平面向量的数量积说课课件

合集下载

《平面向量的数量积 》课件

《平面向量的数量积 》课件
平面向量的数量积
目 录
平面向量的数量积的定义平面向量的数量积的运算平面向量的数量积的应用平面向量的数量积的定理和推论平面向量的数量积的习题及解析
平面向量的数量积的定义
平面向量$mathbf{a}$和$mathbf{b}$的数量积定义为$mathbf{a} cdot mathbf{b} = |mathbf{a}| times |mathbf{b}| times cos theta$,其中$theta$是$mathbf{a}$和$mathbf{b}$之间的夹角。
题目:已知向量$\overset{\longrightarrow}{a} = (x,1),\overset{\longrightarrow}{b} = (x + 1,x^{2})$,若$\overset{\longrightarrow}{a}\bot\overset{\longrightarrow}{b}$,则实数$x$的
向量的数量积为0当且仅当两向量垂直,即夹角为$90^circ$。
向量数量积与模长的关系
$|vec{a} cdot vec{b}| leq |vec{a}| times |vec{b}|$,即向量数量积的绝对值不超过两向量的模长的乘积。
向量数量积与点积的关系
如果两个向量的点积为0,则它们正交或其中一个向量是零向量。
向量投影
向量垂直与平行判定
动量与冲量
在物理中,向量的数量积可以用于描述物体的动量和冲量,这是理解力学问题的基础。
力的合成与分解
在分析力的合成与分解问题时,向量的数量积可以用于计算合力与分力的大小和方向。
平面向量的数量积的定理和推论
向量数量积的定义
两个向量的数量积定义为它们的模长和夹角的余弦值的乘积,记作$vec{a} cdot vec{b} = |vec{a}| times |vec{b}| times cos theta$。

平面向量的数量积PPT课件

平面向量的数量积PPT课件

运算律
向量与标量乘法结合律
对于任意向量$mathbf{a}$和标量$k$,有$kmathbf{a} cdot mathbf{b} = (kmathbf{a}) cdot mathbf{b} = k(mathbf{a} cdot mathbf{b})$。
向量与标量乘法交换律
对于任意向量$mathbf{a}$和标量$k$,有$mathbf{a} cdot kmathbf{b} = k(mathbf{a} cdot mathbf{b}) = (kmathbf{b}) cdot mathbf{a}$。
向量数量积的性质
向量数量积满足交换律和结合 律,即a·b=b·a和 (a+b)·c=a·c+b·c。
向量数量积满足分配律,即 (a+b)·c=a·c+b·c。
向量数量积满足正弦律,即 a·b=|a||b|sinθ,其中θ为向量a 和b之间的夹角。
02 平面向量的数量积的运算
计算公式
定义
平面向量$mathbf{a}$和$mathbf{b}$的数量积定义为 $mathbf{a} cdot mathbf{b} = |mathbf{a}| times |mathbf{b}| times cos theta$,其中$theta$是向量 $mathbf{a}$和$mathbf{b}$之间的夹角。
交换律
平面向量的数量积满足交换律,即$mathbf{a} cdot mathbf{b} = mathbf{b} cdot mathbf{a}$。
分配律
平面向量的数量积满足分配律,即$(mathbf{a} + mathbf{b}) cdot mathbf{c} = mathbf{a} cdot mathbf{c} + mathbf{b} cdot mathbf{c}$。

平面向量的数量积PPT教学课件

平面向量的数量积PPT教学课件

正面——实写
高 雅 脱 俗
反面——虚写
不 慕 富 贵
山——仙名
何陋之有
南洋诸葛庐
西蜀子云亭
斯是陋室,惟吾得馨











鸿

耳水
——
儒Hale Waihona Puke 琴无往,

来 无
阅 金
牍 之



劳灵


苔痕上阶绿,草色入帘青
举例说出修辞手法 和 论证方法
• 比(喻)(起)兴
• 对比 可以调素琴,阅金经。 • 借代 无丝竹之乱耳,无案牍之劳形。对比论证
作业:
课本P121A组6 ~ 9
《玄都观桃花》
元和十年自朗州召至京戏赠看花诸君子
• 紫陌红尘拂面来,无人不道看花回。
• 玄都观里桃千树,尽是刘郎去后栽。
• 【注】新栽桃树喻攀附新当权者的新贵。

