二次函数求最值方法总结
二次函数复习二次函数解决最值问题的思路与策略

二次函数复习二次函数解决最值问题的思路与策略二次函数复习:解决最值问题的思路与策略二次函数在高中数学中是一个重要的内容,涉及到了最值问题的求解。
本文将从复习二次函数的基本形式开始,逐步介绍解决最值问题的思路与策略。
一、二次函数的基本形式二次函数一般具有如下基本形式:f(x) = ax^2 + bx + c (a≠0)其中,a、b、c为实数,且a不等于0。
通过调整a、b、c的值,可以使二次函数的图像发生上下平移、左右平移和翻转等变化。
二、最值问题的定义在二次函数中,最值问题通常指的是求解函数的最大值或最小值。
最大值对应函数的顶点,最小值对应函数的谷点。
三、解决最值问题的思路解决最值问题的思路可以总结为以下几个步骤:1. 了解函数的基本形式:首先确定二次函数的基本形式,即f(x) = ax^2 + bx + c。
根据实际问题的给定条件,确定a、b、c的值。
2. 求解顶点坐标:通过平移变换,将二次函数的图像平移到合适的位置,使其顶点的坐标易于计算。
顶点的横坐标可通过 x = -b/(2a) 得到,而纵坐标可通过代入横坐标得到。
3. 判断最值类型:根据二次函数的开口方向(即a的正负)来判断最值类型。
当a>0时,函数开口向上,为最小值问题;当a<0时,函数开口向下,为最大值问题。
4. 求解最值:根据最值类型和顶点的坐标,可以直接得到函数的最值。
四、解决最值问题的策略解决最值问题的策略根据具体情况有所不同,下面列举了几种常见的策略:1. 利用函数的图像分析:通过观察二次函数的图像,分析函数在定义域上的变化趋势,找到最值所处的位置。
2. 利用对称性求解:当二次函数关于y轴对称时,可以利用对称性直接得到函数的最值。
3. 应用配方法:对于一些复杂的二次函数,可以通过配方法将其化简为标准的二次函数形式,然后再求解最值。
4. 利用一元二次不等式求解:通过将二次函数转化为一元二次不等式,可以得到函数的最值所在的区间,进而求解最值。
解题秘诀二次函数最值的4种解法

解题秘诀二次函数最值的4种解法二次函数是高中数学中的一个重要知识点,掌握了解题的秘诀和方法,就可以更好地解决与二次函数相关的各种问题。
本文将介绍四种解法来求解二次函数的最值问题。
一、二次函数的最值根据导数解法要求解二次函数的最值,可以通过求导数的方法来解决。
具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。
2. 对函数进行求导,得到导函数:f'(x) = 2ax + b。
3.导函数表示了二次函数的斜率,要求函数的最值,就是要求导函数为零点时的x值。
4. 解方程2ax + b = 0,求得x = -b / 2a。
5.将求得的x值代入二次函数,计算得到对应的y值。
6.x和y的值就是二次函数的最值。
二、二次函数的最值根据顶点法解法顶点法也是求解二次函数的最值的一种方法,具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。
2.求出二次函数的顶点坐标,顶点的x值为-x/2a。
3.将求得的x值代入二次函数,计算得到对应的y值。
4.x和y的值就是二次函数的最值。
三、二次函数的最值根据平移法解法平移法是一种通过平移变换求解二次函数最值的方法,具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。
2.将二次函数表示为顶点形式:f(x)=a(x-h)^2+k,其中(h,k)为顶点坐标。
3.根据函数的几何性质,二次函数的最值就是顶点的纵坐标k。
四、二次函数的最值根据因式分解解法因式分解是一种求解二次函数最值的常用方法,具体步骤如下:1. 将二次函数表示为一般式:f(x) = ax^2 + bx + c。
2.将二次函数进行因式分解:f(x)=a(x-x1)(x-x2),其中x1和x2为二次函数的两个零点。
3.根据函数的几何性质,二次函数的最值为x轴与二次函数的拐点处的纵坐标。
通过以上四种解法,我们可以灵活地解决二次函数的最值问题。
二次函数的最值问题求解

二次函数的最值问题求解二次函数是数学中常见的一种函数形式,它的一般形式可以表示成f(x) = ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。
而二次函数的最值问题是指求解二次函数在给定定义域上的最大值或最小值的过程。
一、二次函数的最值问题一般求解方法要解决二次函数的最值问题,一般可以采用以下几个步骤:1. 确定二次函数的开口方向:根据二次系数a的正负性来确定开口是向上还是向下。
当a > 0时,二次函数开口向上;当a < 0时,二次函数开口向下。
2. 求解二次函数的顶点坐标:顶点坐标可以通过公式x = -b / (2a)求得。
将x = -b / (2a)带入函数表达式中,得到对应的y值。
顶点的坐标表示了二次函数的最值。
3. 判定定义域:根据问题给出的条件或定义域限制,确定二次函数的定义域。
4. 推导最值:根据二次函数的开口方向和定义域,判定二次函数的最值。
当二次函数开口向上时,最值为最小值;当二次函数开口向下时,最值为最大值。
二、举例求解二次函数的最值问题为了更好地理解二次函数的最值问题,以下通过一个具体的例子来进行求解:已知二次函数f(x) = x^2 - 4x + 3,求解其最小值。
1. 确定开口方向:由于二次函数的系数a = 1 > 0,所以函数的开口是向上的。
2. 求解顶点坐标:通过公式x = -b / (2a)求得x的值。
将函数f(x)的系数代入计算,有x = -(-4) / (2*1) = 2。
将x = 2带入函数表达式f(x)中,计算得y = (2)^2 - 4(2) + 3 = -1。
因此,顶点坐标为(2, -1)。
3. 判定定义域:对于该函数来说,定义域是全体实数。
4. 得出最小值:由于二次函数开口向上,所以顶点的y值即为最小值。
因此,该二次函数的最小值为-1。
通过以上的计算,我们成功地求解了二次函数的最值问题。
三、总结在实际问题中,二次函数的最值问题是一类常见且重要的数学问题。
二次函数应用题最值解法技巧

二次函数应用题最值解法技巧
求解二次函数的最值,是高中数学教学中常见的问题,也是学生学习,应对考试经常遇到的难题。
下面介绍一般常用的求解二次函数最值的技巧:
一、求图像上最大最小值的步骤:
1、分析二次函数的几个重要关于最值的性质。
首先,二次函数的最值总是取决于它的顶点,而顶点的横纵坐标即为二次函数的最值。
2、求得顶点的横纵坐标,可以采用求导法:二次函数y=ax2+bx+c的导数为y'=2ax+b,上下两个函数图像关于x轴对称,故用y'=0即可求得函数最大最小值点的横坐标值。
3、求得二次函数最值点的横坐标后,就可以替换到y=ax2+bx+c中,求出该点处函数的值,就是函数的最值。
二、求导法求解二次函数最值的注意事项:
