单自由度系统自由振动)
12.3 单自由度体系的自由振动
各杆EI= 。 【例12-5】试求图示结构的ω。各杆 =C。 】
3l 4 B C D m B y A l l l 4 A l C D l
1
M1 图
解:
δ 11
7l 3 = 12 EI
1 12 EI EI = = 1.309 ω= 3 mδ11 7ml ml 3
All Rights Reserved 重庆大学土木工程学院®
【注二】惯性力 FI = −m&& = maω 2 sin(ωt + α ) = mω 2 y , 注二】 y FI 永远与位移方向一致,在数值上与位移成比例, 永远与位移方向一致,在数值上与位移成比例,其比例系 数为 mω 2 。
All Rights Reserved
重庆大学土木工程学院®
12.3.4 自振周期与自振频率
1.自振周期 自振周期 因
y = a sin (ωt + α ) = a sin (ωt + α + 2 π ) 2π = a sin ω t + + α = a sin[ω (t + T ) + α ] ω
所以自振周期
T =
2π
ω
表示体系振动一次所需要的时间,其单位为 ( 表示体系振动一次所需要的时间,其单位为s(秒) 。
式中, 为重力加速度 为重力加速度; 式中,g为重力加速度;W=mg为质点 为质点 的重力; 表示将重力W=mg 的重力;∆st=Wk11,表示将重力 施加于振动方向所产生的静位移。 施加于振动方向所产生的静位移。
All Rights Reserved 重庆大学土木工程学院®
T = 2π ∆st g
All Rights Reserved 重庆大学土木工程学院®
单自由度系统(自由振动)
第二章 单自由度系统的自由振动本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。
§2-1 无阻尼系统的自由振动无阻尼单自由度系统的动力学模型如图1.1所示。
设质量为m ,单位是kg 。
弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。
弹簧在自由状态位置如图中虚线所示。
当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形∆:,同时也产生弹簧恢复力K ∆,当其等于重力W 时,则处于静平衡位置,即 W=K ⋅∆若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。
首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。
现设质量m 向下运动到x ,此时弹簧恢复力为K(∆+x),显然大于重力W ,由于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx xm (1-1-1 令mkp =2(1-1-2)单自由度无阻尼系统自由振动运动方程为02=+x p x(1-1-3)设方程的特解为 ste x =将上式代入(1-1-3)处特征方程及特征根为ips p s ±==+2,1220则(1-1-3)的通解为ptD pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4)C 、D 为任意积分常数,由运动的初始条件确定,设t=0时00,x xx x == (1-1-5)()x m x k W F=+∆-=∑量位静平衡位置 一自由度弹簧—质量系统 ∆==k mgW xx)则pt pxpt x x sin cos 00 += (1-1-6)经三角变换,又可表示为)sin(α+=pt A x(1-1-7)其中 001220,x px tg p x x A -=⎪⎪⎭⎫ ⎝⎛+=α (1-1-8) 自由振动的振幅A 和初相位角α与系统的参数和初始条件有关。
单自由度系统自由振动——简支梁
单自由度系统自由振动(简支梁)一、 实验目的 1、测定简支梁的等效弹簧常数k ; 2、记录简支梁的自由振动曲线,用分析仪测定系统的有阻尼时的固有频率d ω及相对阻尼系数ζ; 3、用附加质量法测定简支梁的等效质量m ; 4、初步了解振动测试的一些仪器设备及测试方法。
二、 实验装置及原理 1、 实验装置 一根均匀的、截面为矩形的简支梁,其简图如图1所示。
