升压隔离型拓扑
升降压拓扑工作原理
升降压拓扑工作原理一、引言升降压拓扑是一种常用于电源管理系统中的拓扑结构,其能够将输入电压升降到需要的输出电压,并且能够实现较高的效率和稳定性。
本文将详细介绍升降压拓扑的工作原理及其应用。
二、基本原理升降压拓扑采用了两个开关管,一个是升压管,另一个是降压管,通过它们的开关控制,可以实现输入电压到输出电压的升降变换。
下面将详细介绍升降压拓扑的工作原理。
1. 输入电压升压当输入电压低于输出电压时,升压管导通,而降压管截止,输入电压加在升压管上产生磁场,磁场能量储存在电感中,同时电容开始储存能量。
当升压管截止时,由于电感的惯性,能量继续传递到输出端,提供给负载。
2. 输入电压降压当输入电压高于输出电压时,降压管导通,而升压管截止,此时输入电压加在降压管上,电感储能,并通过输出电容传递给负载。
以上就是升降压拓扑的基本工作原理,接下来将详细介绍其工作特点、应用及相关电路图。
三、工作特点升降压拓扑相比于其他拓扑结构来说有以下几个工作特点:1. 输入输出电压范围宽广:升降压拓扑能够适应宽范围的输入电压,并且输出电压也可以调整到各种不同的需求。
2. 高效率:由于升降压拓扑的特殊工作原理,其具有较高的转换效率,能够将输入电能有效地转化为输出电能。
3. 稳定性好:升降压拓扑能够在各种输入电压条件下保持输出电压的稳定性,适用于各种电源管理系统。
四、应用升降压拓扑广泛应用于各种电源管理系统中,比如电动车电源管理系统、可再生能源系统以及电子设备的电源管理系统等。
下面将介绍升降压拓扑在电动车电源管理系统中的应用。
电动车电源管理系统通常需要将电池输出的低电压升压到驱动电机需要的高电压,并且在车辆刹车过程中需要将驱动电机输出的高电压降压到电池可接受的电压范围。
升降压拓扑能够满足这种需求,同时在车辆启动、刹车等临界工况下仍能保持输出电压的稳定性和高效率,是电动车电源管理系统中的理想选择。
五、关键电路图接下来将介绍升降压拓扑的关键电路图,以便更好地理解其工作原理。
DC-DC电源拓扑及其工作模式讲解
DC-DC电源拓扑及其工作模式讲解一、DC-DC电源基本拓扑分类:开关电源的三种基本拓扑结构有Buck、Boost、Buck-boost(反极性Boost)。
如果电感连接到地,就构成了升降压变换器,如果电感连接到输入端,就构成了升压变换器。
如果电感连接到输出端,就构成了降压变换器。
基本拓扑图如下:1.Buck2.Boost3.Buck-Boost二、DC-DC复杂拓扑结构1.反激隔离电源(FlyBack)另外有些隔离电源拓扑就是通过基本拓扑增加变压器或者变化得到的,例如反激隔离电源(FlyBack)。
2.Buck+Boost拓扑本质是用一个降压“加上”一个升压,来实现升降压。
SEPIC拓扑:集成了Boost和Flyback拓扑结构3.Cuk、Sepic、Zeta拓扑通过基本拓扑直接组合,形成了三个有实用价值的拓扑结构:Cuk、Sepic、Zeta。
Cuk的本质是Boost变换器和Buck变换器串联,Sepic的本质是Boost和Buck-Boost串联,Zeta可以看成Buck和Buck-Boost串联。
但是里面有些细节按照电流的方向在演进的过程中调整了二极管的方向,两极串联拓扑节省了复用的器件。
通过这样串联和演进,产生了新的三个电源拓扑。
同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑。
4.四开关Buck-Boost拓扑同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑5.反激、正激、推挽拓扑的演进利用变压器代替电感,可以把Boost演进为一个新拓扑FlyBack即反激变换器(反激的公式来看又是很像Buck-Boost,这里变压器不同于电感,也有说法会说反激是Buck-Boost变过来的)。
可以把Buck电路的开关通过一个变压器进行能量传递,就形成正激变换器。
将两个正激变换器进行并联,可以形成推挽拓扑。
