交错并联boost电路原理
高升压比交错并联Boost电路的分析
高升压比交错并联Boost电路的分析类别:电源技术阅读:869摘要:文章分析了传统BooST电路在实际应用中存在的问题,提出了一种改进型的交错并联Boost电路。
在电感电流连续模式下,根据占空比大于或小于 0。
5的情况,详细分析电路的工作过程,推导了稳态情况下输出输入电压关系式,最后通过仿真验证了理论分析的正确性。
0 引言升压变换器是最常用的一种变换器,随着新能源的推广,由于太阳能、燃料电池、蓄电池等输入源具有输入电压较低的特性,升压变换器成为不可或缺的关键部件。
常用的非隔离Boost升压变换器,在高输出电压场合,由于寄生参数的影响不可能达到很高的输入输出电压比。
而另一种升压电路是隔离升压电路,例如正激、反激电路。
隔离升压电路中必须用到的变压器通常具有隔离、变压的功能,在那些不需要隔离或体积要求较小的应用场合,通过变压器升压就很难满足要求,另外变压器漏感引起的一系列问题,比如开关电压过冲,EMI等,常常对电源本身及周围设备带来安全隐患。
为了克服常用升压变换器在大功率、高输入输出变比等场合应用的限制,本文研究分析了一种新的电路拓扑结构及其工作方式,并对其进行了仿真验证。
1 工作原理下面分析Boost电路存在的不足,在理想情况下:M(D)=U0Uin= 11-D(1)根据式(1),在一定的输入电压下,理论上可以产生任意高于输入电压的输出电压。
而实际情况中,由于电感、二极管、开关管都会产生一定的损耗,这些损耗可以等效为一个与电感串联的电阻RL,如图1所示:图 1 Boost等效电路图此时根据磁平衡原理:由式(2)、(3)可得:根据式(4),在不同的RL/R 情况下,M(D)如图2所示。
由此可见,在实际电路中,Boost电路升压比有限制极限,输出电压一般能达到输入电压的4~5倍。
在大功率应用环境中,由于损耗严重,升压比反而更低。
为了克服上述非隔离升压电路的不足,本文研究的升压变换器如图3所示,它由交错并联Boost电路与电容串联组合而成。
Boost电路的结构及工作原理_Boost的应用电路
Boost电路的结构及工作原理_Boost的应用电路Boost电路定义Boost升压电路的英文名称为theboostconverter,或者叫step-upconverter,是一种开关直流升压电路,它能够将直流电变为另一固定电压或可调电压的直流电,也称为直流直流变换器(DC/DCConverter)。
直流直流变换器通过对电力电子器件的通断控制,将直流电压断续地加到负载上,通过改变占空比改变输出电压平均值。
假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,那么电容电压等于输入电压。
开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许Dy=1的状态下工作。
电感Lf在输入侧,成为升压电感。
Boost电路结构下面以UC3842的Boost电路为例介绍Boost电路的结构。
图中输入电压Vi=16~20V,既供给芯片,又供给升压变换。
开关管以UC3842设定的频率周期开闭,使电感L储存能量并释放能量。
当开关管导通时,电感以Vi/L的速度充电,把能量储存在L中。
当开关截止时,L产生反向感应电压,通过二极管D把储存的电能以(V o-Vi)/L的速度释放到输出电容器C2中。
输出电压由传递的能量多少来控制,而传递能量的多少通过电感电流的峰值来控制。
整个稳压过程由二个闭环来控制,即:闭环1输出电压通过取样后反馈给误差放大器,用于同放大器内部的2.5V基准电压比较后产生误差电压,误差放大器控制由于负载变化造成的输出电压的变化。
闭环2Rs为开关管源极到公共端间的电流检测电阻,开关管导通期间流经电感L的电流在Rs上产生的电压送至PwM比较器同相输入端,与误差电压进行比较后控制调制脉冲的脉宽,从而保持稳定的输出电压。
误差信号实际控制着峰值电感电流。
Boost电路的工作原理Boost电路的工作原理分为充电和放电两个部分来说明。
充电过程。
三重交错boost工作原理
三重交错Boost变换器的工作原理如下:
在每个开关周期的初始时刻,续流开关管关断,主开关管导通。
主开关管的关断时刻由控制信号决定,当电感电流增大到控制信号时,主开关管关断。
另一个开关的导通时刻由动态参考电流决定,当电感电流下降至动态参考电流时,另一个开关导通。
此外,其工作原理还包括动态参考电流的设计。
给定电感电流放电阶段占空比可以使ITBC工作于最小输入电流纹波的工作模式。
动态参考电流与占空比有关,当续流开关管采用DRC控制时,动态参考电流的值随负载变化而变化,使ITBC一直工作于最小输入电流纹波的工作模式。
北京交通大学毕业设计并联交错式Boost电路
2
北京交通大学毕业设计(论文)
第3页
4.4 电路设计 ........................................................................................ 49 4.5 本章小结 ........................................................................................ 50 第 5 章 实验结果与分析 ................................................................................51 5.1 实物图 ............................................................................................ 51 5.2 实验结果 ........................................................................................ 53
