实验四MATLAB数值计算与符号计算

合集下载

MATLAB中的数值计算与符号计算

MATLAB中的数值计算与符号计算
上页 下页 退出
哈 工 程 大 学 数 学 实 验 电 子 教 案
syms x y; dblquad('x*y',0,1,-1,2) ans = 0.7500 这说明 , 不是语法错误 . 实际上 ,这个命令只能计算 矩形区域的积分,如果积分区域不上矩形区域,那么, 你就得定义一个二元函数 , 让这个函数在积分区域 外为0,比如,对此积分,定义
xy , ( x ,y ) D f( x ) 0 , ( x ,y ) D
而且,它也只能计算二重积分的数值解.
上页 下页 退出
◆关于微分方程的求解
哈 工 程 大 学 数 学 实 验 电 子 教 案
命令格式: dsolve(‘eqn1’, ‘eqn2’, …….); 如果不额外说明, 默认的变量是t dsolve('Dy=y^2*(1-y)') Warning: Explicit solution could not be found; implicit solution returned. > In C:\MATLABR12\toolbox\symbolic\dsolve.m at line 292 ans = t+1/y-log(y)+log(-1+y)+C1=0 dsolve('D2y = -a^2*y', 'y(0) = 1, Dy(pi/a) = 0') ans =cos(a*t) [x,y]=dsolve('Dx = y', 'Dy = -x', 'x(0)=0', 'y(0)=1') x =sin(t) y =cos(t)
第一种方法,用梯形法计算,其命令为trapz(x,y), 其中x, y 是具有相同长度的向量 , 表示用梯形法分割时 , 数据 点上的值. 此积分的实际值为0.199(精确到20位) x=1:0.1:10; y=sin(sin(x)); trapz(x,y) ans = 1.1981

matlab数学实验

matlab数学实验

《管理数学实验》实验报告班级姓名实验1:MATLAB的数值运算【实验目的】(1)掌握MATLAB变量的使用(2)掌握MATLAB数组的创建,(3)掌握MA TLAB数组和矩阵的运算。

(4)熟悉MATLAB多项式的运用【实验原理】矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。

【实验步骤】(1)使用冒号生成法和定数线性采样法生成一维数组。

(2)使用MA TLAB提供的库函数reshape,将一维数组转换为二维和三维数组。

(3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。

(4)使用MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M文件。

【实验内容】(1)在[0,2*pi]上产生50个等距采样数据的一维数组,用两种不同的指令实现。

0:(2*pi-0)/(50-1):2*pi 或linspace(0,2*pi,50)(2)将一维数组A=1:18,转换为2×9数组和2×3×3数组。

reshape(A,2,9)ans =Columns 1 through 71 3 5 7 9 11 132 4 6 8 10 12 14Columns 8 through 915 1716 18reshape(A,2,3,3)ans(:,:,1) =1 3 52 4 6ans(:,:,2) =7 9 118 10 12 ans(:,:,3) =13 15 17 14 16 18(3)A=[0 2 3 4 ;1 3 5 0],B=[1 0 5 3;1 5 0 5],计算数组A 、B 乘积,计算A&B,A|B,~A,A= =B,A>B 。

A.*Bans=0 0 15 121 15 0 0 A&Bans =0 0 1 11 1 0 0 A|Bans =1 1 1 11 1 1 1~Aans =1 0 0 00 0 0 1A==Bans =0 0 0 01 0 0 0A>=Bans =0 1 0 11 0 1 0(4)绘制y= 0.53t e -t*t*sin(t),t=[0,pi]并标注峰值和峰值时间,添加标题y= 0.53t e -t*t*sint ,将所有输入的指令保存为M 文件。

MATLAB实验报告(1-4)

MATLAB实验报告(1-4)

信号与系统MATLAB第一次实验报告一、实验目的1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。

2.学会运用MATLAB表示常用连续时间信号的方法3.观察并熟悉一些信号的波形和特性。

4.学会运用MATLAB进行连续信号时移、反折和尺度变换。

5.学会运用MATLAB进行连续时间微分、积分运算。

6.学会运用MATLAB进行连续信号相加、相乘运算。

7.学会运用MATLAB进行连续信号的奇偶分解。

二、实验任务将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。

三、实验内容1.MATLAB软件基本运算入门。

1). MATLAB软件的数值计算:算数运算向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。

2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn 为结束值。

矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开;矩阵的不同行之间必须用分号”;”或者ENTER分开。

2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。

3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。

举例:计算一个函数并绘制出在对应区间上对应的值。

2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名”2.MATLAB软件简单二维图形绘制1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y)2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表示第p个区域,表达为subplot(mnp)或者subplot(m,n,p)3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin])4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’)5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’)6).输出:grid on举例1:举例2:3.matlab程序流程控制1).for循环:for循环变量=初值:增量:终值循环体End2).while循环结构:while 逻辑表达式循环体End3).If分支:(单分支表达式)if 逻辑表达式程序模块End(多分支结构的语法格式)if 逻辑表达式1程序模块1Else if 逻辑表达式2程序模块2…else 程序模块nEnd4).switch分支结构Switch 表达式Case 常量1程序模块1Case 常量2程序模块2……Otherwise 程序模块nEnd4.典型信号的MATLAB表示1).实指数信号:y=k*exp(a*t)举例:2).正弦信号:y=k*sin(w*t+phi)3).复指数信号:举例:4).抽样信号5).矩形脉冲信号:y=square(t,DUTY) (width默认为1)6).三角波脉冲信号:y=tripuls(t,width,skew)(skew的取值在-1~+1之间,若skew取值为0则对称)周期三角波信号或锯齿波:Y=sawtooth(t,width)5.单位阶跃信号的MATLAB表示6.信号的时移、反折和尺度变换:Xl=fliplr(x)实现信号的反折7.连续时间信号的微分和积分运算1).连续时间信号的微分运算:语句格式:d iff(function,’variable’,n)Function:需要进行求导运算的函数,variable:求导运算的独立变量,n:求导阶数2).连续时间信号的积分运算:语句格式:int(function,’variable’,a,b)Function:被积函数variable:积分变量a:积分下限b:积分上限(a&b默认是不定积分)8.信号的相加与相乘运算9.信号的奇偶分解四、小结这一次实验让我能够教熟悉的使用这个软件,并且能够输入简单的语句并输出相应的结果和波形图,也在一定程度上巩固了c语言的一些语法。

