一元二次方程的应用(1)面积问题
人教版九年级数学上册《一元二次方程的应用——面积问题》教学设计
一元二次方程的应用—面积问题知识与技能1.以一元二次方程解决的实际问题为载体,使学生初步掌握数学建模的基本方法.2.能根据实际问题正确列出一元二次方程解应用题.3.能够发现,归纳出日常生活、生产或其他学科中可以利用一元二次方程来解决的实际问题,并正确地用语言表述问题及其解决问题.4.提高分析问题,解决问题的能力。
过程与方法通过自主探索、合作交流,使学生经历动手实践、展示讲解、探究讨论等活动,发展学生数学思维,培养学生合作学习意识、动手、动脑习惯,激发学生学习热情。
情感态度与价值观,培养学生数形结合的思想。
重点:二次函数的模型的刻画难点:二次函数的性质的应用教学过程创设情境引入新课.。
[创设情境引入新课]1. 请学生回顾举行的面积公式,并进行两个小题的列方程来巩固矩形的面积公式。
2问:若纸板长为80cm,宽60cm,做成的长方体盒子底面积1500cm2。
同学们想一想怎样求剪去的小正方形的边长。
3 把无盖长方体盒重新展开,又会得到原来的长方形纸板,帮助学生从实际问题1.学生们动手制作,在长方形纸板的四个角上截去四个大小相同的正方形,然后把四边折起做成一个无盖的长方体包装盒..2.小组讨论学生们不难发现截去的正方形的边长就是盒子的高.从学生熟悉的矩形的面积入手,能迅速激发学生参与学习的兴趣;让学生发现生活中有些实际问题可以通过列一元二次方程来解决,从而顺利地引入新课。
启发探究建立模型启发探究,建立模型如图,在一个长为20m,宽为15m的长方形空地,建成一个矩形的花园,要求在花园中修两条互相垂直且宽度相同的小路,剩余的地方种植花草,如图所示,要是种植花草的面积为266m2,那么小道的宽度应为多少米?。
1. 学生观察、相互讨论得出等量关系:(1)大矩形的面积—两条小路的面积=四个小矩形的面积之和;(2)大矩形的面积—四个小矩形的面积之和=两条小路的面积。
2、学生讨论,合作交流,请学生板演讲解.让学生经历从具体情境中抽象出一元二次方程的模型的过程,探索具体问题中的数量关系和变化规律,既起到了深化例题的作用,又复习了根的判别式的知识.一元二次方程应用教学反思这节课是“列一元二次方程解应用题”,讲授在几何问题中以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题。
一元二次方程的应用(面积问题)
这里a=1,b=-10,c=30,
b2 4ac (10)2 4 1 30 20 0
此方程无解. 所以用20cm长的铁丝不能折成面积为30cm2的矩形.
例4:如图,一块长和宽分别为60厘米和40厘米的长方 形铁皮,要在它的四角截去四个相等的小正方形,折 成一个无盖的长方体水槽,使它的底面积为800平方厘 米.求截去正方形的边长。
练习:如图是宽为20米,长为32米的矩形耕地,要修筑 同样宽的三条道路(两条纵向,一条横向,且互相垂直), 把耕地分成六块大小相等的试验地,要使试验地的面积 为570平方米,问:道路宽为多少米?
例2:要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个 与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积 是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如 何设计四周边衬的宽度? 分析:这本书的长宽之比是9:7,依题 央的矩形两边之比也为9:7
分析:这本书的长宽之比是9:7,正中央的矩 形两边之比也为9:7,由此判断上下边衬与 左右边衬的宽度之比也为9:7
解:设上下边衬的宽为9xcm,左右边衬宽为7xcm
3 依题意得 (27 18 x)(21 14 x) 27 21 4 63 3 解方程得 x 4
左右边衬的宽度为:
21 7 x 2
21 7
3 3 2 42 21 3 1.4 2 4
例2:要设计一本书的封面,封面长27㎝,宽21㎝,正中央是一个 与整个封面长宽比例相同的矩形,如果要使四周的边衬所占面积 是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如 何设计四周边衬的宽度?
变式:一块长方形铁皮的长是宽的两倍,四个角各截 去一个正方形,制成高是5cm,容积是500cm3的无盖长 方体容器,求这块铁皮的长和宽. 2xcm 高 长 xcm 宽 那么制成的长方体容器底面的宽是 (x-10)cm, ; 长是(2x-10)cm. .