刘郎因此诗恶相遭贬。

《再游玄都观》
• 百亩庭中半是苔, 桃花净尽菜花开。
失望 再度失望
• 种桃道士归何处? 前度刘郎今又来。
另一方面 3 1cos 3 1sin 2
∴ a b 3 1cos 3 1cos ……①
又 sin2 cos2 1
解之得:
cos 1 ,sin 3
或 cos
2
3 2
2
,sin
1 2
b1
3 2
,
1 2
或b2
1, 2
3 2
……②
小结:
1.平面向量的数量积的定义及几何意义 2.平面向量数量积的性质及运算律 3.平面向量数量积的坐标表示 4.平面向量的模、夹角

第三节第1课时平面向量的数量积课件共42张PPT

第三节第1课时平面向量的数量积课件共42张PPT

(3)a·c=a·( 7a+ 2b)= 7a2+ 2a·b= 7;
|c|= ( 7a+ 2b)2 = 7a2+2b2+2 14a·b =
7+2=3;
所以cos〈a,c〉=
a·c |a||c|

7 1×3

7 3
;所以sin〈a,
c〉= 32.故选B. 答案:(1)B (2)B (3)B
1.根据平面向量数量积的性质:若a,b为非零向
CD,CD=2,∠BAD=
π 4
,若
→ AB
→ ·AC
=2
→ AB
→ ·AD
,则
A→D·A→C=________.
解析:法一(几何法) 因为A→B·A→C=2A→B·A→D, 所以A→B·A→C-A→B·A→D=A→B·A→D, 所以A→B·D→C=A→B·A→D.
因为AB∥CD,CD=2,∠BAD=π4, 所以2|A→B|=|A→B|·|A→D|cos π4,化简得|A→D|=2 2. 故A→D·A→C=A→D·(A→D+D→C)=|A→D|2+A→D·D→C=(2 2)2+ 2 2×2cos π4=12. 法二(坐标法) 如图,建立平面直角坐标系xAy.依 题意,可设点D(m,m),C(m+2, m),B(n,0),其中m>0,n>0,
求非零向量a,b的数量积的三种方法
方法 定义法
基底法
适用范围
已知或可求两个向量的模和夹角
直接利用定义法求数量积不可行时,可选取合适 的一组基底,利用平面向量基本定理将待求数量 积的两个向量分别表示出来,进而根据数量积的 运算律和定义求解
①已知或可求两个向量的坐标; 坐标法 ②已知条件中有(或隐含)正交基底,优先考虑建
1 2

2.4.1平面向量的数量积:课件一(15张PPT)

2.4.1平面向量的数量积:课件一(15张PPT)

⑦对任意向量a,b,с都有(a· ) · a·b · b c= ( c)
⑧a与b是两个单位向量,则a2=b2.
小结:
• 1. a b | a || b | cos
• 2. a b a b 0
2 2 a | a |
可用来求向量的模
3.投影
a b | a || b |
5 |ab| ≤ |a||b|
返回
三、讲解范例: 例1 已知|a|=5, |b|=4, a与b的夹角θ=120o,求a·b. 例2 已知|a|=6, |b|=4, a与b的夹角为60o求(a+2b)·(a-3b). 例3 已知|a|=3, |b|=4, 且a与b不共线,k为何值时, 向量a+kb与a-kb互相垂直. 例4 判断正误,并简要说明理由. ①a·0=0;②0·a=0;③0- AB = BA ④|a·b|=|a||b|; ⑤若a≠0,则对任一非零b有a·b≠0; ⑥a·b=0,则a与b中至少有一个为0;
作业:
1、若 | a || b | 1, a b 且2a 3b 与ka 4b 也 互相垂直,求 的值。 k 2、设a是非零向量,且 c , 求证: b a b a c a (b c )
返回
4.向量的数量积的几何意义: 数量积ab等于a的长度与b在a方向上投影|b|cos的乘积. 5.两个向量的数量积的性质: 设a、b为两个非零向量,e是与b同向的单位向量. 1 ea = ae =|a|cos 2 ab ab = 0 3 当a与b同向时,ab = |a||b|;当a与b反向时,ab = |a||b|. 特别的aa = |a|2或 | a | a a 4 cos =