这个系统可看作如图2所示的,有阻尼的单自由度弹簧质量系统,有阻尼时的振动微分方程为: 0=++kx x c xm &&& (1) 令m c n =2,mk n =2ω (2) 则(1)式为:022=++x x n x n ω&&& (3) 再令nn ωζ= (4) 则式(3)为:022=++x x x n n ωςω&&& (5) 其中: m :为简支梁系统的等效质量; k :为简支梁系统对于跨度中点的等效弹簧常数; c :为简支梁下的阻尼常数,n 称为衰减系数,ζ称为相对阻尼系数; n ω:为简支梁系统固有频率,n n f πω2=,d ω为系统的有阻尼固有频率,d d f πω2=。
2、 实验原理 (1) 等效弹簧常数的测定 由于梁在弹性范围内的挠度与梁所受载荷成正比,因此只要在简支梁的跨中点加载,同时图2用百分表读出该点的挠度值,即可测出等效弹簧常数。
(2)记录简支梁系统的自由振动曲线 在简支梁跨度中点贴应变片作用是使梁在振动时的应变量变化转化成电阻量的变化,再将应变片按半桥接法接到动态应变仪上,把电阻量的变化信号放大,并转化成电压量的变化信号,输出到示波器或分析仪,这样即可观察和记录波形。
测试系统框图如图3所示。
(3)附加质量法测等效质量 根据式(2),因为()222n n f m k πω==,21ζωω−=n d ,d d f πω2=要测出简支梁的等效质量m ,只要在原来的简支梁上附加一个已知质量∆,再次求得带有附加质量∆时的固有频率2∆n ω,然后通过下式计算得到m : ()()()()22222222∆∆∆==∆+=n n n n n n f f f f m m ππωω (6) ()()1111222222−∆=−−−∆=∆∆∆d d d d f f f f m &ζζ (7) 三、 实验步骤 1、 测定简支梁系统的等效弹簧常数 在简支梁跨中点处用砝码加载(i=1,2, …., 5),同时用百分表读出该点相对应的挠度值,并记录表1中,按公式算出。
第二章 单自由度系统的自由振动
k
I
在圆盘的静平衡位置上任意选一根半径作 为角位移的起点位置
由牛顿第二定律:
I&& k 0
&& 02 0
扭振固有频率
0
k I
第二章 单自由度系统的自由振动
由上例可看出,除了选择了坐标不同之外,角振动与直线振动的数学描述 完全相同。如果在弹簧质量系统中将 m、k 称为广义质量及广义刚度,则弹 簧质量系统的有关结论完全适用于角振动。以后不加特别声明时,弹簧质 量系统是广义的 。
对时间求导 取平衡位置为势能零点,根据自由振动的特点,系统在平衡位置时,系统的势能 为零,其动能的极大值就是全部机械能;而在振动系统的极端位置时,系统的动 能为零,其势能的极大值等于全部的机械能,即有:
例题讲解3 均匀悬臂梁长为 l, 弯曲刚度为EJ,重量不计, 自由端附有重为P=mg的物体,如图所示。试 写出物体的振动微分方程,并求出频率。 梁的自由端将有静挠度: 物体的振动微分方程为:
8
第二章 单自由度系统的自由振动
例题讲解3 重物落下,与简支梁做完全非弹性碰撞
梁长 L,抗弯刚度 EJ m
h
第二章 单自由度系统的自由振动
2.1 简谐振动
由牛顿定律,有 设系统固有频率为 二阶常系数线性齐次常微分方程
通解形式为
1
第二章 单自由度系统的自由振动
根据三角关系式
改 写
由此可以知道:该系统以 固有频率作简谐振动。
振动周期:
振动频率:
2
第二章 单自由度系统的自由振动
设在初始时刻t=0,物体有初位移
弹簧原长位置
m&x& kx 0
单自由度系统自由振动
取物块的静平衡位置为坐标原点 O , x 轴顺弹簧 变形方向铅直向下为正。当物块在静平衡位置 时,由平衡条件,得到
mg k st
弹簧的静变形
当物块偏离平衡位置为x距离时,物块的运动微 分方程为
mx mg k ( st x)
mx kx
k 固有圆频率 令 : 0 m 无阻尼自由振动微分方程 2018年9 月4日
周期 T 2
0
; 则
1 0 2 2f T
f 称为振动的频率,表示每秒钟振动的次数,单位为1/s或Hz
0 称为固有角(圆)频率(固有频率),表示每2秒内振动
2018年9月4日 《振动力学》
的次数,单位为rad/s,只与系统的质量m和刚度系数k有关。
8
1.单自由度系统自由振动-无阻尼自由振动
统固有的物理参数,称为固有频率,振幅取决 于初始扰动的大小。阻尼振动的固有频率小于 无阻尼情形。临界阻尼和大阻尼条件下的系统 作非往复的衰减运动。
2018年9月4日 《振动力学》
3
单自由度系统自由振动
教学内容
• 无阻尼自由振动 • 能量法 • 等效质量和等效刚度 • 阻尼自由振动
2018年9月4日 《振动力学》
c1 A sin ,
c2 A cos
x t A sin 0 t
2018年9月4日 《振动力学》
无阻尼自由振动是简谐振动.