正激的变压器,是直接输送能量过去,而不是像反激变压器那样传递能量。
开关电源拓扑结构。
D1
NU o NU o Ui
N是变压器的变压比
Uo
Up Ni
iL
iL1 N
Hale Waihona Puke I L max N
2Io N
2U o NR
Ui D1Ts NL
i L1
Ui D1Ts L
L Ui D1Ts R 2U o
Flyback变换器的优缺点比较
优点: 1、电路简单,能高效提供多路直流输出,因此适合多组输 出的要求,并可通过调节占空比D1的大小升压或降压。 2、输出功率为20~100w,可以同时输出不同的电压且有较 好的电压调整率。不需接输出滤波电感,使反激变换器成本 降低,体积减小。 缺点: 1、输出的纹波电压较大,外特性差,负载调整精度不高, 因此输出功率受到限制,通常应用于150W 以下。适用于相对 固定的负载。 2、与其他隔离变换器相比效率较低。
K由接通突然转为关断瞬间,流过变压器初级线 圈的电流i1突然为0,由于磁通不能突变,因此, 在K关断的Toff期间,变压器铁心中的磁通主要由 N2线圈回路中的电流来维持,N2中产生反激电流 ,流过D向电容C和负载R供电。
开关管导通 时等效电路
开关管关断 时等效电路
Buck-Boost拓扑结构简介
反激式变压器开关电源的工作情况同BUCK-BOOST拓扑极为相似。
另两种电感电流模式的介绍
CCM模式 D1+D2=1
DCM模式 D1+D2<1
Uo D1 Ui (D1 D2 )
二、Boost拓扑结构——升压式变换电路(非隔离)
Boost变换器:也称升压式变换器,是一种输出电压高 于输入电压的单管不隔离直流变换器。 该稳压电路元器件与前面讲的Buck变换电路一样,只是 摆放位置不同,由此导致其功能也不同。
常用开关电源拓扑结构
开关电源拓扑结构概述(降压,升压,反激、正激)主回路—开关电源中,功率电流流经的通路。
主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。
开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。
开关电源主回路可以分为隔离式与非隔离式两大类型。
1. 非隔离式电路的类型:非隔离——输入端与输出端电气相通,没有隔离。
1.1. 串联式结构串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。
开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。
串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。
例如buck拓扑型开关电源就是属于串联式的开关电源/blog/100019740上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。
其中L 是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。
电源常用拓扑结构特点及波形
电源常用拓扑结构特点及波形基本名词电源常见的拓扑结构■Buck降压■Boost升压■Buck-Boost降压-升压■Flyback反激■Forward正激■Two-Transistor Forward双晶体管正激■Push-Pull推挽■Half Bridge半桥■Full Bridge全桥基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。
基本的脉冲宽度调制波形定义如下:1、Buck降压特点■把输入降至一个较低的电压。
■可能是最简单的电路。
■电感/电容滤波器滤平开关后的方波。
■输出总是小于或等于输入。
■输入电流不连续(斩波)。
■输出电流平滑。
2、Boost升压特点■把输入升至一个较高的电压。
■与降压一样,但重新安排了电感、开关和二极管。
■输出总是比大于或等于输入(忽略二极管的正向压降)。
■输入电流平滑。