matlab数值运算和符号运算

matlab数值运算和符号运算

《深度探讨:从数值运算到符号运算的MATLAB应用》在科学计算领域中,MATLAB无疑是一个不可或缺的工具。

它被广泛应用于数学建模、数据分析、图形可视化和算法开发等领域。

在MATLAB中,数值运算和符号运算是两个核心概念,它们分别在不同的领域中发挥着重要作用。

本文将从数值运算和符号运算两个方面展开讨论,带您深入探索MATLAB的应用价值。

一、数值运算1. MATLAB中的数值数据类型在MATLAB中,常见的数值数据类型包括整数、浮点数和复数等。

它们在科学计算中有着广泛的应用,例如在矩阵运算、微分方程求解和优化算法中。

2. 数值计算函数的应用MATLAB提供了丰富的数值计算函数,包括线性代数运算、插值和拟合、统计分布和随机数生成等。

这些函数为科学计算提供了强大的支持,使得复杂的数值计算变得更加简单高效。

3. 数值方法在实际问题中的应用通过具体的案例,我们可以深入了解MATLAB在实际问题中的数值计算方法。

通过有限元分析解决结构力学问题、通过数值积分求解物理方程、通过数值微分求解工程问题等。

二、符号运算1. MATLAB中的符号计算工具MATLAB提供了符号计算工具包,可以进行符号变量的定义、代数运算、微分积分和方程求解等。

这为数学建模、符号推导和精确计算提供了强大的支持。

2. 符号计算函数的应用通过具体的例子,我们可以深入了解MATLAB中符号计算函数的应用。

利用符号计算求解微分方程、利用符号变量定义复杂的代数表达式等。

3. 符号计算在科学研究中的应用通过详细的案例,我们可以了解符号计算在科学研究中的应用。

利用符号计算推导物理模型、利用符号运算求解工程问题等。

总结与展望:通过本文的深度探讨,我们对MATLAB中的数值运算和符号运算有了全面的了解。

数值运算为我们提供了高效的数值计算工具,而符号运算则为我们提供了精确的符号计算工具。

这两者相辅相成,在不同的领域中发挥着重要的作用。

希望通过本文的阐述,读者可以更加深入地理解MATLAB中数值运算和符号运算的应用,提升科学计算的能力和水平。

Matlab中的符号及符号表达式计算方法介绍

Matlab中的符号及符号表达式计算方法介绍

Matlab中的符号及符号表达式计算方法介绍概述:在数字计算和科学工程领域,Matlab是一种非常常用的工具。

它被广泛用于进行数据分析、数值计算和模拟。

除了传统的数值计算,Matlab还提供了符号计算功能,这使得用户可以进行符号表达式的建模和计算。

本文将介绍Matlab中的符号计算功能,包括符号和符号表达式的定义、建模和计算方法。

一、符号计算的定义和背景:符号计算是一种将数学问题表示为符号表达式进行求解的方法。

与传统的数值计算相比,符号计算不仅可以处理具体数值,还可以处理未知变量和符号表达式。

这意味着符号计算可以进行精确的数学求解,提供准确的符号化结果。

在Matlab中,符号计算可以通过Symbolic Math Toolbox实现。

通过该工具箱,用户可以定义符号变量、符号表达式和符号函数,并进行各种符号计算。

二、符号变量的定义和使用:在Matlab中,可以使用"syms"命令定义一个或多个符号变量。

符号变量是不具体数值的变量,可以代表任意数值或符号。

下面是一个示例:syms x y z; %定义符号变量x、y和z定义完成后,我们可以将符号变量用于构建符号表达式,并进行各种符号计算。

例如,可以定义一个简单的符号表达式,并计算其导数:f = x^2 + y^2 + z^2; %定义符号表达式fdf_dx = diff(f, x); %计算f对x的导数三、符号表达式的建模和操作:在Matlab中,可以使用定义的符号变量构建复杂的符号表达式,并进行各种符号操作。

例如,可以定义一个二次方程,并求解其根:syms a b c x;equation = a*x^2 + b*x + c; %定义二次方程roots = solve(equation, x); %求解方程的根除了求解方程的根,还可以进行符号表达式的展开、因式分解、合并等操作。

这些符号操作扩展了Matlab的数学建模能力,使得用户能够更加灵活和方便地进行符号计算。

matlab符号计算实验报告

matlab符号计算实验报告

1. 已知x=6,y=5,利用符号表达式求z =>> syms x >> z=(x+1)/(sqrt(x+3)-sqrt(y)); >> subs(z,x,5) ans =6/(8^(1/2)-y^(1/2)) >> subs(ans,6) ans = 15.83382. 分解因式。