一元二次方程解决面积问题
一元二次方程解决面积问题面积问题在数学中广泛存在,而解决这类问题时,一元二次方程是一个重要的工具。
一元二次方程是一个带有一个未知数的二次方程,通常写作ax² + bx + c = 0,其中a、b和c是已知常数,且a不等于0。
当涉及到面积问题时,我们可以利用一元二次方程来求解。
例如,考虑一个长方形的问题:给定长方形的宽度x,其长度为(3x + 4)。
我们希望求解这个长方形的面积。
首先,我们需要确定长方形的面积公式。
长方形的面积等于长度乘以宽度,即A = x(3x + 4)。
然后,我们将这个面积公式转化为一个一元二次方程。
展开表达式,我们得到A = 3x² + 4x。
现在,我们要解决的问题是找到一个x的值,使得面积A达到最大或最小。
我们可以利用一元二次方程的特性来求解这个问题。
一元二次方程的图像是一个抛物线,对于正系数a,抛物线开口向上。
因此,当a大于0时,抛物线的最小值出现在顶点处。
通过求解一元二次方程的顶点,我们可以找到长方形的最大或最小面积。
一元二次方程的顶点的x坐标由公式x = -b/2a给出。
对于我们的长方形问题,a = 3,b= 4,所以x = -4/(2*3)。
计算得出x = -2/3。
将这个值代入原方程,我们可以计算出面积A的最小值或最大值。
这样,我们就可以通过求解一元二次方程来解决长方形的面积问题。
一元二次方程在解决面积问题以及其他数学问题中具有广泛的应用。
通过灵活运用一元二次方程的特性,我们能够解决各种各样的面积问题。
北师大版九年级数学上2.6 应用一元二次方程
解:设2015年12月31日至2017年12月31日我
国计算机上网总台数的年平均增长率为x,由题
意得 892(1+x)2=2083
(1+x)2= 2083
892
x 2083 1
892
解这个方程,得:x1=1, x2=2 经检验,x1=1,x2=2都是方程的解,且符合题意. 答:要使每盆的盈利达到10元,每盆应植入4株或5株.
练一练:
已知两个连续正奇数的积是63,利用一 元二次方程求这两个数.
鲜花为你盛开,你一定行!
谈谈你这节课的收获
列方程解应用题的基本步骤怎样?
(1)读题: 1、审题; 2、找出题中的量,分清有哪些已知量、未知量,哪 些是要求的未知量;
设基数为a,平均增长率为x,则一次增长后的值为 二次增长后的值为
依次类推n次增长后的值为
a (1 x) a (1 x)2 a (1 x)n
(2)降低率问题
设基数为a,平均降低率为x,则一次降低后的值为 二次降低后的值为
依次类推n次降低后的值为
a (1 x) a (1 x)2 a (1 x)n
问题:截止到2014年12月31日,我国的上网计算机总数为 892万台;截止到2016年12月31日,我国的上网计算机总 数以达2083万台. (1)求2014年12月31日至2016年12月31日我国的上网计 算机台数的年平均增长率(精确到0.1%).
思考:(1)若设年平均增
长率为x,你能用x的代 上网计算
3、找出所涉及的基本数量关系.例如,速度×时间=路程; 销售数量×销售单价=销售收入
一元二次方程应用题专题训练
一元二次方程应用题专题训练一、面积问题1. 题目- 一个矩形的长比宽多2cm,面积是100cm²,求这个矩形的长和宽。
- 解析:设矩形的宽为x cm,因为长比宽多2cm,所以长为(x + 2)cm。
根据矩形面积公式:面积=长×宽,可得到方程x(x + 2)=100。
展开方程得到x²+2x - 100 = 0。
对于一元二次方程ax²+bx + c = 0(这里a = 1,b = 2,c=-100),根据求根公式x=frac{-b±√(b^2)-4ac}{2a},先计算判别式Δ=b^2-4ac = 2^2-4×1×(- 100)=4 + 400=404。
则x=(-2±√(404))/(2)=(-2±2√(101))/(2)=-1±√(101)。
因为矩形的宽不能为负数,所以取x=-1+√(101)≈ - 1+10 = 9(这里√(101)≈10),长为x + 2=9+2 = 11cm。
2. 题目- 有一块正方形铁皮,从四个角各剪掉一个边长为2分米的正方形后,所剩部分正好围成一个无盖的正方体盒子,这个盒子的容积是27立方分米,求原来正方形铁皮的边长。
- 解析:设原来正方形铁皮的边长为x分米。
那么围成无盖正方体盒子底面的边长为(x - 2×2)=(x - 4)分米,盒子的高为2分米。
根据正方体容积公式V=a^3(这里a为正方体棱长),可得方程(x - 4)^2×2 = 27,即(x - 4)^2=(27)/(2),展开得到x^2-8x + 16=(27)/(2),整理为2x^2-16x+32 - 27 = 0,即2x^2-16x + 5 = 0。
这里a = 2,b=-16,c = 5,判别式Δ=b^2-4ac=(-16)^2-4×2×5=256 - 40 = 216,x=(16±√(216))/(4)=(16±6√(6))/(4) = 4±(3√(6))/(2),因为边长不能为负,所以x =4+(3√(6))/(2)分米。