■输出电流不连续(斩波)。
3、Buck-Boost降压-升压特点■电感、开关和二极管的另一种安排方法。
■结合了降压和升压电路的缺点。
■输入电流不连续(斩波)。
■输出电流也不连续(斩波)。
■输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入。
■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。
4、Flyback反激特点■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
■输出可以为正或为负,由线圈和二极管的极性决定。
■输出电压可以大于或小于输入电压,由变压器的匝数比决定。
■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。
5、Forward正激■降压电路的变压器耦合形式■不连续的输入电流,平滑的■因为采用变压器,输出可以■增加次级绕组和电路可以获■在每个开关周期中必须对变绕组。
■在开关接通阶段存储在初级6、Two-Transistor Fo 特点■两个开关同时工作。
■开关断开时,存储在变压器■主要优点:■每个开关上的电压永远不会■无需对绕组磁道复位。
六种基本DCDC变换器拓扑结构总结
六种基本DCDC变换器拓扑结构总结DC-DC变换器是一种将一种直流电压转换为另一种直流电压的电子设备。
根据其拓扑结构,可以将DC-DC变换器分为六种基本拓扑结构。
下面将对这六种拓扑结构进行总结。
1. 升压型拓扑结构(Boost Converter):升压型拓扑结构是将输入电压提升到更高电压的一种拓扑结构。
其基本结构由一个电感、一个开关管、一个二极管和一个输出滤波电容组成。
工作原理为当开关管打开时,电感储存能量;当开关管关闭时,电感释放储存的能量,将电流经过二极管和输出滤波电容供给负载。
2. Buck拓扑结构(降压型拓扑结构):Buck拓扑结构是将输入电压降低到更低电压的一种拓扑结构。
其基本结构由一个电感、一个开关管和一个输出滤波电容组成。
工作原理为当开关管打开时,电感储存能量;当开关管关闭时,电感释放储存的能量,将电流经过输出滤波电容供给负载。
3. Buck-Boost拓扑结构(降升压型拓扑结构):Buck-Boost拓扑结构可以实现输入电压的增益和降低。
其基本结构由一个电感、一个开关管和一个输出滤波电容组成。
工作原理为当开关管打开时,电感储存能量;当开关管关闭时,电感释放储存的能量,将电流经过输出滤波电容供给负载。
该拓扑结构可以实现输入电压大于、等于或小于输出电压的转换。
4. 反激型拓扑结构(Flyback Converter):反激型拓扑结构是一种将输入电压转换为输出电压的一种拓扑结构。
其基本结构由一个变压器、一个开关管和一个输出滤波电容组成。
工作原理为开关管导通时,电能储存在变压器中;开关管关闭时,变压器释放储存的能量,将电流经过输出滤波电容供给负载。
5. 单边反激型拓扑结构(Half-Bridge Converter):单边反激型拓扑结构也是一种将输入电压转换为输出电压的一种拓扑结构。
其基本结构由两个开关管、一对二极管和一个输出滤波电容组成。
工作原理为开关管交替导通和关闭,将输入直流电压分别连接到变压器的两个输入端,以实现电压的转换。
常见DC/DC电源变换器的拓扑类型
DC/DC电源变换器的拓扑类型0 引言本文的第一部分为“DC/DC电源变换器拓扑的分类”,第二部分是在参考美国TI公司资料的基础上撰写而成的,新增加了各种DC/DC电源变换器的主要特点及PWM控制器的典型产品,另外还按照目标对电路结构、波形参数和汁算公式中的物理量作了统一。
本文的特点足以表格形式归纳了常见DC/DC电源变换器的拓扑结构.这对电源专业的广大技术人员是一份不可多得的技术资料。
