用平面向量坐标表示向量共线条件课件

合集下载

高一数学人教B版必修4课件:2-2-3 用平面向量坐标表示向量共线条件

高一数学人教B版必修4课件:2-2-3 用平面向量坐标表示向量共线条件

[解析]
由已知得:ka+b=(k-3,2k+2),
a-3b=(10,-4),∵ka+b 与 a=3b 平行, 1 ∴(k-3)×(-4)-10(2k+2)=0,解得 k=-3. 1 2 1 此时 ka+b=(-3-3,-3+2)=-3(a-3b), 1 ∴当 k=-3时,ka+b 与 a-3b 平行,并且反向.
2x+2=-3x 所以 2y-4=-6-3y

2 x=-5 解得 y=-2 5 故D
.
2 2 点坐标为-5,-5.
(2)要注意用坐标表示两向量平行的条件, a1b2-a2b1=0 具 a1 a2 有一般性,而 = 只有当 b1≠0,b2≠0 时才适用. b1 b2
• [例1] 已知a=(1,2),b=(-3,2),当k为
何值时,ka+b与a-3b平行?平行时它们 是同向还是反向? • [分析] 由a,b可以用坐标表示ka+b,a -3b,然后由向量共线的条件便可以求出 k的值.而向量是否同向,可以由λ的符号 确定.
• 2.2.3 用平面向量坐标表示
向量共线条件
• 1.向量共线条件的坐标表示: • 选择基底{e1,e2},如果a=(a1,a2),b=
b2- (b1,b2),a a1∥ ba ,则有 ; 2b1=0 a∥b a1b2-a2b1=0,则 反之,若 . • 当b不与坐标轴平行时,条件a1b2-a2b1=0 可化为 ,即两个向量平行的条 件是相应坐标成比例. • 2.向量长度的坐标表示 • 设a=(a1,a2)的位置向量 ,则由两点 间距离公式有|a|=| |= .

[例 4]
已知 a=(2,3),b=(-1,2),若 ma+b 与 a-2b
平行,则 m=________. 9 A.- 10 1 C.2 2 B. 11 1 D.-2

第六章第二节平面向量的基本定理及坐标表示课件共49张PPT

第六章第二节平面向量的基本定理及坐标表示课件共49张PPT

设正方形的边长为
1


→ AM
= 1,12

→ BN

-12,1 ,A→C =(1,1),
∵A→C =λA→M +μB→N
=λ-12μ,λ2 +μ ,
λ-12μ=1, ∴λ2 +μ=1,
解得λμ= =6525, .
∴λ+μ=85 .
法二:由A→M
=A→B
+12
→ AD
,B→N
=-12
→ AB
+A→D
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.理解平面向量的基本定理及其意义. 考情分析: 平面向量基本定理及
2.借助平面直角坐标系掌握平面向量 其应用,平面向量的坐标运算,向
的正交分解及其坐标表示.
量共线的坐标表示及其应用仍是
3.会用坐标表示平面向量的加法、减 高考考查的热点,题型仍将是选择
A.(-2,3)
B.(2,-3)
C.(-2,1)
D.(2,-1)
D [设 D(x,y),则C→D =(x,y-1),2A→B =(2,-2),根据C→D =2A→B , 得(x,y-1)=(2,-2),
即xy= -21, =-2, 解得xy= =2-,1, 故选 D.]
2.(2020·福建三明第一中学月考)已知 a=(5,-2),b=(-4,-3),若
解析: ∵ma+nb=(2m+n,m-2n)=(9,-8), ∴2mm-+2nn==9-,8, ∴mn==52., ∴m-n=2-5=-3. 答案: -3
考点·分类突破
⊲学生用书 P93
平面向量基本定理及其应用
(1)(多选)(2020·文登区期中)四边形 ABCD 中,AB∥CD,∠A=90°,

平面向量的坐标运算以及共线的坐标表示

平面向量的坐标运算以及共线的坐标表示

的坐标.
如果P1P=
1 2
PP2
(如图),那么
y
OP=OP1+P1P=OP1+13 P1P2
P2
=OP1+ 13(OP2-OP1)
=
2 3
OP1+
13OP2
P P1
O
=(2x13+x2 ,2y13+y2). x 即点P的坐标是 (2x13+x2,2y13+y2).
同理,如果P1P=2PP2,那么点P的坐标是 ( x1+32x2,y1+32y2).
理由.
x
∴顶点D的坐标为(2,2).
CHENLI
8
向量a与非零向量b平行(共线)的充要条件是有且 只有一个实数λ,使得
a=λb.
如何用坐标表示两个共线向量?
CHENLI
9
设a=(x1,y1),b=(x2,y2),其中b≠0.则由a=λb, 有
(x1,y1)=λ(x2,y2)
即 消去λ后得:
x1=λx2, y1=λy2.
解:
即 同理可得
a + b=(x1i+y1j)+(x2i+y2j ) =(x1+x2)i+(y1+y2)j
a + b =(x1+x2,y1+y2)
a - b =(x1-x2,y1-y2)
两个向量和(差)的坐标分别等于这两个向量相 应坐标的和(差).
CHENLI
3
λa =λ(x1i+y1j) =λx1i+λy1j
x

1=3-x 2=4-y
∴ x=2 y=2
∴顶点D的坐标为(2,2).