(1)x y -44; >> syms x y >> factor(x^4-y^4) ans =(x-y)*(x+y)*(x^2+y^2)(2)x x x +++64212575151 >> syms x >> factor(125*x^6+75*x^4+15*x^2+1) ans =(5*x^2+1)^33. 化简表达式(1)sin cos cos sin ββββ-1212;>> syms x y >> f=sin(x).*cos(y)-cos(x).*sin(y); >> sfy1=simple(f) 结果:sfy1 =sin(x-y)(2)x x x +++248321>> syms x >> f=(4*x^2+8*x+3)/(2*x+1);sfy1=simplify(f) sfy1 =2*x+34、求下列极限,将完成实验的程序写到文件sy1.m 中:(1) (2) (3) (4)(5) (1)>> syms x >> F1=atan(x)/(x); >> w=limit(F1) w =1(2)>> syms x F2=((1+x)/(1-x))^(1/x); >> w=limit(F2) w =exp(2)(3)>> syms x F3=(x.*log(1+x))/(sin(x^2)); >> w=limit(F3) w =1(4)>> syms x F4=atan(x)/(x); >> w=limit(F4,x,inf) w =0(5)>> syms x F5=(1/(1-x)-1/(1-x^3)); >> w=limit(F5,x,1) w =NaN5、求下列函数的导数,将完成实验的程序写到文件sy2.m 中:1、 >> x = sym('x'); >> y1=(cos(x))^3-cos(3*x); >> diff(y1)ans =-3*cos(x)^2*sin(x)+3*sin(3*x)2、 >> x = sym('x'); >> y2=x.*sin(x).*(log(x)); >> diff(y2)ans =sin(x)*log(x)+x*cos(x)*log(x)+sin(x)3、>> x = sym('x'); >> y3=(x.*exp(x)-1)/sin(x); >> diff(y3)ans =(exp(x)+x*exp(x))/sin(x)-(x*exp(x)-1)/sin(x)^2*cos(x)4、 x x x x F 1011lim 2⎪⎭⎫ ⎝⎛-+=→31115lim()11x F x x →=---20sin )1ln(lim 3x x x F x +=→x x F x arctan lim 10→=arctan 4lim x x F x →∞=xx y 3cos cos 13-=xx x y ln sin 2=x xe y xsin 13-=cos x y e x =>> x = sym('x');y=cos(x).*exp(x); >> diff(y) ans =-sin(x)*exp(x)+cos(x)*exp(x)5、 >> x = sym('x');y=x^2.*sin(x); >> diff(y) ans = 2*x*sin(x)+x^2*cos(x)6、求下列函数的积分1、syms x a b c;int(sin(a*x).*sin(b*x).*sin(c*x)) ans =-1/4/(c+a-b)*cos((c+a-b)*x)+1/4/(-c+a-b)*cos((-c+a-b)*x)+1/4/(c+a+b)*cos((c+a+b)*x)-1/4/(-c +a+b)*cos((-c+a+b)*x) 2、>> syms x ;int(x^5+x^3-sqrt(x)/4) ans =1/6*x^6+1/4*x^4-1/6*x^(3/2)3、>> syms x ;int(x.*exp(x)/(x+1)^2,x,0,1) ans =1/2*exp(1)-1 4、 >> syms x y;F=int(int('x/(1+x*y)',x,0,1),y,0,1) F =2*log(2)-15、 由曲面22y x z +=,1=z ,2=z 所围成 >> syms x y z;F=int(int(int('x^2+y^2',x,-inf,inf),y,-inf,inf),z,1,2) F =Inf7、求下列级数的和(1) (2)(1)>> syms n;symsum(2*n-1/2^n,1,Inf) ans =Inf(2)syms n;symsum(1/n*(2*n-1),1,Inf) ans =Inf8、将函数 展开成2-x 的幂级数>> syms x;mtaylor(1/(x^2+5*x-3),x-2) 2sin 2y x x=⎰cxdx bx ax sin sin sin dx x x x )4(35⎰-+⎰+102)1(dx x xe x ⎰⎰+D dxdy xy x 1]1,0[]1,0[⨯=D ⎰⎰⎰Vzdxdydz 11212n n n I ∞=-=∑211(21)n I n n ∞==+∑21()53f x x x =+-。

matlab中的数学符号与运算

matlab中的数学符号与运算

matlab中的数学符号与运算MATLAB(Matrix Laboratory)是一种用于数值计算和科学工程应用的高级编程语言和环境。

MATLAB中包含了丰富的数学符号和运算,用于进行矩阵操作、线性代数、微积分等数学计算。

以下是MATLAB中一些常见的数学符号和运算:1. 数学符号:-矩阵:MATLAB 中的基本数据类型是矩阵,可以使用方括号`[]` 来表示。

例如,`A = [1, 2; 3, 4]` 表示一个2x2的矩阵。

-向量:向量可以表示为一维矩阵,例如,`v = [1, 2, 3]` 表示一个包含3个元素的行向量。

-转置:使用单引号`'` 来进行转置操作。

例如,`A'` 表示矩阵A的转置。

-点乘和叉乘:点乘使用`.*`,叉乘使用`.*`。

例如,`A .* B` 表示矩阵A和B的对应元素相乘,`A * B` 表示矩阵A和B的矩阵乘法。

2. 数学运算:-基本算术运算:MATLAB支持基本的算术运算,如加法、减法、乘法和除法。

例如,`result = 2 + 3`。

-元素-wise 运算:MATLAB 支持元素-wise 的运算,即对矩阵或向量中的每个元素进行运算。

例如,`C = A .* B` 表示矩阵A和B的对应元素相乘。

-矩阵操作:MATLAB 提供了许多用于矩阵操作的函数,如`inv`(求逆矩阵)、`det`(求行列式)、`eig`(求特征值)等。

-积分和微分:MATLAB 提供了`int`(积分)和`diff`(微分)等函数,用于进行积分和微分运算。

-方程求解:MATLAB 提供了`solve` 函数,用于求解方程组。

这些是MATLAB中一些常见的数学符号和运算。

MATLAB 的强大之处在于它的矩阵操作能力,使得它非常适用于数学和工程领域的计算和建模。

如果你有特定的数学运算需求,可以查阅MATLAB 的官方文档或在线资源以获取详细信息。

MATLAB第二讲__数值计算和符号计算

MATLAB第二讲__数值计算和符号计算

(4)数值运算中必须先对变量赋值;符号运算无须事先对变 量赋值,但必须先定义,运算结果以标准的符号表达 式形式给出。
Matlab基础应用 21
2.2.2 符号运算中的运算符
(1)基本运算符 符号矩阵:‚+”,‚-”,‚*‛,‚\”, ‚/”, ‚^”, ‚ ’ ” 符号数组:‚.*”,‚./”,‚.\‛,‚.^”, ‚.’ ” (2)关系运算符 运算符只有‚==”,‚~=”。
Matlab基础应用 7
1.3.4 多项式乘除运算(续)
例4: a(x)=x2+2x+3; b(x)=4x2+5x;求c=a(x)*b(x)。 解: >>a=[1 2 3];b=[4 5 0]; >>c=conv(a,b) c= 4 13 22 15 0 >>[d,r]=deconv(c,a) d= 4 5 0 r= 0 0 0 0 0
注意: 方法一只创建了符号表达式,没有创建符号变量; 而方法二既创建了符号表达式,又创建符号变量.
Matlab基础应用 19
2.1.3 创建符号矩阵
使用sym和syms命令创建
例4: A=sym(‘[a,b;c,d]’) A= [ a, b] [ c, d] syms f g h k B=[f,g;h,k] B=
%方法二
Name Size Bytes Class a 1x1 126 sym object b 1x1 126 sym object c 1x1 126 sym object f2 1x1 146 sym object x 1x1 126 sym object Grand total is 20 elements using 650 bytes

