位运算是对二进制数进行逐位操作的运算。

MATLAB支持的位运算有与、或、非、异或、左移和右移等。

例如,可以使用"&"符号进行位与运算,用"|"符号进行位或运算,用"~"符号进行位非运算,用"xor"函数进行位异或运算,用"<<"符号进行左移运算,用">>"符号进行右移运算。

第2章 MATLAB数值计算

第2章  MATLAB数值计算

第2章 MATLAB数值计算MATLAB的数学计算=数值计算+符号计算其中符号计算是指使用未定义的符号变量进行运算,而数值计算不允许使用未定义的变量。

2.1 变量和数据2.1.1数据类型数据类型包括:数值型、字符串型、元胞型、结构型等数值型=双精度型、单精度型和整数类整数类=无符号类(uint8、uint16、uint32、uint64)和符号类整数(int8、int16、int32、int64)。

2.1.2数据1. 数据的表达方式▪可以用带小数点的形式直接表示▪用科学计数法▪数值的表示范围是10-309~10309。

以下都是合法的数据表示:-2、5.67、2.56e-56(表示2.56×10-56)、4.68e204(表示4.68×10204)2. 矩阵和数组的概念在MATLAB的运算中,经常要使用标量、向量、矩阵和数组,这几个名称的定义如下:▪标量:是指1×1的矩阵,即为只含一个数的矩阵。

▪向量:是指1×n或n×1的矩阵,即只有一行或者一列的矩阵。

▪矩阵:是一个矩形的数组,即二维数组,其中向量和标量都是矩阵的特例,0×0矩阵为空矩阵([])。

▪数组:是指n维的数组,为矩阵的延伸,其中矩阵和向量都是数组的特例。

3. 复数复数由实部和虚部组成,MATLAB用特殊变量“i”和“j”表示虚数的单位。

复数运算不需要特殊处理,可以直接进行。

复数可以有几种表示:z=a+b*i或z=a+b*jz=a+bi 或z=a+bj(当b 为标量时) z=r*exp(i*theta)● 得出一个复数的实部、虚部、幅值和相角。

a=real(z) %计算实部 b=imag(z) %计算虚部 r=abs(z) %计算幅值 theta=angle(z) %计算相角 说明:复数z 的实部a=r*cos(θ); 复数z 的虚部b=r*sin(θ); 复数z 的幅值22b a r +=;复数z 的相角theta=arctg(b/a),以弧度为单位。

02数值运算和符号运算解析

02数值运算和符号运算解析
符号矩阵/数组:元素为符号表达式的矩阵/数组。
符号对象的建立
符号对象的建立:sym 和 syms sym 函数用来建立单个符号量,一般调用格式为:
符号变量 = sym(A)
参数 A 可以是一个数或数值矩阵,也可以是字符串
例: >> a=sym('a')
a 是符号变量
>> b=sym(1/3)
参与运算的对象必需具有一样的外形!
函数取值
函数作用在矩阵上的取值
设 x 是变量, f 是一个函数
当 x = a 是标量时,f(x) = f(a)也是一个标量 当 x = [a, b, … , c] 是向量时,f(x)= [f(a), f(b), … , f(c)]
f 作用在 x 的每个重量上 假设 A 是矩阵,则 f(A) 是一个与 A 同外形的矩阵
b 是符号常量
>> c=sym(”[1 ab; c d]”)
c 是符号矩阵
符号对象的建立
符号对象的建立:sym 和 syms syms 命令用来建立多个符号量,一般调用格式为:
syms 符号变量1 符号变量2 ... 符号变量n
例: >> syms a b c
>> a=sym(”a”); >> b=sym(”b”); >> c=sym(”c”);
ezplot(x,y,[0,1.3]);
注:解微分方程组时,假设所给的输出个数与方程个数一样, 则方程组的解按词典挨次输出;假设只给一个输出,则输出 的是一个包含解的构造〔structure〕类型的数据。
例:>> x=[1,2,3];y=[2,3,4];
>> A=[x,y], B=[x;y]