4-2第二节 平面向量基本定理及其坐标运算(52张PPT)

4-2第二节 平面向量基本定理及其坐标运算(52张PPT)

T 拓思维· 培能力
拓展提伸 提高能力
易混易错系列 忽视平面向量基本定理的使用条件致误 【典例】 → → → → → 已知OA=a,OB=b,OC=c,OD=d,OE=e,
解析
答案
1 → → → BE=BC+CE=- a+b. 2
1 - a+b 2
Y 研考点· 知规律
探究悟道 点拨技法
题型一
平面向量基本定理的应用
【例 1】 如图所示,在平行四边形 ABCD 中,M,N 分别为 → → → → DC,BC 的中点,已知AM=c,AN=d,试用 c,d 表示AB,AD.
基 础 自 评 → → → 1.若向量BA=(2,3),CA=(4,7),则BC=( A.(-2,-4) C.(6,10) B.(2,4) D.(-6,-10) )
解析
→ → → BC=BA+AC=(2,3)+(-4,-7)=(-2,-4).
答案 A
2.若向量 a=(1,1),b=(-1,1),c=(4,2),则 c=( A.3a+b C.-a+3b B.3a-b D.a+3b
(3)设向量 d 坐标为(x, y), 则 d-c=(x-4, y-1), a+b=(2,4).
4x-4-2y-1=0, 由题意,知 2 2 x-4 +y-1 =5, x=3, ∴ y=-1, x=5, 或 y=3.
∴向量 d 的坐标为(3,-1)或(5,3).
→ → 方法 2:设AB=a,AD=b,因为 M,N 分别为 CD,BC 的中 → 1 → 1 点,所以BN=2b,DM=2a,于是有 1 c = b + a, 2 d=a+1b, 2 2 a = 2d-c, 3 解得 b=22c-d, 3
→ 2 → 2 即AB= (2d-c),AD= (2c-d). 3 3

平面向量的基本定理及坐标表示 课件

平面向量的基本定理及坐标表示   课件

d
a AB (4,5) (2,2) (2,3)
yj
a (x,y)叫做向量 a 的坐标,记作
j
x a (x, y)
O
x叫做 a 在x轴上的坐标,
i xi
y叫做 a 在y轴上的坐标,
正交单位
基底
(1)向量
i ,
j
方向 与
(x,y)叫做向量的坐标表示.
x 轴y轴同向,且 i 1,0 j 0,1
i j 1, i 与j垂直
a (2)对于给定向量 ,必有一对实数(x,y)与它对应;
思考? 在平面直角坐标系中:

(x, y)

向量
(x, y)
平面向量的正角分解及坐标表示.
如图,光滑斜面上一个木块受到的重力
为G,下滑力为F1,木块对斜面的压力
为F2,这三个力的方向分别如何?
三者有何相互关系?
物理背景:
F1
向量的
G
F2
正交分解
三.平面向量的正角分解及坐标表示.
y
a xi +y j
一、平面向量基本定理:
如果 e1、e2 是同一平面内的两个不共线
向量,那么对于这一平面内的任一向
量 a 有且只有一对实数 1、2 ,使
a 1e1 2e2
其中e1,e2 叫做表示这一平面内 所有向量的 一组基底 .
说明: 1、把不共线的非零向量 e1,e2 叫做表示 这一平面内所有向量的一组基底.
两个非零向量 a,b
B
b
AOB 叫做向量
O aA
a 和 b 的夹角.注意:同起点
夹角的范围:(0 180 ) B
a
ObB
0
a

平面向量共线的坐标表示29371

平面向量共线的坐标表示29371

复习 平面向量基本定理:
(1)我们把不共线向量e1,e2 叫做表示 这一平面内所有向量的一组 基底 .
(2)基底不惟一,关键是不共线;
复习
平面向量基本定理:
(1)我们把不共线向量e1,e2 叫做表示 这一平面内所有向量的一组 基底 .
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底 e1、e2的条件下进行分解;
1. 消去时能不能两式相除?
不能 两式相除, y1, y2有可能为 0, 又b 0, x2 , y2中至少有一个不为0 .
2. 能不能写成 y1 y2 ? x1 x2
3. 向量共线有哪两种形式?
探究:
1. 消去时能不能两式相除?
不能 两式相除, y1, y2有可能为 0, 又b 0, x2 , y2中至少有一个不为0 .
特别地, i (1, 0),
j (0, 1), (0, 0).
a
j
Oi
x
平面向量的坐标运算
a a
a
b
(
x1
x2,y1
b ( x1 x2,y1
(x,y)
y2 y2
) )
两个向量和与差的坐标分别等于这 两个向量相应坐标的和与差.
实数与向量的积的坐标等于用这个 实数乘原来向量的相应坐标.
讲解范例
例5. 设点P是线段P1P2上的一点,P1、 P2的坐标分别是(x1, y1),(x2, y2). (1)当点P是线段P1P2的中点时,求点
P的坐标; (2)当点P是线段P1P2的一个三等分点
时,求点P的坐标.
讲解范例
例5. 设点P是线段P1P2上的一点,P1、 P2的坐标分别是(x1, y1),(x2, y2). (1)当点P是线段P1P2的中点时,求点