4MATLAB符号计算

4MATLAB符号计算

第四节MATLAB符号计算在自然科学的各个领域不但需要解决数值分析和计算问题,同时也要解决符号运算的问题,MA TLAB中的符号计算功能是以Maple V为基础开发的。

MATLAB的符号数学工具箱的主要功能包括:符号表达式的创建、符号矩阵的运算,符号表达式的化简和替换、符号微积分、符号代数方程等。

一、符号表达式的创建MATLAB的符号数学工具箱提供了两个基本函数,用来创建符号变量和表达式,分别是sym 和syms。

●函数sym的调用形式为:x=sym(‘x’)创建一个符号变量x,它可以是字符、字符串、表达式或字符表达式。

●函数syms用于方便地一次创建多个符号变量,其调用形式为:syms a b c…例1 使用sym 和syms函数创建符号变量。

a=sym('a') %定义符号变量aa =ab=sym('1+sqrt(5)/2') %定义符号变量bb =1+sqrt(5)/2syms a b c d %定义4个符号变量使用函数可以创建符号矩阵,可以直接输入或从数值矩阵转换。

例2 创建一个循环矩阵。

syms a b c dn=[a b c d ;b c d a ; c d a b ; d a b c]输出结果为:n =[ a, b, c, d][ b, c, d, a][ c, d, a, b][ d, a, b, c]例3 将3阶的Hilbert 矩阵转化为符号矩阵。

h=hilb(3) %创建Hilbert矩阵h =1.0000 0.5000 0.33330.5000 0.3333 0.25000.3333 0.2500 0.2000h1=sym(h) %用函数sym转化为符号矩阵h1 =[ 1, 1/2, 1/3][ 1/2, 1/3, 1/4][ 1/3, 1/4, 1/5]注意:符号矩阵与普通数值矩阵的区别是:在命令窗口的显示中,数值矩阵只显示元素的数值,而符号矩阵的每行元素均放在一对方括号内;在工作空间窗口显示的变量图标也不同,数值图标为,符号矩阵的图标为。

Matlab教学第四章 MATLAB符号运算(Symbolic)

Matlab教学第四章 MATLAB符号运算(Symbolic)

>> y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') >> syms x; diff(y)+2*x*y - x*exp(-x^2)
f2=2*(u+2)
ans=14 ans=2*((a+2)+2) f3=2*x+2*y ans=6
符号矩阵
使用 sym 函数直接生成 >> A=sym('[1+x, sin(x); 5, exp(x)]') 将数值矩阵转化成符号矩阵 >> B=[2/3, sqrt(2); 5.2, log(3)]; >> C=sym(B) 符号矩阵中元素的引用和修改 >> A=sym('[1+x, sin(x); 5, exp(x)]'); >> A(1,2) % 引用 >> A(2,2)=sym('cos(x)') % 重新赋值
符号对象的基本运算
基本函数
三角函数与反三角函数、指数函数、对数函数等
sin、cos、tan、cot、sec、csc、… asin、acos、atan、acot、asec、 acsc、…
exp、log、log2、log10、sqrt abs、conj、real、imag
rank、det、inv、eig、lu、qr、svd
How 中记录的为简化过程中使用的方法。
f
2*cos(x)^2sin(x)^2
(x+1)*x*(x-1)
R
HOW
3*cos(x)^2-1 simplify
x^3-x combine(tri g)

metlab用数值计算和符号计算两种方法求定积分

metlab用数值计算和符号计算两种方法求定积分

metlab用数值计算和符号计算两种方
法求定积分
在MATLAB中,你可以使用数值计算方法和符号计算方法来求解定积分。

1. 数值计算方法:数值计算方法通过将积分区间划分为小的子区间,并使用数值逼近技术来计算近似的积分值。

MATLAB中常用的数值计算函数是 integral 和 quad。

示例代码:
% 使用 integral 函数计算定积分
f = @(x) x^2 + 2*x + 1; % 定义被积函数
a = 0; % 积分下限
b = 1; % 积分上限
result = integral(f, a, b); % 计算定积分值
% 使用 quad 函数计算定积分
result = quad(f, a, b); % 计算定积分值
2. 符号计算方法:符号计算方法使用符号表达式来表示积分函数,然后对符号表达式进行符号化求解。

MATLAB中的符号计算工具箱提供了符号积分的功能,可以进行精确的符号计算。

示例代码:
% 使用符号计算方法求定积分
syms x; % 声明符号变量
f = x^2 + 2*x + 1; % 定义被积函数
a = 0; % 积分下限
b = 1; % 积分上限
result = int(f, x, a, b); % 符号化求解定积分
% 将符号表达式转换为数值结果
result = double(result);
无论使用数值计算方法还是符号计算方法,你都可以根据具体的情况选择适合的方法来求解定积分。

数值计算方法适用于数值近似解,而符号计算方法适用于精确的符号解析。

如何使用MATLAB进行符号计算

如何使用MATLAB进行符号计算

如何使用MATLAB进行符号计算1. 引言在科学计算和工程应用中,符号计算是一项重要的任务。

符号计算可以帮助我们推导数学公式、解方程、进行代数化简等等。

MATLAB作为一种强大的科学计算工具,也提供了符号计算的功能。

本文将介绍如何使用MATLAB进行符号计算。

2. 符号计算基础在MATLAB中,符号计算通过符号工具箱提供。

首先需要将变量声明为符号变量,使用`syms`关键字来完成。

例如,下面的代码将变量x和y声明为符号变量:```syms x y```其次,我们可以使用`sym`函数将数值转换为符号类型。

例如,下面的代码将整数2转换为符号类型:```a = sym(2)```最后,我们可以使用各种符号运算进行符号计算。

例如,下面的代码演示了符号变量之间的加法运算:```x + y```3. 推导数学公式符号计算的一个常见用途是推导数学公式。

MATLAB提供了一系列函数来进行推导,如`diff`、`int`等。

例如,下面的代码计算了函数sin(x)的导数: ```syms xf = sin(x);df = diff(f, x);```在这个例子中,`diff`函数用于计算导数,第一个参数是要计算导数的函数,第二个参数是相对于哪个变量求导数。