平面向量的数量积及运算律的课件

平面向量的数量积及运算律的课件

REPORTING
THANKS
感谢观看
分配律
总结词
平面向量数量积的分配律是指向量的数 量积满足分配律,即一个向量与一个标 量的乘积与该向量与一个向量的数量积 相等。
VS
详细描述
分配律表示为 $vec{a} cdot (lambda + mu) = lambda cdot vec{a} + mu cdot vec{a}$ 和 $(lambda + mu) cdot vec{a} = lambda cdot vec{a} + mu cdot vec{a}$,其中 $lambda$ 和 $mu$ 是标量,$vec{a}$ 是向量。这意 味着一个向量与一个标量的乘积可以分配 到该向量的各个分量上。这个性质在解决 物理问题和几何问题中非常有用,因为它 允许我们将标量因子分配给向量。
总结词
向量数量积的值等于两向量模的乘积与它们 夹角的余弦值的乘积。
详细描述
这是平面向量数量积的基本公式,表示两向 量的数量积与它们的模和夹角余弦值有关。 当两向量垂直时,夹角余弦值为0,数量积 为0;当两向量同向或反向时,夹角余弦值 为1或-1,数量积为两向量模的乘积。
向量数量积的坐标表示
要点一
总结词
结合律
总结词
平面向量数量积的结合律是指向量的数量积满足结合律,即三个向量的数量积满足结合顺序无关。
详细描述
结合律表示为 $(vec{a} + vec{b}) cdot vec{c} = vec{a} cdot vec{c} + vec{b} cdot vec{c}$ 和 $(vec{a} cdot vec{b}) cdot vec{c} = vec{a} cdot (vec{b} cdot vec{c})$,即向量的数量积满足结合 律,与向量的结合顺序无关。这也是向量数量积的一个重要性质。

《平面向量的数量积 》课件

《平面向量的数量积 》课件

数量积的性质

对称性
了解数量积的对称性质,即两个向量的数量积与 顺序无关。
同向向量和垂直向量的数量积
学习同向向量和垂直向量的数量积的特点和计算 方法。
分配律
掌握数量积的分配律,即对两个向量进行数量积 后再进行加法等价于对两个向量分别进行数量积 再进行加法。
零向量的数量积
了解零向量在数量积中的特殊性质。
《平面向量的数量积 》 PPT课件
这个PPT课件将帮助你了解平面向量的数量积及其重要性。你将学习到平面 向量的基础知识、数量积的定义和性质,并了解它在向量夹角计算、向量投 影和向量垂直判定中的应用。
简介
平面向量的定义和表示
了解平面向量的定义和表示方法,以及如何在平面 上进行向量表示。
向量的模长和方向角
学习如何计算向量的模长和方向角,并应用于问题 求解。
数量积的定义
1 两个向量的数量积公式
掌握两个向量的数量积的公式,以及如何进行计算。
2 两个向量数量积的几何意义
了解两个向量数量积的几何意义,以及它在平面向量中的应用。
3 两个向量数量积的计算方法
学习使用点乘法进行向量数量积的计算,掌握计算的步骤和技巧。
数量积的应用
1
向量夹角的计算
学习如何通过数量积计算两个向量的夹角,并将其应用于几何问题的解决。
2
向量投影的计算
掌握如何利用数量积计算一个向量在另一个向量上的投影,并理解投影的几何意 义。
3
向量垂直的判定
了解如何通过数量积判断两个向量是否垂直,并应用于物理和几何问题的分析。
总结
数量积的基本概念
概述平面向量的数量积的基 本概念和定义。
数量积的性质
总结数量积的各种性质,包 括对称性、分配律等。