高中数学 平面向量的基本定理及坐标表示 第3课时 平面向量共线的坐标表示课件 新人教A必修4

高中数学 平面向量的基本定理及坐标表示 第3课时 平面向量共线的坐标表示课件 新人教A必修4
❖ [答案] 2
❖ [解析] ∵λa+b=(λ,2λ)+(2,3)=(λ+2,2λ +3),
❖ ∴存在实数k,使(λ+2,2λ+3)=k(-4,- 7),
❖ [例5] 已知A(-1,2),B(1,4). ❖ (1)求AB的中点M的坐标; ❖ (2)求AB的三等分点P、Q的坐标; ❖ (3)设D为直线AB上与A、B不重合的一点,
❖ 5.已知a=(3,2),b=(2,-1),若λa+b 与a+λb(λ∈R)平行,则λ=________.
❖ [答案] 1或-1
❖ [解析] λa+b=λ(3,2)+(2,-1)=(3λ+ 2,2λ-1),a+λb=(3,2)+λ(2,-1)=(3+ 2λ,2-λ).
❖ ∵(λa+b)∥(a+λb),
❖ 由(k-6,2k+4)=λ(14,-4),得
❖ 故当k=-1时,ka+2b与2a-4b平行. ❖ [点评] 可由向量平行的坐标表示的充要
条件得
❖ (k-6)×(-4)-(2k+4)×14=0,得k=-1.
❖ (08·全国Ⅱ)设向量a=(1,2),b=(2,3),若 向量λa+b与向量c=(-4,-7)共线,则λ =______.
❖ 3.[在证明直] 角由坐已标知条系件x得O,y内A→B,=(已0,1)知-(A-(-2,2-,3)=-(23,4),), A→BC(=0,(12),5,)-C(-(22,,5)-,3)求=(证4,8A).、B、C三点共线.
∵2×8-4×4=0,∴A→B∥A→C,
∵A→B与A→C有公共点 A,∴A、B、C 三点共线.
❖ 重点:用平面向量坐标表示向量共线条件.
❖ 难点:运用平面向量坐标表示向量共线条件 的应用,体会向量在解题中的工具性作用.
❖ 1.若a与b共线(b≠0),则存在实数λ,使a =λb,这里b≠0的条件千万不可忽视,而 在坐标表示的共线条件中,若a=(x1,y1), b=(x2,y2),则a∥b⇔x1y2-x2y1=0,对任 意向量a,b都成立,解题时,要区别应 用.

2.2.3 用平面向量坐标表示向量共线条件

2.2.3 用平面向量坐标表示向量共线条件

张喜林制2.2.3 用平面向量坐标表示向量共线条件考点知识清单1.设),,(),,(2121b b b a a a ==其中.0=/b 那么当且仅当 时,向量)0(,=/b b a 共线.由于规定零向量与任何向量平行,则上述0=/b 的条件可去掉,当021=/⋅b b 时,向量a ,b 共线的条件也可以写 作2.设),,(),,(),,(332211y x C y x B y x A 只要证明____,便可证A 、B 、C 三点共线. 3.P 是直线21p p 上的点,且P 点不与21P P 、重合,则=P 1,2pp λ设1p 坐标为211),,(P y x 坐标为P y x ),,(22点的坐标为(x ,y ),则根据向量共线条件有要点核心解读1.两向量平行的条件(1)设),,(),,(2121b b b a a a ==则.0//1221=-⇔b a b a b a(2)设b b b b a a a ),,(),,(2121==不平行于坐标轴,即=/1b ,0,02=/b 则⋅=⇔2211//b a b a b a 用语言可以表述为:两个向量平行的条件是,相应坐标成比例. 2.两个向量平行的条件的推导我们知道,如果),0(//=/b b a 则存在唯一实数A 使;b a λ= 反之,如果存在一个实数A ,使),0(=/=b b a λ则.//b a选择基底},,{21e e 如果),,(),,(2121b b b a a a ==则条件b a λ=可化为),,(),(),(212121b b b b a a λλλ==即 ,11b a λ= ①⋅=22b a λ ②①②两式的两边分别乘以,12b b 、得,2121b b b a λ= ③ ,1212b b b a λ= ④:④③-得.01221=-b a b a ⑤⑤式就是两个向量平行的条件:⑤式成立,可判断两个向量平行;反之两个向量平行,它们的坐标满足⑤式.⑤式表示的条件,是在假设0=/b 的条件下推出的.事实上,如果在讨论平行问题时,规定零向量可以与任一向量平行,在⑤式中可以去掉0=/b 的假设。