一元二次方程应用题(几何图形面积问题)
解题思路
假设长方形的长为l,宽为w, 通过列方程建立方程组,然后 求解得出面积。
解答与解析
通过解方程组,得出长方形的 长、宽和面积的具体数值,详 细解析计算过程和答案。
实例3 :三角形面积问题
问题提出
已知直角三角形的斜边长度为c, 某一直角边的长度为a,求三角形 的面积。
解题思路
根据已知条件,利用勾股定理和三 角形面积公式建立方程,然后求解 得出面积。
一元二次方程应用题(几 何图形面积问题)
本演示将介绍一元二次方程的应用,特别是在解决几何图形面积问题时的应 用。通过精彩的实例和深入的讲解,帮助你全面理解和掌握这一知识点。
一元二次方程介绍
简要介绍一元二次方程的概念、形式和解法方法,以及元二次方程解决几何图形的面积问题,通过代入、求解方程, 计算各种图形的面积。
解答与解析
通过解方程和应用三角形面积公式, 得出三角形的面积的具体数值,详 细解析计算过程和答案。
总结与实践建议
总结一元二次方程在解决几何图形面积问题中的应用要点,并提供一些建议和实践步骤,以帮助你更好地掌握这一 知识。
实例1:正方形面积问题
1
问题提出
给定正方形的对角线长度为d,求正方形的面积。
2
解题思路
假设正方形的边长为x,利用勾股定理建立方程,然后求解得出面积。
3
解答与解析
通过解方程,得出正方形的边长和面积的具体数值,详细解析计算过程和答案。
实例2 :长方形面积问题
问题提出
已知长方形的周长为P,求长方 形的面积。
12.解一元二次方程的实际应用——面积问题
孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。 谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试
x
35-2x 当x=7.5时,35-2x=20>18,因此不合题意,舍去;
当x=10时,35-2x=15. 答:鸡场的长、宽分别为15米、10米.
例2 某校为了美化校园,准备在一块长32米,宽20米的长方形场地四周修
筑等宽的道路,中间的矩形部分作草坪, 若草坪的面积为540米2,求图中道路 的宽是多少? x x 32-2x 20-2x x x 解:设草坪四周道路的宽为x米, 则草坪的长为(32-2x)米,宽为(20-2x)米.
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她
高考总分:711分 毕业学校:北京八中 语文139分 数学140分
英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出
一元二次方程应用题面积问题
一元二次方程应用题面积问题1. 引言:面积问题的迷人世界大家好!今天咱们聊聊一元二次方程中的面积问题。
别急着皱眉头,这个话题其实特别贴近咱们的生活,学会了,能让你在解答一些日常问题时得心应手。
比如说,买草坪、规划花园、甚至是设计墙面装饰,这些都能用到哦!2. 面积问题的基础:概念简述2.1 什么是面积问题?说白了,面积问题就是要求你计算一个区域的大小。
在几何中,咱们经常需要找出矩形、三角形或者其他形状的面积。
那一元二次方程为什么会出现在这个问题里呢?好问题!因为有些面积计算需要用到二次方程来解决。
2.2 为什么用一元二次方程?一元二次方程,看起来有点复杂,但其实就是形如 ( ax^2 + bx + c = 0 ) 的方程。
它能帮我们解决一些涉及面积的实际问题,比如说,计算一个长方形的面积,特别是当这个长方形的边长变化时,就需要用到这样的方程了。
3. 实际例子:如何应用一元二次方程解决面积问题。
3.1 示例一:草坪面积假设你想在家里的花园里铺草坪,花园的长度是 ( x ) 米,宽度比长度少 5 米。
那么,花园的宽度就是 ( x 5 ) 米。
你知道草坪的面积是 84 平方米。
我们可以用一元二次方程来找出长度和宽度。
首先,面积 ( A ) = 长度 ( times ) 宽度。
根据题意,有:[ A = x times (x 5) = 84 ]。
简化一下,得到方程:[ x^2 5x = 84 ]接着,把 84 移到方程的另一边:[ x^2 5x 84 = 0 ]现在咱们可以用因式分解法或者求根公式来解这个方程。
因式分解的话,我们可以得到:[ (x 9)(x + 4) = 0 ]。
从中可以得到 ( x = 9 ) 或 ( x = 4 )。
因为长度不能是负数,所以我们取 ( x = 9 ) 米。
这样,花园的宽度就是 ( 9 5 = 4 ) 米。
3.2 示例二:墙面装饰再来一个例子,假如你要装饰一面墙,墙的高度比宽度多 2 米,装饰的总面积是60 平方米。
一元二次方程应用题
解 :设 x后 s , P的 CD 面 P A t积 面 BC 是 积 ,根 的 据 ,得 一
1(8x)6(x)1186.