交错并联Boost PFC电路的研究
交错并联Boost PFC电路的研究郭超;韦力【摘要】The single-phase interleaved parallel Boost PFC circuit is adopted to improve the power grade and efficiency.The discrete inductor is used as a boost inductor. The operation experiment and simulation of interleaved parallel Boost PFC circuit were conducted uner the intermittent mode of inductance current. The interleaved parallel Boost circuit is capable of reducing the inductance capability and EMI filter size. The simulation and experimental results prove that the PFC circuit can realize good correction effect with small input current ripple and switching stress.%提出了一种单相并联交错Boost PFC电路,升压电感采用分立式电感.详细论述电感电流断续模式下的Boost PFC交错并联电路,减小单个电感容量和前级EMI滤波器尺寸,提高PFC 电路的功率等级和效率.仿真与实验结果表明,该PFC电路具有良好的校正效果,较小的输入电流纹波,较低的开关应力.【期刊名称】《现代电子技术》【年(卷),期】2011(034)010【总页数】3页(P133-135)【关键词】电力电子;交错并联;分立电感器;功率因数校正【作者】郭超;韦力【作者单位】西安科技大学,陕西西安710054;西安科技大学,陕西西安710054【正文语种】中文【中图分类】TN710-34Boost变换器由于其升压电路简单,效率高,工作性能稳定等优点被广泛的应用为PFC电路中。
boost电源工作原理
Boost电源是一种常见的直流升压电路,其工作原理如下:
1.输入电压为Ui,电感为L,二极管为D,电容为C,输出电压
为Uo。
2.电路工作时,二极管D处于导通状态,电流从电感L的左端流
入,右端流出,此时电感L开始存储能量。
3.当电流增加时,电感L两端的电压会升高,但电容C两端的电
压保持稳定,因此输出电压Uo等于电容C两端的电压,即
Uo=Ui。
4.当电流减小时,电感L两端的电压会降低,此时二极管D仍然
处于导通状态,电流从电感L的右端流入,左端流出,电感L 开始释放能量。
5.电感L和电容C之间的振荡电路会不断重复上述过程,使得输
出电压Uo始终高于输入电压Ui。
6.当负载电流减小时,二极管D导通的时间变长,电感L释放的
能量增多,输出电压Uo会略有上升。
7.当负载电流增大时,二极管D导通的时间变短,电感L释放的
能量减少,输出电压Uo会略有下降。
8.因此,Boost电源可以实现输出电压的稳定输出,同时具有较
高的效率和高负载响应能力。
需要注意的是,Boost电源在运行过程中可能会产生较高的纹波电流和噪声,因此在实际应用中需要采取适当的滤波措施。
基于磁集成电感的交错并联boost变换器研究与设计
学位论文题目基于磁集成电感的交错并联boost变换器研究与设计英文Research and Design of Interleaved Boost题目based on Coupling Inductor摘要电力电子变换器在新能源发电中占据了重要的地位,对它也提出了越来越高的要求,逐步向着小型化、集成化、高效性、高功率密度等方向发展,磁集成技术就是在这样的背景下提出并发展起来的,是电力电子变换器的重要发展趋势。
本文对反向耦合的磁集成电感在10kW交错并联boost变换器中的应用进行了深入研究,包括其在降低稳态电流纹波及提高变换器瞬态响应上的贡献。
主要研究内容如下:基于课题要求设计了两相交错并联boost变换器系统结构。
在不同占空比下详细分析了其工作机理,计算其电感电流纹波及输入电流纹波。
根据电路分析进行了主电路参数设计,包括开关管选型及电感参数计算。
在分立电感的交错并联boost变换器基础上,对反向耦合磁集成电感交错并联boost变换器进行了研究分析。
通过研究其工作原理得出稳态等效电感模型,得到了电感电流纹波及输入电流纹波表达式,并根据开关网络法对该变换器进行了小信号建模,在MATLAB中仿真对比两种电感结构的系统阶跃响应,最后研究电感结构对其性能的影响及损耗分析,借助Maxwell 2D进行了电磁仿真辅助参数设计。
完成了磁集成电感交错并联boost样机设计与制作。
利用Maxwell 2D仿真进行电感参数设计,完成了满足参数要求的磁集成电感设计与制作,并进行自感、互感、耦合系数等的测量。
完成控制电路设计,包括电压电流采样电路及通讯电路,并进行软件总体设计。
最后,在saber中进行系统仿真,并在实验样机上进行了动静态及效率等的测试。
测试结果表明该结构相对于分立电感不论在稳态纹波还是瞬态响应速度方面性能都有了提升,并且磁件体积也大大变小,实现了设计目标。