MATLAB-第五章

MATLAB-第五章

例如: factor: 因式分解
>>factor(x^3-6*x^2+11*x-6)
第五章 MATLAB的符号计算
五、符号运算
1 初等代数运算 (3)符号表达式化简(page48,表3-4)
例如: simplify: 对表达式化简
>>simplify(x^3-6*x^2+11*x-6) >>simplify(sin(x)^2 + cos(x)^2) >>simplify(exp(c*log(sqrt(a+b)))) >>simplify((x^2+5*x+6)/(x+2)) >>simplify(sqrt(16))
第五章 MATLAB的符号计算
三、符号表达式的定义
建立符号表达式有以下2种方法: (1)用sym函数建立符号表达式。 >> f=sym('a*x^2+b*x+c'); (2) 使用已经定义的符号变量组成符号表达式。 >> syms x y a b c >> f=a*x^2+b*x+c (?)利用单引号来生成符号表达式。 >> f='a*x^2+b*x+c'
第五章 MATLAB的符号计算
五、符号运算
1 初等代数运算 (2)符号表达式的加减乘除幂次方运算
例如: >> f1=sym('1/(a-b)'); >> f2=sym('2*a/(a+b)'); >> f3=sym('(a+1)*(b-1)*(a-b)');

matlab的数值运算

matlab的数值运算

matlab的数值运算Matlab是一种强大的数值计算和科学计算软件,它提供了丰富的数值运算功能,包括基本的数学运算、矩阵运算、符号计算以及常见的数值方法等。

在本文中,我们将讨论一些常见的数值运算方法和函数,并介绍它们的使用方法。

1. 基本的数学运算在Matlab中,可以使用基本的算术运算符进行数学运算,例如加法(+)、减法(-)、乘法(*)、除法(/)等。

例如,可以使用以下代码计算两个数的和:```a = 3;b = 4;c = a + b;disp(c);```这将输出结果为7。

此外,Matlab还提供了许多数学函数,可以进行各种复杂的数学运算。

例如,可以使用`sin`函数计算一个角度的正弦值,如下所示:```angle = pi/6;sin_value = sin(angle);disp(sin_value);```这将输出结果为0.5,表示30度的正弦值为0.5。

2. 矩阵运算Matlab中的矩阵运算非常方便,可以对矩阵进行加法、减法、乘法、转置等操作。

例如,可以使用以下代码计算两个矩阵的乘法:```A = [1 2; 3 4];B = [5 6; 7 8];C = A * B;disp(C);```这将输出结果为:```19 2243 50```表示两个2x2矩阵的乘积。

此外,Matlab还提供了许多专门用于矩阵运算的函数,例如`inv`函数可以计算一个矩阵的逆矩阵,`eig`函数可以计算一个矩阵的特征值和特征向量等。

3. 符号计算Matlab还提供了符号计算的功能,可以进行代数运算、求解方程、微积分等。

通过使用符号变量,并调用Matlab中的符号计算函数,可以进行复杂的数值计算。

例如,以下代码演示了如何计算方程的解:```syms x;eqn = x^2 - 3*x + 2 == 0;sol = solve(eqn, x);disp(sol);```这将输出结果为2和1,表示方程的两个解分别为2和1。

MATLAB的数值运算与符号运算

MATLAB的数值运算与符号运算
• 1.矩阵/数组的加减运算 矩阵与数组的加减运算规则相同,运算符也 完全相同。
MATLAB与控制系统仿真实践, 北京航空航天大学出版社,2009.8. 在线交流,有问必答
演示例9: 求2矩阵的和。
MATLAB与控制系统仿真实践, 北京航空航天大学出版社,2009.8. 在线交流,有问必答
• 2. 矩阵/数组的乘法运算 数组相乘是对应元素的相乘,这与矩阵相乘 是不同的。矩阵A、B相乘要求A的列数和B 的行数相等,除非其中一项是标量。矩阵 相乘可表示为:
M = magic(n) y = linspace(a,b) y = linspace(a,b,n) y = logspace(a,b) y = logspace(a,b,n)
MATLAB与控制系统仿真实践, 北京航空航天大学出版社,2009.8. 在线交流,有问必答
3.1.1数组与矩阵的输入
演示例4: 通过MATLAB内建函数产生矩阵或数组。
• 3.2 MATLAB的基本数学运算
– – – – – – – – 3.2.1 算术运算 3.2.2 关系运算 3.2.3 逻辑运算 3.2.4 运算优先级 3.3.1 符号运算基本函数及示例 3.3.2 符号代数方程求解 3.3.3 符号微积分运算 3.3.4 Laplace, Z变换及反变换
MATLAB与控制系统仿真实践, 北京航空航天大学出版社,2009.8. 在线交流,有问必答
MATLAB与控制系统仿真实践, 北京航空航天大学出版社,2009.8. 在线交流,有问必答
3.1.1数组与矩阵的输入
• 3.通过提示语句输入矩阵或数组 x = input('prompt')或x= input('prompt','s')在屏 幕上显示一个提示符,等待用户从键盘输 入,并读取用户输入到工作空间中。第一 种方式供输入数字,而后一种方式供输入 字符串。