1 DC/DC电源变换器拓扑结构的分类DC/DC电源变换器的拓扑类型主要有以下13种:(1)Buck Converter降压式变换器;(2)Boost Conyerter升压式变换器;(3)Buck—Boost Converter降压/升压式变换器,含极性反转(Inverting)式变换器;(4)Cuk Converter升压,升压串联式变换器;(5)SEPIC(Single EndcdPdimary Inductor Converter)单端一次侧电感式变换器;(6)F1yback Converter反激式(亦称回扫式)变换器;(7)Forward Converter正激式变换器:(8)Double Switches Forward Converter双开关正激式变换器;(9)Active Clamp Forward Converter有源箝位(0)Half Bridge Converter半桥式变换器;(11)Full Bridge Converter全桥式变换器;(12)Push pull Convener推挽式变换器:(13)Phase Shift Switching ZVT(Phase Shift Switching Zero Voltage Transition)移相式零电压开关变换器。
2 常见DC/DC电源变换器的拓扑类型常见DC/DC电源变换器的拓扑类型见表1~表3所列。
表中给出不同的电路结构,同时也给出相应的电压及电流波形(设相关的电感电流为连续工作方式)。
LED驱动电源拓扑原理
LED驱动电源拓扑原理采用AC-DC 电源的LED 照明应用中,电源转换的构建模块包括二极管、开关管(FET)、电感及电容及电阻等分立元件用于执行各自功能,而脉宽调制(PWM)稳压器用于控制电源转换。
电路中通常加入了变压器的隔离型AC-DC 电源转换包含反激、正激及半桥等拓扑结构,参见图1,其中反激拓扑结构是功率小于30 W 的中低功率应用的标准选择,而半桥结构则最适合于提供更高能效/功率密度。
就隔离结构中的变压器而言,其尺寸的大小与开关频率有关,且多数隔离型LED 驱动器基本上采用“电子”变压器。
图1:常见的隔离型拓扑结构。
采用DC-DC 电源的LED 照明应用中,可以采用的LED 驱动方式有电阻型、线性稳压器及开关稳压器等,基本的应用示意图参见图2。
电阻型驱动方式中,调整与LED 串联的电流检测电阻即可控制LED 的正向电流,这种驱动方式易于设计、成本低,且没有电磁兼容(EMC )问题,劣势是依赖于电压、需要筛选(binning) LED,且能效较低。
线性稳压器同样易于设计且没有EMC 问题,还支持电流稳流及过流保护(fold back),且提供外部电流设定点,不足在于功率耗散问题,及输入电压要始终高于正向电压,且能效不高。
开关稳压器通过PWM 控制模块不断控制开关(FET)的开和关,进而控制电流的流动。
图2:常见的DC-DC LED 驱动方式。
开关稳压器具有更高的能效,与电压无关,且能控制亮度,不足则是成本相对较高,复杂度也更高,且存在电磁干扰(EMI )问题。
LED DC-DC 开关稳压器常见的拓扑结构包括降压(Buck)、升压(Boost)、降压-升压(Buck-Boost)或单端初级电感转换器(SEPIC )等不同类型。
其中,所有工作条件下最低输入电压都大于。
常见的几种DC-DC升压拓扑结构讨论与分析
下面就常见的几种DC/DC升压拓扑结构进行讨论和分析。
方案一:并联式结构该电路是升压电路最基本的拓扑结构,后续所有的升压电路都是从该电路演化过来的。
优点:电路简单,外围所需的元件少,效率可以做到很高。
缺点:电路功能单一,输出功率比较大时开关管需要承受很大的脉冲电流。
错误!方案二:单端正激式该电路与方案一唯一区别是使用了变压器,可以做隔离式升压电路优点:电路相对简单(与后面叙述的方案相比),外围元件少。
缺点:开关管关断时,变压器容易磁饱和,需要加上磁通复位电路。
错误!方案三:单端反激式从原理图上看与正击电路很相象,但工作原理不同,脉冲变压器的原/付边相位刚好相反。
优点:电路相对简单(与后面叙述的方案相比),外围元件少。
缺点:由于变压器存在漏感,将在原边形成很大电压尖峰,可能击穿开关器件。