2025届高中数学一轮复习课件《平面向量基本定理及坐标表示》ppt

2025届高中数学一轮复习课件《平面向量基本定理及坐标表示》ppt

)
高考一轮总复习•数学
第10页
2.已知平面向量 a=(1,1),b=(1,-1),则向量12a-32b=( )
A.(-2,-1) B.(-2,1)
C.(-1,0)
D.(-1,2)
解析:因为 a=(1,1),b=(1,-1),所以12a-32b=12(1,1)-32(1,-1)=12,12-32,-32 =(-1,2).
∴54<k<32.即 k 的取值范围为54,32.
高考一轮总复习•数学
第23页
题型
平面向量的坐标运算
典例 2(1)已知 A(-2,5),B(10,-3),点 P 在直线 AB 上,且 P→A =-13P→B ,则点 P 的
由线性关系,转化到坐标运算.
坐标是( )
A.(-8,9)
B.(1,3)
C.(-1,-3) D.(8,-9)
高考一轮总复习•数学
第3页
01 理清教材 强基固本 02 重难题型 全线突破 03 限时跟踪检测
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
一 平面向量基本定理 如果 e1,e2 是同一平面内的两个不共线向量,那么对这一平面内的任一向量 a,有且只 有一对实数 λ1,λ2,使 a=λ1e1+λ2e2,若 e1,e2 不共线,我们把{e1,e2}叫做表示这一平面内 所有向量的一个基底.若 e1,e2 互相垂直,则称这个基底为正交基底;若 e1,e2 分别为与 x 轴、y 轴方向相同的两个单位向量,则称这个基底为单位正交基底.
高考一轮总复习•数学
第22页
解析:如图,分别取 BD,AE 的中点 G,N,连接 GN 交 EF 于 H,

第二章23234平面向量共线的坐标表示

第二章23234平面向量共线的坐标表示
返回
[活学活用] 已知 a=(1,2),b=(-3,2),当实数 k 为何值时,(ka+b)∥(a- 3b)?这两个向量的方向是相同还是相反? 解:∵a=(1,2),b=(-3,2), ∴ka+b=(k-3,2k+2),a-3b=(10,-4). 由题意得(k-3)×(-4)-10(2k+2)=0,解得 k=-13. 此时 ka+b=-13a+b=-13(a-3b), ∴当 k=-13时,(ka+b)∥(a-3b),并且它们的方向相反.
A.3
B.-3
1 C.3 解析:选 C
D.-13 ∵a∥b,∴(-1)×(-1)=3x,∴x=13.
返回
2.已知 A(2,-1),B(3,1),则与 AB平行且方向相反的向量 a

()
A.(2,1) C.(-1,2)
B.(-6,-3) D.(-4,-8)
解析:选 D AB=(1,2),向量(2,1)、(-6,-3)、(-1,2) 与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.
返回
3.已知向量 a=(1,2),b=(-2,3),若 λa+μb 与 a+b 共线,则 λ 与 μ 的关系是________. 解析:∵a=(1,2),b=(-2,3),∴a+b=(1,2)+(-2,3)=(- 1,5),λa+μb=λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ), 又∵(λa+μb)∥(a+b), ∴-1×(2λ+3μ)-5(λ-2μ)=0, ∴λ=μ. 答案:λ=μ
返回
∴yx==-2+11+231+×+2323×23-31,,
即xy==3545.,
故 P 点坐标为54,35.
(2)当 P1P 与 PP2 反向时,则有 P1P =-23 PP2 ,设 P 点坐

第二章 2.2.3用平面向量坐标表示向量共线条件

第二章 2.2.3用平面向量坐标表示向量共线条件
∴x2+y2=52.∴4λ2+9λ2=52,λ=2 (λ>0).
本 课 时 栏 目 开 关
→ 即AB=(4,6).∴点 B 的坐标为(5,4).
练一练·当堂检测、目标达成落实处
2.2.3
本 课 时 栏 目 开 关
1. 下列各组的两个向量共线的是 A.a1=(-2,3),b1=(4,6) B.a2=(1,-2),b2=(7,14) C.a3=(2,3),b3=(3,2) D.a4=(-3,2),b4=(6,-4)
本 课 时 栏 目 开 关
点之间的位置关系. → → → 解 ∵AB=OB-OA=(1,3)-(-1,-1)=(2,4), → → → AC=OC-OA=(2,5)-(-1,-1)=(3,6), → → 又 2×6-3×4=0,∴AB∥AC. ∵直线 AB、AC 有公共点 A,
∴A、B、C 三点共线.
本 课 时 栏 目 开 关
a-3b=(1,2)-3(-3,2)=(10,-4), ∵ka+b 与 a-3b 平行, 1 ∴(k-3)×(-4)-10(2k+2)=0,解得 k=- . 3
此时
1 2 1 ka+b=-3-3,-3+2=-3(a-3b),
1 ∴当 k=-3时,ka+b 与 a-3b 平行,并且反向. 小结 此类题目应充分利用向量共线定理或向量共线坐标的条