MATLAB基础教程 第5章 符号运算

MATLAB基础教程 第5章 符号运算

第五章 符号运算
5.1 符号运算基础
2. 符号表达式的转换
(2)expand:该函数用于符号表达式的展开。其操作对象可以是多种类型,如多项 式、三角函数、指数函数等。
例5-6 符号表达式的展开。 >>syms x y; >>f=(x+y)^3; >>expand(f) ans= x^3+3*x^2*y+3*x*y^2+y^3 >>expand(sin(x+y)) ans= sin(x)*cos(y)+cos(x)*sin(y) >>expand(exp(x+y)) ans= exp(x)*exp(y)
第五章 符号运算
5.1 符号运算基础
例5-2 符号运算和数值运算之间的差别 >>sym(2)/sym(5) ans= 2/5 >>2/5+1/3 ans=0.7333 >>sym(2)/sym(5)+sym(1)/sym(3) ans= 11/15 >>double(sym(2)/sym(5)+sym(1)/sym(3)) ans= 0.7333 由上例可以看出,当进行数值运算时,得到的结果为double型数据;采用符号进 行运算时,输出的结果为分数形式。
第五章 符号运算
5.1 符号运算基础
2. 符号表达式的转换
(4)simplify:该函数实现表达式的化简。 例5-8 simplify函数的应用。 >>simplify(sin(x)^2+cos(x)^2) ans= 1 >>syms a b c; >>simplify(exp(c*log(sqrt(a+b)))) ans= (a+b)^(1/2*c) >>S=[(x^2+5*x+6)/(x+2),sqrt(16)]; >>R=simplify(S) R= [3+x, 4]

数值计算和符号计算

数值计算和符号计算

for i=2:length(t)
if ysign(i)~=ysign(i-1) >> n,yzero
n=n+1;yzero(n)=i-1; n =
%与前一函数值符号相反,则表示有一零点
end
6 %yzero(n)存放第n个零点对应的下标
end
yzero =
220 523 852 1146 1488
010
100
Adet=det(A)
%求矩阵的行A列de式t =
Aroots =
Arank=rank(A)
%求矩阵的秩 -82
10.8570
Anorm=norm(A) P=poly(A) Aroots=roots(P)
%求矩阵的范数Ara,nk通= 过带不同的参数可以求不同的-2.范677数6
%求矩阵特征多An项o3rm式=
2.8207 Aroots2 =
%求特征根 11.9378
10.8570
Aroots2=eig(A)
%特征根的又一P 种= 求法
-2.6776
%线性方程组求解
1.0000 -11.0000 -6.0000 82.0000
2.8207
x=A\b
%求方程组AX=b的解
x=inv(A)*b 方程组为:
解为:
1

两种计算的特点


数值计算


符号对象和符号表达式


符号计算
符 号
符号函数的可视化
计 算
Maple函数的使用
5.1 两种计算的特点2来自数值计算特点:1)以数值数组作为运算对象,给出数值解;
2)计算过程中产生误差累积问题,影响计算结果的精确性;

Matlab语言数值和符号运算-编程-绘图

Matlab语言数值和符号运算-编程-绘图

最低级
先觉逻辑或(||)
1.3 矩阵 1.3.1 矩阵构建---1.直接输入法
矩阵中的元素需要用([])括住;
矩阵中每行的元素之间需要用逗 号(,)或空格符隔开; 矩阵中行与行之间需要分号(;) 或回车键隔开,以便区分; 矩阵中的元素可以是数值类型或 表达式类型。
1.3.1 矩阵的构建 2. 通过语句构造生成矩阵1
1.3.1 矩阵的构建 3. 通过矩阵生成函数构造特殊矩阵
表1-8 特殊矩阵函数(续) 示范 函数名 eye(n) 函数功能 产生n×n阶单位矩阵
输入
eye(3)
结果
1 0 0 0 1 0 0 0 1 1 0 0 0 1 0
eye(m,n)
产生m×n的矩阵,其中 对角线元素为1,其它0
eye(2,3)
1.3.1 矩阵的构建 2. 通过语句构造生成矩阵2
x=linspace(first,last,num)
线性等分向量 first-------行向量的起始值; last--------行向量的结束值; num------行向量中所含元素个数。 如果num缺省,默认值为100。
x=logspace(a,b,n)
0.8147 0.1270 0.6324 0.9058 0.9134 0.0975
randn(m,n) 产生正态分布的随机矩 阵
rand(2,3)
0.2785 0.9575 0.1576 0.5469 0.9649 0.9706
1.3.1 矩阵的构建 3. 通过矩阵生成函数构造特殊矩阵
表1-8 特殊矩阵函数(续) 示范 函数名 函数功能 输入 结果
表1-1 Matlab中默认的常量 常量名称 pi INF或inf 圆周率π的双精度浮点表示 无穷大 说明