7
1.单自由度系统自由振动-无阻尼自由振动
1.2 无阻尼自由振动的特点
(1)固有频率
无阻尼自由振动是简谐振动,是一种周期振动
0 ( t T ) 0t 2
振动不能维持等幅而趋于衰减,称为有阻尼自由
机械震动--单自由度体系的自由振动
y sy(t)机械振动分析------单自由度无阻尼系统的自由振动机械振动是物体(或物体的一部分)在平衡位置(物体静止时的位置)附近作的往复运动。
可分为自由振动、受迫振动。
又可分为无阻尼振动与阻尼振动。
常见的简谐运动有弹簧振子模型、单摆模型等。
振动在机械中的应用非常普遍,例如在振动筛分行业中基本原理系借电机轴上下端所安装的重锤(不平衡重锤),将电机的旋转运动转变为水平、垂直、倾斜的三次元运动,再把这个运动传达给筛面。
若改变上下部的重锤的相位角可改变原料的行进方向。
物体受到初干扰后,仅在系统的恢复力作用下在其平衡位置附近的振动称为无阻尼自由振动。
其中仅需用一个独立坐标就可确定振体位置的系统为单自由度系统。
单自由度系统的振动理论是振动理论的基础。
研究单自由度系统的振动有着非常普遍的实际意义,因为工程上有许多问题通过简化,用单自由度系统的振动理论就能得到满意的结果。
而同时对多自由度系统和连续系统的振动,在特殊坐标系中考察时,显示出与单自由度系统类似的性态。
因此,揭示单自由度振动系统的规律、特点,为进一步研究复杂振动系统奠定了基础。
影响振动作用的因素是振动频率、加速度和振幅。
现在我们就此方面展开对单自由度无阻尼振动的讨论。
主要包括两部分:单自由度无阻尼系统的自由振动和单自由度无阻尼系统的受迫振动。
一、单自由度无阻尼系统的自由振动如下图,设此梁上的集中质量为m ,其重量为W mg ,梁由于质量的重力引起的质量处的静力位移用s y 表示,与s y 相应的质量位置称为质量的静力平衡位置。
若此质量受到扰动离开了静力平衡位置,当扰动除去后,则体系将发生振动,这样的振动称为体系的自由振动。
由于振动的方向与梁轴垂直,故称为横向振动。
在此,只讨论微小振幅的振动,由振动引起的内力限于材料的弹性极限以内,用以表示质量运动的方程将为线性微分方程。
1、建立运动方程建立运动方程常用的基本原理是达朗伯原理(亦称惯性力法或动静法)。
单自由度体系的自由振动
令
ω2 = k
m
y + ω 2 y = 0
运动方程的解 y + ω 2 y = 0 可由振动的初 2
始条件来确定
常系数的线性齐次微分方程,其通解为
y(t) = A1 cosωt + A2 sinωt
若当 t = 0 时 y = y0 初位移
y(0) = y0 = A1 cosω × 0 + A2 sin ω × 0
因此,自振周期(或频率)的计算十分重 要。
例 计算自振频率
14
EI=常数
如果让振动体系沿振动方向发生单位位移时,所有刚 结点都不能发生转动(如横梁刚度为无穷大的刚架) 计算刚度系数方便。
两端刚结的杆的侧移刚度为:12EI
l3
一端铰结的杆的侧移刚度为:3EI
l3
例 计算自振频率
1
k11
EI=常数
12 EI l3
y = y0 初速度
y(0) = y0 = −ωA1 sinω × 0 + ωA2 cosω × 0
A1 = y0
A2
=
y0
ω
y(t)
=
y0
cosωt
+
y0
ω
sin ωt
位移的多项表达式
位移、速度的单项表达式
3
y(t)
=
y0
cosωt
+
y0
ω
sin ωt
若令
y(t) = a sinϕ cosωt + a cosϕ sin ωt
结构自振周期、频率
6
自振周期的倒数称为工程频率 f = 1
(或频率),记作 f
T
频率 f 表示单位时间内的振动次数,其常用单位
单自由度系统的自由振动
固有频率的计算方法
1. 建立微分方程求固有频率 2. 静位移法 3. 能量法
单自由度系统的自由振动 / 无阻尼自由振动
静位移法——求解固有频率
单自由度系统的自由振动 / 无阻尼自由振动 能量法——求解固有频率
单自由度系统的自由振动 / 无阻尼自由振动
特征方程及特征根为
2 s 2 0 0
s1, 2 i0
则式(1-1)的通解为
y e x (c1 cos x c2 sin x)
x C1 cos 0t C2 sin 0t
C1 / C2 为任意积分常数,由运动的初始条件确定。
单自由度系统的自由振动 / 无阻尼自由振动
临界阻尼系数 cc
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
2 0 x x0
当作微幅振动时,可认为sin , cos 1。再由静平衡条件 mgl st ka 则上式可简化为
a 2k 引入符号 2 ,则上式变为 ml
2 0
(1-2)
此为单自由度系统无阻尼自由扭振的微分方程,其解同例(1)。
单自由度系统的自由振动 / 无阻尼自由振动
单自由度系统的自由振动 / 无阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度系统的自由振动 / 阻尼自由振动
单自由度体系的自由振动
2 T
计算频率和周期的几种形式
k 1 g g m m W st
m st T 2 2 k g
频率 1.只与结构的质量与刚度有关,与外界干扰无关; 和周 2.T与m的平方根成正比,与k成反比,据此可改变周期; 期的 6 讨论 3.是结构动力特性的重要数量标志。
m ky m
.