本 课 时 栏 目 开 关
设 P 点坐标为(x,y). → → → → → → ∵|AP|=2|PB|,∴AP=2PB或AP=-2PB. → → 当AP=2PB时,(x-3,y+4)=2(-1-x,2-y),
x-3=-2-2x ∴ y+4=4-2y
1 x= 3 ,∴P 点坐标为1,0. ,解得 3 y=0

第二节 平面向量基本定理及坐标运算 课件(共102张PPT)

第二节 平面向量基本定理及坐标运算 课件(共102张PPT)

( B)
A.-6
B.6
C.9
D.12
2.[必修4·P101·A组T7改编]已知点A(0,1),B(3,2),向量
→ AC
=(-4,-3),则向
量B→C=( A )
A.(-7,-4)
B.(7,4)
C.(-1,4)
D.(1,4)
3.[必修4·P96·例2改编]若向量a=(2,1),b=(-1,2),c= 0,52 ,则c可用向量
1.已知△ABC的三个顶点A,B,C的坐标分别为(0,1),( 2 ,0),(0,-2),O
为坐标原点,动点P满足|C→P|=1,则|O→A+O→B+O→P|的最小值是( A )
A. 3-1
B. 11-1
C. 3+1
D. 11+1
2.已知M(3,-2),N(-5,-1),且M→P=12M→N,则P点的坐标为( B )
A.(-8,1)
B.-1,-32
C.1,32
D.(8,-1)
[解析]
设P(x,y),则
→ MP
=(x-3,y+2),而
1 2
→ MN

1 2
(-8,1)=
-4,12
,所以
x-3=-4, y+2=12,
x=-1, 解得y=-32,
所以P-1,-32.
3.已知正△ABC的边长为2
3
,平面ABC内的动点P,M满足|
知识点二 平面向量的坐标表示 在直角坐标系内,分别取与__x_轴__、__y_轴__正__方__向__相__同____的两个单位向量i,j作为基 底,对任一向量a,有唯一一对实数x,y,使得:a=xi+yj,__(_x_,__y_) _叫做向量a的 直角坐标,记作a=(x,y),显然i=__(1_,_0_)___,j=__(_0_,1_)_____,0=__(_0_,0_)___.

2.2.3用平面向量坐标表示共线条件

2.2.3用平面向量坐标表示共线条件

>>
ka 2b与2a 4b平行 ( 4 k 6) 14(2k 4) 0 解得k 1.
5、已知A(2,3),B(4,3),a ( x 3, x 3 x 4), -1 与AB相等, 则x ____
2
△ABC的三条边的中点分别为(2, 1)和(-3, 2 4 ( , ) 4),(-1,-1),则△ABC的重心坐标为 _______ 3 3
用平面向量坐标
表示向量共线条件
学习目标研读
1.课堂目标
理解并掌握用坐标表示平面向量共线的条件. 2.重点难点 重点:用坐标表示平面向量共线的条件. 难点:向量共线的坐标表示的应用.
创设情境
1.
向量的坐标表示,并且向量之间可以进行的坐标
B x 2 , y2
运算
y

A x1 , y1
例3、 在 直 角 坐 标 系 xoy中, 已 知A 2,3, B0,1
解题思路: (思想)
证点共线
向量共线
有公共端点
(几何)
(向量)
点共线 (几何)
变式1:已知OA k ,12 , OB 4,5 , OC 10, k O为坐标原点,问k为何值时, A, B, C三点共线 ? 2或11
存在 R,使得ka 2b (2a 4b) ka 2b k (1, 2) 2(3, 2) (k 6, 2k 4). 即 k-2 a 4 2 b 2a 4b 2(1, 2) 4(3, 2) (14, 4). a与b不共线 k 2 0 4 2 0 k -1
C 2,5, 求 证 : A, B, C三 点 共 线 .
证明 :由已知条件得 AB 0,1 2, 3 2, 4 AC 2,5 2, 3 4,8 28 4 4 0 AB // AC 又因为有公共端点A. 因此A,B,C三点共线.

