2008年浙江省高考数学试卷(理科)答案与解析-精选.pdf
2008年高考数学全国卷1、浙江卷(含答案)
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)kkn kn n P k C P P k n -=-= ,,,一、选择题1.函数y =的定义域为( )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在A B C △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b c B .5233-c b C .2133-b c D .1233+b c4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( ) A .21x e -B .2x eC .21x e +D .22x e +7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-8.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞ ,,B .(1)(01)-∞- ,,C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,,10.若直线1x y ab+=通过点(cos sin )M αα,,则( )A .221a b +≤ B .221a b +≥C .22111ab+≤D .22111ab+≥11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A B C △的A .B .C .D .中心,则1A B 与底面ABC 所成角的正弦值等于( )A .13B.3C.3D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96B .84C .60D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试..题卷上作答无效........ 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在A B C △中,A B B C =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形A B D E 有一公共边A B ,二面角C A B D --的余弦值为3,M N ,分别是A C B C ,的中点,则E M A N ,所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设A B C △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a B b A c -=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A B C D E -中,底面B C D E 为矩形,侧面A B C ⊥底面B C D E ,2B C =,CD =,A B A C =.(Ⅰ)证明:AD C E ⊥;(Ⅱ)设C E 与平面A B E 所成的角为45 ,求二面角C A D E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳DE AB性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知O A AB O B 、、成等差数列,且BF与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设A B 被双曲线所截得的线段的长为4,求双曲线的方程.22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.2008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅰ)参考答案1. C. 由()10,0,1,0;x x x x x -≥≥≥=得或2. A .根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图像可知;3. A. 由()2AD AB AC AD -=-,322AD AB AC c b =+=+ ,1233A D c b =+ ;4. D. ()()()22221210,1a i i a ai i a a i a +=+-=-+->=-;5. C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=;6. B.由()()()()21212ln 1,1,y x xy x e f x ef x e --=⇒=-==;7.D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----;8.A.55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数s in 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像. 9.D .由奇函数()f x 可知()()2()0f x f x f x xx--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.D .由题意知直线1x y ab+=与圆221x y +=221111ab+≤1,≥.另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1abαα+=由⋅≤m n m n可得cos sin 1abαα=+≤11.C.由题意知三棱锥1A ABC-为正四面体,设棱长为a,则1AB=,棱柱的高13A O a===(即点1B到底面ABC的距离),故1A B与底面ABC所成角的正弦值为113A OA B=.另解:设1,,AB AC AA为空间向量的一组基底,1,,AB AC AA的两两间的夹角为060长度均为a,平面ABC的法向量为111133O A A A A B A C=--,11AB AB AA=+211112,33O A AB a O A AB⋅===则1A B与底面ABC所成角的正弦值为11113O A ABA O AB⋅=12.B.分三类:种两种花有24A种种法;种三种花有342A种种法;种四种花有44A种种法.