A
2
22
整理得:
x21x42 40.
P
8cm
解这个方程,得:
x12;x21(2 不合 ,舍 题 )去 .意 C
B Q
答 :2s后 ,PC 的 D面P积 tAB 是 面 C积的 . 一 6cm 半
降价前 降价后
44 44—x
20 20+5x
40×20 1600
(2)由题意可得方程:____(_4_4__—__x_)_(_2_0__+_5_x__)_=_1_6__0_0____
(3)若将“每件降价1元”改写为“每件降价0.5元”,又可以得到什么方程?
(44—x)(20+2×5x)=1600
2、新华商场销售某种冰箱,每台进价为2500元.市 场调研表明:当销售价为2900元时,平均每天能售 出8台;而当销价每降低50元时,平均每天能多售4 台.商场要想使这种冰箱的销售利润平均每天达到 5000元,每台冰箱的定价应为多少元?
2900-x-2500
5000
(2)由题意可得方程:______________________________
3、某商场将进货价为30元的台灯以40元售出,平均 每月能售出600个,调查表明,这种台灯的售价每上 涨1元,其销售量就减少10个,为了实现平均每月 10000元的销售利润,这种台灯的售价应为多少?这 时应至少进台灯多少?
2. 某农场要建一个长方形的养鸡场,鸡场的一 边靠墙(墙长25m),另外三边用木栏围成,木栏 长40m.
解:(1)设养鸡场的宽为xm,根据题意得
一元二次方程应用题(面积问题)1
,
(2)
。 注意:这两个面积的重叠部分是 x2米2
2 20x 米 纵向的路面面积为
所以正确的方程是: 32×20 - 32x + 20x - x2 = 540
化简得,x - 52x +100 = 0, x1 = 2,x2 = 50
2
其中的 x=50超出了原矩形的长和宽,应舍去.
答:所求道路的宽为2米。
一元二次方程的应用 之面积问题
回忆一下:
列方程解应用题有哪些步骤?
审清题意设未知, 找出等量列方程,
解出方程要检验, 检验无误写答案。
一、面积问题
一面积为120m2的矩形苗圃,它的长比宽多 x+2 2m,苗圃的长和宽各是多少?
解:设矩形的宽为xm,则长为(x+2) m, 根据题意得: x x (x+2) =120. 即 x2 + 2x-120 =0.
120m2
Hale Waihona Puke 探究1、某校为了美化校园,准备在一块长32米, 宽20米的长方形场地上修筑若干条道路,余下部 分作草坪,并请全校同学参与设计,现在有两位 学生各设计了一种方案(如图),根据两种设计方 案各列出方程,求图中道路的宽分别是多少?使 图(1),(2)的草坪面积为540米2.
(1)
(2)
解:(1)如图,设道路的宽为 x米,则
练习2:如图长方形鸡场,一边靠墙(墙的长度为 18m),另外三边用篱笆围成。篱笆总长为35m (1)当所围的面积为150m2,则长方形鸡场的长和宽分 别是多少? (2)能够围成160m2的鸡场吗?