需要设钳位电路予以保护错误!错误!方案四:推挽(变压器中心抽头)式这种电路结构的特点是:对称性结构,脉冲变压器原边是两个对称线圈,两只开关管接成对称关系,轮流通断。
优点:高频变压器磁芯利用率高(与单端电路相比)、电源电压利用率高(与后面要叙述的半桥电路相比)、输出功率大、两管基极均为低电平,驱动电路简单。
缺点:如果电流不平衡,变压器有饱和的危险、变压器绕组利用率低、对开关管的耐压要求比较高(至少是电源电压的两倍)。
错误!错误!方案五:全桥隔离式这种电路结构的特点是:由四只相同的开关管接成电桥结构驱动脉冲变压器原边主要优点:与推挽结构相比,原边绕组减少了一半,开关管耐压降低一半。
主要缺点:使用的开关管数量多,且要求参数一致性好,驱动电路复杂,实现同步比较困难。
这种电路结构通常使用在1KW以上超大功率开关电源电路中。
九个最有用的电源拓扑结构图
九个最有用的电源拓扑结构图现代电源设计大约开始于三十年前,只有少数的拓扑结构可以很好地服务于业界。
在年代,对新的和领先的电源转换技术的研究创建了数以千计的可以加以使用的新型拓扑结构。
今天,主流行业已回到早期拓扑结构。
少数的相同的电路可以为大多数应用提供最佳解决方案。
在电源设计开始,有三种基本的转换器:降压式、升压式和降压升压式。
早期分析论文仅覆盖了这些拓扑结构。
也有的转换器表现完全与这些基本拓扑结构一样。
它们被认为是降压式、升压式和降压升压系列,电路中内建了隔离。
内建在降压式转换器系列是正激、双开关正激、半桥、全桥和推挽式。
升压有一种隔离型号,可以采用一个桥接或推挽式电路。
隔离降压升压电路是著名的反激式转换器。
发明新的电源拓扑结构和研究其工作正成为有趣的研究工作。
这形成了过去的大部分研究,尤其在年代期间。
一些新奇的电路发明出来,绞尽脑汁以全面了解它们的操作。
的论文提出了超过个新的拓扑结构,使用了更多的开关和二极管。
有一段时间,似乎老的待机拓扑结构已处于被取代的危险之中。
对许多需要生产产品的设计人员来说,这是一个非常困惑的时间。
在阅读会议论文之后,工程师们很想尝试预示着上佳表现,但是却被证明很难投入生产的奇异新颖的拓扑结构。
因此,业界兜了一大圈又回到原处。
现在,几乎所有设计都依赖于原来的基本拓扑结构。
例外的是对某些非常高密度的应用,或者是不寻常的电压及功率范围,但是工作的工程师几乎总能用一组基本电路找到可做的工作。
这不是说行业没有进展。
行业有了长足的发展——恰恰不是通过使用根本不同的电路拓扑结构。
主要进展一直在正确的应用中明智地利用正确的电路,某些拓扑结构将电源分割成较小的若干块(如母板和负载点转换器)、先进的封装、新的硅片器件,以及小心应用低损耗开关。
降压式转换器降压式转换器是所有电源中最基本的。
它提供比输入更低的电压输出,可以用在不需要隔离的所有功率级别。
如图()所示,当输出电压处于低电位时,降压式转换器的二极管可以用一个有源开关替代。
11种电源拓扑
11种电源拓扑
电源拓扑是指电源电路中各个元器件之间的连接方式,通常用于实现特定的电源性能和特性。
以下是常见的11种电源拓扑:
1.升压式电源(Boost Converter):将低电压升高到高电压,输出电压高于输入电压。
2.降压式电源(Buck Converter):将高电压降低到低电压,输出电压低于输入电压。
3.反激式电源(Flyback Converter):使用变压器将输入电压转换成脉冲信号,再通过整
流滤波输出稳定直流电压。
4.电感式电源(Buck-Boost Converter):能够实现升压和降压两种功能,具有较大的电压
变换范围。
5.Cuk电源(Cuk Converter):能够实现电压升降变换,且输出电压与输入电压可以是反
向的。
6.SEPIC电源(Single-Ended Primary Inductor Converter):可以实现电压升降变换,且输
入电压和输出电压可以隔离。
7.Zeta电源(Zeta Converter):与升压式电源类似,但具有更宽的电压变换范围。