共有234444284A A A++=.另解:按A B C D---顺序种花,可分A C、13.答案:9.如图,作出可行域,作出直线:20l x y-=,将l平移至过点A处时,函数2z x y=-有最大值9.14. 答案:2.由抛物线21y ax=-的焦点坐标为1(0,1)4a-为坐标原点得,14a=,则2114y x=-与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯=15.答案:38.设1A B B C==,7cos18B=-则222252cos9AC AB BC AB BC B=+-⋅⋅= 53A C=,582321,21,3328ca c ea=+====.16.答案:16.设2A B=,作CO ABDE⊥面,O H AB⊥,则C H A B⊥,C H O∠为二面角C A B D--cos1C H O H C H C H O==⋅∠=,结合等边三角形ABC与正方形A B D E可知此四棱锥为正四棱锥,则AN EM C H ===11(),22A N A C A B E M A C A E =+=- ,11()()22A N E M A B A C A C A E ⋅=+⋅-=12故E M A N ,所成角的余弦值16A N E M A N E M⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系,则点(1,1,0),(1,1,0),(1,1,0),(0,A B E C ----,1111(,,(,,222222M N ---,则31131(,,(,,),,2222222AN EM AN EM ==-⋅= 故E M A N ,所成角的余弦值16A N E MA NE M ⋅= .17.解析:(Ⅰ)在A B C △中,由正弦定理及3cos cos 5a B b A c -=可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+即sin cos 4cos sin A B A B =,则tan cot 4A B =;(Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B BA B A BB B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取B C 中点F ,连接D F 交C E 于点O , A B A C =,∴AF BC ⊥,又面A B C ⊥面B C D E ,∴A F ⊥面B C D E , ∴AF C E ⊥.tan tan 2C ED FD C ∠=∠=,∴90OED ODE ∠+∠= ,90DOE ∴∠=,即C E D F ⊥,C E ∴⊥面AD F ,CE A D ∴⊥.(2)在面A C D 内过C 点作A D 的垂线,垂足为G .C G AD ⊥,CE AD ⊥,A D ∴⊥面C EG ,E G A D ∴⊥, 则C G E ∠即为所求二面角的平面角.3AC C D C G AD==,3D G =,3EG ==,C E =222cos 210C G G E C EC G E C G G E+-∠==-,πarccos 10C G E ⎛∴∠=- ⎝⎭,即二面角C A D E --的大小πarccos 10⎛- ⎝⎭. 19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a ≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为3x =即()f x在3⎛-∞ ⎝⎭递增,33⎛⎝⎭递减,3⎛⎫+∞⎪ ⎪⎝⎭递增 (2)233133a a ⎧---⎪⎪⎨-+⎪-⎪⎩≤,且23a >解得:74a ≥20.解:对于乙:0.20.40.20.80.210.210.64⨯+⨯+⨯+⨯=.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设O A m d =-,AB m =,O B m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b A O F a∠=,4tan tan 23A B A O B A O F O A∠=∠==由倍角公式∴22431b ab a =⎛⎫- ⎪⎝⎭,解得12b a=,则离心率2e =(Ⅱ)过F 直线方程为()a y x c b=--,与双曲线方程22221x y ab-=联立将2a b =,c =代入,化简有22152104x x bb-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369xy-=。
高中数学2008年普通高等学校招生全国统一考试(浙江卷)(理科)试题
高中数学2008年普通高等学校招生全国统一考试(浙江卷)(理科) 试题 2019.091,已知圆C 的圆心与点(2,1)P -关于直线1y x =+对称.直线34110x y +-=与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为_______________________.2,有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有________________种(用数字作答).3,已知函数22s (in cos s 1)2co f x x x x ωωω++=(,0x R ω∈>)的最小值正周期是2π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合.4,甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为21与p ,且乙投球2次均未命中的概率为161. (Ⅰ)求乙投球的命中率p ;(Ⅱ)求甲投球2次,至少命中1次的概率;(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率. 5,如图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知60,22,2,2,3=∠====PAB PD PA AD AB .(Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.6,在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠). (Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若3a 是6a 与9a 的等差中项,求q 的值,并证明:对任意的*n N ∈,na 是3n a +与6n a +的等差中项.7,已知函数432()2f x x ax x b =+++(x R ∈),其中R b a ∈,. (Ⅰ)当103a =-时,讨论函数()f x 的单调性; (Ⅱ)若函数()f x 仅在0x =处有极值,求a 的取值范围;(Ⅲ)若对于任意的[2,2]a ∈-,不等式()1f x ≤在[1,1]-上恒成立,求b 的取值范围.8,已知中心在原点的双曲线C 的一个焦点是()0,31-F ,一条渐近线的方程是025=-y x .(Ⅰ)求双曲线C 的方程;(Ⅱ)若以()0≠k k 为斜率的直线l 与双曲线C 相交于两个不同的点M ,N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为281,求k 的取值范围.9,已知a 是实数,1a ii -+是纯虚数,则a =( )(A )1 (B )-1 (C )2(D )-210,已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()u u A C B B C A = ( ) (A )∅ (B ){}|0x x ≤(C ){}|1x x >- (D ){}|01x x x >≤-或11,已知a ,b 都是实数,那么“22b a >”是“a >b ”的( ) (A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件12,在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是( ) (A )-15 (B )85(C )-120 (D )27413,在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是( )(A )0(B )1 (C )2 (D )4 14,已知{}n a 是等比数列,41252==a a ,,则12231n n a a a a a a ++++=( )(A )16(n --41) (B )16(n--21)(C )332(n --41)(D )332(n--21)15,若双曲线12222=-b y a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( )(A )3(B )5 (C )3 (D )516,若cos 2sin αα+=则tan α=( )(A )21 (B )2 (C )21-(D )2-17,已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足()()0a c b c -⋅-=,则c的最大值是( )(A )1 (B )2 (C )2 (D )2218,如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线19,已知a >0,若平面内三点A (1,-a ),B (2,2a ),C (3,3a )共线,则a =______20,已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B两点若1222=+B F A F ,则AB =____________。
高考数学浙江卷(理)全解全析
2008年浙江理科数学全解全析本试卷卷分第Ⅰ卷和第Ⅱ卷两部分。
全卷共4页,第Ⅰ卷1至2页,第Ⅱ卷3至4页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试卷的答案涂、写在答题纸上。
第Ⅰ卷(共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试卷卷上。
参考公式:如果事件A 、B 互斥,那么 P (A+B )=P (A )+(B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·(B ) 如果事件A 在一次实验中发生的概率是p 那么n 次独立重复实验中恰好发生k 次的概率: k n k k n n p p C k P --=)1()(球的表面积公式 S=42R π其中R 表示球的半径求的体积公式V=334R π其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知a 是实数,1a ii-+是纯虚数,则a =( A ) (A )1 (B )-1 (C )2 (D )-2 解读:本小题主要考查复数的概念。
由()(1)111(1)(1)22a i a i i a a i i i i ----+==-++-是纯虚数, 则102a -=且10,2a +≠故a =1. (2)已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()u u A C B BC A = (D )(A )∅ (B ){}|0x x ≤(C ){}|1x x >- (D ){}|01x x x >≤-或解读:本小题主要考查集合运算。
u A C B ={}|0x x >u B C A ={}|1x x ≤-()()u u A C B B C A ∴={}|01x x x >≤-或(3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的( D )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件解读:本小题主要考查充要条件相关知识。
2008年全国统一高考数学试卷(理科)(全国卷ⅰ)