高中数学必修四 第2章 平面向量课件 2.3.4 平面向量共线的坐标表示

高中数学必修四 第2章 平面向量课件 2.3.4 平面向量共线的坐标表示

类型二 利用向量共线求参数 【例2】 已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b 平行?平行时它们是同向还是反向? [思路探索] 先求ka+b,a-3b的坐标,再由向量共线的充要条件 列方程组求k. 解 法一 ka+b=k(1,2)+(-3,2)=(k-3,2k+2), a-3b=(1,2)-3(-3,2)=(10,-4). 当ka+b与a-3b平行时,存在唯一的实数λ, 使ka+b=λ(a-3b), 即(k-3,2k+2)=λ(10,-4),
∴-6(x-2)+2(6-y)=0.② 解①②组成的方程组,得x=3,y=3, ∴点P的坐标为(3,3). [规律方法] 求解直线或线段的交点问题,常规方法为写出直线 或线段对应的直线方程,建立方程组求解,而利用向量方法借助 共线向量的充要条件可减少运算量,且思路简单明快.
【活学活用3】 平面上有A(-2,1),B(1,4),D(4,-3)三点,
新知导学 平面向量共线的坐标表示
前提条件
a=(x1,y1),b=(x2,y2),其中b≠0
结论 当且仅当 x1y2-x2y1=0 时,向量a,b(b≠0)共线
温馨提示:平面向量共线的坐标表示的记忆策略
互动探究 探究点1 如果两个非零向量共线,你能通过它们的坐标判断它们 同向还是反向吗? 提示 当两个向量的对应坐标同号或同为零时,同向;当两个向 量的对应坐标异号或同为零时,反向.例如,向量(1,2)与(-1, -2)反向;向量(1,0)与(3,0)同向;向量(-1,2)与(-3,6)同向;向 量(-1,0)与(3,0)反向等. 探究点2 若a∥b,a=(x1,y1),b=(x2,y2),则必有yx11=xy22吗? 提示 不一定,两个向量中,若有与坐标轴(x轴)平行的向量或 零向量,则不能写成比例式.