第三章:MATLAB的符号运算

第三章:MATLAB的符号运算

注1:即使利用clear语句删除x,并不能改变MuPAD内存中对x的限制设 定,再引入变量x是,仍然带有这一设定。
注2:sym x clear 只改变x的限定,并没有删除和改变x的值。
例:求 3x2 5x 1 0的解
>> clear >> syms x >> solve(3*x^2+5*x+1) ans =
>> y=solve(f) y= -(b + (b^2 - 4*a*c)^(1/2))/(2*a) -(b - (b^2 - 4*a*c)^(1/2))/(2*a)
>> y=solve(f,a) y= -(c + b*x)/x^2
符号表达式 符号表达式有两种不同的生成方式: 1、直接由sym函数生成 如: f=sym(‘2*sin(x)+5*cos(x)’) 这样的表达式称为串型表达式。 2、利用符号变量经符号运算生成 如: syms x y f=sin(x)+2*cos(y)
- 13^(1/2)/6 - 5/6 13^(1/2)/6 - 5/6
>> assume(x>=-5/6) >> solve(3*x^2+5*x+1)
ans = 13^(1/2)/6 - 5/6
例:求方程
x3
475 5 x 0 的根 100 2
求第一象限的根
>> syms x 'clear' >> assume(real(x)>=0) >> assumeAlso(imag(x)>=0) >> solve(x^3+475*x/100+5/2) ans = (79^(1/2)*i)/4 + 1/4
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设有400万元资金要求4年内使用完若在一年内使用资金x万元则可得效益x万元效益不能再使用当年不用的资金可存入银行年利率为10
贵州大学实验报告
学院:计算机科学与技术专业:网络工程班级:
姓名
学号
实验组
实验时间
指导教师
成绩
实验项目名称
MATLAB数值计算和符号运算
实验目的
1.掌握并理解Maltab在数值计算的基本用法。
2.理解matlab在工程领域解题的一般过程。
3. 掌握Matlab符合运算的基本方法。
实验环境
计算机一台(带有MATLAB7.0以上的软件环境)。
实验内容
1.线性系统方程:分别使用左除(\)和LU分解求解下面系统方程的解:
2. 使用quad和trapz求解 的数值积分,并与其解析解相比较(解析解利用符号运算进行求解,参考函数int);(要求:使用quad求积分时,请分别用函数文件和匿名函数的方式求解)
实验代码
第一题
a=[3 6 4;1 5 0;0 7 7]
b=[1;2;3]
x=a\b
[L,U]=lu(a)
x=U\(L\b)
第二题
functiony=fun(x)
y=x.*exp(-(x./3));
Q1=quad('fun',0,5)
Q2=quad(@(x)(x.*exp(-(x./3))),0,5)
b=[400;440;484;532.4];
x0=[0.5;0.5;0.5;0.5];
[x,fval]=fmincon('fun',x0,A,b)
实验结果
第一题
第二题
第三题
第四题
第五题
第六题ห้องสมุดไป่ตู้
指导教师意见
签名: 年 月 日
3.求下面函数在[0.5,4]区间内的过零点。(用fzero函数)
4.求常微分方程的数值解
5.对边长为3m的正方形铁板,在4个角剪去相等的正方形以制成方形无盖水槽,问何种剪法可使水槽的容积最大?
6.设有400万元资金,要求4年内使用完,若在一年内使用资金x万元,则可得效益 万元(效益不能再使用),当年不用的资金可存入银行,年利率为10%。试制定出资金的使用计划,以使4年效益之和为最大。
第五题
function y=fun(x)
y=-(x.*(3-2*x)^2);
min=fminbnd('fun',0,1.5)
第六题
function y=fun(x)
y=(-1)*(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)));
A=[1 0 0 0;1.1 1 0 0;1.21 1.1 1 0;1.331 1.21 1.1 1];
[x1,y1]=fzero(y,xx(1))
[x2,y2]=fzero(y,xx(2))
第四题
function dy=fun(x,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=((-2).*y(2)-y(1))./(x-1);
tspan=[010];
y0=[1 -1];
[x,y]=ode45('fun',tspan,y0)
x=0:0.1:5
y=x.*exp(-(x./3))
z=trapz(x,y)
syms x
int(x.*exp(-(x./3)),0,5)
第三题
ezplot('x^3-2*x^2*sin(x)+5*x*cos(x)+1/x',[0.5,4])
[xx,yy]=ginput(2)
y=inline('x^3-2*x^2*sin(x)+5*x*cos(x)+1/x','x');
相关文档
最新文档