1.一块耕地大小尺寸如图所示,要在这块耕地 上沿东西和南北方向分别挖二条和四条水渠, 如果水渠的宽相等,而且要保证余下的可耕地 面积为9600平方米,那么水渠应挖多宽? 2.在一幅长50cm,宽30cm的风景画的四周镶 一条宽度相等的金色纸边,制成一幅矩形挂 图,如图所示,如果要使整个挂图的面积是 1800cm2,求金色纸边的宽。
一元二次方程的应用-面积专题
一元二次方程的应用-面积专题1.如图,某景区想在一个长40m,宽32m的矩形湖面上种植荷花,为了便于游客观赏,准备沿平行于湖面两边的纵、横方向各修建一座小桥(桥下不种植荷花).已知修建的纵向小桥的宽度是横向小桥宽度的2倍,荷花的种植面积为21140m,如果横向小桥的宽为xm,那么可列出关于x的方程为______________________.(方程不用整理)2.如图,利用一面墙(墙的长度不限),用长为19m的篱笆围一个留有1m宽门的矩形养鸡场,怎样围可以使养鸡场的面积为250m?设矩形与墙平行的边长为xm,则根据题意可以列出的方程为___________________.(化成一般形式)3.如图,某小区计划在一个长为32m,宽为20m矩形场地ABCD上修建同样宽的小路,其余部分种草,若使草坪面积为2540m,求路的宽度?4.如图,某市近郊有一块长为60米,宽为50米的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中阴影部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为a 米)区域将铺设塑胶地面作为运动场地.(1)设通道的宽度为x 米,则a = (用含x 的代数式表示);(2)若塑胶运动场地总占地面积为2430平方米.请问通道的宽度为多少米?5.如图,一农户要建一个矩形猪舍,猪舍的一边利用现有的住房墙,另外三边用25m 长得建筑材料围成,为方便进出,在垂直于住房墙的一边留一个小门.(1)如果住房墙长12米,门宽为1米,所围矩形猪舍的长、宽分别为多少时,猪舍面积为280m ?(2)如果住房墙长12米,门宽为1米,当AB 边长为多少时,猪舍的面积最大?最大面积是多少?(3)如果住房墙足够长,门宽为a 米,设AB x =米,当6.57x 剟时,猪舍的面积S 先增大,后减小,直接写出a 的范围.6.某工厂拟建一座平面图形为矩形且面积为200平方米的三级污水处理池(平面图如图ABCD所示).由于地形限制,三级污水处理池的长、宽都不能超过16米.如果池的外围墙建造单价为每米400元,中间两条隔墙建造单价为每米300元,池底建造单价为每平方米80元.(池墙的厚度忽略不计)(1)当三级污水处理池的总造价为47 200元时,求池长x;(2)如果规定总造价越低就越合算,那么根据题目提供的信息,以472 00元为总造价来修建三级污水处理池是否最合算?请说明理由.7.(教材变式题)如图所示,在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是25400cm,设金色纸边的宽为xcm,求满足x的方程.8.我们用一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就可以做成一个没有盖的长方体盒子,如图①所示.用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的小正方形,然后做成如图②所示的底面积为21500cm的没有盖的长方体盒子,想一想,应该怎样求出截去的小正方形的边长?探索:若设小正方形的边长为xcm,那么这个盒子底部的长及宽分别为cm和cm,根据题意,可得一元二次方程为,整理成一般形式是.9.如图,某农场有一道长16米的围墙,计划用40米长的围栏靠墙围成一个面积为120平方米的长方形养鸡场,为了方便饲养又用围栏隔出一个储物间,在墙的对面开了两个1米宽的门,求围成长方形养鸡场宽AB的长度.10.某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27 米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1 米宽的门(不用木栏),建成后木栏总长57 米,设饲养场(长方形ABCD)的宽为a米.(1)饲养场的长为米(用含a的代数式表示).288m,求a的值.(2)若饲养场的面积为2(3)当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?。
一元二次方程方程的应用面积问题
一元二次方程方程的应用面积问题一元二次方程是数学中的重要概念,它在现实生活中有着丰富的应用。
其中之一就是在解决面积问题时发挥作用。
从简到繁,本文将深入探讨一元二次方程在面积问题中的应用,以便读者能够更深入地理解这一概念。
一、一元二次方程的基本概念在深入讨论一元二次方程在面积问题中的应用之前,我们先来复习一下一元二次方程的基本概念。