y
k
m
y( t )
m
y
k
单自由度体系自由 振动的微分方程
m y
ky 0 m y
2
二、自由振动微分方程的解
改写为
ky 0 m y k y 0 y m
.......... .......... .......... ......(a)
k y 0 其中 y m
例1. 计算图示结构的频率和周期。 例2.计算图示结构的水平和竖向振动频率。 H 1 m EI m 1
V
l /2 1
l /2 A,E,I
E,I
E,A
l3 48EI m l3 T 2 3 48EI ml 48EI
例3.计算图示刚架的频率和周期。
m EI1= I I h
6 EI h2
l/2
解:1)求δ
l3 1 48EI
l/2
3 l/ 16
l/2
l/2
P=1
l/2
l/2
7 l 3 5 l/ 2 32 768EI P=1 l/ 2
l3 3 192EI
1
1 m 1
48EI ml3
3 1l 768 EI 1 192EI 1 l 3 l l 5 l 7 l 2 2 (2 3 3 ) 1 3 ml 2 32 768 m EI 62 2 7 16 EI ml m 3
第五章 单自由度系统的振动
上式也可改写为
F (t ) c0 ck cos(kt k )
式中
c0 a 0 / 2 ck ak2 bk2 bk k arct an ak
Cx Kx c0 ck cos(kt k ) M x
k 1
k 1
若系统的质量、刚度和阻尼分别为M、K和C,则此时受迫振动的微分方程为
c0相当于一个静载荷,它不引起振动,而只改变系统的静平衡位置。若令
k k
则稳态响应可以写为
ck x k cos(k t k k ) k 1 K
x e ( x0 cosd t
at
也可改写为 式中
d x Aeat sin(d t )
0 ax0 x
0 ax0 x
sin d t )
2 A x0 (
d
)2
arctan
d x0
0 ax0 x
从上面的式子可以看出,这时系统的运动为周期性的振动。其 振动圆频率为d ,称为有阻尼振动的固有频率,它比无阻尼自由振 动的固有频率 n 略小。振幅Ae-at随时间成指数形式衰减。如图给 出了这种衰减振动的响应曲线。
x A sin(nt )
式中:A称为振幅; 称为初相位,单位为rad。 无阻尼自由振动是一个以固有频率为频率的简谐振动。
设初始时刻t=0时的位移为x0、速度为v0,则可得
2 A x0 (v0 / 0 ) 2
x00 arctan 0 x
2、工程实例 机器或结构中的构件受一静负荷后要产生变形,其内 部要产生应力,分别称为静变形和静应力。而当受冲击或 产生振动时,构件要产生动变形和动应力。
振动理论-第2章 单自由度系统的自由振动
c
l
解:梁重物处的静变形为
st
Wc2 (l c)2 3lEI
则:
3lEI k c2 (l c)2
1g f
2 st
例3. 已知:升降机吊笼,以等速 v0 下降,钢丝绳视为弹簧,
若A端突然停止,求钢绳所受到的最大应力。
W 10000lbf l 62 ft A 2.5in2 E 15106lbf / in2
4 等效质量和等效刚度
4 等效质量和等效刚度
4 等效质量和等效刚度
4 等效质量和等效刚度
4 等效质量和等效刚度
平行串联、并联弹簧的等效刚度
4 等效质量和等效刚度
平行串联、并联弹簧的等效刚度
4 等效质量和等效刚度
例1 A suspension system of a freight truck with a parallel-spring arrangement. Find the equivalent spring constant of the suspension if each of the three helical springs is made of G 80109 N / m2
(boom) to deform by an amount x2 x cos 45 and the spring k1
Eat 3 4b3
kr
AE l
d2E
4l
1 keq
1 kb
1 kr
4b3 Eat 3
4l d2
E
keq
E 4
at3d 2
d 2b3 lat3
4 等效质量和等效刚度
斜拉弹簧在某个位移方向上的等效弹簧刚度
Fx F cos F 为弹簧的伸长量
单自由度体系自由振动
单自由度体系自由振动一、无阻尼振动单自由度体系自由振动可分为有阻尼和无阻尼振动两种。
在模型建立过程当中,可以直接进行建立。
在运行时,只需将c=0即可。
ω增加,单位时间内振动次数增加。