4. 解方程另一个常见的符号计算任务是解方程。

MATLAB提供了`solve`函数来解方程。

例如,下面的代码解了方程x^2 - 2 = 0:```syms xsol = solve(x^2 - 2);```解方程的结果是一个结构体数组,每个元素代表一个解。

5. 代数化简符号计算还可以用于代数化简。

MATLAB提供了`simplify`函数来进行代数化简。

例如,下面的代码对表达式(x+1)^2进行化简:```syms xexpr = (x+1)^2;simplified_expr = simplify(expr);````simplify`函数将表达式化简为最简形式。

实验四用MATLAB求解状态空间模型

实验四用MATLAB求解状态空间模型

实验四 用MATLAB 求解状态空间模型1、实验设备MATLAB 软件2、实验目的① 学习线性定常连续系统的状态空间模型求解、掌握MATLAB 中关于求解该模型的主要函数;② 通过编程、上机调试,进行求解。

3、实验原理说明Matlab 提供了非常丰富的线性定常连续系统的状态空间模型求解(即系统运动轨迹的计算)的功能,主要的函数有:初始状态响应函数initial()、阶跃响应函数step()以及可计算任意输入的系统响应数值计算函数lsim()和符号计算函数sym_lsim()。

数值计算问题可由基本的Matlab 函数完成,符号计算问题则需要用到Matlab 的符号工具箱。

4、实验步骤① 根据所给状态空间模型,依据线性定常连续系统状态方程的解理论,采用MATLAB 编程。

② 在MATLAB 界面下调试程序,并检查是否运行正确。

习题1:试在Matlab 中计算如下系统在[0,5s]的初始状态响应,并求解初始状态响应表达式。

Matlab 程序如下:A=[0 1; -2 -3];B=[]; C=[]; D=[];x0=[1; 2];sys=ss(A,B,C,D);[y,t,x]=initial(sys,x0,0:5);plot(t,x)0011232⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦x x x习题2:试在Matlab 中计算如下系统在[0,10s]内周期为3s 的单位方波输入下的状态响应。

并计算该系统的单位阶跃状态响应表达式。

Matlab 程序如下:A=[0 1; -2 -3];B=[0; 1]; C=[]; D=[];x0=[1; 2];sys=ss(A,B,C,D);[u t]=gensig('square',3,10,0.1)0011232⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦x x x[y,t,x] = lsim(sys,u,t,x0)plot(t,u,t,x);(注:文档可能无法思考全面,请浏览后下载,供参考。

matlab符号运算

matlab符号运算

第2章符号运算- Presentation Transcript1.第二章符号运算o MA TLAB 的数学计算=数值计算+符号计算o其中符号计算是指使用未定义的符号变量进行运算,而数值计算不允许使用未定义的变量。

2. 1. 符号变量、符号表达式和符号方程的生成o使用sym 函数定义符号变量和符号表达式o使用syms 函数定义符号变量和符号表达式3. 2 、用syms 创建符号变量o使用syms 命令创建符号变量和符号表达式o语法:o syms(‘arg1’, ‘arg2’, …, 参数) % 把字符变量定义为o% 符号变量o syms arg1 arg2 …, 参数% 把字符变量定义为符号变量的简洁形o% 式o说明:syms 用来创建多个符号变量,这两种方式创建的符号对象是相同的。