平面向量数量积课件

平面向量数量积课件

综合练习题
总结词
综合运用平面向量数量积的知识,解决实际问题。
详细描述
综合练习题是平面向量数量积练习题的最高级别,需要 学生综合运用平面向量数量积的知识,解决实际问题。 这些练习题会涉及多个知识点和多种解题技巧,包括利 用向量数量积的运算规则进行复杂向量问题的运算、利 用向量数量积的几何意义解决与几何图形相关的问题等 。通过这些练习题,学生可以培养综合运用知识的能力 和解决实际问题的能力,提高对平面向量数量积的综合 运用水平。
THANKS
感谢观看
在物理中的应用
力的合成与分解
在物理中,可以将一个力分解为多个 方向的力,然后通过计算各个方向的 力与物体质量的关系,得到物体加速 度等物理量。
速度与加速度
能量与动量
在物理中,能量和动量是两个重要的 物理量,可以通过计算向量数量积来 计算它们的变化。
可以通过计算速度和加速度的数量积 来计算物体在某可以表示两个向量在某个方向上的投影分量的乘积。例如,在力学中 ,力的大小和方向可以用一个向量来表示,而力的作用点也可以用一个向量来表示。当 两个力作用于同一物体上时,它们会产生一个合力,这个合力的方向和大小可以通过两
个力的数量积来计算。
02
平面向量数量积的运算
数量积的运算律与性质
平面向量数量积的例题解析
基础题解析
总结词
掌握平面向量数量积的基本概念和性质,熟悉向量数量积的运算规则。
详细描述
通过分析例题,让学生了解平面向量数量积的基本概念和性质,掌握向量数量积的运算规则,包括如何进行向量 的数乘、向量的加法、向量的减法以及向量的数乘、向量的加法、向量的减法的混合运算。同时,让学生了解平 面向量数量积在几何和物理问题中的重要应用,例如在求解距离、夹角等问题中的应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Biblioteka .设力对物体所做的功为
usr
F
, ,
则当 30o 时,W =
J;当 60o 时,W =
J.
复习回顾 创设情境 夹角的概念 数量积概念 几何意义 概念应用 归纳总结
【设计意图】力对物体所做的 功,就是力与其作用下物体 产生 的位移的数量积.
类比分力对物体做的功,明确数量积的几何意义
问题:当力、位移的大小不变,随 着夹角的变化,功也在变化.这种变化 如何解释?
复习回顾 创设情境 夹角的概念 数量积概念 几何意义 概念应用 归纳总结
学情分析
基础知识:学生之前学习了向量的相关概念以及平面 向量基本定理等内容,同时学生对平面向量数量积的物理 背景有一定的了解,为概念的形成和理解作了必要的铺垫.
认知水平与能力:学生已经具备初步的抽象概括能力, 能在教师的引导下,通过自主探究、合作交流,解决一些实 际问题.
任教班级学情:我班学生有较好的学习习惯,基础知识 较扎实,但是对数学概念的深入理解和灵活运用的能力还都 有待进一步提高.
=
r 5, b
=
4
,
r a

r b
的夹角为 120°,求 a b .
复习回顾 创设情境 夹角的概念 数量积概念 几何意义 概念应用 归纳总结
【设计意图】两个向量的数量积是一个数量,而不是向量.
课堂练习 巩固概念
r
3.如图,物体在力的作用下在水平面上发生一段位移
其中
ur F 10N,
r s
2m
抽象 概括
数学本质(数量积)
非零向量夹角的概念
向量数量积的概念
数量积的几何意义
教学过程分析
复习回顾 (1分钟) 创设情境 (2分钟) 夹角的概念(8分钟)
数量积概念(8分钟)
几何意义 (11分钟) 概念应用 (8分钟) 归纳总结 (2分钟)
学法指导 情境创设
教师引导 学生探究 辨析理解
能力提升 反思提升
并且规定,零向量与任一向量的数量积为零; rr
强调:记法“ a b ”中间的“ · ”不可以省略,更不 可以用“ × ”代替.
【设计意图】以功的计算作为基础,使学生能准确理解并 记忆数量积的定义.
复习回顾 创设情境 夹角的概念 数量积概念 几何意义 概念应用 归纳总结
课堂练习 巩固概念
2、若
r a
教学重点和难点
重点:
理解并掌握数量积的概念及其几何意义.
难点:
理解并掌握数量积的概念及其几何意义.
策略:
本课通过充分挖掘“功”这一物理背景,建立 知识生长点.采用从特殊到一般、从具体到抽象的 教学策略,每个概念的学习都让学生经历探究、理 解与应用的过程,在教学的过程中借助多媒体的直 观演示,这些都有利于突出重点、突破难点.
课堂练习 巩固概念
1.如图,在正△ABC中,AB 与 AC 夹角α的大
小为
;AB与BC 的夹角β的大小为 .
A
复习回顾
创设情境
夹角的概念
数量积概念
C
几何意义 概念应用
归纳总结
B
类比功的计算公式,明确向量数量积的定义
数即量ar 已barr 知br arc两obrs个cqo非叫s零做.向ar量与ar br与的数br ,量它积们(的或夹内角积为)θ,记,作我:们ar 把br ,
) 叫做向量
r a