无阻尼振动是简谐振动,振幅和初相位仅取决于初位移和速度。
初始干扰反映了外部初始赋予体系能量的大小。
由于不考虑振动过程中体系能量的耗散,因而体系的总能量保持不变,这就表现为振幅A保持不变,永不衰减。
于是振动一旦发生便永不停息,但这仅是一种理想状态。
二、对阻尼自由振动的讨论当阻尼系数c不为0时,体系做阻尼运动。
由于有能量的耗散,体系的运动幅度会逐渐减小,最终停止振动。
有阻尼单自由度体系,自由振动的运动方程为ωξωm c m k t ky t y c t y m 2,0)()()(2===++∙∙∙, 则原式可变为022=++∙∙∙ωξωy y 。
解微分方程有如下结果:2.1 当1<ξ时,即小阻尼运动,方程的解为:)sin(A )sin cos ()(000ϕωωωξωωξωξω+=++=--t e t y v t y e t y d t d d d t 其中2200201)(ξωωωξω-=++=d d y v y A可画出小阻尼体系自由振动时的y-t曲线如图所示:是一条逐渐衰减的波动曲线2.2 当1>ξ时,即大阻尼的情况,方程的解为:⎥⎥⎦⎤⎢⎢⎣⎡-+--+=-t ch y t sh v y e t y o t ωξωξξξωωξ11)1()(20220 上式不含有简谐振动的因子,是因为体系受干扰后偏离平衡位置所积蓄起来的初始能量在恢复平衡位置的过程中全部消耗克服阻尼,由于阻尼很大,不足以引起振动。
当初始速度,初始位移都大于0时,可画出大阻尼体系自由振动时的y-t曲线如图所示:2.3 当1=ξ时,即临界阻尼的情况,方程的解为:[]t v t y e t y t 00)1)(++=-ωω(当初始速度,初始位移都大于0时,可画出临界阻尼体系自由振动时的y-t曲线如下图所示;当体系在临界阻尼时,其运动衰减的最快,即他能在最短时间内无振动的回到平衡位置。
第2章 单自由度系统的自由振动
25第2章 单自由度系统的自由振动2.1 无阻尼系统的自由振动设有质量为m 的物块(可视为质点)挂在弹簧的下端,弹簧的自然长度为l 0,弹簧刚度为k ,如不计弹簧的质量,这就构成典型的单自由度系统,称之为弹簧质量系统如图2-1所示。
工程中许多振动问题都可简化成这种力学模型。
例如,梁上固定一台电动机,当电机沿铅直方向振动时,梁和电机组成一个振动系统,如不计梁的质量,则它在该系统中的作用相当于一根无重弹簧,而电机可视为集中质量。
于是这个系统可简化成如图2-1所示的弹簧质量系统。
2.1.1自由振动方程以图2-1所示的弹簧质量系统为研究对象。
取物块的静平衡位置为坐标原点O ,x 轴顺弹簧变形方向铅直向下为正。
当物块在静平衡位置时,由平衡条件∑F x = 0,得到st δk mg = (A )st δ称为弹簧的静变形。
当物块偏离平衡位置为x 距离时,物块的运动微分方程为mxkx &&=− (2-1) 将式(2-1)两边除以m ,并令mkp =n (2-2) 则式(2-1)可写成02n =+x p x && (2-3)这就是弹簧质量系统置之只在线弹性力-kx 的作用下所具有的振动微分方程,称之为无阻尼自由振动的微分方程,是二阶常系数线性齐次方程。
由微分方程理论可知,式(2-3)的通解为t p C t p C x n 2n 1sin cos +=其中C 1和C 2为积分常数,由物块运动的起始条件确定。
设0=t 时,x x xx ==00,&&。
可解得 C x 10= n02p xC &=t p p xt p x x n n0n 0sin cos &+= (2-4) 式(2-4)亦可写成下述形式)sin(n α+=t p A x (2-5)26 其中⎪⎪⎩⎪⎪⎨⎧=+=)arctan()(00n 2n020x x p p x x A &&α (2-6) 式(2-4)、(2-5)是物块振动方程的两种形式,称为无阻尼自由振动,简称自由振动。
第二章-(第1节)单自由度系统的自由振动
tan 1
ωn x0 x 0
(2.1-11)
2.1 简谐振动
弹簧悬挂的物体沿铅锤方向的振动
当振动系统为静平衡时弹簧在 重力mg的作用下将有静伸长
s
mg k
(2.1-12)
在重力与弹簧力的作用下,
物体的运动微分方程为
mx mg k(s x) (2.1-13)
因为mg=ks,上式仍可简化为
mx kx
波变化。
2.1 简谐振动
振动周期
振动重复一次所需要的时间间隔,称之为振
动周期。 在简谐振动的情况下,每经过一个周期,相
位就增加2,因此
[n(t+T)+]-(nt+)=2
故有
T 2 n
(2.1-9)
实际上T代表发生一次完整运动所需要的时间