6.2平面向量共线定理的坐标表示

6.2平面向量共线定理的坐标表示

授课主题平面向量共线的坐标表示 教学目标 1.理解向量共线定理.2.掌握两个向量平行(共线)的坐标表示和会应用其求解有关两向量共线问题.教学内容1.向量共线定理1)向量a 与非零向量b 共线的条件是当且仅当存在实数λ,使a =λb2)为什么要规定b 为非零向量?答:若向量b =0,则由向量a ,b 共线得a =λb =0,但向量a 不一定为零向量.2.两个向量平行(共线)的坐标表示1)设非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 等价于x 1y 2-x 2y 1=02)设非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1x 2=y 1y 2要满足什么条件? 答:a ∥b ⇔x 1x 2=y 1y 2的适用范围是x 2≠0,y 2≠0,这与要求b 是非零向量是等价的.题型一 平面向量共线的坐标运算例1 若向量a =()2,-1,b =()x ,2 ,c =()-3,y ,且a ∥b ∥c ,求x ,y 的值.分析:由平面向量共线的坐标运算可得.解析:∵a ∥b ∥c ,由向量共线的坐标表示得∴⎩⎪⎨⎪⎧ 4+x =0,2y -3=0,解得⎩⎪⎨⎪⎧ x =-4,y =32.点评:记住已知a =()x 1,y 1,b =()x 2,y 2,则a ∥b ⇔x 1y 2-x 2y 1=0.巩 固 已知a =(1,0),b =(2,1),当实数k 为何值时,向量k a -b 与a +3b 平行?并确定此时它们是同向还是反向.分析:先求出向量k a -b 与a +3b 的坐标,然后根据向量共线条件可求解.解析:∵ a =(1,0),b =(2,1),∴k a -b =k ()1,0-()2,1=()k -2,-1,a +3b =()1,0+3()2,1=()7,3.∵向量k a -b 与a +3b 平行,∴3()k -2+7=0,解得k =-13. ∵k =-13,k a -b =-13(a +3b ), 所以向量k a -b 与a +3b 反向.题型二 平面向量共线的证明例2 已知A (-1,-1),B (1,3),C (2,5),求证A 、B 、C 三点共线.分析:证向量AB →与AC →共线.证明:∵ A (-1,-1),B (1,3),C (2,5),∴AB →=()2,4,AC →=()3,6.∴AB →=23AC →. ∵AB →,AC →有公共点A ,∴A 、B 、C 三点共线.点评: 通过证有公共点的两向量共线,从而证得三点共线.巩 固 已知OA →=()k ,12,OB →=()4,5,OC →=()10,k ,当k 为何值时,A 、B 、C 三点共线?分析:由A 、B 、C 三点共线,可得AB →与BC →共线.解析:∵OA →=()k ,12,OB →=()4,5,OC →=()10,k ,∴AB →=()4-k ,-7,BC →=()6,k -5.∵A 、B 、C 三点共线,∴()4-k ()k -5+42=0.解得k =11或k =-2.题型三 用共线向量的性质求坐标例3 若M ()3,-2,N ()-5,-1, 且 MP →=12MN →,则P 点的坐标是________. 分析:设P ()x ,y ,由MP →=12MN →可求解. 解析:设P ()x ,y ,则MN →=()-8,1,MP →=()x -3,y +2.∵ MP →=12MN →,∴()x -3,y +2=12()-8,1=⎝⎛⎭⎫-4,12⇒x =-1,y =-32. ∴P ⎝⎛⎭⎫-1,-32. 答案:⎝⎛⎭⎫-1,-32 点评:把求点的坐标转化为向量共线问题.巩 固 若M ()3,-2,N ()-5,-1,且MP →=-2MN → , 则P 点的坐标是________.解析:设P ()x ,y ,则MN →=()-8,1,MP →=()x -3,y +2.∵ MP →=-2MN →,∴()x -3,y +2=-2()-8,1=(16,-2).解得P ()19,-4.答案:()19,-4题型四 共线向量的综合应用例4 如果向量AB →=i -2j ,BC →=i +m j ,其中i 、j 分别是x 轴、y 轴正方向上的单位向量,试确定实数m 的值使A 、B 、C 三点共线.分析:把向量AB →=i -2j 和BC →=i +m j 转化为坐标表示,再根据向量共线条件求解.解析:∵AB →=i -2j ,BC →=i +m j ,∴AB →=()1,-2,BC →=()1,m .∵ A 、B 、C 三点共线,即向量AB →与BC →共线,∴m +2=0,解得m =-2.点评:向量共线的几何表示与代数表示形式不同但实质一样,在解决问题时注意选择使用.巩 固 已知A ()1,1,B ()3,-1,C ()a ,b .(1)若A 、B 、C 三点共线,求a ,b 的关系式;(2)若AC →=2AB →,求点C 的坐标.解析:(1)AB →=()2,-2,AC →=()a -1,b -1,∵A 、B 、C 三点共线,∴AB →与AC →共线.∴2()b -1+2()a -1=0,即a +b =2.(2)∵AC →=2AB →,∴()a -1,b -1=2()2,-2⇒a =5,b =-3.∴C ()5,-3.1.若a =(2,3),b =(4,-1+y ),且a ∥b ,则y =( )A .6B .5C .7D .8答案:C2.已知点M 是线段AB 上的一点,点P 是平面上任意一点,PM →=35P A →+25PB →,若AM →=λMB →,则λ等于( ) A.35 B.25 C.32 D.23解析:用P A →,PB →表示向量AM →,MB →.∵AM →=AP →+PM →=AP →+35P A →+25PB →=-25P A →+25PB →,MB →=MP →+PB →=-PM →+PB →=-35P A →+25PB →+PB →=-35P A →+35PB →,∴AM →=23AB →. 答案:D3.已知▱ABCD 四个顶点的坐标为A (5,7),B (3,x ),C (2,3),D (4,x ),则x =__________.答案:54.已知两点A (1,3)、B (4,-1),则与向量AB →同向的单位向量是( )A.⎝⎛⎭⎫35,-45B.⎝⎛⎭⎫45,-35 C.⎝⎛⎭⎫-35,45 D.⎝⎛⎭⎫-45,35 解析:AB →=(3,-4),则与其同方向的单位向量e =AB →|AB →|=15(3,-4)=⎝⎛⎭⎫35,-45. 答案:A5.已知A ()-2,-3,B ()2,1,C ()1,4,D ()-7,-4,判断AB →与CD →是否共线.解析:∵AB →=(4,4),CD →=(-8,-8),∴AB →=-12CD →. ∴AB →与CD →共线.6.已知A (-1,-1),B (1,3),C (1,5) ,D (2,7) ,向量AB →与CD →平行吗?直线AB 平行于直线CD 吗?解析:AB →=()2,4,CD →=()1,2,AB →=2CD →,所以向量AB →与CD →平行,即直线AB 平行于直线CD .7.已知点A (x,0),B (2x,1),C (2,x ),D (6,2x ).(1)求实数x 的值,使向量AB →与CD →共线.解析:AB →=()x ,1,CD →=()4,x ,∵向量AB →与CD →共线,∴x 2-4=0,解得x =±2.(2)当向量AB →与CD →共线时,点A ,B ,C ,D 是否在一条直线上?解析:x =2时,不在同一条直线上;x =-2时,在同一条直线x +2y +2=0上.8.△AB C 的顶点A 、B 、C 分别对应向量a =()x 1,y 1,b =()x 2,y 2,c =()x 3,y 3其重心为G ,对应的向量为g =()x 0,y 0.求证:x 0=x 1+x 2+x 33,y 0=y 1+y 2+y 33. 证明:设AD 为BC 边的中线,O 为坐标原点.则OG →=OA →+AG →=OA →+23AD →=OA →+13()AB →+AC →=OA →+13()OB →-OA →+OC →-OA →=13()OA →+OB →+OC →. ∵A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),G (x 0,y 0)∴x 0=x 1+x 2+x 33,y 0=y 1+y 2+y 33. 9.已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值.分析:(1)只需证明a ·b =0即可;(2)由已知条件得到cos α+cos β,sin α+sin β的值,然后再利用诱导公式得到α,β间的关系即可求得α,β的值.(1)证明:由题意得|a -b |2=2,即(a -b )2=a 2-2a ·b +b 2=2.又因为a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)解析:因为a +b =(co s α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0, sin α+sin β=1, 由此得,cos α=cos ()π-β,由0<β<π,得0<π-β<π.又0<α<π,故α=π-β.代入sin α+sin β=1,得sin α=sin β=12,而α>β,所以α=5π6,β=π6.。