一元二次方程通常具有如下形式:\[ax^2 + bx + c = 0\]其中,\(a\)、\(b\) 和 \(c\) 分别是一元二次方程的系数,而 \(x\) 则是未知数。
通过求解一元二次方程,我们可以得到该方程的根,从而找到方程所代表的数学意义。
二、一元二次方程在面积问题中的应用1. 求矩形的面积假设矩形的长为 \(x+3\),宽为 \(x-1\),我们希望求解这个矩形的面积。
根据矩形面积的计算公式 \[面积 = 长 \times 宽\]我们可以建立一个关于矩形面积的一元二次方程,通过求解这个方程,就可以得到这个矩形的面积。
2. 求三角形的面积假设有一个底边长为 \(x+2\),高为 \(2x-1\) 的三角形,我们可以利用一元二次方程来求解这个三角形的面积。
根据三角形面积的计算公式\[面积 = \frac{底边 \times 高}{2}\]我们可以建立一个关于三角形面积的一元二次方程,通过求解这个方程,就可以得到这个三角形的面积。
3. 求圆的面积对于圆的面积问题,我们需要利用一元二次方程的相关知识进行转化。
假设一个圆的半径为 \(x+1\),我们希望求解这个圆的面积。
根据圆的面积公式 \[面积 = \pi \times 半径^2\]我们可以建立一个关于圆面积的一元二次方程,通过求解这个方程,就可以得到这个圆的面积。
三、总结与回顾通过以上的例子,我们可以看到一元二次方程在面积问题中的广泛应用。
无论是矩形、三角形还是圆,我们都可以利用一元二次方程来求解其面积,这为我们在实际生活中的计算提供了便利。
一元二次方程的应用--面积问题》教学设计
一元二次方程的应用--面积问题》教学设计本节课的学生已经学过一元二次方程的基本知识,但对于如何将方程应用于实际问题解决中还存在一定的困惑。
因此,本节课需要通过生活化的面积问题引导学生思考,提高他们的运算能力和思维能力,并让他们体验到建模思想的魅力。
同时,通过合作研究和探索交流,培养学生的主动探究、深度思考的研究品质,使他们学会智慧生活。
二、教学重难点教学重点:通过面积问题引导学生理解一元二次方程解的实际意义,掌握列一元二次方程解决实际问题的方法,加强对XXX的合理性的理解。
教学难点:寻找等量关系,对方程的解在实际情境中的合理理解。
为了突破这些难点,我们将采用共同分析问题、灵感碰撞、辨析比较、数学类比、转化、建模思想的运用、归纳提炼等方法,帮助学生生成方法,提高他们的综合能力,达成教学目标。
三、教学过程1.引入问题老师:同学们,你们去过花园吗?在花园里,我们经常能看到各种各样的小路,那么设计这些小路的时候,有没有考虑过它们的面积呢?今天,我们就来探讨一下如何用数学方法解决这个问题。
2.讲解面积问题的解法老师:同学们,我们可以将小路看成长方形,这样,小路的面积就是长和宽的乘积。
但是,有些小路的形状并不规则,如何求出它们的面积呢?我们可以将它们分成若干个规则的图形,然后再求出每个图形的面积,最后将它们加起来。
这个方法叫做分割法,你们可以试一试。
3.解决实际问题老师:现在,我们假设有一个长方形的花坛,它的周长是20米,面积是56平方米,那么这个花坛的长和宽各是多少呢?请你们用一元二次方程解决这个问题。
4.检验解的合理性老师:同学们,我们已经求出了这个花坛的长和宽,但是,我们还需要检验一下这个解是否合理。
请你们思考一下,如果这个花坛的长和宽与我们求出的解不同,会出现什么情况呢?5.总结归纳老师:同学们,今天我们研究了如何用一元二次方程解决面积问题,并通过一个实际问题体验了建模思想的魅力。
你们觉得这个方法有用吗?有哪些需要注意的地方呢?请你们思考一下,并做一下总结。
一元二次方程应用题面积问题
例子三
如果花坛的面积为40平方 米,求出花坛的长度和宽 度。
常见面积问题的总结
1 房屋面积
如何利用一元二次方程 计算房屋的面积?让我 们总结一下。
2 花坛面积
通过一元二次方程解决 花坛面积的问题有哪些 常见方法?我们来一起 回顾一下。
3 其他应用题
一元二次方程在其他面 积问题中还有哪些实际 应用?让我们一起探索。
结论和要点
通过本次讲座,我们了解了一元二次方程在面积问题中的应用。我们学习了一元二次方程的定义和公式, 探讨了解决面积问题的步骤,并举例演示了实际应用。希望这些知识能够帮助你在日常生活中解决面积 问题。
一元二次方程是形如ax^2 + bx + c = 0的代数方程,其中a、b、c是已知常数,x是未知数。解一元二次 方程可以使用二次方程的公式:x = (-b ± √(b^2 - 4ac)) / 2a。
应用题面积问题的例子
假设我们想计算一个长方形花坛的面积。已知花坛的一条边长为x米,另一条边长为x + 2米。如何利用 一元二次方程来解决这个问题呢?让我们看一下具体的例子。
一元二次方程应用题面积 问题
欢迎来到本次讲座!今天我们将探讨一元二次方程在面积问题中的应用。让 我们一起享受这个令人兴奋且具有挑战性的话题吧!
问题背景
在实际生活中,我们经常遇到需要计算面积的问题,例如房屋面积、花坛面 积等。那么,如何利用一元二次方程来解决这类问题呢?让我们一起探索吧!