关键词:功率密度,交错并联,磁集成电感,电流纹波,瞬态响应AbstractPower electronic converter occupies the important position in the new energy power generation, is higher and higher demands are proposed on it, step by step toward miniaturization, integration, development direction, such as high efficiency, high power density, magnetic integration technology is put forward in the background and development, is the important development trend of the power electronic converter.In this paper, the reverse coupling of magnetic integrated inductance in the application of 10 kw staggered parallel boost converter were studied, including its in reducing steady-state current ripple and improve the contribution of converter on the transient response.The main research content is as follows:Designed based on the requirement of subject two interleaved boost converter in parallel system structure.Under different duty cycles are analyzed in detail its working principle, calculation of the inductor current ripple and input current ripple.According to circuit analysis to design the main circuit parameters, including the selection of switch tube and inductance parameters are calculated.In discrete inductance staggered parallel boost converter, based on the integration of magnetic inductance staggered parallel boost converter are analyzed.Through study the working principle of the steady state equivalent inductance model, obtained the inductor current ripple and input current ripple expression, and according to the switch network to the small signal model of the converter, and analyzed two kinds of inductance step response of the system structure, finally to study the effect of inductance structure on its performance and loss analysis, electromagnetic simulation is carried out by using Maxwell 2 d auxiliary parameter design.Complete integration of magnetic inductance staggered parallel boost prototype design and ing Maxwell 2 d simulation inductance parameter design, completed the magnetic integrated inductance that could satisfy the requirement of parameter design and production, and a measure of the self inductance, mutualinductance, the coupling coefficient, plete control circuit design, including the voltage and current sampling circuit and communication circuit, and the overall design of software.Finally, the system simulation in the saber, and carrying out the dynamic and static in the experimental prototype and efficiency of testing, test results show that the structure relative to the discrete inductors both in steady state ripple and transient response speed performance have to ascend, and magnetic volume also decreases greatly, achieve the design goals.Key words: Power density, interleaving, coupling inductor, current ripple, transient response目录摘要 (I)Abstract (II)目录............................................................................................................................ I V 第1章绪论 (1)1.1 研究背景及意义 (1)1.2 交错并联变换技术研究现状 (2)1.3 磁集成技术研究现状 (3)1.3.1 多路并联变换器中的磁集成技术 (4)1.3.2 集成磁件的构造技术及应用 (5)1.4 主要研究内容 (7)第2章交错并联boost系统结构与参数设计 (8)2.1 交错并联boost变换器系统结构设计 (8)2.2交错并联boost结构分析 (9)2.2.1 工作原理 (10)2.2.2 电流纹波分析 (14)2.3 交错并联boost主电路参数设计 (15)2.3.1 IGBT分析与选型 (15)2.3.2 电感参数设计 (17)2.4 本章小结 (18)第3章磁集成电感交错并联boost建模及电感性能研究 (19)3.1 磁集成电感交错并联boost结构分析 (19)3.1.1 工作原理 (20)3.1.2 稳态电感及电流纹波分析 (24)3.2 磁集成电感交错并联boost建模 (27)3.2.1 磁集成电感瞬态等效模型 (27)3.2.2 小信号建模 (29)3.3 磁集成电感结构对其性能影响的研究 (32)3.3.1 磁芯结构对磁集成电感性能影响 (32)3.3.2 气隙对磁集成电感性能影响 (36)3.4 磁集成电感损耗分析 (37)3.4.1 电感磁芯损耗 (37)3.4.2 电感绕组铜耗 (38)3.5 本章小结 (41)第4章磁集成电感交错并联boost样机设计 (42)4.1 磁集成电感设计与制作 (42)4.1.1 磁集成电感参数设计 (42)4.1.2 磁集成电感制作与测量 (44)4.2 控制电路设计 (45)4.2.1 采样电路设计 (46)4.2.2 通讯模块分析设计 (50)4.2.3 软件控制总体流程 (51)4.3 本章小结 (52)第5章系统仿真与实验分析 (53)5.1 系统仿真分析 (53)5.2 实验结果分析 (57)5.2.1 电感纹波测试与分析 (58)5.2.2 瞬态响应测试与分析 (59)5.2.3 效率测试 (60)5.3 本章小结 (60)第6章总结与展望 (61)6.1 全文总结 (61)6.2 展望 (62)致谢 (63)参考文献 (64)第1章绪论1.1 研究背景及意义我国目前仍然是发展中国家,经济发展过多得依赖于对不可再生能源的过度开采,环境污染问题已经影响了人们的正常生活及身体健康。
交错并联Boost_PFC电路的研究与设计
收稿日期:2022-06-15基金项目:苏州市职业大学研究性课程教改项目(S Z D Y K C 220707);苏州市职业大学 青蓝工程 资助项目;苏州市职业大学高级访问研修资助项目㊂作者简介:张波(1979 ),男,副教授,高级工程师,硕士,主要研究方向:电力电子技术㊂交错并联B o o s t P F C 电路的研究与设计张 波,吕欣呈,马文杰,王 宁(苏州市职业大学智慧能源装备与电能变换协同创新中心,江苏苏州 215104) 摘 要:交错并联B o o s t 不仅能提高P F C 电路功率等级,还能减小电路纹波,降低E M I 滤波器设计难度㊂文章针对传统的B o o s t P F C 电路的不足,用交错并联B o o s t 替代传统的B o o s t 电路来提高功率等级㊁提高效率㊂分析比较了B o o s t P F C 电路控制方式,优选平均电流控制模式,研制的交错并联B o o s t P F C 电路,效率达98%以上,P F 值达0.98以上㊂关键词:交错并联;S i C 器件;平均电流控制;高效率 中图分类号:T M 46 文献标识码:A 文章编号:1007 6921(2023)07 0118 03 市电经二极管整流和电容滤波是很多电器和电子设备初步获得直流电的常用方式㊂但这种方式电流非正弦化,畸变严重,导致线路中产生大量谐波,电路功率因数下降很多[1],会给电网带来不少危害,必须进行功率因数校正(P F C )㊂无源P F C 笨重体积大,且对电流谐波抑制效果不够好,因此有源功率因数校正(A P F C )技术得到了广泛的应用和研究㊂传统的B o o s t 电路实现P F C 有着不少优点,但也有一些不足㊂笔者从电路拓扑结构等方面入手,配合新颖的控制方式解决其不足之处㊂1 传统的B o o s t P F C有别于采用电感㊁电容等无源器件进行功率因数校正,采用可控半导体器件这类有源器件进行功率数校正称为有源功率因数校正㊂有源功率因数校正是在二极管整流电路和负载间加入D C /D C 变换器,采用相应的控制技术,强迫电流波形跟随正弦电压变化㊂有源功率因数校正极大地消除了电流畸变,从而获得很接近于1的功率因数[2],很大程度上减少了总谐波畸变(T H D )㊂从理论上来说,任何一种D C /D C 变换的拓扑如B u c k ㊁B o o s t ㊁C u k ㊁f l yb ac k 等等都能用于P F C 的主电路㊂B o o s t 电路具有很多优点:输入电流连续;输入电感位于电流前端,输入电流易于控制,有助于功率因数提高和E M I 滤波器的设计;升压变换,以在很宽的输入电压范围内工作;功率开关器件电压应力不超过输出电压,且易于驱动㊂因此常用B o o s t 电路实现电路的P F C ,如图1㊂P F C 电路从系统结构来看,分为单级式P F C 电路和两级式P F C 电路㊂两级式P F C 电路前级的D C /D C 电路主要实现P F C ,后级D C /D C 变换负责电路最终的输出电压㊁电流㊂单级式P F C 用一个D C /D C 变换电路既实现P F C ,也负责控制最终输出的电压电流㊂单级式P F C 控制过于复杂,未达到人们预期,实际中用得很少㊂图1 传统的B o o s t P F C 电路根据B o