,周期通常以秒(s)计。
2.1 简谐振动
振动频率
在单位秒时间内振动重复的次数,称为振动 频率,一般用f 表示。
解:取偏角为坐标。从平衡位
置出发,以逆时针方向为正,锤的
切向加速度为 ,l故 有运动微分方
程为
ml2 mgl sin
假定角不大,可令sin,则
上式简化为 g 0
l
图 2.1-5
2.1 简谐振动
例题:列写振动微分方程求系统的周期(例2.1-2)
故
n2
g l
则振动周期为
T 2 2 l
n
g
2.1 简谐振动
或
② x(t) Asin(nt )
(2.1-7)
式中常数A和(=/2-)分别称为振幅和相角。方程(2.1-
7)说明该系统以固有频率n作简谐振动。
2.1 简谐振动 简谐振动的定义及矢量表示
单自由度体系的自由振动
【例10.1】 等截面简支梁[图10.9(a)]的跨长为l, 弯曲刚度EI 为常数,在距梁端A点处有一集中质量m,若 不计梁本身的质量,试求梁的自振频率和自振周期。
图10.9
【解】 该结构为单自由度体系。由式(10.12)求自振频
率ω时,须先求出体系的柔度系数 11 ,即求出在单位力
作用下体系所产生的位移。利用图乘法,由图10.9(b), 算得
结构力学
单自由度体系的自由振动
一、自由振动的微分方程
建立运动微分方程通常有两种方法,一种方法是根据达朗贝尔 原理,利用刚度系数列出平衡方程,这种方法称为刚度法;另 一种方法是根据位移条件,利用柔度系数列出位移方程,这种 方法称为柔度法。
1. 刚度法
图10.7
2. 柔度法
FI +Fe= 0
my(t) k11y(t) 0
y(t) Asin(t )
v0 A cos
y0 Asin
t an1 y0
v0
A
y02
(
v0
)2
图10.8
简谐振动 振幅 相位角 初相角
三、结构的自振周期与频率
T 就是结构的自振周期
T 2π
自振周期的倒数表示每秒钟内的振动次数,称为工程频率, 以f 表示
f 1
T 2π
ω称为圆频率
图10.10
【解】 由于横梁各质点的水平位移相同[图10.10(b)], 故结构为单自由度体系。
在本例中,体系的刚度系数较易计算。取横梁为研究 对象[图10.10(c)],由平衡方程,得
k11
3
3EI1 h3
9EI1 h3
结构的自振频率为
k11 gk11 3 gEI1
mW
《振动力学》2单自由度系统自由振动
单位:弧度/秒(rad/s)
则有 : &x& + ω02 x = 0
通解 : x(t) = c1 cos(ω0t) + c2 sin(ω0t) = Asin(ω0t + ϕ)
c1, c2: 任意常数,由初始条件决定
振幅 : A = c12 + c22
初相位 : ϕ = tg −1 c1
c2
4
单自由度系统自由振动
解法2:
平衡位置2
动能 T = 1 Iθ&2 = 1 ml2θ&2
最大位移位置,系统动 能为零,势能达到最大
ω0 = k / m
T +V = const
Tmax = Vmax
Tmax = 0
Vmax
=
1 2
kxm2 ax
m
k
最大位移位置
0
xmax
静平衡位置
x
x&max = ω0 xmax
x 是广义的 对于转动: θ&max = ω0θmax
x(t) = Asin(ω0t + ϕ) 30
无阻尼的质量弹簧系统受到初始扰动后,其自由振动是以 ω0 为频率的简谐振动,并且永无休止。
x
T = 2π / ω 0
初始条件的说明:
初始条件是外界能量输入的一 x0
A
种方式,有初始位移即输入了 弹性势能,有初始速度即输入 了动能。
ϕ0
ω0
t
9
单自由度系统自由振动
零初始条件下的自由振动:
x(t)
=
x0
&x& + ω02 x = 0
ω0 =
k m
单自由度系统的自由振动
频率:ω; 幅值:A; 初始相位:t=0时矢量与坐 标轴的夹角。 y Asin(t )
1.两个(或两个以上)同频 率简谐振动的合成。
2.直观表示简谐振动位
x Acos(t )
移.速度.及加速度之间的 相对关系。
旋转矢量表示法—旋转矢量投影法
y
1.两个(或两个以上)同频
率简谐振动的合成。
A
A2
2
ω
φ A1
1
O
x
2.直观表示简谐振动位 移.速度.及加速度之 间的相对关系。
y
x
ωA
Ax
ω O
x ω A2
φ
x
复数表示法
长度为A的矢量以匀角速度ω在复平面上绕定点O逆时 针旋转,该矢量在实轴及虚轴上的投影与矢量端点处 复数z的实部和虚部相对应。
单自由度系统自由振动方程
x
2 0
x
0
0 k / m
单自由度系统自由振动方程的解 说明什么?