1、求导时,需要用合适的表达式;
2、求导法仅适用于求确定数学函数的最大最小值,不能用来求未定义函数或参数函数的最大最小值;
3、求导时,需要判断函数在不同区域的极大值极小值情况,以及确定顶点的横纵坐标值。
以上内容是求解求解二次函数的最值的常用技巧,但是学生在复习时,还需要多积累二次函数求解最值的实际应用实例,熟悉不同情况下的求解步骤,加强对求解最值的熟练操作。
二次函数的最值与极值总结

二次函数的最值与极值总结二次函数是高中数学中常见的一类函数,具有形如y=ax^2+bx+c的一般式。
在研究二次函数的性质时,最值与极值是非常重要的概念。
本文将对二次函数的最值与极值进行总结和讨论。
一、最值的概念在数学中,最值指的是函数在定义域内取得的最大值或最小值。
对于二次函数来说,最值的存在与二次项的系数a的正负有关。
1. 当a>0时,二次函数的抛物线开口向上,函数的最小值存在。
这个最小值即为函数的最小值。
2. 当a<0时,二次函数的抛物线开口向下,函数的最大值存在。
这个最大值即为函数的最大值。
二、最值的求解方法1. 最值的求解方法一:利用函数的对称性二次函数关于x轴对称,对称轴方程为x = -b/(2a)。
所以,函数的最值点的横坐标一定在对称轴上。
当对称轴上有x值时,带入函数表达式即可求得对应的y值,确定最值点。
2. 最值的求解方法二:利用二次函数的顶点公式二次函数的顶点公式为x = -b/(2a),y = f(x)。
通过求得的顶点坐标,就可以确定最值点的坐标。
根据二次函数的性质,当a>0时,对应的顶点为最小值点;当a<0时,对应的顶点为最大值点。
三、极值的概念在数学中,极值是指函数在一定范围内取得的最大值或最小值。
对于二次函数来说,极值的存在与一阶导数的符号有关。
1. 当一阶导数大于0时,函数递增,没有极小值。
2. 当一阶导数小于0时,函数递减,没有极大值。
3. 当一阶导数等于0时,函数可能存在极值或拐点。
此时,需要通过二阶导数或其他方法来进一步判断。
四、极值的求解方法1. 极值的求解方法一:利用导数法对二次函数进行求导,得到一阶导数f'(x)。
将一阶导数f'(x)等于0解方程,求得x的值。
然后,将求得的x值代入原函数f(x)中,求得对应的y值,确定极值点。
2. 极值的求解方法二:利用二阶导数法对二次函数进行求导,得到一阶导数f'(x)和二阶导数f''(x)。
二次函数求最值的三种方法

二次函数求最值的三种方法一、引言在学习高中数学时,我们会学到二次函数,并学习如何求出这个函数的最值。
这是一个非常重要的问题,因为在实际生活中,很多问题都可以用二次函数来描述,例如:投射物的运动轨迹、拱桥的设计等。
为了更好地理解和掌握这一知识点,本文将分析三种常见的方法来解决二次函数求最值的问题。
这些方法包括:1.利用二次函数的顶点公式求最值2.利用二次函数的导数公式求最值3.利用求根公式解二次方程求最值在下文中,我们将详细展开上述三种方法的整体流程并进行详细描述。
二、利用二次函数的顶点公式求最值二次函数的标准形式为:y=ax²+bx+c,其中a、b、c分别代表二次项系数、一次项系数和常数项。
我们可以通过求出顶点来确定二次函数的最值。
我们知道,对于标准二次函数,其顶点坐标为(-b/2a,f(-b/2a))。
使用这一公式,我们可以简单地找到二次函数的最值。
接下来,我们将细致地介绍如何使用顶点公式求二次函数的最值。
1. 将二次函数转换为标准形式。
我们有一个二次函数y=2x²+4x-5,我们可以将其转换为y=2(x²+2x)-5。
2. 现在,我们可以通过分离平方项来找到二次项x²的系数a和一次项x的系数b。
在本例中,二次项系数a为2,一次项系数b为4。
3. 接下来,我们可以使用顶点公式来计算出顶点的坐标。
根据公式,顶点的横坐标为-b/2a,若b为正数,顶点为函数的最小值,反之为最大值。
在本例中,由于一次项系数为正数,因此我们将使用公式-b/2a来计算横坐标。
(a) 横坐标=-b/2a=(-4)/(2*2)=-1(b) 将横坐标代入原函数中,可得纵坐标f(-1)=2*(-1)²+4*(-1)-5=-7(c) 顶点坐标为(-1,-7)。
4. 因其二次项系数为正数,所以这是一个开口向上的抛物线,并且其最小值为-7,在顶点的位置。
答案为f(x)=-7。
三、利用二次函数的导数公式求最值另一种方法是使用二次函数的导数公式来确定最值。
二次函数求最值的六种考法(含答案)

二次函数与最值的六种考法-重难点题型【题型1 二次函数中的定轴定区间求最值】【例1】(2021春•瓯海区月考)已知二次函数y=﹣x2+2x+4,关于该函数在﹣2≤x≤2的取值范围内,下列说法正确的是()A.有最大值4,有最小值0B.有最大值0,有最小值﹣4C.有最大值4,有最小值﹣4D.有最大值5,有最小值﹣4【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到该函数的对称轴和开口方向,然后根据﹣2≤x≤2,即可得到相应的最大值和最小值,从而可以解答本题.【解答过程】解:∵二次函数y=﹣x2+2x+4=﹣(x﹣1)2+5,∴该函数的对称轴是直线x=1,函数图象开口向下,∴当﹣2≤x≤2时,x=1时取得最大值5,当x=﹣2时,取得最小值﹣4,故选:D.【变式1-1】(2020秋•龙沙区期中)当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,则m=.【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣3x+m=(x−32)2+m−94,∴该函数开口向上,对称轴为x=3 2,∵当﹣1≤x≤3时,二次函数y=x2﹣3x+m最大值为5,∴当x=﹣1时,该函数取得最大值,此时5=1+3+m,解得m=1,故答案为:1.【变式1-2】(2021•哈尔滨模拟)已知二次函数y=x2﹣4x+3,当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,则a﹣b的值为.【解题思路】根据题目中的函数解析式和二次函数的性质,可以得到自变量满足﹣1≤x≤3时,x=﹣1时取得最大值,x=2时取得最小值,然后即可得到a、b的值,从而可以求得a﹣b的值,本题得以解决.【解答过程】解:∵二次函数y=x2﹣4x+3=(x﹣2)2﹣1,∴该函数图象开口向上,对称轴为直线x=2,∵当自变量满足﹣1≤x≤3时,y的最大值为a,最小值为b,∴当x=﹣1时,取得最大值,当x=2时,函数取得最小值,∴a=1+4+3=8,b=﹣1,∴a﹣b=8﹣(﹣1)=8+1=9,故答案为:9.【变式1-3】(2020秋•番禺区校级期中)若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=.【解题思路】根据题意画出函数图象,即可由此找到m 和M 的值,从而求出M ﹣m 的值. 