o s t 电路工作时电感电流是否连续,把B o o s t P F C 电路分为连续导电模式(C C M )和不连续导电模式(D C M )两种㊂D C M 方式会增加E M I 滤波器负担,电感和控制电路设计复杂,电压过零点时电流波形有较严重的畸变,只能在中小功率的情况下应用㊂C C M 模式下,根据电流控制方式的不同,又分为峰值电流控制㊁滞环电流控制和平均电流㊃811㊃2023年4月内蒙古科技与经济A pr i l 20237521I n n e r M o n g o l i a S c i e n c e T e c h n o l o g y &E c o n o m yN o .7T o t a l N o .521控制3种㊂3种控制方式都是双闭环控制,外环电压控制使输出电压稳定,内环是电流控制实现P F C ㊂以控制B o o s t 电路为例㊂3种控制方式前面部分的控制都一样㊂采样B o o s t P F C 电路的输出电压U o u t 得到的电压信号与基准电压U r e f 经误差放大信号得到V e a ,V e a 与采样的二极管整流电压信号(正弦半波)相乘后得到电流基准信号i r e f ㊂峰值电流控制采样开关管电流i s ,每个控制周期开始时开关管导通,i s 达到电流基准i r e f 时开关管关断,电流峰值包络线为正弦波;滞环电流控制采样电感电流i L ,电流基准i r e f 与i L 的差值i e 达到设定的滞环下限时开关管导通,达到设定的滞环上限时开关管断开,电感电流峰谷包络线都是正弦波;平均电流控制也采样电感电流i L ,电流误差放大器设计为P I 调节器,i r e f 与i L 通过此P I 调节器输出与频率固定的锯齿波比较得到控制开关管的P WM 信号㊂当i L >i r e f 时,反向积分,P I 调节器输出电压变小,P WM 信号占空比减少,反之占空比增加㊂开关动作时刻取决于积分(上一周期的)结果,所以称之为平均电流控制㊂峰值电流控制时,峰值与平均值误差较多,T H D 较大,占空比变化较大,占空比>0.5时会产生谐波振荡,须加入谐波补偿;滞环电流控制是变频控制,滤波器设计困难,滞环宽度对开关频率和系统性能影响大;平均电流控制效果好,是目前用得最多的P F C 控制方式[3]㊂2 交错并联B o o s t P F C 电路单个B o o s t 电路功率不够高,用多个B o o s t 电路并联的方式可提高其功率等级㊂常用的是两个B o o s t 交错并联实现P FC [2],如图2㊂电感L 1㊁开关管S 1㊁二极管D 1㊁电容C 构成B o o s t 电路1,电感L 2㊁开关管S 2㊁二极管D 2㊁电容C 构成B o o s t 电路2,两B o o s t 电路共用1电容C ㊂两B o o s t 电路参数一致,工作情况一样,只是两开关管S 1和S 2开通时刻互差半个周期㊂图2 交错并联B o o s t P F C如前所述,采用平均电流控制模式㊂电压采样㊁获得电流基准等都和传统的单通道B o o s t P F C 电路相同,交错并联B o o s t P F C 电路的两路B o o s t 电路控制时共用一个电流基准i r e f ,获取电流基准后各自控制是分别实现的㊂两B o o s t 电路控制部分都有各自的电流误差放大器㊁P WM 信号比较器㊂两B o o s t 电路使用相同的误差放大器和比较器㊂生成P WM 信号时采用同幅值,同频率但初相位相差180ʎ的锯齿波信号㊂B o o s t 电路1采样电感L 1的电流i L 1,使用B o o s t 电路1的电流误差放大器和P WM 信号比较器完成后续控制㊂B o o s t 电路2采样电感L 2的电流i L 2,使用B o o s t 电路2的电流误差放大器和P WM 信号比较器完成后续控制㊂控制框图如图3所示㊂由于锯齿波1和锯齿波2初相位相差180ʎ,所以脉宽调制信号P WM 1和P WM 2形状相同,每个周期的起始位置相差180ʎ㊂对称性的设计,两B o o s t 电路的电流都为输入电流的一半㊂电感的储能与电流的平方成正比,实现同样功率时,两路B o o s t 电路交错并联时单路电感体积是单独使用一个B o o s t 电路时电感体积的1/4[4]㊂假设占空D=0.5㊂并联交错的两B o o s t 电路一路开关管导通电感电流上升时另一路开关管断开电感电流下降,两电路参数一致时,理论上总输入电流(i L 1+i L 2)纹波电流为0㊂占空比>0.5时不会出现S 1和S 2同时断开的情况,占空比<0.5时不会出现S 1和S 2同时导通的情况㊂占空比偏离0.5的绝对值越多电流纹波越大,但总有两路B o o s t 电感电流纹波抵消的部分,总输入电流纹波比单个B o o s t 电路减少很多㊂并联交错时总输出电流频率是每路B o o s t 变换器的2倍㊂因此,同样情况下,可采用更小的输出电容C ,同时也降低了对输入E M I 滤波器的要求㊂图3 控制框图㊃911㊃张波,等㊃交错并联B o o s t P F C 电路的研究与设计2023年第7期3实验结果并联交错B o o s t P F C电路设计指标为:输入电压85V~265V,总功率4k W,功率因数ȡ0.96, T H D<5%,满载时本级效率ȡ98%㊂提高开关频率可减小电感电重量体积,但也会带来更大的开关损耗,设计时根据需要恰当取舍㊂此处开关频率设计为150k H z㊂功率半导体器件全都采用S i C器件㊂二极管采用耐压650V,额定电流16A的型号为D H16G65C6的二极管㊂S i C器件是新一代的宽禁带半导体器件,相比于S i器件有很多优点㊂MO S管选择导通电阻很小的型号为I MW65R027M1H的MO S管,其电压定额U D S= 650V,电流定额I D=59A,通态漏源间等效电阻R D S(o n)=60mΩ,开启电压U G S(t h)=4.5V㊂相比于S i材料器件,S i