用平面向量坐标表示向量共线条件

用平面向量坐标表示向量共线条件
∵2×8-4 ×4=0, 所以 AB//AC 因此A,B,C三点共线.
练习: 1. 已知a=(4, 2),b=(6, y),且a//b,求y.
y=3
已知a=(3, 4), b=(cosα, sinα), 且a//b, 求tanα. tanα=4 /3
1
已知a=(1, 0), b=(2, 1), 当实数k为何值时,向量 ka-b与a+3b平行? 并确定它们是同向还是反向.
线,则B( )
A.x =-1
B.x=3
C.x=9
D.51
2
6.设a=(23
, sinα),b=(cosα1 ,
3
则锐角α为 (C )
),且a// b,
A.30o
B.60o
C.45o
D.75o
△ABC的三条边的中点分别为(2, 1)和(-3, 4),(-1,-1), 则△ABC的重心坐标为 _______
解:利用⑴式可求出y的值,
1×5-2×y=0 所以y 5
2
说明:利用向量的线性运算求出向量
的坐标,再
利用向量平行的条件式 ,就可知A、B、C三点共线。
AB, AC
例2. 在直角坐标系xOy内,已知A(-2,-3)、B(0,1)、 C(2,5),求证:A、B、C三点共线。
解:A B ( 0 ,1 ) ( 2 , 3 ) ( 2 ,4 ) A C ( 2 ,5 ) ( 2 , 3 ) ( 4 ,8 )
单击添加副标题
用平面向量坐标表 示 向量共线条件
单击此处添加文本具体内容,简明扼要地阐述你的观点
两个向量a, b平行的条件:
a=λb,b≠0.
那么当向量a的坐标为(a1, a2), b的坐 标为(b1, b2)时,代入上式,得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、已知向量a (2,3),b (1,2),若 ma nb 与
a 2b 共线,则m 等于( C )
n
A、1 B、2 C、- 1 D、- 2
2
2
4、a (x,2),b (1 ,1),c a 2b, d 2a b,且 2
c //d ,则 c 2d ( D)
A、(- 5 ,-5) B、( 5 ,5) C、(1,2) D、(-1,-2)
1、平行向量基本定理:
a b a // b
a // b(b 0) a b
2、向量数乘坐标表示
a (a1 ,a2) (a1,a2)
3、一个向量的坐标等于向量终点的坐 标减去始点的坐标
A(x1 ,y1) B (x2 ,y2) AB (x2 ,y2 ) (x1 ,y1)
aae11, 22e2 bb2e21 , 44e2
a1 a2
: 教材105页,练习A,第1,2,3题
作业选做题:
已知A(2,3), B(5,4),C(7,10),
若AP AB AC( R), 求取何值时点P在第三象限内.
求 A的B纵// 坐a 标 . a
y
解: AB // a
15 2 y 0
解此方程得
y5 2
例2、在直角坐标系 xO内y ,已知 A(-2、,- 3)
B(0, 、1) C,(2,求5)证
三A、点B共、线C.
证明:由已知条件,得
AB (0,1) (2,3) (2,4)
AC (2,5) (2,3) (4,8) 2844 0
a1b2 b1b2 a2b1 b2b1
两式相减得:
a1b2 a2b1 0
两个向量平行条件(坐标表示):
a1b2 a2b1 0
如果向量 b不平行于坐标轴,即 b1 0,b2 0
a1 a2
b1
b2
两个向量平行的条件是,相应坐标成比例
例1、已知 AB ( 2和,向5 )量 a,并(1且, y向)量 .
a
b
e2
c
e1
基a底||反b(e之1b,,e2如0,) 果如,存果则在存一a在个惟实(一数a1实,a使数2),a使ba(b(b1b,bb2
)
0)
则则a a|| b. b可化为:
(a1 ,a2) (b1 ,b2)(b1 ,b2)
即: a1 b1 a2 b2
上述两式的两边分别乘以 b、2 ,b1 得
AB // AC
因此 A、B、C三点共线
课堂练习:
1、若三点A(3,6)、B(5,2)、C(6, y)共线,那
么 y 等于( C )
A、-13 B、9 C、- 9 D、13
2、若向量a (x,1) , b (4, x) ,当a // b且方向相
同时,x的值为(A )
A、2 B、- 2 C、4 D、- 4
7、已知 A (-1 ,1) , B (1 , 3 ) , C (4 , 6 ) 求证: A、B、C三点共线
证明:由已知条件可知,
AB (2,2) BC (3,3) 2323 0 AB// BC
因此 A、B、C三点共线
小结:
两个向量平行条件(坐标表示):
a1b2 a2b1 0
如果向量 b不平行于坐标轴,即 b1 0,b2 0
2
2
5、已知 a (2x y 1, x y 2) , b (2,2), 若 a // b 则 x , y 为__x_ ___13__, __y_ __R _.
6、已知三个向量OA (k,12),OB (4,5), OC (10, k),且A、B、C三点共线, 则k __2__或 ___1_1__.
相关文档
最新文档