2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为()A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1} 2.(5分)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2B.p1>p2C.p1=p2D.不能确定3.(5分)在△ABC中,=,=.若点D满足=2,则=()A. B.C.D.4.(5分)设a∈R,且(a+i)2i为正实数,则a=()A.2 B.1 C.0 D.﹣15.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=() A.138 B.135 C.95 D.236.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f (x)=()A.e2x﹣2B.e2x C.e2x+1 D.e2x+27.(5分)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=() A.2 B.C.D.﹣28.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)10.(5分)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C.D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B.C.D.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为.15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=.16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于.三、解答题(共6小题,满分74分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•全国卷Ⅰ)函数的定义域为()A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1}【分析】偶次开方的被开方数一定非负.x(x﹣1)≥0,x≥0,解关于x的不等式组,即为函数的定义域.【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0.又因为x≥0,所以x≥1,或x=0;所以函数的定义域为{x|x≥1}∪{0}故选C.2.(5分)(2008•全国卷Ⅰ)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2B.p1>p2C.p1=p2D.不能确定【分析】计算出各种情况的概率,然后比较即可.【解答】解:大于2小于5的数有2个数,∴p1==;投掷一次正面朝上的概率为,两次正面朝上的概率为p2=×=,∵>,∴p1>p2.故选B.3.(5分)(2008•全国卷Ⅰ)在△ABC中,=,=.若点D满足=2,则=()A. B.C.D.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选A4.(5分)(2008•全国卷Ⅰ)设a∈R,且(a+i)2i为正实数,则a=()A.2 B.1 C.0 D.﹣1【分析】注意到a+bi(a,b∈R)为正实数的充要条件是a>0,b=0【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故选D.5.(5分)(2008•全国卷Ⅰ)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选C6.(5分)(2008•全国卷Ⅰ)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2B.e2x C.e2x+1 D.e2x+2【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.7.(5分)(2008•全国卷Ⅰ)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.C.D.﹣2【分析】(1)求出已知函数y在点(3,2)处的斜率;(2)利用两条直线互相垂直,斜率之间的关系k1•k2=﹣1,求出未知数a.【解答】解:∵y=∴y′=﹣∵x=3∴y′=﹣即切线斜率为﹣∵切线与直线ax+y+1=0垂直∴直线ax+y+1=0的斜率为﹣a.∴﹣•(﹣a)=﹣1得a=﹣2故选D.8.(5分)(2008•全国卷Ⅰ)为得到函数的图象,只需将函数y=sin2x 的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.9.(5分)(2008•全国卷Ⅰ)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣1,0)∪(0,1)【分析】首先利用奇函数定义与得出x与f(x)异号,然后由奇函数定义求出f(﹣1)=﹣f(1)=0,最后结合f(x)的单调性解出答案.【解答】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选D.10.(5分)(2008•全国卷Ⅰ)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C.D.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴故选D.11.(5分)(2008•全国卷Ⅰ)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B.C.D.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,易得A1S=,所以AB1==2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选B.12.(5分)(2008•全国卷Ⅰ)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48【分析】这道题比起前几年出的高考题要简单些,只要分类清楚没有问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果.【解答】解:分三类:种两种花有A42种种法;种三种花有2A43种种法;种四种花有A44种种法.共有A42+2A43+A44=84.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2008•全国卷Ⅰ)若x,y满足约束条件,则z=2x﹣y的最大值为9.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.14.(5分)(2008•全国卷Ⅰ)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为2.