x C1 cos0t C2 sin 0t x Asin(0t )
无阻尼自由振动是以平衡位置为中心的简谐振动
振动角频率ω0是系统的固有特性,与初始条件无关
固有频率及 固有周期
f 0 1 2 2
k m
T0
1 f
2
m k
固有频率
x C1 cos0t C2 sin 0t
x Asin(0t )
ω0称作无阻尼系统的固有(角)频率,单位为 rad/s
0 k / m
固有频率及 固有周期
结构振动理论2-单自由度系统自由振动
由 dE 0 1、求出运动方程: mx kx 0
dt
有常力作用的机械能: E 1 mx&2 1 k( x)2 Fx
2
2
dE mx&&x& k( x)x& Fx& x&(m&x& kx) 0
dt
由 Ek max E p max E 2、求固有频率
假设 x Asin( pt ) 则 x Apcos(pt )
2
l 0
/
2
y02{3(
x l
)
4(
x l
)3}2
dx
1 2
0.486
ly02
Ek
1 2
me
y02
me 0.486 l
n
ke me
00:03
单自由度系统自由振动
例 铰接式直升机旋翼挥舞振动分析
取微元做受力分析,微元
cos
R
L
2(R cos)d 离心力对铰链轴o的力矩为
θ
ξ
(2 (R cos )d )( sin )
则系统的自由振动方程为: me ke 0
固有频率为:
n
ke me
需要注意的是,me不是梁的总质量,它可以通过梁上各 点位移关系和动能等效的原则求得。
00:03
单自由度系统自由振动
y( x, t )
y0
(t
)[3x l
4(
x )3 ] l
(x 1) l2
Ek
1 2
l y2dm 1 2
0
由此可见,弹性元件并联将提高总刚度,串联将降低总刚
度。这与电学中电阻的并联、串联结论是相反的。阻尼器串联
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题2-5 (教材例题2.5)
me
m
L
3
mA
J
mvb2 a2
1 3
msb2
例题2-6 (教材例题2.3、2.6) 求轴向轴转化的单轴系的等效刚度和等效旋转质量
ke i2k1 Je i2 J1
(3)等效阻尼 在工程实际中,往往根据在振动一周期内实际阻尼所耗散的能量与
粘性阻尼所耗散的能量相等来求系统的等效粘性阻尼。
mx(t) cx(t) kx(t) F(t)
当外界激励为零(即 F(t) 0 )时,系统仅在开始时受到外界干 扰即初始干扰(如初始位移或速度),靠系统本身的固有特性而进行振 动,即自由振动。
如果系统受到外界持续激励(即 F (t) 0 ),就会从外界不断地 获得能量,补充阻尼所消耗的能量,使系统保持等幅振动。这种由外界 持续激励引起的振动即是受迫振动或强迫振动。
Tm a x
1 2
m(cm a x ) 2
1 2
mc2 A2 p2
U
1 2
k1(a )2
1 2
k2 (b )2
mgc(1 cos )
1 2
k1 (a
)2
1 2
k2 (b )2
mgc2 sin2
2
U max
1 2
k1 (a m a x) 2
1 2
k2 (bmax)2
mgc
m
2 ax
2
1 2
(k1a 2
11 1 k k1 k2
k k1 k2
(2)等效质量
通常用能量法求复杂系统的等效质量,即按实际系统要转化的质量的 动能与等效系统质量动能相等的原则来求系统的等效质量。
例题2-3
meq J m1r 2 m2 R2 keq (k1 k3 )r 2 (k2 k4 )R2
例题2-4 (教材例题2.4)
系统运动微分方程为
••
•
m xc c xc kxc eit
频率响应函数
三、 汽车上的振动问题 四、简谐振动、谐波分析及频谱分析
1、简谐振动 2、谐波分析 3、频谱分析
(1)简谐振动 ①函数表示法
x Asin(t ) Asin(2 t ) Asin(2ft )
x
A cos(t
)
T
A sin(t
)
2
x A 2 sin(t ) A 2 sin(t )
故
X
F0
k m 2
F0 k
1
1 2
其中 ,称为频率比
p
完整解
x
x1
x2
B sin
pt
D cos
pt
F0 k
1
1 2
sin t
将初始条件 x0,x0代入,即得
x
x0 p
sin
pt
x0
cos
pt
F0 k
1
1 2
(s in t
p
sin
pt)
若 x0 0,x0 0有
x
F0 k
1
1 2
(s in t
A2
k2b2
A2
mgcA2
)
由于 Tmax U max
可得
p
k1a2 k2b2 mgc mc2
求固有频率
令 p2 k m
n c 2m
n
p
相对阻尼系数
x Be( 2 1) pt De ( 2 1) pt
x (B Dt )e pt
例题 质量m=2450kg的汽车用四个悬挂弹簧支承在 四个车轮上,四个弹簧由汽车重量引起的静压缩量均 为λst=15cm。为了能迅速地减少汽车上下振动,在四 个支承处均安装了减振器,由实验测得两次振动后振 幅减小到10%,即A1/A3=10,试求: 1)振动的减幅系数和对数衰减率 2)衰减系数和衰减振动的周期 3)若要汽车不振动,减振器的临界阻尼系数