一元二次方程的定义和公式
解决面积问题的步骤
1
步骤二
面积:A = 长 × 宽。
3
步骤一
假设花坛的长度为x米,宽度为x + 2 米。
步骤三
将面积公式代入一元二次方程:x(x + 2) = A。
一元二次方程应用题(1)面积问题
一元二次方程应用题(一)1.如图:是一块矩形场地ABCD ,长AB=102m ,宽AD = 51m ,从A 、B 两处入口的路宽都为1m , 两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A 、5050m 2B 、4900m 2C 、5000m 2D 、4998m2 2.在一幅长50cm ,宽30cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为3.如图,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。
4.如图,有长为24m 的篱笆,一面利用墙(墙的最大可用长度a 为10m),围成中间隔有一道篱笆的长方形花圃,如果要围成面积为45㎡的花圃,花圃的长、宽分别是多少米?5.要建一个面积为140平方米的仓库,仓库的一边靠墙,这堵墙长16米;在与墙平行的一边,要开一扇2米宽的门.已知围建仓库的现有木板材料可使新建板墙的总长为32米,那么这个仓库设计的长和宽应分别为多少米?A D1题2题6.如图,在一幅长90cm,宽40cm 的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画.如果要求挂画的面积是整个面积的72%,那么金边的宽应是多少?7.如图,利用一面墙(墙的长度不超过45m ),用80m 长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m 2? ⑵能否使所围矩形场地的面积为810m 2,为什么?8.如图,在一块长为92m ,宽为60m 的矩形耕地上挖三条水渠,水渠的宽都相等,水渠把耕地分成面积均为885m 2的6个矩形小块,水渠应挖多宽?9.如图17①,在一幅矩形地毯的四周镶有宽度相同的花边. 如图17②,地毯中央的矩形图案长6米、宽3米,整个地毯的面积是40平方分米.求花边的宽.第21题图。
一元二次方程七大应用题讲解
一元二次方程七大应用题讲解一、一元二次方程概述一元二次方程是数学中的一种基本方程,其一般形式为:ax+bx+c=0。
其中,a、b、c为已知常数,且a≠0。
求解一元二次方程的方法有多种,如因式分解法、完全平方公式法、韦达定理、二次三项式的配方法等。
二、一元二次方程的求解方法1.因式分解法:将一元二次方程转化为两个一次方程相乘的形式,即(ax+m)(nx+k)=0。
根据乘积为零的性质,可得到方程的解。
2.完全平方公式法:将一元二次方程转化为完全平方的形式,如(x+m)=n。
利用完全平方公式,可求得方程的解。
3.韦达定理:对于一元二次方程ax+bx+c=0,其根与系数的关系为:x+x=-b/a,xx=c/a。
根据这一关系,可以求解一些与根有关的问题。
4.二次三项式的配方法:将一元二次方程转化为二次三项式方程,如ax+bx+c=a(x+m)+n。
利用二次三项式的配方法,可以求解方程。
三、一元二次方程的应用1.面积问题:根据一元二次方程的根与系数的关系,可以求解几何图形的面积,如求解抛物线的面积。
2.几何图形问题:利用一元二次方程描述几何图形的性质,如求解圆的标准方程、椭圆的标准方程等。
3.物理问题:一元二次方程在物理中的应用广泛,如求解物体运动的轨迹、速度、加速度等。
4.函数问题:一元二次方程可以表示为二次函数,通过求解二次函数的极值、对称轴等问题,可以应用于优化问题、最值问题等。
5.线性方程组问题:一元二次方程与线性方程组有密切关系,通过求解一元二次方程,可以求解线性方程组。
6.实际问题:一元二次方程在实际问题中有广泛应用,如求解距离问题、速度问题等。
7.综合问题:在各类综合问题中,一元二次方程作为一种基本工具,可以解决许多复杂问题。
一元二次方程应用__图形面积问题
(1)
解2:解1计算时分块较多,还要注意重叠部分要减去。 我们可以利用图形的平移,对图形进行重新整理,如右图。
解:设图中道路的宽为x米, 由题得:(32 x)(20 x) 540
整理得: x2 52 x 100 0 (x 2)(x 50) 0
解得:x1 2, x2 50(不合题意,舍去 ) 故道路宽为 2米.
练习:如图,小华从市场上买回一块矩形铁皮,他将此 矩形铁皮的四个角落各剪去一个边长为1m的正方形后, 剩下的部分刚好能围成一个容积为15m³的无盖长方体箱 子,且此长方体箱子的底面长比宽多2m。已知购买这种 铁皮每平方米需20元,算一算小华购回这张矩形铁皮共 花了多少钱?
解:设无盖长方体箱子宽x米,则长(x 2)米
由题: x( x 2) 1 15
则矩形铁皮面积为: (5 2)(3 2) 35(平方米)
整理得: x2 2x 15 0
35 20 700 元
解得:x1 3, x2 5(舍去)
故这张铁皮共花了 700 元.
课堂小结: 本节课你有哪些收获?