参数设置和前面的sym 命令相同,省略时符号表达式直接由各符号变量组成。

4.使用syms 函数定义符号变量和符号表达式▪>> syms a b c x▪>> f = a*x^2 + b*x + c▪ f =▪a*x^2 + b*x + c▪>> g=f^2+4*f-2▪g =▪(a*x^2+b*x+c)^2+4*a*x^2+4*b*x+4*c-2▪>>ex02015.符号方程的生成▪>> % 符号方程的生成▪>> % 使用sym 函数生成符号方程▪>> equation1='sin(x)+cos(x)=1'▪equation1 =▪sin(x)+cos(x)=1▪>>6. 2.2 符号形式与数值形式的转换o 1 、将符号形式转换为数值形式:o eval 与numerico例:a1='2*sqrt(5)+pi'o a1 =o2*sqrt(5)+pio b2=numeric(a2) % 转换为数值变量o b2 =o7.6137o b3=eval(a1)o b3 =o7.61377. 2.2 符号形式与数值形式的转换▪ 2 、数值形式转换为符号形式▪p=3.1416;▪q=sym(p)▪执行后屏幕显示:▪q=3927/1250▪numeric(q)▪屏幕显示:▪ans =▪ 3.14168. 2.2 符号形式与数值形式的转换3 、多项式与系数向量之间的转换3.1 sym2poly: 将多项式转化为对应的系数向量例:syms x p; p=x^3-4*x+5; sym2poly(p) 执行后屏幕显示:ans= 1 0 -4 5 9. 2.2 符号形式与数值形式的转换o 3 、多项式与系数向量之间的转换o 3.2 poly2sym: 将向量转化为对应的多项式o例o a=[1 0 -4 5];o poly2sym(a)o执行后屏幕显示o ans=o x^3-4*x+510. 3. 符号表达式( 符号函数) 的操作o(1) 符号表达式的四则运算o syms xo f=x^3-6*x^2+11*x-6;o g=(x-1)*(x-2)*(x-3);o h=x*(x*(x-6)+11)-6;o f+g-ho执行后输出:o ans =o x^3-6*x^2+11*x+(x-1)*(x-2)*(x-3)-x*(x*(x-6)+11)11.(1) 符号表达式的四则运算▪>> syms x y a b▪>> fun1=sin(x)+cos(y)▪fun1 =▪sin(x)+cos(y)▪>> fun2=a+b▪fun2 =▪a+b▪>> fun1+fun2▪sin(x)+cos(y)+a+b▪>>fun1*fun2▪ans =▪(sin(x)+cos(y))*(a+b)12.o(1) 将表达式中的括号进行展开: expando(2) 将表达式进行因式分解:factoro(3) 将一般的表达式变换为嵌套的形式:hornero(4) 将表达式按某一个变量的幂进行集项:collecto(5) 化简表达式:simplifyo(6) 化简表达式,使之成为书写长度最短的形式:simple13.o同一个数学函数的符号表达式的可以表示成三种形式,例如以下的f(x) 就可以分别表示为:o多项式形式的表达方式:o f(x)=x^3+6x^2+11x-6o因式形式的表达方式(factor) :o f(x)=(x-1)(x-2)(x-3)o嵌套形式的表达方式(horner) :o f(x)=x(x(x-6)+11)-614.集项-合并符号表达式的同类项o>> syms x y▪>> collect(x^2*y + y*x - x^2 - 2*x)▪ans =▪(y-1)*x^2+(y-2)*xo>> syms x y▪>> collect(x^2*y + y*x - x^2 - 2*x,y)▪ans =▪(x^2+x)*y-x^2-2*x15.符号多项式的嵌套(horner )▪>> syms x▪>> fun1=2*x^3+2*x^2-32*x+40▪fun1 =▪2*x^3+2*x^2-32*x+40▪>> horner(fun1)▪ans =▪40+(-32+(2+2*x)*x)*x▪>> fun2=x^3-6*x^2+11*x-6▪fun2 =▪x^3-6*x^2+11*x-6▪>> horner(fun2)▪ans =▪-6+(11+(-6+x)*x)*x16.符号表达式的化简(simplify)▪>> syms x▪>> fun1=(1/x+7/x^2+12/x+8)^(1/3)▪fun1 =▪(13/x+7/x^2+8)^(1/3)▪>> sfy1= simplify (fun1)▪sfy1 =▪((13*x+7+8*x^2)/x^2)^(1/3)▪>> sfy2= simple (sfy1)▪sfy2 =▪(13/x+7/x^2+8)^(1/3)17.subs 函数用于替换求值▪>> syms x y▪ f = x^2*y + 5*x*sqrt(y)▪ f =▪x^2*y+5*x*y^(1/2)▪>> subs(f, x, 3)▪ans =▪9*y+15*y^(1/2)▪>> subs(f, y, 3)▪ans =▪3*x^2+5*x*3^(1/2)▪>>subs(f,{x,y},{1,1})ex0202 ex0203 ex020418. 4 、反函数的运算(finverse )▪>> syms x y▪>> f = x^2+y▪ f =▪x^2+y▪>> finverse(f,y)▪ans =▪-x^2+y使用格式: 1 、g=finverse(f):f,g 均为单变量x 的符号函数; 2 、g=finverse(f,t) 返回值g 的自变量取为t ;19. 5 复合函数的运算(compose)▪>> syms x y z t u▪>> f = 1/(1 + x^2);▪>> g = sin(y);▪>> h = x^t;▪>> p = exp(-y/u) ;▪>> compose(f,g)▪ans =▪1/(1+sin(y)^2)▪>> compose(f,g,t)▪ans =▪1/(1+sin(t)^2)使用格式:Compose(f,g) % 返回当f=f(y) 和g=g(x) 时的复合函数f(g(x)) Compose(f,g,t) % 返回的复合函数以t 为自变量,即有f(g(t))20. 6 函数的极限、导数与积分o(1 )函数极限-limit 函数的使用o(2 )函数求导-diff 函数的使用o(3 )符号积分-int 函数的使用21.o符号极限(limit)假定符号表达式的极限存在,Symbolic Math Toolbox 提供了直接求表达式极限的函数limit ,函数limit 的基本用法如下表所示。

《MATLAB仿真技术》实验指导书2016附问题详解

《MATLAB仿真技术》实验指导书2016附问题详解

实验项目及学时安排实验一 MATLAB环境的熟悉与基本运算 2学时实验二 MATLAB数值计算实验 2学时实验三 MATLAB数组应用实验 2学时实验四 MATLAB符号计算实验 2学时实验五 MATLAB的图形绘制实验 2学时实验六 MATLAB的程序设计实验 2学时实验七 MATLAB工具箱Simulink的应用实验 2学时实验八 MATLAB图形用户接口GUI的应用实验 2学时实验一 MATLAB环境的熟悉与基本运算一、实验目的1.熟悉MATLAB开发环境2.掌握矩阵、变量、表达式的各种基本运算二、实验基本知识1.熟悉MATLAB环境:MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器、文件和搜索路径浏览器。

2.掌握MATLAB常用命令3.MATLAB变量与运算符变量命名规则如下:(1)变量名可以由英语字母、数字和下划线组成(2)变量名应以英文字母开头(3)长度不大于31个(4)区分大小写MATLAB中设置了一些特殊的变量与常量,列于下表。

MATLAB运算符,通过下面几个表来说明MATLAB的各种常用运算符4.MATLAB的一维、二维数组的寻访表6 子数组访问与赋值常用的相关指令格式5.MATLAB的基本运算表7 两种运算指令形式和实质涵的异同表6.MATLAB的常用函数表8 标准数组生成函数表9 数组操作函数三、实验容1、学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明,学习使用指令eye(其它不会用的指令,依照此方法类推)2、学习使用clc、clear,观察command window、command history和workspace等窗口的变化结果。

3、初步程序的编写练习,新建M-file,保存(自己设定文件名,例如exerc1、exerc2、 exerc3……),学习使用MATLAB的基本运算符、数组寻访指令、标准数组生成函数和数组操作函数。

MATLAB符号计算

MATLAB符号计算

MATLAB符号计算MATLAB是一种强大的数值计算和科学计算工具,不仅可以进行数值计算,还可以进行符号计算。

符号计算是一种基于数学符号的计算方法,它可以处理复杂的代数表达式、方程、微分、积分等数学问题。

MATLAB 中的符号计算将这些问题转化为代数表达式,然后通过符号工具箱进行求解。

使用MATLAB进行符号计算需要用到符号工具箱。

可以通过输入`syms`命令来定义符号变量,例如`syms x`可以定义符号变量x。

在定义完符号变量之后,就可以使用这些变量进行符号计算了。

1.代数表达式的化简符号计算可以对代数表达式进行化简。

MATLAB提供了许多函数可以实现化简操作,如`simplify`、`collect`、`expand`等函数。

其中`simplify`函数可以将符号表达式化简为最简形式;`collect`函数可以将符号表达式按照指定的变量进行整理;`expand`函数可以将符号表达式展开为多项式形式。

例如,对于表达式`(x+1)^2`,可以使用`simplify`函数进行化简:```matlabsyms xexpr = (x + 1)^2;result = simplify(expr);```2.解方程符号计算可以解析地求解方程。