1、单自由度系统及其振动微分方程建立 (1)单自由度振动系统
(2)单自由度系统振动方程的建立方法 ①牛顿第二定律或达朗贝尔原理
f mx f mx 0 M J M J 0
例题2-1 (教材例题2.10) 建立如图所示振动系统的振动微分方程。
b2
a2
d2
mlx
l
cx
l
k1
同样,实际振动系统不可避免地存在阻力,因而在一定时间内自由振 动会逐渐衰减,直至完全消失。振系中阻力有各种来源,如干摩擦、流体 阻力、电磁阻力、材料内阻力等,统称阻尼。
在这些阻尼中,只有粘性阻尼是线性阻尼,它与速度成正比,易于数 学处理,可以大大简化振动分析问题的数学求解,因而通常均假设系统的 阻尼为粘性阻尼。对于其他比较复杂的实际阻尼,则被转化为等效粘性阻 尼来处理。
p
sin
pt)
频率不相等的简谐运动之和,一般不再是简谐振动。
Δ
X
1
X 0 (1 2 )2 (2 )2
放大因子,它代表稳态振幅X与激 振力幅F0静止作用于弹簧上的静位 移之比。
λ=1时的放大因子称为品质因子
Q 1 p
2
单位谐函数法是指作用在系统上的激励为复数形式的单位
幅值简谐激振力, fc (t) eit cost i sin t
l
k2 x 0
②能量法
T+U=常数
d T U 0
dt
例题2-2 (教材例题2.11)
半径为r、重力为 mg的圆柱体在半径为R 的圆柱面内滚动而不滑 动,如图所示。试求圆 柱体绕其平衡位置作微 小振动的微分方程。
2g 0
3(R r)
2、等效振动系统及外界激励
在工程上为便于研究,常把一些较为复杂的振动系统进行简化,以便 当作运动坐标方向上只存在一个质量和弹簧来处理,经简化后得到的质量 和刚度,分别成为原系统的等效质量和等效刚度。
四、单自由度系统在周期性激励作用下的受迫振动 1、谐波分析与叠加原理 2、傅立叶(Fourier)级数法
五、单自由度系统在任意激励作用下的受迫振动 1、脉冲响应函数法或杜哈梅(Duhamel)积分法 2、傅立叶(Fourier)变换法 3、拉普拉斯(Laplas)变换法
一、单自由度振动系统 1、单自由度系统及其振动微分方程建立 2、振动等效系统及外界激励 3、振动微分方程的求解
法可以将系统传递函数从复域引到具有明显物理概念的频域来分析系统的特性。
将频率特性分析方法用于振动分析,成为频谱分析。 引入频谱分析的重要性在于:
①可将任意激励函数分解为叠加的谐波信号,即可将周期激励函数分解为叠加 的频谱离散的谐波信号,可将非周期激励函数分解为叠加的频谱连续的谐波信 号。 ②对于无法用分析法求得传递函数或微分方程的振动系统,可以通过实验求 出系统的频率特性,进而得到系统的传递函数或微分方程。
正弦型激励 周期激励 任意激励
k
kx m x
m
F(t)
mx kx F0 sin t
p2 k m
x p2x F0 sin t
m
通解 x1 B sin pt D cos pt
Asin( pt )
特解可设为 x2 X sin t
将x2代入原方程有
(m 2 k) X sin t F0 sin t
二、单自由度系统的自由振动 1、无阻尼系统的自由振动 2、有阻尼系统的自由振动
三、单自由度系统在简谐激励作用下的受迫振动 1、简谐激励下的受迫振动响应及频谱分析 2、受迫振动的复数求解法--单位谐函数法 3、支座简谐激励(位移激励)引起的振动与被动隔振 4、偏心质量(力激励)引起的振动与主动隔振 5、测振传感器的原理
(2)在一个周期内,具有有限个极大、极小点。
f
(t)
a0 2
a1
cos t
a2
cos 2t
b1 sin t b2 sin 2t
=
a0 2
a j
j 1
cos(
jt) bj
sin(
jt)
a0 2
j 1
Aj
sin(
jt j )
其中
a0
2 T
T
f (t)dt
0
2
aj T
T
f (t) cos( jt)dt
系统作简谐振动时,粘性阻尼在振动的一周期内所作的功
x X sin(t )
x X cos(t )
Wc
T
0 Fc xdt
2
c2 X 2 cos2 (t )dt c X 2
0
库仑阻尼
ceq
4mg X
流体阻尼
ceq
8 A 3
结构阻尼
ceq
a
(4)外界激励 单自由度系统的振动方程的一般形式
(1)等效刚度
通常用能量法求复杂系统的等效刚度,即按实际系统要转化的弹簧 的弹性势能与等效系统弹簧势能相等的原则来求系统的等效刚度。
拉压刚度 弯曲刚度 扭转刚度
kD
EA l3
3EI
kB l13
kC
GI p l2
弹簧的串、并联
ke k1 k2
1 11
ke k1 k2
串联弹簧的刚度 并联弹簧的刚度
0
bj
2 T
T
f (t)sin( jt)dt
0
Aj
j
a
2 j
arctan
ba2jj bj
例题1-1 对方波信号
f (t) FF00
0tT 2
T tT 2
进行谐波分析。
f (t) 4F0 sin jt
j1,3,5,
j
4F0
sin t
1 3
sin
3t
1 5
sin
5t
(3)振动的频谱分析 频率特性分析是经典控制理论中研究与分析系统特性的主要方法。利用此方