8.Ćuk-SEPIC电源:将Ćuk电源和SEPIC电源结合起来,实现电压升降变换和隔离。
9.前置式电源(Forward Converter):使用变压器将输入电压转换成脉冲信号,再通过整
流滤波输出稳定直流电压。
10.半桥式电源(Half-Bridge Converter):使用两个开关管控制输出电压,具有较高的效率
和可靠性。
11.全桥式电源(Full-Bridge Converter):使用四个开关管控制输出电压,具有更高的效率
和可靠性,但也更加复杂。
开关电源的基本拓扑结构
开关电源基本拓扑
10
电感电流临界连续(TM)
Io
1 2 iLf
max
iLf
max
Vin Vo Lf
DyTs
(1.14) (1.15)
若用IoG表示临界电流连续的负载电流, then
I oG
Io
1 2
I Lf
max
I oG
Vin Vout 2Lf fs
Dy
(1.16)
开关电源基本拓扑
11
Vin = constant (输入电压恒定)
Vout Lf
Ton
Vin
Vout Lf
Ts Dy
(1.10)
iLf
Vout Lf
Toff
Vout Lf
Ts D
where
D
T' off
Ts
(1 Dy )
Vout Dy Vin Dy D
Io
1 Ts
I Lf max 2
(Ton
T' off
)
1 2 I Lf max(Dy D)
(1.11) (1.12) (1.13)
开关电源基本拓扑
32
From (1.2 ) & (1.4)
Vout Vin
Dy
(1.6)
I0
I Lf
m in
I Lf 2
max
(1.7)
Q 1 iLf Ts 22 2
Vo
Q Cf
(1 Dy )Vo
8Lf C f
f
2 s
(1.8)
开关电源基本拓扑
8
Fig 1.3
开关电源基本拓扑
电流断续时的工作模式 (DCM)
各种开关电源拓扑结构总结
各种开关电源拓扑结构总结第一篇:各种开关电源拓扑结构总结各种结构拓扑结构的总结一.BUCK基本型降压电路,电路简洁,所需元件少,效率可以做到很高电路未实现隔离,大功率是对电路各种器件要求较高,稳定性不够高,灵活性不够。
二.BOOST基本升压电路,电路简洁,所需元件少,效率可以做到很高电路未实现隔离,大功率是对电路各种器件要求较高,如输出比较大的功率时开关管需要承受很大的脉冲电流,稳定性不够高,灵活性不够。
三.单端式a.单端正激,优点:该型是在BUCK型的基础上,加上一级隔离变压器,不仅做到了电路前后级之间的隔离,只要改变变压器的匝数,则可实现降压升压,外围元件较少。
缺点:开关关断时,变压器容易饱和,需要加磁复位绕组,对变压器绕制要求较高。
b.单端反击优点:电路结构相比于单端正激更加简单,变压器次级充当电感,元件更少。
缺点:当变压器存在漏感时会在原边形成很大的电流,对开关器件的损耗比较大,额外设计保护电路增加了设计负担,而且此种拓扑对变压器的设计上难度较大四.双端式a.半桥优点:可以减少原边开关元件的电压应力,半桥变换器是离线式开关电源的首选结构。
工作的两个半周期内充分利用了变压器原边绕组的PI和磁芯磁感应强度摆幅值,原边不需要能量回复绕组。
缺点:变压器磁芯容易出现阶梯形饱和问题,(可通过变压器中加入小气隙缓解,主要形成原因,正负脉冲时间不严格相等,整流二极管电压不严格相等。
稳态工作条件下,问题不大,但在瞬间负载变化的情况下,可能会导致严重问题如开关器件的损坏。
)b.推挽电路特点:对称结构,高频变压器原边是两个对称线圈,两只开关管接成对称关系,轮流通断优点:高频变压器磁利用率高,输出功率大,电源电压利用率高缺点:电流不平衡,容易出现变压器饱和的问题,对开关管的耐压值要求比较高。
五.四管隔离式全桥该结构使用的变压器绕组相对较少,对开关管耐压值要求相对于推挽较低。
但由于使用较多的开关管,损耗较大,驱动电路较复杂,该电路通常使用在1kw以上的超大功率电源上。
几种常见的开关电源拓扑结构及应用
几种常见的开关电源拓扑结构及应用什么是拓扑呢?所谓电路拓扑就是功率器件和电磁元件在电路中的连接方式,而磁性元件设计,闭环补偿电路设计及其他所有电路元件设计都取决于拓扑。