【解答过程】解:原式可化为y =(x ﹣3)2﹣4, 可知函数顶点坐标为(3,﹣4), 当y =0时,x 2﹣6x +5=0, 即(x ﹣1)(x ﹣5)=0, 解得x 1=1,x 2=5. 如图:m =﹣4,当x =6时,y =36﹣36+5=5,即M =5. 则M ﹣m =5﹣(﹣4)=9.故答案为9.【题型2 二次函数中的动轴定区间求最值】【例2】(2021•雁塔区校级模拟)已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,则m =( ) A .3B .﹣3或38C .3或−38D .﹣3或−38【解题思路】先求出对称轴为x =﹣1,分m >0,m <0两种情况讨论解答即可求得m 的值. 【解答过程】解:∵二次函数y =mx 2+2mx +1=m (x +1)2﹣m +1, ∴对称轴为直线x =﹣1, ①m >0,抛物线开口向上,x =﹣1时,有最小值y =﹣m +1=﹣2, 解得:m =3;②m <0,抛物线开口向下,∵对称轴为直线x =﹣1,在﹣2≤x ≤2时有最小值﹣2, ∴x =2时,有最小值y =4m +4m +1=﹣2,解得:m =−38; 故选:C .【变式2-1】(2021•瓯海区模拟)已知二次函数y =ax 2﹣4ax ﹣1,当x ≤1时,y 随x 的增大而增大,且﹣1≤x ≤6时,y 的最小值为﹣4,则a 的值为( ) A .1B .34C .−35D .−14【解题思路】根据二次函数y =ax 2﹣4ax ﹣1,可以得到该函数的对称轴,再根据当x ≤1时,y 随x 的增大而增大,可以得到a 的正负情况,然后根据﹣1≤x ≤6时,y 的最小值为﹣4,即可得到a 的值. 【解答过程】解:∵二次函数y =ax 2﹣4ax ﹣1=a (x ﹣2)2﹣4a ﹣1, ∴该函数的对称轴是直线x =2, 又∵当x ≤1时,y 随x 的增大而增大, ∴a <0,∵当﹣1≤x ≤6时,y 的最小值为﹣4, ∴x =6时,y =a ×62﹣4a ×6﹣1=﹣4, 解得a =−14, 故选:D .【变式2-2】(2021•章丘区模拟)已知二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且﹣2≤x ≤1时,y 的最小值为15,则a 的值为( ) A .1或﹣2B .−√2或√2C .﹣2D .1【解题思路】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向下a <0,然后由﹣2≤x ≤1时,y 的最小值为15,可得x =1时,y =15,即可求出a . 【解答过程】解:∵二次函数y =2ax 2+4ax +6a 2+3(其中x 是自变量), ∴对称轴是直线x =−4a2×2a=−1, ∵当x ≥2时,y 随x 的增大而减小, ∴a <0,∵﹣2≤x ≤1时,y 的最小值为15, ∴x =1时,y =2a +4a +6a 2+3=15, ∴6a 2+6a ﹣12=0, ∴a 2+a ﹣2=0,∴a =1(不合题意舍去)或a =﹣2. 故选:C .【变式2-3】(2021•滨江区三模)已知二次函数y =12(m ﹣1)x 2+(n ﹣6)x +1(m ≥0,n ≥0),当1≤x ≤2时,y 随x 的增大而减小,则mn 的最大值为( ) A .4B .6C .8D .494【解题思路】由二次函数解析式求出对称轴直线方程,分类讨论抛物线开口向下及开口向上的m ,n 的取值范围,将mn 转化为含一个未知数的整式求最值.【解答过程】解:抛物线y =12(m ﹣1)x 2+(n ﹣6)x +1的对称轴为直线x =6−nm−1, ①当m >1时,抛物线开口向上, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≥2,即2m +n ≤8.解得n ≤8﹣2m , ∴mn ≤m (8﹣2m ),m (8﹣2m )=﹣2(m ﹣2)2+8, ∴mn ≤8.②当0≤m <1时,抛物线开口向下, ∵1≤x ≤2时,y 随x 的增大而减小, ∴6−n m−1≤1,即m +n ≤7,解得m ≤7﹣n , ∴mn ≤n (7﹣n ),n (7﹣n )=﹣(n −72)2+494, ∴mn ≤494, ∵0≤m <1, ∴此情况不存在.综上所述,mn 最大值为8. 故选:C .【题型3 二次函数中的定轴动区间求最值】【例3】(2020秋•马鞍山期末)当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为.【解题思路】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a﹣1≤x≤a时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答过程】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a﹣1≤x≤a时,函数有最小值1,∴a﹣1=2或a=0,∴a=3或a=0,故答案为:0或3.【变式3-1】(2021•济南模拟)函数y=﹣x2+4x﹣3,当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,则m的取值范围是()A.0≤m<2B.0≤m≤5C.m>5D.2≤m≤5【解题思路】根据题目中的函数解析式和二次函数的性质,可以求得m的取值范围.【解答过程】解:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴该函数图象开口向下,对称轴是直线x=2,顶点坐标为(2,1),∴x=﹣1和x=5对应的函数值相等,∵当﹣1≤x≤m时,此函数的最小值为﹣8,最大值为1,当x=﹣1时,y=﹣8,∴2≤m≤5,故选:D.【变式3-2】(2021•宁波模拟)若二次函数y=ax2﹣x+2的图象经过点(2,﹣1),当t≤x≤2时,y有最大值3,最小值﹣1,则t的取值范围应是()A.﹣6≤t≤2B.t≤﹣2C.﹣6≤t≤﹣2D.﹣2≤t≤2【解题思路】根据二次函数y=ax2﹣x+2的图象经过点(2,﹣1),可以求得a的值,然后即可得到该函数的解析式,再根据二次函数的性质和当t≤x≤2时,y有最大值3,最小值﹣1,即可得到t的取值范围.【解答过程】解:∵二次函数y=ax2﹣x+2的图象经过点(2,﹣1),∴﹣1=a×22﹣2+2,解得a=−1 4,∴y=−14x2﹣x+2=−14(x+2)2+3,∴该函数的图象开口向下,对称轴是直线x=﹣2,当x=﹣2时,该函数取得最大值3,∵当t≤x≤2时,y有最大值3,最小值﹣1,当x=2时,y=﹣1,∴﹣6≤t≤﹣2,故选:C.【变式3-3】(2021•莱芜区二模)已知二次函数y=(x+1)2﹣4,当a≤x≤b且ab<0时,y的最小值为2a,最大值为2b,则a+b的值为()A.2√3B.