C器件有着更高的工作频率,可实现更高的耐压和更低的功率损耗㊂S i C器件目前市场化的主要就是二极管和MO S管㊂S i C MO S管的优越性能必须要有相应的驱动电路与之配合,通常不能照搬S i材料MO S管的驱动电路,否则其优越的性能就发挥不出来㊂Lȡ(1-D m a x)(2D m a x-1)U00.2i L m a xˑf s(1) Cȡ2P0ˑt h o l dU20-α2ˑU20(2)B o o s t电路电感L1(L2)和输出滤波电容C可分别按式(1)和式(2)选取㊂D m a x是B o o s t电路最大占空比,即输入电压最低时的占空比㊂i L m a x是单相电感电流最大峰值,取电感的纹波调整率为0.2,f s 是开关管工作频率,P0是电路总的输出功率,U0是输出电压㊂输入端掉电时输出电容能按原电压给负载供电的时间称为保持时间,记作t h o l d,一般在15 m s~50m s之间,这里t h o l d取20m s㊂α是输出电压保持系数,这里α取0.8㊂控制器以D S P芯片T M S320F28035为核心㊂图4是占空比为0.5时两MO S管漏源极上电压波形,两管子开通时刻相差半个周期㊂图5是占空比为0.4时两电感上电流i L1和i L2波形,从图中可以看出两电感电流i L1和i L2的变化量Δi L1与Δi L2可相互抵消相当大一部分,两电感电流之和即总和输入电流纹波减小很多,测试结果显示,满载时,输入电压在85V~265V范围内时均能实现功率因数校正,P F在0.973和0.987之间变化㊂输入电压为220V时,30%负载时P F值为9.961,P F值随着负载的增加而增加,满载时P F值为0.983㊂满载时,B o o s t P F C电路本级变换效率为98.29%,10%负载时其效率为94.05%,负载越大效率越高㊂图4两MO S管电压波形图5两电感电流i L1和i L2的波形4结束语采用参数一致的B o o s t电路交错并联工作,可极大地提高传统P F C电路的功率等级,减少纹波,减少电重量体积,而且实现功率因数效果很好㊂交错并联B o o s t P F C电路在功率较大的场合下有很高的应用和推广价值㊂[参考文献][1]杨文惠.配电网络最佳功率因数确定[J].内蒙古科技与经济,2016(20):90-91. [2]梁凯歌.车载充电机中的交错并联B o o s t P F C系统设计与优化[D].南京:南京理工大学,2018.[3]王晨阳,罗萍,周先立,等.用于峰值电流模B o o s t变换器的瞬态响应优化电路[J].微电子学,2020,50(6):794-798.[4]廖鸣宇.低电流启动交错并联B o o s t型P F C变换器及其控制技术研究[D].重庆:重庆理工大学,2020.㊃021㊃总第521期内蒙古科技与经济。
采用耦合电感的交错并联Boost
采用耦合电感的交错并联Boost一、本文概述本文将深入探讨一种创新的电力电子技术——采用耦合电感的交错并联Boost电路。
在现代电力电子系统中,Boost电路作为一种重要的电能转换装置,广泛应用于各种场景,如电池管理、可再生能源系统和电动汽车等。
传统的Boost电路在某些应用场合下存在效率低下、热损耗大等问题。
为了克服这些限制,研究人员提出了采用耦合电感的交错并联Boost电路。
耦合电感作为一种特殊的电气元件,在电力电子电路中具有独特的优势。
通过合理设计耦合电感,可以实现在相同体积下更高的电能转换效率,降低热损耗,并且具有更好的电磁兼容性。
而交错并联技术则能够进一步提高Boost电路的可靠性和稳定性,降低对单一元件的依赖。
本文将对采用耦合电感的交错并联Boost电路进行详细的理论分析和实验研究。
我们将从电路拓扑结构出发,介绍该电路的基本构成和工作原理。
通过数学建模和仿真分析,探究该电路在不同工作条件下的性能表现。
通过实验验证,评估该电路在实际应用中的效果,为相关领域的研究和应用提供有益的参考。
本文的研究不仅有助于推动电力电子技术的发展,也为解决现代电力系统中面临的挑战提供了新的思路和方法。
通过深入研究采用耦合电感的交错并联Boost电路,我们有望为未来的电力电子系统带来更高效、更可靠、更环保的解决方案。
二、耦合电感理论及其特性分析耦合电感,也称为变压器,是一种能够实现电能传输和电压变换的电感器件。
其工作原理基于法拉第电磁感应定律,当一次侧线圈中的电流发生变化时,会在其周围产生磁场,进而在二次侧线圈中产生感应电动势,实现电能的传输。
耦合电感的特性主要由其耦合系数、匝数比以及电感值等参数决定。
耦合系数是描述一次侧和二次侧线圈间磁场耦合程度的物理量,其值越接近1,表示耦合程度越高,能量传输效率也越高。
匝数比则是一次侧和二次侧线圈的匝数之比,它决定了电压的变换比例。
电感值则是描述电感器件对电流变化的阻碍程度,其大小会影响电流的变化速率以及磁场的强度。
boost电路原理及参数核算
boost电路原理及参数核算boost电路原理及参数核算BOOST升压电路的部件功用boost升压电路电感的效果:是将电能和磁场能彼此改换的能量改换器材,当MOS开关管闭合后,电感将电能改换为磁场能储存起来,当MOS断开后电感将储存的磁场能改换为电场能,且这个能量在和输入电源电压叠加后经过二极管和电容的滤波后得到滑润的直流电压供应给负载,因为这个电压是输入电源电压和电感的磁砀能改换为电能的叠加后构成的,所以输出电压高于输入电压,既升压进程的完毕;boost升压电路的肖特基二极管首要起阻隔效果,即在MOS开关管闭合时,肖特基二极管的正极电压比负极电压低,此刻二极管反偏截止,使此电感的储能进程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量经过二极向负载供电,此刻二极管正导游通,央求其正向压降越小越好,尽量使更多的能量供应到负载端。
闭合开关会致使经过电感的电流添加。
翻开开关会推动电流经过二极管流向输出电容。
因储存来自电感的电流,多个开关周期往后输出电容的电压添加,效果输出电压高于输入电压。