MATLAB提供了`solve`函数用于解方程。

`solve`函数可以通过指定的变量来解析地求解方程,并获得方程的解。

例如,对于方程`x^2 - 1 = 0`,可以使用`solve`函数求解:```matlabsyms xeqn = x^2 - 1;sol = solve(eqn, x);````sol`将得到方程的解,即`x = -1`和`x = 1`。

3.求导和积分符号计算可以对函数进行求导和积分。

MATLAB提供了`diff`函数用于求导,提供了`int`函数用于积分。

这些函数可以对符号表达式进行求导和积分,并获得结果。

例如,对于函数`f(x) = x^2`,可以使用`diff`函数求导:```matlabsyms xf=x^2;df = diff(f, x);```求导结果为`df = 2*x`。

Matlab实验报告_2

Matlab实验报告_2

实验一 Matlab基础知识一、实验目的:1.熟悉启动和退出Matlab的方法。

2.熟悉Matlab命令窗口的组成。

3.掌握建立矩阵的方法。

4.掌握Matlab各种表达式的书写规则以及常用函数的使用。

二、实验内容:1.求[100,999]之间能被21整除的数的个数。

(rem)2.建立一个字符串向量,删除其中的大写字母。

(find)3.输入矩阵,并找出其中大于或等于5的元素。

(find)4.不采用循环的形式求出和式6312ii=∑的数值解。

(sum)三、实验步骤:●求[100,199]之间能被21整除的数的个数。

(rem)1.开始→程序→Matlab2.输入命令:»m=100:999;»p=rem(m,21);»q=sum(p==0)ans=43●建立一个字符串向量,删除其中的大写字母。

(find)1.输入命令:»k=input('’,’s’);Eie48458DHUEI4778»f=find(k>=’A’&k<=’Z’);f=9 10 11 12 13»k(f)=[ ]K=eie484584778●输入矩阵,并找出其中大于或等于5的元素。

(find)1.输入命令:»h=[4 8 10;3 6 9; 5 7 3];»[i,j]=find(h>=5)i=3 j=11 22 23 21 32 3●不采用循环的形式求出和式的数值解。

(sum)1.输入命令:»w=1:63;»q=sum(2.^w)q=1.8447e+019实验二 Matlab 基本程序一、 实验目的:1. 熟悉Matlab 的环境与工作空间。

2. 熟悉M 文件与M 函数的编写与应用。

3. 熟悉Matlab 的控制语句。

4. 掌握if,switch,for 等语句的使用。

二、 实验内容:1. 根据y=1+1/3+1/5+……+1/(2n-1),编程求:y<5时最大n 值以及对应的y 值。

Matlab语言数值和符号运算-编程-绘图

Matlab语言数值和符号运算-编程-绘图

最低级
先觉逻辑或(||)
1.3 矩阵 1.3.1 矩阵构建---1.直接输入法
矩阵中的元素需要用([])括住;
矩阵中每行的元素之间需要用逗 号(,)或空格符隔开; 矩阵中行与行之间需要分号(;) 或回车键隔开,以便区分; 矩阵中的元素可以是数值类型或 表达式类型。
1.3.1 矩阵的构建 2. 通过语句构造生成矩阵1
1.3.1 矩阵的构建 3. 通过矩阵生成函数构造特殊矩阵
表1-8 特殊矩阵函数(续) 示范 函数名 eye(n) 函数功能 产生n×n阶单位矩阵
输入
eye(3)
结果
1 0 0 0 1 0 0 0 1 1 0 0 0 1 0
eye(m,n)
产生m×n的矩阵,其中 对角线元素为1,其它0
eye(2,3)
1.3.1 矩阵的构建 2. 通过语句构造生成矩阵2
x=linspace(first,last,num)
线性等分向量 first-------行向量的起始值; last--------行向量的结束值; num------行向量中所含元素个数。 如果num缺省,默认值为100。
x=logspace(a,b,n)
0.8147 0.1270 0.6324 0.9058 0.9134 0.0975
randn(m,n) 产生正态分布的随机矩 阵
rand(2,3)
0.2785 0.9575 0.1576 0.5469 0.9649 0.9706
1.3.1 矩阵的构建 3. 通过矩阵生成函数构造特殊矩阵
表1-8 特殊矩阵函数(续) 示范 函数名 函数功能 输入 结果
表1-1 Matlab中默认的常量 常量名称 pi INF或inf 圆周率π的双精度浮点表示 无穷大 说明

实验指导书matlab基础

实验指导书matlab基础

《MATLAB基础实验指导书》哈尔滨理工大学自动化学院电子信息科学与技术系2018.4实验一 MATLAB 的基本操作一、 实验目的:1. 掌握Matlab 软件使用的基本方法;2. 熟悉常用命令的操作;3. 熟悉Matlab 的数据表示和基本运算二、 实验内容:1. 计算 y =x 3 (x-0.98)2/(x 1.35)3-5(x I, x)当 x =2 和 x =4 的值2. 计算 cos60; -3;9-「2_ 2 2 3. 已知 a =3,A =4,b =a ,B =b -1,c =a A -2B,C =a 2B c ,求C4. 创建一个3*3矩阵,然后用矩阵编辑器将其扩充为 4*5矩阵5. 创建一个3*3矩阵魔方阵和相应的随机矩阵,将两个矩阵并接起来,然后提 取任意两个列向量矩阵,计算矩阵的5次方 - _1 4 813〕 一5 4 3 -2〕 7.设A = -3 6 -5 _9 ,B = 6 -2 3 -8 2 —7 -12 _8—1 3 _9 7」 C = *A 1 。

B D AB2 8. 求23(s 4)(s 1)的“商”及“余”多项式。

s 3 +s + 19. 建立矩阵A ,然后找出在[10,20]区间的元素的位置10. 创建一个有7个元素的一维数组,并做如下处理:1) 直接寻访一维数组的第6个元素;2) 寻访一维数组的第1、3、5个元素;3) 寻访一维数组中第4个至最后1个元素;4) 寻访一维数组中大于70的元素。