最基本的拓扑是Buck(降压式)、Boost(升压式)和Buck/Boost(升/降压),单端反激(隔离反激),正激、推挽、半桥和全桥变化器。
下面简单介绍一下常用的开关电源拓扑结构。
Buck电路首先我们要讲的就是Buck电路。
Buck电路也成为降压(step-down)变换器。
它的电路图是下面这样的:晶体管,二极管,电感,电容和负载构成了主回路,下方的控制回路一般采用PWM(脉冲宽度调制)芯片控制占空比决定晶体管的通断。
Buck电路的功能是把直流电压Ui转换成直流电压Uo,实现降压目的。
展开剩余88%反激变换器反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源,与之对应的有正激式开关电源。
反激(FLY BACK),具体是指当开关管接通时,输出变压器充当电感,电能转化为磁能,此时输出回路无电流;相反,当开关管关断时,输出变压器释放能量,磁能转化为电能,输出回来中有电流。
反激式开关电源中,输出变压器同时充当储能电感,整个电源体积小、结构简单,所以得到广泛应用。
应用最多的是单端反激式开关电源。
优点:元器件少、电路简单、成本低、体积小,可同时输出多路互相隔离的电压;缺点:开关管承受电压高,输出变压器利用率低,不适合做大功率电源。
Boost电路Boost(升压)电路是最基本的反激变换器。
Boost变换器又称为升压变换器、并联开关电路、三端开关型升压稳压器。
上面的图就是Boost电路图。
Boost电路是一个升压电路,它的输出电压高于输入电压。
Buck/Boost变换器Buck/Boost变换器:也叫做升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但它的输出电压的极性与输入电压相反。
Buck/Boost变换器可以看做是Buck变换器和Boost变换器串联而成,合并了开关管。
一种基于升压型准Z源单级隔离逆变拓扑电路[发明专利]
专利名称:一种基于升压型准Z源单级隔离逆变拓扑电路专利类型:发明专利
发明人:张磊,所玉君,崔建飞
申请号:CN202011040966.X
申请日:20200928
公开号:CN112202356B
公开日:
20220527
专利内容由知识产权出版社提供
摘要:本发明涉及一种基于升压型准Z源单级隔离逆变拓扑电路,属于逆变拓扑电路设计技术领域。
本发明提供的一种基于升压型准Z源单级隔离逆变拓扑电路,拓扑电路中的升压型准Z源部分利用逆变桥壁开关管的开通和关断,将电感与变压器上的能量转换为升压功能,同时,逆变桥壁的开关管均未PWM方式工作,且保证开关管的驱动信号互补,即处于互补导通的工作模式。
变压器副边的开关管取代传统的二极管工作在整流的工作状态,在保持输出电压极性不变的同事可以改变电流极性,实现能量的双向流动,最终达到单级隔离升压逆变的功能。
申请人:天津津航计算技术研究所
地址:300308 天津市东丽区空港经济区保税路357号
国籍:CN
代理机构:中国兵器工业集团公司专利中心
代理人:王雪芬
更多信息请下载全文后查看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
升压隔离型拓扑
升压隔离型拓扑是一种广泛应用于各种电源系统中的电路拓扑结构,它利用电力电子技术,将直流电源转换成具有不同电压和电流特性的电源,以满足不同的电器设备对电源的需求。
隔离升压全桥DCDC变换器是一种隔离型升压拓扑,包括前级 Boost 电路、集成变压器和后级 H 桥电路。
其中,前级 Boost 电路包括第一两相交错并联的 Boost 变换器,集成变压器为耦合电感结构,包括 Boost 电感部分和理想变压器结构,第一两相交错并联的Boost 变换器与集成变压器的 Boost 电感部分串联,集成变压器的理想变压器结构与后级H 桥电路串联。
隔离型拓扑具有较高的安全性和稳定性,常用于需要电气隔离的应用场景,如医疗设备、工业控制系统等。