−72C.√3−2D.0【解题思路】根据a的取值范围分﹣1≤a<0,﹣b﹣2≤a<﹣1,a<﹣b﹣2三种情况讨论,求出满足题目条件的情况即可.【解答过程】解:∵a≤x≤b且ab<0,∴a,b异号,∴a<0,b>0,由二次函数的对称性,b关于对称轴的对称点为﹣b﹣2,若﹣1≤a<0,则(a+1)2﹣4=2a,解得a=−√3(舍),若﹣b﹣2≤a<﹣1,则﹣4=2a,a=﹣2,且(b+1)2﹣3=2b,解得b=√3,∴a+b=√3−2,若a<﹣b﹣2,则2a=﹣4,a=﹣2,2b=(a+1)2﹣4=﹣3,∴b=−32(舍),故选:C.【题型4 二次函数中求线段最值】【例4】(2020春•海淀区校级期末)如图,抛物线y=x2+5x+4与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,连接AC,点P在线段AC上,过点P作x轴的垂线交抛物线于点Q,则线段PQ长的最大值为.【解题思路】先解方程x2+5x+4=0得A(﹣4,0),再确定C(0,4),则可利用待定系数法求出直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),Q(t,t2+5t+4),所以PQ=t+4﹣(t2+5t+4),然后利用二次函数的性质解决问题.【解答过程】解:当y=0时,x2+5x+4=0,解得x1=﹣4,x2=﹣1,则A(﹣4,0),B(﹣1,0),当x=0时,y=x2+5x+4=4,则C(0,4),设直线AC的解析式为y=kx+b,把A(﹣4,0),C(0,4)代入得{−4k+b=0b=4,解得{k=1b=4,∴直线AC的解析式为y=x+4,设P(t,t+4)(﹣4≤t≤0),则Q(t,t2+5t+4),∴PQ=t+4﹣(t2+5t+4)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,PQ有最大值,最大值为4.故答案为4.【变式4-1】(2020秋•镇平县期末)如图,直线y=−34x+3与x轴交于点C,与y轴交于点B,抛物线y=−38x 2+34x +3经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为 .【解题思路】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【解答过程】解:∵点E 是直线BC 上方抛物线上的一动点,∴点E 的坐标是(m ,−38m 2+34m +3),点M 的坐标是(m ,−34m +3),∴EM =−38m 2+34m +3﹣(−34m +3)=−38m 2+32m =−38(m 2﹣4m )=−38(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32,故答案为32.【变式4-2】(2021•埇桥区模拟)对称轴为直线x =﹣1的抛物线y =x 2+bx +c ,与x 轴相交于A ,B 两点,其中点A 的坐标为(﹣3,0). (1)求点B 的坐标.(2)点C 是抛物线与y 轴的交点,点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【解题思路】(1)利用二次函数对称性即可得出B 点坐标;(2)首先利用待定系数法求二次函数解析式,进而求出直线AC 的解析式,再利用QD =﹣x ﹣3﹣(x 2+2x ﹣3)进而求出最值.【解答过程】解:(1)∵点A (﹣3,0)与点B 关于直线x =﹣1对称, ∴点B 的坐标为(1,0). (2)∵a =1,∴y =x 2+bx +c .∵抛物线过点(﹣3,0),且对称轴为直线x =﹣1, ∴{9−3b +c =0−b2=−1∴解得:{b =2c =−3,∴y =x 2+2x ﹣3,且点C 的坐标为(0,﹣3). 设直线AC 的解析式为y =mx +n , 则{−3m +n =0n =−3, 解得:{m =−1n =−3,∴y =﹣x ﹣3如图,设点Q 的坐标为(x .y ),﹣3≤x ≤0.则有QD =﹣x ﹣3﹣(x 2+2x ﹣3)=﹣x 2﹣3x =﹣(x +32)2+94∵﹣3≤−32≤0,∴当x =−32时,QD 有最大值94.∴线段QD 长度的最大值为94.【变式4-3】(2020秋•滨海新区期末)如图,在平面直角坐标系中,已知抛物线y =ax 2+bx +52与x 轴交于A(5,0),B(﹣1,0)两点,与y轴交于点C.(Ⅰ)求抛物线的解析式;(Ⅱ)若点M是抛物线的顶点,连接AM,CM,求△ACM的面积;(Ⅲ)若点P是抛物线上的一动点,过点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线,垂足为点F,连接EF,当线段EF的长度最短时,求出点P的坐标.【解题思路】(Ⅰ)用待定系数法即可求解;(Ⅱ)△AMC的面积=S△MHC+S△MHA=12×MH×OA,即可求解;(Ⅲ)点D在直线AC上,设点D(m,−12m+52),由题意得,四边形OEDF为矩形,故EF=OD,即当线段EF的长度最短时,只需要OD最短即可,进而求解.【解答过程】解:(Ⅰ)令x=0,则y=52,即C(0,52)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣5)(x+1),将点C的坐标代入上式得:52=a(0﹣5)(0+1),解得a=−1 2,故抛物线的表达式为y=−12(x﹣5)(x+1)=−12x2+2x+52;(Ⅱ)由抛物线的表达式得顶点M(2,92),过点M作MH∥y轴交AC于点H,设直线AC 的表达式为y =kx +t ,则{t =520=5k +t, 解得{k =−12t =52, 故直线AC 的表达式为y =−12x +52,当x =2时,y =32,则MH =92−32=3,则△AMC 的面积=S △MHC +S △MHA =12×MH ×OA =12×3×5=152; (Ⅲ)点D 在直线AC 上,设点D (m ,−12m +52),由题意得,四边形OEDF 为矩形,故EF =OD ,即当线段EF 的长度最短时,只需要OD 最短即可,则EF 2=OD 2=m 2+(−12m +52)2=54m 2−52m +254,∵54>0,故EF 2存在最小值(即EF 最小),此时m =1, 故点D (1,2),∵点P 、D 的纵坐标相同,故2=−12x 2+2x +52,解得x =2±√5,故点P 的坐标为(2+√5,2)或(2−√5,2).【题型5 二次函数中求线段和最值】【例5】(2020秋•安居区期末)如图,在抛物线y =﹣x 2上有A ,B 两点,其横坐标分别为1,2,在y 轴上有一动点C ,当BC +AC 最小时,则点C 的坐标是( )A .(0,0)B .(0,﹣1)C .(0,2)D .