1、仔细分析题目,找准题目中的量,会用含未知 数的代数式准确表示出所需量,进而根据等量关 系列出方程;
解:设金色纸边的宽为xcm,则挂图长为 (80+2x)cm、宽为(50+2x)cm
由题意得:(80 2x)(50 2x) 5400
4x2 260x 1400 0
整理得: x2 6 5, x2 70(不合题意舍去 ) 故金色纸边的宽为5cm.
17.5 一元二次方程应用 ---图形面积问题
例1:学校为了美化校园,准备在一块长32米,宽20米的 长方形草地上修筑若干条宽度相同的道路,余下部分作 草坪。现有一位学生设计了如下一种方案,如图(1), 若使草坪面积为540㎡,求图中道路的宽。
一元二次方程的应用之面积问题
化简得,x2 36x 35 0 (x 35)(x 1) 0 x1 35, x2 1
其中的 x=35超出了原矩形的宽,应舍去.
答:道路的宽为1米.
小结: 列一元二次方程
解应用题的步骤?
5
(8-2x)
x
18m2
x
例1.镜框有多宽?
一块四周镶有宽度相等的花边的镜框如下图,它的
长为8m,宽为5m.如果镜框中央长方形图案的面积为
18m2 ,则镜框多宽?
审
解:设镜框的宽为xm ,则镜框中央长方形
图案的长为(8-2x)m宽, 为 (5-2x)m,得
设
(8 - 2x) (5 - 2x) = 18
40米
22米
[例4] 学校要建一个面积为150平方米的长方形 自行车棚,为节约经费,一边利用18米长的教 学楼后墙,另三边利用总长为35米的铁围栏围 成,求自行车棚的长和宽.
解:设与教学楼后墙垂直的一条边长为x米,则与教学
楼后墙平行的那条边长为
(352x)米,根据题意,得 x(352x)150 解当得x x115时12,5 3, x522x1200.18不合题意,舍去;
列
即2X2 - 13 X + 11=0
解
解得X1=1,
X2=5.5(不合题意)
答:镜框的宽为1m.
答
例2.如图,一块长和宽分别为60厘米和40 厘米的长方形铁皮,要在它的四角截去四个 相等的小正方形,折成一个无盖的长方体水 槽,使它的底面积为800平方厘米.求截去正 方形的边长。
例2.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相 等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形 的边长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
世界古代数学家
高斯
阿基米德
欧几里德
二实验中学西校九年级数学组
复习回顾:
1.解一元二次方程有哪些方法? 直接开平方法、配方法、公式法、因 式分解法. 2.列一元一次方程解应用题的步骤? ①审题,②设出未知数. ③找等量关系 ④列方程⑤解方程, ⑥检验 ⑦答.
问题解决: 绿苑小区规划设计时,准备在每两幢楼房 之间,安排面积为900平方米的一块长方形 绿地,并且长比宽多10米,那么绿地的长 和宽各为多少?( 37 6.08 精确到0.1)
A
D
B
C
Hale Waihona Puke 练习1:学生会准备举办一次摄影展览,在每张长 和宽分别为18cm和12cm的长方形照片周围 镶上一圈等宽的彩纸.经试验,彩纸面积为 相片面积的三分之二时较美观,求镶上的 彩纸条的宽. (精确到0.1)?
41 6.33
练习2:
学校生物小组有一块长35米,宽20米的矩形试验 田,为了管理方便,现要在中间开辟两纵一横 三条等宽的小道,要使种植面积为600米2,求小 道的宽.(精确到0.1)
4825 69.46
20
35
练习3:
学校准备在图书馆后面的场地边建一个面 积为50平方米的长方形自行车车棚.一边利 用图书馆的后墙,并利用已有总长为25米 的铁围栏.请你设计,如何搭建较合适?
x
3600cm2
50cm
100cm
问题引入:
问题3(1):用20m长的篱笆,怎样围成一个 面积为24m2的长方形场地?
20m
24m2
问题引入:
问题3(2):用20m长的篱笆,利用一面墙怎 样围成一个面积为50m2的长方形场地?
A
D
B
C
问题引入:
问题3(3):用20m长的篱笆,利用一面墙(墙 长10米)怎样围成一个面积为32m2,且中间用 篱笆隔开的长方形养鸡场?
x
900m2
x+10
问题引入:
问题1:学校生物小组有一块长32米,宽20米的 矩形试验田,为了管理方便,准备沿平行于 两边的方向纵横各开辟一条等宽的小道.要使 种植面积为540米2,小道的宽应是多少?
20
32
问题2:如图,有一块矩形铁皮,长100cm,宽50cm, 在它的四角各切去一个同样的正方形,然后 将四周突出部分折起,就能制作一个无盖方 盒.如果要制作的无盖方盒的底面积为 3600cm2,那么铁皮各角应切去多大的正方形?