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为215.(5分)(2008•全国卷Ⅰ)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=.【分析】设AB=BC=1,,则,由此可知,从而求出该椭圆的离心率.【解答】解:设AB=BC=1,,则,∴,.答案:.16.(5分)(2008•全国卷Ⅰ)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于.【分析】先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.【解答】解:设AB=2,作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,=故EM,AN所成角的余弦值故答案为:三、解答题(共6小题,满分74分)17.(10分)(2008•全国卷Ⅰ)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.【分析】本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.【解答】解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.18.(12分)(2008•全国卷Ⅰ)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC ⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.19.(12分)(2010•大纲版Ⅱ)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.20.(12分)(2008•全国卷Ⅰ)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【分析】(1)由题意得到这两种方案的化验次数,算出在各个次数下的概率,写出化验次数的分布列,求出方案甲所需化验次数不少于依方案乙所需化验次数的概率.(2)根据上一问乙的化验次数的分布列,利用期望计算公式得到结果.【解答】解:(Ⅰ)若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次试验中有没有,均可以在第二次结束),∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(Ⅱ)ξ表示依方案乙所需化验次数,∴ξ的期望为Eξ=2×0。
2008年高考浙江省理科数学试题及答案解析(名师精校版)
绝密★考试结束前2008年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件,A B 互斥 ,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B •=•如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k k n kn nP k C p p k n -=-=台体的体积公式121()3V h S S =+其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高 球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一、选择题(共10小题,每小题5分,满分50分)1.已知a是实数,是纯虚数,则a=()A.1B.﹣1C.D.﹣【考点】复数代数形式的混合运算.【分析】化简复数分母为实数,复数化为a+bi(a、b是实数)明确分类即可.【解答】解:由是纯虚数,则且,故a=1故选A.【点评】本小题主要考查复数的概念.是基础题.2.已知U=R,A={x|x>0},B={x|x≤﹣1},则(A∩∁U B)∪(B∩∁U A)=()A.∅B.{x|x≤0}C.{x|x>﹣1}D.{x|x>0或x≤﹣1}【考点】交、并、补集的混合运算.【分析】由题意知U=R,A={x|x>0},B={x|x≤﹣1},然后根据交集的定义和运算法则进行计算.【解答】解:∪U=R,A={x|x>0},B={x|x≤﹣1},∪C u B={x|x>﹣1},C u A={x|x≤0}∪A∩C u B={x|x>0},B∩C u A={x|x≤﹣1}∪(A∩C u B)∪(B∩C u A)={x|x>0或x≤﹣1},故选D.【点评】此题主要考查一元二次不等式的解法及集合的交集及补集运算,一元二次不等式的解法及集合间的交、并、补运算布高考中的常考内容,要认真掌握,并确保得分.3.已知a,b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】常规题型.【分析】首先由于“a2>b2”不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.故“a2>b2”是“a>b”的既不充分也不必要条件.【解答】解:∪“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∪“a2>b2”是“a>b”的既不充分也不必要条件.故选D.【点评】本小题主要考查充要条件相关知识.4.在(x﹣1)(x﹣2)(x﹣3)(x﹣4)(x﹣5)的展开式中,含x4的项的系数是()A.﹣15B.85C.﹣120D.274【考点】二项式定理的应用.【分析】本题主要考查二项式定理展开式具体项系数问题.本题可通过选括号(即5个括号中4个提供x,其余1个提供常数)的思路来完成.【解答】解:含x4的项是由(x﹣1)(x﹣2)(x﹣3)(x﹣4)(x﹣5)的5个括号中4个括号出x仅1个括号出常数∪展开式中含x4的项的系数是(﹣1)+(﹣2)+(﹣3)+(﹣4)+(﹣5)=﹣15.故选A.【点评】本题考查利用分步计数原理和分类加法原理求出特定项的系数.5.在同一平面直角坐标系中,函数(x∈[0,2π])的图象和直线的交点个数是()A.0B.1C.2D.4【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先根据诱导公式进行化简,再由x的范围求出的范围,再由正弦函数的图象可得到答案.【解答】解:原函数可化为:y=cos()(x∈[0,2π])=,x∈[0,2π].当x∈[0,2π]时,∈[0,π],其图象如图,与直线y=的交点个数是2个.故选C.