(0,﹣2)【解题思路】利用二次函数图象上点的坐标特征可求出点A ,B 的坐标,作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,由点B 的坐标可得出点B ′的坐标,由点A ,B ′的坐标,利用待定系数法可求出直线AB ′的解析式,再利用一次函数图象上点的坐标特征,即可求出点C 的坐标.【解答过程】解:当x =1时,y =﹣12=﹣1,∴点A 的坐标为(1,﹣1);当x =2时,y =﹣22=﹣4,∴点B 的坐标为(2,﹣4).作点B 关于y 轴的对称点B ′,连接AB ′交y 轴于点C ,此时BC +AC 最小,如图所示.∵点B 的坐标为(2,﹣4),∴点B ′的坐标为(﹣2,﹣4).设直线AB ′的解析式为y =kx +b (k ≠0),将A (1,﹣1),B (﹣2,﹣4)代入y =kx +b 得:{k +b =−1−2k +b =−4, 解得:{k =1b =−2, ∴直线AB ′的解析式为y =x ﹣2.当x =0时,y =0﹣2=﹣2,∴点C 的坐标为(0,﹣2),∴当BC +AC 最小时,点C 的坐标是(0,﹣2).故选:D .【变式5-1】(2021•铁岭模拟)如图,已知抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,过其顶点M 的一条直线y =kx +b 与该抛物线的另一个交点为N (﹣1,1).要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( )A .(0,2)B .(43,0)C .(0,2)或(43,0)D .以上都不正确【解题思路】首先,求得抛物线的解析式,根据抛物线解析式求得M 的坐标;欲使△PMN 的周长最小,MN 的长度一定,所以只需(PM +PN )取最小值即可.然后,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P (如图1);过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (如图2).【解答过程】解:如图,∵抛物线y =﹣x 2+px +q 的对称轴为x =﹣3,点N (﹣1,1)是抛物线上的一点, ∴{−p −2=−31=−1−p +q, 解得{p =−6q =−4. ∴该抛物线的解析式为y =﹣x 2﹣6x ﹣4=﹣(x +3)2+5,∴M (﹣3,5).∵△PMN 的周长=MN +PM +PN ,且MN 是定值,所以只需(PM +PN )最小.如图1,过点M 作关于y 轴对称的点M ′,连接M ′N ,M ′N 与y 轴的交点即为所求的点P .则M ′(3,5).设直线M ′N 的解析式为:y =ax +t (a ≠0),则{5=3a +t 1=−a +t, 解得{a =1t =2, 故该直线的解析式为y =x +2.当x =0时,y =2,即P (0,2).同理,如图2,过点M 作关于x 轴对称的点M ′,连接M ′N ,则只需M ′N 与x 轴的交点即为所求的点P (−43,0).如果点P 在y 轴上,则三角形PMN 的周长=4√2+MN ;如果点P 在x 轴上,则三角形PMN 的周长=2√10+MN ;所以点P 在(0,2)时,三角形PMN 的周长最小.综上所述,符合条件的点P 的坐标是(0,2).故选:A .【变式5-2】(2021•包头)已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧)与y 轴交于点C ,点D (4,y )在抛物线上,E 是该抛物线对称轴上一动点,当BE +DE 的值最小时,△ACE 的面积为 .【解题思路】解方程x 2﹣2x ﹣3=0得A (﹣1,0),B (3,0),则抛物线的对称轴为直线x =1,再确定C (0,﹣3),D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,利用两点之间线段最短可判断此时BE +DE 的值最小,接着利用待定系数法求出直线AD 的解析式为y =x +1,则F (0,1),然后根据三角形面积公式计算.【解答过程】解:当y =0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则A (﹣1,0),B (3,0), 抛物线的对称轴为直线x =1,当x =0时,y =x 2﹣2x ﹣3=﹣3,则C (0,﹣3),当x =4时,y =x 2﹣2x ﹣3=5,则D (4,5),连接AD 交直线x =1于E ,交y 轴于F 点,如图,∵BE +DE =EA +DE =AD ,∴此时BE +DE 的值最小,设直线AD 的解析式为y =kx +b ,把A (﹣1,0),D (4,5)代入得{−k +b =04k +b =5,解得{k =1b =1, ∴直线AD 的解析式为y =x +1,当x =1时,y =x +1=2,则E (1,2),当x =0时,y =x +1=1,则F (0,1),∴S △ACE =S △ACF +S △ECF =12×4×1+12×4×1=4. 故答案为4.【变式5-3】(2021•涪城区模拟)如图,抛物线y =53x 2−203x +5与x 轴分别交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C ,在其对称轴上有一动点M ,连接MA 、MC 、AC ,则当△MAC 的周长最小时,点M 的坐标是 .【解题思路】点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,即可求解.【解答过程】解:点A 关于函数对称轴的对称点为点B ,连接CB 交函数对称轴于点M ,则点M 为所求点,理由:连接AC ,由点的对称性知,MA =MB ,△MAC 的周长=AC +MA +MC =AC +MB +MC =CA +BC 为最小,令y =53x 2−203x +5=0,解得x =1或3,令x =0,则y =5,故点A 、B 、C 的坐标分别为(1,0)、(3,0)、(0,5),则函数的对称轴为x =12(1+3)=2,设直线BC 的表达式为y =kx +b ,则{0=3k +b b =5,解得{k =−53b =5, 故直线BC 的表达式为y =−53x +5,当x =2时,y =−53x +5=53,故点M 的坐标为(2,53). 【题型6 二次函数中求面积最值】【例6】(2020秋•盐城期末)如图,抛物线y =x 2+bx +c 与x 轴交于A (﹣1,0),B (3,0)两点,过点A 的直线l 交抛物线于点C (2,m ),点P 是线段AC 上一个动点,过点P 做x 轴的垂线交抛物线于点E .(1)求抛物线的解析式;(2)当P 在何处时,△ACE 面积最大.