[批改本段]--BOOST升压电路的作业原理根柢电路图见图一:假定那个开关(三极管或许mos管)现已断开了很长时刻,悉数的元件都处于抱负状况,电容电压等于输入电压。
下面要分充电和放电两个有些来阐明这个电路充电进程在充电进程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线替代。
这时,输入电压流过电感。
二极管避免电容对地放电。
因为输入是直流电,所以电感上的电流以必定的比率线性添加,这个比率跟电感巨细有关。
跟着电感电流添加,电感里储存了一些能量。
放电进程如图,这是当开关断开(三极管截止)时的等效电路。
当开关断开(三极管截止)时,因为电感的电流坚持特性,流经电感的电流不会立刻变为0,而是缓慢的由充电完毕时的值变为0。
而正本的电路已断开,所以电感只能经过新电路放电,即电感初步给电容充电,电容两头电压添加,此刻电压现已高于输入电压了。
交错并联BoostPFC电路的应用研究
定稿日期:2009-09-01作者简介:赵相瑜(1974-),男,四川蓬溪人,硕士,研究方向为电子技术。
1引言Boost 型功率因数校正(PFC )变换器的升压电路具有结构简单,效率高,输入电流纹波和器件导通损耗都很小以及工作性能稳定等优点,因此广泛应用于各种电子设备PFC 电路中[1-2]。
但Boost PFC 电路的单位功率因数不能由电压跟随控制方法得到,一般情况下需要采用电流、电压双闭环反馈控制;另外,根据电感电流连续与否,工作模式分为电感电流连续工作模式(CCM )和电感电流断续工作模式(DCM )。
CCM 下的Boost PFC 电路具有导通损耗小,输入电流纹波小等优点,但是电感电流连续状态下输出整流二极管会产生很高的反向恢复损耗;DCM 下的Boost PFC 电路开关损耗小,输出整流二极管不会产生反向恢复损耗[3],但输入电流的纹波很大,前级EMI 滤波器的设计尺寸也增大,这增加了电路的体积和成本,同时因为流过开关管的电流较大,开关具有很高的通态损耗,降低了PFC 电路的效率,此外,Boost 变换器工作在固定频率,输入电流波形还可能产生畸变。
针对以上不足,采用两个工作在DCM 下的Boost PFC 电路交错并联运行,同时为了减小电感的体积和成本,采用了一种新颖的耦合电感绕线方式。
通过仿真和实验验证了该交错并联电路的有效性和可靠性。
2交错并联Boost PFC 电路图1a 示出交错Boost 变换器并联电路,两开关SW 1,SW 2的导通占空比相等,SW 2滞后SW 1二分之一个开关周期导通。
由图1b 所示的交错并联电流波形可见,虽然单个Boost 变换器的电感电流i L 1和i L 2是断续的,但PFC 电路的输入电流i in 变成了连续的,故其输入电流纹波减小,频率提高了两倍,从而降低了输入电流的高频谐波含量,减小了前级EMI 滤波器的尺寸,而且输入电流的平均值接近其峰值,进而提高了PFC 变换器的功率等级。
交错双boost半无桥pfc的工作原理
交错双boost半无桥PFC的工作原理一、PFC技术的概念和应用1.1 PFC技术的概念PFC(Power Factor Correction),即功率因数校正技术,是一种通过改善电路中的电流和电压波形,使得输入电路中的电流和电压处于同相位的技术。
PFC技术能够提高电路的功率因数,减小谐波污染,提高能效,并且符合国家对于电器电路的功率因数要求、减少对电网的负荷等优点。
1.2 PFC技术的应用PFC技术广泛应用于各种电源和电气设备中,如电子电源、服务器电源、LED驱动电源等,特别是在需要通过电网供电的场合。
二、交错双boost半无桥PFC的基本结构2.1 交错双boost半无桥PFC的概念交错双boost半无桥PFC是一种常见的PFC拓扑结构,它通过交错并联的方式,减小输出滤波电感的尺寸,提高系统的功率密度。
2.2 交错双boost半无桥PFC的基本组成交错双boost半无桥PFC的基本组成包括:输入整流桥、电容器、电感器、功率开关器件、控制电路等部分。
其中,通过控制电路实现功率开关器件的开关,控制输入电流和输出电压。
三、交错双boost半无桥PFC的工作原理3.1 电压采集和控制通过对输入电压和输出电压的采样,经过控制电路,计算出输出电压的误差信号,控制器通过比较输入电流和输出电压的相位差,产生PWM控制信号,用于控制功率开关器件的导通和关断。
3.2 电流采集和控制通过对输入电流的采样,经过控制电路,计算出输入电流的误差信号,控制器根据输入电流的波形和相位信息,产生PWM控制信号,用于控制功率开关器件的导通和关断。
3.3 调节电压和电流通过控制器输出的PWM信号,实现对功率开关器件的控制,调节输入电流和输出电压的波形和相位,使其符合PFC技术的要求。
四、交错双boost半无桥PFC的特点和优势4.1 高功率密度交错双boost半无桥PFC通过交错并联的方式,减小输出滤波电感的尺寸,提高系统的功率密度。
boost电路双闭环原理
boost电路双闭环原理Boost电路双闭环原理Boost电路是一种常用的直流-直流(DC-DC)转换器,能够将输入电压提升到所需的输出电压。
为了提高系统的稳定性和响应速度,往往采用双闭环控制。
本文将从浅入深介绍Boost电路双闭环原理。
Boost电路简介Boost电路是一种非隔离型DC-DC转换器,主要由一个开关管、电感、二极管和电容组成。
通过周期性的对开关管进行开关,使得电感储能并传输给输出负载,从而达到提升电压的目的。
Boost电路工作原理1.输入电压:Boost电路的输入电压为Vin。
2.感性储能:当开关管导通时,电感储存能量,电流增大。
3.关断开关:当开关管关断时,电感的磁场能量转移到电容上,电压增大。
4.输出电压:输出电压为Vout。
5.控制器:控制器根据输出电压与给定参考电压之间的差异调节开关管的工作周期和占空比,以确保输出电压稳定在设定值。