【点评】本小题主要考查三角函数图象的性质问题.6.已知{a n}是等比数列,a2=2,a5=,则a1a2+a2a3+…+a n a n+1=()A.16(1﹣4﹣n)B.16(1﹣2﹣n)C.(1﹣4﹣n)D.(1﹣2﹣n)【考点】等比数列的前n项和.【专题】计算题.【分析】首先根据a2和a5求出公比q,根据数列{a n a n+1}每项的特点发现仍是等比数列,且首项是a1a2=8,公比为.进而根据等比数列求和公式可得出答案.【解答】解:由,解得.数列{a n a n+1}仍是等比数列:其首项是a1a2=8,公比为,所以,故选:C.【点评】本题主要考查等比数列通项的性质和求和公式的应用.应善于从题设条件中发现规律,充分挖掘有效信息.7.若双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是()A.3B.5C.D.【考点】双曲线的定义.【专题】计算题.【分析】先取双曲线的一条准线,然后根据题意列方程,整理即可.【解答】解:依题意,不妨取双曲线的右准线,则左焦点F1到右准线的距离为,右焦点F2到右准线的距离为,可得,即,∪双曲线的离心率.故选D.【点评】本题主要考查双曲线的性质及离心率定义.8.若,则tanα=()A.B.2C.D.﹣2【考点】同角三角函数基本关系的运用.【分析】本小题主要考查三角函数的求值问题,需要把正弦和余弦化为正切和正割,两边平方,根据切割的关系进行切割互化,得到关于正切的方程,解方程得结果.【解答】解:∪cosα+2sinα=﹣,∪cosα≠0,两边同时除以cosα得1+2tanα=﹣,∪(1+2tanα)2=5sec2α=5(1+tan2α),∪tan2α﹣4tanα+4=0,∪tanα=2.故选B.【点评】同角三角函数之间的关系,其主要应用于同角三角函数的求值和同角三角函数之间的化简和证明.在应用这些关系式子的时候就要注意公式成立的前提是角对应的三角函数要有意义.9.已知,是平面内两个互相垂直的单位向量,若向量满足(﹣)•(﹣)=0,则||的最大值是()A.1B.2C.D.【考点】平面向量数量积的坐标表示、模、夹角.【专题】压轴题.【分析】本小题主要考查向量的数量积及向量模的相关运算问题,所给出的两个向量是互相垂直的单位向量,这给运算带来很大方便,利用数量积为零的条件时要移项变化.【解答】解:.∪,∪,∪,∪cosθ∈[﹣1,1],∪的最大值是.故选C.【点评】启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质,本题也可以利用数形结合,,对应的点A,B在圆x2+y2=1上,对应的点C在圆x2+y2=2上即可.10.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得∪ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线【考点】椭圆的定义;平面与圆柱面的截线.【专题】压轴题;转化思想.【分析】根据题意,因为三角形面积为定值,从而可得P到直线AB的距离为定值,分析可得,点P的轨迹为一以AB为轴线的圆柱面,与平面α的交线,分析轴线与平面的性质,可得答案.【解答】解:本题其实就是一个平面斜截一个圆柱表面的问题,因为三角形面积为定值,以AB为底,则底边长一定,从而可得P到直线AB的距离为定值,分析可得,点P在以AB为轴线的圆柱面与平面α的交线上,且α与圆柱的轴线斜交,由平面与圆柱面的截面的性质判断,可得P的轨迹为椭圆;故选:B.【点评】本题考查平面与圆柱面的截面性质的判断,注意截面与圆柱的轴线的不同位置时,得到的截面形状也不同.二、填空题(共7小题,每小题4分,满分28分)11.已知平面内三点A(2,﹣3),B(4,3),C(5,a)共线,则a=6【考点】平行向量与共线向量.【分析】利用向量坐标的求法求出两个向量的坐标,将三点共线转化为两向量共线,利用向量共线的充要条件列出方程求出a.【解答】解:由已知知所以2(a+3)=6×3解得a=6故答案为:6【点评】本题考查向量坐标的求法、向量共线的坐标形式的充要条件.12.已知F1、F2为椭圆=1的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|= 8.【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】运用椭圆的定义,可得三角形ABF2的周长为4a=20,再由周长,即可得到AB的长.【解答】解:椭圆=1的a=5,由题意的定义,可得,|AF1|+|AF2|=|BF1|+|BF2|=2a,则三角形ABF2的周长为4a=20,若|F2A|+|F2B|=12,则|AB|=20﹣12=8.故答案为:8【点评】本题考查椭圆的方程和定义,考查运算能力,属于基础题.13.在∪ABC中,角A、B、C所对的边分别为a、b、C、若(b﹣c)cosA=acosC,则cosA=.【考点】正弦定理的应用;两角和与差的正弦函数.【专题】计算题.【分析】先根据正弦定理将边的关系转化为角的正弦值的关系,再运用两角和与差的正弦公式化简可得到sinBcosA=sinB,进而可求得cosA的值.【解答】解:由正弦定理,知由(b﹣c)cosA=acosC可得(sinB﹣sinC)cosA=sinAcosC,∪sinBcosA=sinAcosC+sinCcosA=sin(A+C)=sinB,∪cosA=.故答案为:【点评】本题主要考查正弦定理、两角和与差的正弦公式的应用.考查对三角函数公式的记忆能力和综合运用能力.14.如图,已知球O的面上四点A、B、C、D,DA∪平面ABC,AB∪BC,DA=AB=BC=,则球O的体积等于π.【考点】球的体积和表面积;球内接多面体.【专题】计算题.【分析】说明∪CDB是直角三角形,∪ACD是直角三角形,球的直径就是CD,求出CD,即可求出球的体积.【解答】解:AB∪BC,∪ABC的外接圆的直径为AC,AC=,由DA∪面ABC得DA∪AC,DA∪BC,∪CDB是直角三角形,∪ACD是直角三角形,∪CD为球的直径,CD==3,∪球的半径R=,∪V球=πR3=π.故答案为:π.【点评】本题是基础题,考查球的内接多面体,说明三角形是直角三角形,推出CD是球的直径,是本题的突破口,解题的重点所在,考查分析问题解决问题的能力.15.已知t为常数,函数y=|x2﹣2x﹣t|在区间[0,3]上的最大值为2,则t=1.【考点】分段函数的解析式求法及其图象的作法.【专题】压轴题.【分析】本题应先画出函数的大体图象,利用数形结合的方法寻找解题的思路.