r b
的夹角.
(1)当 0o
r
时,a 与
r b
同向;
(2)当
180o 时,ar 与
r b
r
(3)当 90o 时,称 a
反向;

r b
垂直,记作
r a
r b

复习回顾 创设情境 夹角的概念 数量积概念 几何意义 概念应用 归纳总结
类比力和位移的夹角,明确向量夹角的定义
类比力和位移的夹角,明确向量夹角的定义
指出下列图示中力和位移夹角的大小或范围:
复习回顾 创设情境 夹角的概念 数量积概念 几何意义 概念应用 归纳总结
类比力和位移的夹角,明确向量夹角的定义
已知两个非零向量
r a

r b
,作
uuur OA
=
r uuur a,OB =
r b

则? AOB
q( 0埃
q 0180
复习回顾,学法指导
问题1:
我们已经研究了向量 的哪些运算?这些运算的 结果是什么?
向量的加法、减法 及数乘运算,结果仍然
是向量.
复习回顾 创设情境 夹角的概念 数量积概念 几何意义 概念应用 归纳总结
问题2: 我们是怎样引入向量的加法
运算的?又是按照怎样的思维模 式研究这种运算的?
【设计意图】通过问题引导学生复习 回顾,我再指出,本节课我们将按照这 种思路来研究向量的另一种运算,提供 学法指导,为新课的学习作好铺垫.
物理背景 概念 性质 运算律 应 用
创设情境,引入课题
复习回顾 创设情境 夹角的概念 数量积概念 几何意义 概念应用 归纳总结
创设情境,引入课题
问题1:医生拉小车的力所做的功如何计算? 问题2:功是矢量,还是标量? 问题3:日常生活中,拉较重物体时身体一直 尽量保持前倾,这样做的理由是什么?
复习回顾 创设情境 夹角的概念 数量积概念 几何意义 概念应用 归纳总结
教学目标分析
知识目标:
(1)理解两向量的夹角的定义,掌握平面向量的数量积及其几何意义; (2)能初步运用数量积的相关概念进行运算.
能力目标:
经历两向量的夹角、两向量的数量积、投影等概念的形成过程,提高 类比辨析、抽象概括等基本数学思维能力.
情感目标:
教学活动过程中,始终贯穿了对平面向量数量积的物理背景的深 入挖掘,让学生感悟到数学来源于现实并用于现实,在探索问题的过 程中体验成功的喜悦,从而进一步激发学生的学习兴趣.
说课目录
教材分析 学情分析 目标分析 教学方法 过程设计 教学反思
教材分析
平面向量的数量积是在学习了向量的相关概念,以及向 量的加法、减法、实数与向量的积之后,高中数学又一重 要概念和运算 . 本课所包含的教学内容:向量的夹角、数 量积的概念以及数量积的几何意义,既是数量积性质和运 算律的基础,也为今后利用数量积处理有关距离、角度、 垂直等奠定了基础.
教学方法分析
根据教学内容和学生的实际情况,并突出学生的主体地位, 因此本课采用“启发-探究”的教学模式.注重知识生长点的建立. 教师的教法突出活动的组织设计与方法引导;学生的学法突出 对概念的探究、理解与应用,学生在与老师的互动交流中获得 本节课的知识与方法,并发展能力.
认知探究过程
物理背景(功) 力和位移的夹角 力对物体做的功 分力对物体做功
相关文档
最新文档