【解题思路】(1)利用交点式写出抛物线解析式;(2)先利用二次函数解析式确定C (2,﹣3),再利用待定系数法求出直线AC 的解析式为y =﹣x ﹣1,设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),利用三角形面积公式得到△ACE 的面积=12×(2+1)×PE =32(﹣t 2+t +2),然后根据二次函数的性质解决问题.【解答过程】解:(1)抛物线解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)把C (2,m )代入y =x 2﹣2x ﹣3得m =4﹣4﹣3=﹣3,则C (2,﹣3),设直线AC 的解析式为y =mx +n ,把A (﹣1,0),C (2,﹣3)代入得{−m +n =02m +n =−3,解得{m =−1n =−1, ∴直线AC 的解析式为y =﹣x ﹣1;设E (t ,t 2﹣2t ﹣3)(﹣1≤t ≤2),则P (t ,﹣t ﹣1),∴PE =﹣t ﹣1﹣(t 2﹣2t ﹣3)=﹣t 2+t +2,∴△ACE 的面积=12×(2+1)×PE=32(﹣t 2+t +2)=−32(t −12)2+278,当t =12时,△ACE 的面积有最大值,最大值为278,此时P 点坐标为(12,−32). 【变式6-1】(2021春•金塔县月考)如图,已知抛物线经过A (4,0),B (1,0),C (0,﹣2)三点.(1)求该抛物线的解析式;(2)在直线AC 上方的该抛物线上是否存在一点D ,使得△DCA 的面积最大,若存在,求出点D 的坐标及△DCA 面积的最大值;若不存在,请说明理由.【解题思路】(1)根据题意设出抛物线的交点式,用待定系数法求解即可;(2)根据题意作出相关辅助线,用待定系数法求得直线AC解析式为y=12x﹣2,因为点D在抛物线上,所以可设其坐标为(x,−12x2+52x﹣2),点E在直线AC上则设点E坐标为(x,12x﹣2),由图形可知S△DCA=S△DCE+S△DAE,将相关坐标及线段的长度代入求解,再根据二次函数的性质即可得出△DCA面积的最大值.【解答过程】(1)设该抛物线解析式为y=a(x﹣4)(x﹣1),将点C(0,﹣2)坐标代入解析式得:﹣2=a(0﹣4)(0﹣1),解得a=−1 2,∴y=−12(x﹣4)(x﹣1)=−12x2+52x﹣2,故该抛物线的解析式为:y=−12x2+52x﹣2,(2)如图,设存在点D在抛物线上,连接AD、CD,过点D作DE⊥x轴且与直线AC交于点E,设直线AC表达式为:y=kx+b(k≠0),将A(4,0),C(0,﹣2)代入其表达式得:{0=4k+b−2=b,解得{k=12b=−2,∴直线AC:y=12x﹣2,设点D坐标为(x,−12x2+52x﹣2),则点E坐标为(x,12x﹣2),S△DCA=S△DCE+S△DAE=12×DE×x E+12×DE×(x A﹣x E)=12×DE×x A=12×DE×4=2DE,∵DE=(−12x2+52x﹣2)﹣(12x﹣2)=−12x2+2x,∴S△DCA=2DE=2×(−12x2+2x)=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,y=−12x2+52x﹣2═﹣2+5﹣2=1,即点D坐标为(2,1),此时△DCA的面积最大,最大值为4.【变式6-2】(2021春•无为市月考)如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求抛物线的解析式.(2)若P为直线AB上方的抛物线上一点,且点P的横坐标为m,求四边形BCAP的面积S关于点P横坐标m的函数解析式,并求S的最大值.【解题思路】(1)将点A坐标代入直线解析式可求n的值,可求点B坐标,利用待定系数法可求解;(2)过点P做PE⊥x轴于点E,与直线AB交于点D,求得C的坐标和D的坐标,然后根据S=S△ABC+S △ABP得到S关于m的函数解析式,根据二次函数的性质即可求得结论.【解答过程】解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B (0,3),∵抛物线y =﹣x 2+bx +c 经过点A ,B ,∴{c =3−9+3b +c =0, ∴{b =2c =3, ∴抛物线的解析式为:y =﹣x 2+2x +3;(2)如图,过点P 做PE ⊥x 轴于点E ,与直线AB 交于点D ,∵点P 的横坐标为m ,∴点P 的坐标为(m ,﹣m 2+2m +3),∵点D 在直线AB 上,∴点D 的坐标为(m ,﹣m +3),∴PD =﹣m 2+2m +3﹣(﹣m +3)=﹣m 2+3m ,在y =﹣x 2+2x +3中.令y =0.则﹣x 2+2x +3=0,解得x 1=﹣1,x 2=3,∴点C 的坐标为(﹣1,0),∴S =S △ABC +S △ABP =12×4×3+12(﹣m 2+3m )×3=−32(m −32)2+758, ∴当m =32时,S 最大,最大值为758.【变式6-3】(2021春•无棣县月考)如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点C (0,﹣3),点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP 'C .是否存在点P ,使四边形POP 'C 为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解题思路】(1)先根据点C坐标求出c=﹣3,再将点B坐标代入二次函数解析式中求出b,即可得出结论;(2)连接PP'交y轴于E,根据菱形的性质判断出点E是OC的中点,进而求出点P的纵坐标,最后代入二次函数解析式中求解,即可得出结论;(3)设出点P的坐标,进而利用梯形的面积+三角形的面积得出S四边形ABPC=−32(m−12)2+398,即可得出结论.【解答过程】解:(1)∵二次函数y=x2+bx+c与y轴的交点C(0,﹣3),∴c=﹣3,∴二次函数的解析式为y=x2+bx﹣3,∵点B(3,0)在二次函数图象上,∴9+3b﹣3=0,∴b=﹣2,∴二次函数的解析式为y=x2﹣2x﹣3;(2)存在,理由:如图1,连接PP'交y轴于E,∵四边形POP'C为菱形,∴PP'⊥OC,OE=CE=12OC,∵点C(0,﹣3),∴OC=3,∴OE=3 2,∴E (0,−32),∴点P 的纵坐标为−32,由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, ∴x 2﹣2x ﹣3=−32,∴x =2−√102或x =2+√102,∵点P 在直线BC 下方的抛物线上,∴0<x <3,∴点P (2+√102,−32);(3)如图2,过点P 作PF ⊥x 轴于F ,则PF ∥OC , 由(1)知,二次函数的解析式为y =x 2﹣2x ﹣3, 令y =0,则x 2﹣2x ﹣3=0,∴x =﹣1或x =3,∴A (﹣1,0),∴设P (m ,m 2﹣2m ﹣3)(0<m <3),∴F (m ,0),∴S 四边形ABPC =S △AOC +S 梯形OCPF +S △PFB =12OA •OC +12(OC +PF )•OF +12PF •BF =12×1×3+12(3﹣m 2+2m +3)•m +12(﹣m 2+2m +3)•(3﹣m ) =−32(m −32)2+758,∴当m =32时,四边形ABPC 的面积最大,最大值为758,此时,P (32,−154),即点P 运动到点(32,−154)时,四边形ABPC 的面积最大,其最大值为758.。