单闭环控制Boost电路单闭环控制只使用输出电压作为反馈信号来调节开关管的工作状态。
具体步骤如下:1.输出电压采样:采样输出电压并与给定参考电压进行比较。
2.反馈控制:根据比较结果调节开关管的工作周期和占空比,使得输出电压趋近给定参考电压。
3.稳定输出:通过不断采样和调节,使输出电压稳定在设定值。
4.缺点:单闭环控制对输入电压和负载变化的响应较慢,系统稳定性差。
双闭环控制Boost电路双闭环控制除了使用输出电压外,还引入了电流反馈信号来进一步提高系统稳定性和响应速度。
具体步骤如下:1.输出电压采样:采样输出电压并与给定参考电压进行比较。
2.反馈控制:根据比较结果调节开关管的工作周期和占空比,使得输出电压趋近给定参考电压。
3.电流采样:采样输出电流并与给定参考电流进行比较。
4.电流控制:根据比较结果调节开关管的工作周期和占空比,使得输出电流趋近给定参考电流。
5.稳定输出:通过同时采样和调节输出电压和电流,使系统更加稳定,响应速度更快。
双闭环控制的优势双闭环控制相比单闭环控制具有以下优势:1.响应速度更快:通过引入电流反馈,能够更快地对负载变化做出调节,提高系统的响应速度。
boost电路知识点总结
boost电路知识点总结一、概述Boost电路是一种DC-DC转换器,主要用于将输入电压通过电感和电容进行增压转换成输出电压。
Boost电路是一种非绝缘型电源拓扑结构,其输出电压高于输入电压。
Boost电路中的开关时间由一个控制电路控制,通过调节开关时间实现输出电压的稳定控制。
Boost电路在电子设备、通信、汽车电子、光伏逆变器等领域得到了广泛的应用。
二、Boost电路原理Boost电路是基于电感储能原理的电源拓扑,其工作原理如下:1. 输入电压施加在开关管上,使得电感中产生磁场能量。
2. 当开关管关断时,电感中储存的能量会释放,产生一个反向电动势,使得输出电压增加。
3. 输出电压通过反馈控制电路进行采样,通过比较器和PWM控制器来调节开关管的导通时间,从而实现输出电压的稳定控制。
Boost电路的原理简单,通过适当控制开关管的导通时间和频率,可以实现瞬态响应良好、输出电压稳定的电源转换过程。
三、Boost电路的工作模式Boost电路工作有两种不同的模式:连续导通模式和间歇导通模式。
两种工作模式根据电感电流波形是否持续存在有所不同,其特点如下:1. 连续导通模式:当负载较小或输入电压较高时,电感电流波形一直保持在正值,电感中储存的能量能够满足输出负载的需求,输出电压能够保持稳定。
在连续导通模式下,开关管的导通时间较长,能量转移效率高,适用于负载波动较小的场景。
2. 间歇导通模式:当负载较大或输入电压较低时,电感电流波形会有一个间歇的过程,即电感电流在关断后会变为零。
在间歇导通模式下,开关管的导通时间较短,能量转移效率低,但能够适应负载波动较大的场景,保证输出电压的稳定。
四、Boost电路关键元件Boost电路主要由开关管、电感、电容和输出滤波器等几种关键元件组成。
1. 开关管:Boost电路的核心部分,通过调控开关管的导通时间和频率来控制输出电压。
2. 电感:用于储存能量,稳定输出电压,保证电路的稳定性。
高升压比交错并联Boost电路的分析
高升压比交错并联Boost电路的分析类别:阅读:869摘要:文章分析了传统BooST电路在实际应用中存在的问题,提出了一种改进型的交错并联Boost电路。
在电感电流连续模式下,根据占空比大于或小于0。
5的情况,详细分析电路的工作过程,推导了稳态情况下输出输入电压关系式,最后通过仿真验证了理论分析的正确性。
0 引言升压变换器是最常用的一种变换器,随着新能源的推广,由于太阳能、燃料电池、蓄电池等输入源具有输入电压较低的特性,升压变换器成为不可或缺的关键部件。
常用的非隔离Boost升压变换器,在高输出电压场合,由于寄生参数的影响不可能达到很高的输入输出电压比。
而另一种升压电路是隔离升压电路,例如正激、反激电路。
隔离升压电路中必须用到的变压器通常具有隔离、变压的功能,在那些不需要隔离或体积要求较小的应用场合,通过变压器升压就很难满足要求,另外变压器漏感引起的一系列问题,比如开关电压过冲,EMI等,常常对电源本身及周围设备带来安全隐患。
为了克服常用升压变换器在大功率、高输入输出变比等场合应用的限制,本文研究分析了一种新的电路拓扑结构及其工作方式,并对其进行了仿真验证。
1 工作原理下面分析Boost电路存在的不足,在理想情况下:M(D)=U0Uin= 11-D(1)根据式(1),在一定的输入电压下,理论上可以产生任意高于输入电压的输出电压。
而实际情况中,由于电感、二极管、开关管都会产生一定的损耗,这些损耗可以等效为一个与电感串联的电阻RL,如图1所示:图 1 Boost等效电路图此时根据磁平衡原理:由式(2)、(3)可得:根据式(4),在不同的RL/R 情况下,M(D)如图2所示。
由此可见,在实际电路中,Boost电路升压比有限制极限,输出电压一般能达到输入电压的4~5倍。
在大功率应用环境中,由于损耗严重,升压比反而更低。
为了克服上述非隔离升压电路的不足,本文研究的升压变换器如图3所示,它由交错并联Boost电路与电容串联组合而成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交错并联boost电路原理
交错并联boost电路原理是一种电力电子变换器拓扑结构,它是由多个独立的boost电路并联构成的,具有多路输入和单路输出的特点。
在这种拓扑结构中,每个boost电路的输出电压并联形成最终的输出电压,多个输入电压可以被同时输入,从而实现了输入电压的交错并联。
由于具有多路输入的特点,交错并联boost电路可以实现电压平衡和电流均衡,从而提高了系统的稳定性和可靠性。
此外,在交错并联boost电路中,每个boost电路的拓扑结构相同,只需要通过控制各个开关管的开关状态来实现电路的功率控制,因此控制简单、可靠性高。
交错并联boost电路适用于各种场合,如电力电子变换器、电动车充电器等。
- 1 -。