三、实验要求:1. 撰写预习报告。

6找出数组A =;42 41中所有绝对值大于3 53的元素。

利用上题的3.撰写实验报告,简述实验目的,提供实验结果和数据。

4.分析算法,并简要给出算法设计小结和心得。

实验二数据和函数的可视化一、实验目的:1.熟悉Matlab绘图命令及基本绘图控制;2.熟悉Matlab程序设计的基本方法。

二、实验内容:1.设y = cosx 0.5 + 3sin:",把x=0~2x区间分为125点,画出以x为横坐L (1+x2)」标,y为纵坐标的曲线。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四 MATLAB数值计算与符号计算
一、实验目的
1.掌握数据插值和曲线拟合的方法
2.掌握求数值导数和数值积分的方法
3.掌握代数方程数值求解的方法
4.掌握常微分方程数值求解的方法
5.掌握求解优化问题的方法
6.掌握求符号极限、导数和积分的方法
7.掌握代数方程符号求解的方法
8.掌握常微分方程符号求解的方法
二、实验原理
1.数据插值
a) 一维数据插值 Y1=interp1(X,Y,X1,’method’)
b) 二维数据插值 Z1=interp2(X,Y,Z,X1,Y1,’method’)
2.曲线拟合
[P,S]=polyfit(X,Y,m)
3.符号对象的建立
(1)符号量名=sym(符号字符串):建立单个的符号变量或常量;
(2)syms arg1 arg2,…,argn:建立n个符号变量或常量。

4.基本符号运算
(1)基本四则运算:+,-,*,\,^
(2)分子与分母的提取:[n,d]=numden(s)
(3)因式分解与展开:factor(s),expand(s)
(4)化简:simplify, simple(s)
5.符号函数及其应用
(1)求极限:limit(f,x,a)
(2)求导数:diff(f,x,a);
(3)求积分:int(f,v)
三、实验内容
1.按下表用3次样条方法插值计算0~900范围内整数点的正弦值和0~750范围内整数点的正切值,然后用5次多项式拟合方法计算相同的函数值,并将两种计算结果进行比较。

x2=0:75;
y1=sin(pi.*x1./180);
y2=tan(pi.*x2./180);;
a=interp1(x1,y1,45,'cublic')
b=interp1(x1,y1,45,'cublic')
p1=polyfit(x1,y1,5)
p2=polyfit(x2,y2,5)
c1=polyval(p1,x1);
c2=polyval(p2,x2);
subplot(2,1,1);
plot(x1,c1,':o',x1,y1,'r');
subplot(2,1,2);
plot(x2,c2,':o',x2,y2,'r');
10
20
30
40
50
60
70
80
2.(1)求函数33()sin cos f x x x =+在点,,,
6432x ππππ
=的数值导数。

dy =
-0.2255 -0.0674 0.0674 0.2255
x=[0,pi/6,pi/4,pi/3,pi/2]; p=sin(x).^3+cos(x).^3; dy=diff(p)
3. 求方程 3sin 0x x x e +-=在0 1.5x =附近的根。

>> fzero('zz',1.5) ans =
1.8900
function f=zz(x) f=3*x+sin(x)-exp(x);
4. 求函数3cos ln ()x
x x x x
f x e ++=在(0,1)内的最小值。

>> [x,fmin]=fminbnd('zz',0,1) x =
0.5223
fmin =
0.3974 function f=zz(x)
f=(x^3+cos(x)+x*log(x))/exp(x);
5. 求解有约束最优化问题(6分)。

121212
223
1221
2
121
0.50.4..0.50.50,01min
(,)0.430x x s t x x x x f x x x x x x x x +≥⎧⎪
+≥⎨⎪≥≥⎩=++-+
建立函数文件:
function f=Untitled(x)
f=0.4*x(2)+x(1)^2+x(2)^2-x(1)*x(2)+1/30*x(1)*x(1)^3;
建立约束条件,调用上面函数 x0=[0.5;0.5];
A=[-1,-0.5;-0.5,-1]; b=[-0.4;-0.5]; lb=[0;0];
option=optimset;rgeScale='off';option.Display='off'; [x,f]=fmincon('Untitled',x0,A,b,[],[],lb,[],[],option) 运行结果 :
6. 分别用数值求解和符号求解定积分ln 220
(1)x x e e dx +⎰
数值求解:X=0:0.01:log10(2); Y=exp(X).*(1+exp(X)).^2; trapz(X,Y)
符合求解:x=sym('x'); >> f=exp(x).*(1+exp(x)).^2; >> a=int(f,0,log10(2)); >> eval(a) ans =
1.6662
7. 求下列微分方程的数值解与符号解,并画图进行比较
224290
(0)0,(0)0d y dy
y dx dx
y y ⎧++=⎪⎨⎪'==⎩
数值解 建立函数文件:
function xdot=sys(t,x) xdot=[x(1)+29*x(2);x(1)];
建立约束条件,调用上面函数 t0=0;tf=20;
[t,x]=ode45('sys',[t0,tf],[0,0]); [t,x] ans =
0 0 0 0.5000 0 0 1.0000 0 0 1.5000 0 0 2.0000 0 0 2.5000 0 0 3.0000 0 0 3.5000 0 0 4.0000 0 0 4.5000 0 0 5.0000 0 0 5.5000 0 0 6.0000 0 0 6.5000 0 0 7.0000 0 0
7.5000 0 0
8.0000 0 0
8.5000 0 0
9.0000 0 0
9.5000 0 0
10.0000 0 0
10.5000 0 0
11.0000 0 0
11.5000 0 0
12.0000 0 0
12.5000 0 0
13.0000 0 0
13.5000 0 0
14.0000 0 0
14.5000 0 0
15.0000 0 0
15.5000 0 0
16.0000 0 0
16.5000 0 0
17.0000 0 0
17.5000 0 0
18.0000 0 0
18.5000 0 0
19.0000 0 0
19.5000 0 0
20.0000 0 0
符号解
y=dsolve('D2y+4*Dy+29*y','y(0)=0','Dy(0)=0','x')
y =
四、实验心得
本次实验主要对数值计算上函数的应用。

通过对各种公式的求解函数从而解决了数学的计算难题,其中编程上在细节上极其讲究,需要认真编写程序,在解法上也有各种不同的解法。

通过本次实验,让我更深入的了解掌握了matlab的软件编程应用和对编程的函数求解过程。

也更深化了数学的基础。

相关文档
最新文档