二次函数的最值问题总结

二次函数的最值问题二次函数2(0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a=-处取得最大值244ac b a-,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.二次函数求最值(一般范围类)例1.当22x -≤≤时,求函数223y x x =--的最大值和最小值.分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =.例2.当12x ≤≤时,求函数21y x x =--+的最大值和最小值.解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-.由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况:例3.当0x ≥时,求函数(2)y x x =--的取值范围.解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象.可以看出:当1x =时,min 1y =-,无最大值.所以,当0x ≥时,函数的取值范围是1y ≥-.例4.当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置.解:函数21522y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时:当1x =时,2min 1511322y =⨯--=-; (3) 当对称轴在所给范围右侧.即110t t +<⇒<时:当1x t =+时,22min 151(1)(1)3222y t t t =+-+-=-.综上所述:2213,023,0115,122t t y t t t t ⎧-<⎪⎪=-≤≤⎨⎪⎪-->⎩在实际生活中,我们也会遇到一些与二次函数有关的问题:二次函数求最值(经济类问题)例1.为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z (元)会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y 和每台家电的收益Z 与政府补贴款额x 之间的函数关系式;(3)要使该商场销售彩电的总收益w (元)最大,政府应将每台补贴款额x 定为多少?并求出总收益w 的最大值.分析:(1)政府未出台补贴措施前,商场销售彩电台数为800台,每台彩电的收益为200元;(2)利用两个图像中提供的点的坐标求各自的解析式;(3)商场销售彩电的总收益=商场销售彩电台数×每台家电的收益,将(2)中的关系式代入得到二次函数,再求二次函数的最大值.解:(1)该商场销售家电的总收益为800200160000⨯=(元);(2)依题意可设1800y k x =+,2200Z k x =+,∴有14008001200k +=,2200200160k +=,解得12115k k ==-,.所以800y x =+,12005Z x =-+. (3)1(800)2005W yZ x x ⎛⎫==+-+ ⎪⎝⎭21(100)1620005x =--+,政府应将每台补贴款额x 定为100元,总收益有最大值,其最大值为162000元.说明:本题中有两个函数图像,在解题时要结合起来思考,不可顾此失彼.例2.凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去.(1)设每间包房收费提高x (元),则每间包房的收入为y 1(元),但会减少y 2间包房租出,请分别写出y 1、y 2与x 之间的函数关系式.(2)为了投资少而利润大,每间包房提高x (元)后,设酒店老板每天晚餐包房总收入为y (元),请写出y 与x 之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.分析:(1)提价后每间包房的收入=原每间包房收包房费+每间包房收包房提高费,包房减少数=每间包房收包房提高费数量的一半;(2)酒店老板每天晚餐包房总收入=提价后每间包房的收入×每天包房租出的数量,得到二次函数后再求y 取得最大值时x 的值.解:(1)x y +=1001,x y 212=; (2))21100()100(x x y -•+=y 11250)50(212+--=x ,因为提价前包房费总收入为100×100=10000,当x=50时,可获最大包房收入11250元,因为11250>10000又因为每次提价为20元,所以每间包房晚餐应提高40元或60元. 说明:本题的答案有两个,但从“投资少而利润大”的角度来看,因尽量少租出包房,所以每间包房晚餐应提高60元应该更好.例3.某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式1y =36x 83+-,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示.(1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少? 分析:(1)将点(3,25),(4,24)代入求b 、c 的值;(2)y =1y -2y ;(3)将(2)中的二次函数配方为顶点式,再利用二次函数的增减性,在满足“五·一”之前的前提下求最大值.解:(1)由题意:22125338124448b c b c ⎧=⨯++⎪⎪⎨⎪=⨯++⎪⎩,解得7181292b c ⎧=-⎪⎪⎨⎪=⎪⎩; (2)12y y y =-23115136298882x x x ⎛⎫=-+--+ ⎪⎝⎭21316822x x =-++; (3)21316822y x x =-++ 2111(1236)46822x x =--+++21(6)118x =--+. ∵108a =-<,∴抛物线开口向下.在对称轴6x =左侧y 随x 的增大而增大.由题意5x <,所以在4月份出售这种水产品每千克的利润最大.最大利润211(46)111082=--+=(元). 说明:本题在x =6,即6月份时取得最大值,但题目要求在“五·一”之前,所以要将二次函数配方为顶点式,利用二次函数的增减性来求解.例4.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.(1) 写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;(2) 若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?解:(1) 由已知得每件商品的销售利润为(30)x -元,那么m 件的销售利润为(30)y m x =-,又1623m x =-.y 22 (30)(1623)32524860,3054y x x x x x ∴=--=-+-≤≤(2) 由(1)知对称轴为42x =,位于x 的范围内,另抛物线开口向下 ∴当42x =时,2max 342252424860432y =-⨯+⨯-=∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元. 二次函数求最值(面积最值问题)例1.在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=例2.小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=x x 3442+-= 4289)417(42+--=x ∵104340≤-<x ∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.例3.已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,则矩形PNDM 的面积S=xy (2≤x≤4)易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H则有△AFB ∽△BHP∴PHBH BF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x , 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.例4.某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10]=xx)-102+242.0.0(-=x)4.0102+3.2()1.0<x0(<当x=0.1时,y有最小值,即费用为最省,此时CE=CF=0.1.答:当CE=CF=0.1米时,总费用最省.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 当对称轴在所给范围左侧.即 t 1 时:当 x t 时, ymin (2) 当对称轴在所给范围之间.即 t 1 t 1 0 t 1时: 当 x 1 时, ymin
1 2 5 1 1 3 ; 2 2
1 2 5 t t ; 2 2
【例题解析】
例 2、当 t x t 1 时,求函数 y
1 2 5 x x 的最小值(其中 t 为常数). 2 2
分析:由于 x 所给的范围随着 t 的变化而变化,所以需要比较对称轴与其范围的相对位置. 解:函数 y
1 2 5 x x 的对称轴为 x 1 .画出其草图. 2 2
(3) 当对称轴在所给范围右侧.即 t 1 1 t 0 时: 当 x t 1 时, ymin
1 5 1 (t 1) 2 (t 1) t 2 3 . 2 2 2
1 2 2 t 3, t 0 综上所述: y 3, 0 t 1 1 5 t2 t ,t 1 2 2
【变式训练】 变式 1、当 1 x 2 时,求函数 y x2 x 1 的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函 数的最大值、最小值及函数取到最值时相应自变量 x 的值. 解:作出函数的图象.当 x 1 时, ymax 1 ,当 x 2 时, ymin 5 .
b m ,二次函数在 m x n 时的函数图像是单调递减的,则 x n 时, y 取最小值;则 2a
x m 时, y 取最大值。
若
b n ,二次函数在 m x n 时的函数图像是单调递增的,则 x m 时, y 取最小值;则 2a
x n 时, y 取最大值。
二、二次函数最值问题常见四种考察题型:
1) 对称轴定、 x 取值范围定; 2) 对称轴定、 x 取值范围动; 3) 对称轴动、 x 取值范围定; 4) 对称轴动、 x 取值范围动。
【例题解析】 例 1.当 2 x 4 时,求函数 y x 2 2 x 1的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函 数的最大值、最小值及函数取到最值时相应自变量 x 的值. 解:作出函数的图象.当 x 2 时, ymin 1 ,当 x 4 时, ymax 9 .
时, y 取最大值。
2、当 a 0 时,它的图象是开口向上的抛物线,数形结合可求得 y 的最值:
b b 4ac b 2 n 时, x 1) 当 m 时, y 取最大值: ymax ; y 的最小值在 x m 或 x n 处 2a 2a 4a
取到。 2) 若
2、当 t x t 2 时,求函数 y x 2 x 1 的最大 取到。 2) 若
b m ,二次函数在 m x n 时的函数图像是递增的,则 x m 时, y 取最小值;则 x n 2a
时, y 取最大值。 若
b n ,二次函数在 m x n 时的函数图像是递减的,则 x n 时, y 取最小值;则 x m 2a
XX 教育辅导教案 学生姓名 性别 年级 学科 第( )次课 授课教师 上课时间 年 月 日 共( )次课 教学课题 二次函数求最大值和最小值 课时: 课时 数学
教学目标
利用二次函数的图像和性质特点,求函数的最大值和最小值
教学重点 与难点 课堂引入:
含有参数的二次函数最值求解。
1) 由二次函数应用题最值求解问题引申至一般二次函数求最值问题,阐述二次函数求最值问题方 法的重要性(初高中衔接、高中必修一重点学习内容) 。 2) 当 2 x 2 时,求函数 y x2 2x 3 的最大值和最小值. (引导学生用初中所学的二次函数知识求解,为下面引出二次函数求最值方法总结做铺垫)
【变式训练】
1 5 变式 2、当 t x t 1 时,求函数 y x 2 x 的最小值(其中 t 为常数). 2 2
方法总结: 1、图像法求二次函数最值; 2、利用分类讨论思想和二次函数图像特点求解二次函数最值。 (对称轴、 x 取值范围、函数图像增减性)
作业: 1、当 1 x 3 时,求函数 y x 2 4x 3 的最大值和最小值.
二次函数求最值方法总结: 一、设 y ax2 bx c(a 0) ,当 m x n 时,求 y 的最大值与最小值。 1、当 a 0 时,它的图象是开口向上的抛物线,数形结合可求得 y 的最值:
b b 4ac b 2 n 时, x 时, y 取最小值: ymin ; y 的最大值在 x m 或 x n 处 2a 2a 4a