画出大体图象后不难发现函数的最大值只能在x=1或x=3处取得,因此分情况讨论解决此题.【解答】解:记g(x)=x2﹣2x﹣t,x∈[0,3],则y=f(x)=|g(x)|,x∈[0,3]f(x)图象是把函数g(x)图象在x轴下方的部分翻折到x轴上方得到,其对称轴为x=1,则f(x)最大值必定在x=3或x=1处取得(1)当在x=3处取得最大值时f(3)=|32﹣2×3﹣t|=2,解得t=1或5,当t=5时,此时,f(0)=5>2不符条件,当t=1时,此时,f(0)=1,f(1)=2,符合条件.(2)当最大值在x=1处取得时f(1)=|12﹣2×1﹣t|=2,解得t=1或﹣3,当t=﹣3时,f(0)=3>2不符条件,当t=1此时,f(3)=2,f(1)=2,符合条件.综上t=1时故答案为:1.【点评】本题主要考查二次函数的图象性质和绝对值对函数图象的影响变化.16.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是40(用数字作答).【考点】分步乘法计数原理.【专题】计算题;压轴题.【分析】欲求可组成符合条件的六位数的个数,只须利用分步计数原理分三步计算:第一步:先将3、5排列,第二步:再将4、6插空排列,第三步:将1、2放到3、5、4、6形成的空中即可.【解答】解析:可分三步来做这件事:第一步:先将3、5排列,共有A22种排法;第二步:再将4、6插空排列,共有2A22种排法;第三步:将1、2放到3、5、4、6形成的空中,共有C51种排法.由分步乘法计数原理得共有A22•2A22•C51=40(种).答案:40【点评】本题考查的是分步计数原理,分步计数原理(也称乘法原理)完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法…做第n步有m n种不同的方法.那么完成这件事共有N=m1×m2×…×m n种不同的方法.17.若a≥0,b≥0,且当时,恒有ax+by≤1,则以a、b为坐标的点P(a,b)所形成的平面区域的面积等于1.【考点】二元一次不等式(组)与平面区域.【专题】压轴题;图表型.【分析】先依据不等式组,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用求最优解的方法,结合题中条件:“恒有ax+by≤1”得出关于a,b的不等关系,最后再据此不等式组表示的平面区域求出面积即可.【解答】解:令z=ax+by,∪ax+by≤1恒成立,即函数z=ax+by在可行域要求的条件下,z max≤1恒成立.当直线ax+by﹣z=0过点(1,0)或点(0,1)时,0≤a≤1,0≤b≤1.点P(a,b)形成的图形是边长为1的正方形.∪所求的面积S=12=1.故答案为:1【点评】本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.三、解答题(共5小题,满分72分)18.如图,矩形ABCD和梯形BEFC所在平面互相垂直,∪BCF=∪CEF=90°,AD=.(∪)求证:AE∪平面DCF;(∪)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°?【考点】直线与平面平行的判定;与二面角有关的立体几何综合题.【专题】计算题;证明题;综合题.【分析】(∪)过点E作EG∪CF并CF于G,连接DG,证明AE平行平面DCF内的直线DG,即可证明AE∪平面DCF;(∪)过点B作BH∪EF交FE的延长线于H,连接AH,说明∪AHB为二面角A﹣EF﹣C的平面角,通过二面角A﹣EF﹣C的大小为60°,求出AB即可.【解答】(∪)证明:过点E作EG∪CF并CF于G,连接DG,可得四边形BCGE为矩形.又ABCD为矩形,所以AD∪∪EG,从而四边形ADGE为平行四边形,故AE∪DG.因为AE⊄平面DCF,DG⊂平面DCF,所以AE∪平面DCF.(∪)解:过点B作BH∪EF交FE的延长线于H,连接AH.由平面ABCD∪平面BEFG,AB∪BC,得AB∪平面BEFC,从而AH∪EF,所以∪AHB为二面角A﹣EF﹣C的平面角.在Rt∪EFG中,因为EG=AD=.又因为CE∪EF,所以CF=4,从而BE=CG=3.于是BH=BE•sin∪BEH=.因为AB=BH•tan∪AHB,所以当AB=时,二面角A﹣EF﹣G的大小为60°.【考点】空间点、线、面位置关系,空间向量与立体几何.【点评】由于理科有空间向量的知识,在解决立体几何试题时就有两套根据可以使用,这为考生选择解题方案提供了方便,但使用空间向量的方法解决立体几何问题也有其相对的缺陷,那就是空间向量的运算问题,空间向量有三个分坐标,在进行运算时极易出现错误,而且空间向量方法证明平行和垂直问题的优势并不明显,所以在复习立体几何时,不要纯粹以空间向量为解题的工具,要注意综合几何法的应用.【点评】本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.19.一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.(∪)若袋中共有10个球,从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ.(∪)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于.并指出袋中哪种颜色的球个数最少.【考点】离散型随机变量及其分布列;等可能事件的概率;离散型随机变量的期望与方差.【专题】计算题;应用题;证明题;压轴题.【分析】(I)首先根据从袋中任意摸出2个球,至少得到1个白球的概率是,列出关系式,得到白球的个数,从袋中任意摸出3个球,白球的个数为ξ,根据题意得到变量可能的取值,结合对应的事件,写出分布列和期望.(II)设出两种球的个数,根据从袋中任意摸出2个球,至少得到1个黑球的概率不大于,得到两个未知数之间的关系,得到白球的个数比黑球多,白球个数多于,红球的个数少于,得到袋中红球个数最少.【解答】解:(∪)记“从袋中任意摸出两个球,至少得到一个白球”为事件A,设袋中白球的个数为x,则,得到x=5.故白球有5个.随机变量ξ的取值为0,1,2,3,∪分布列是∪ξ的数学期望.(∪)证明:设袋中有n个球,其中y个黑球,由题意得,∪2y<n,2y≤n﹣1,故.记“从袋中任意摸出两个球,至少有1个黑球”为事件B,则.∪白球的个数比黑球多,白球个数多于,红球的个数少于.故袋中红球个数最少.【点评】本题主要考查排列组合、对立事件、相互独立事件的概率和随机变量分布列和数学期望等概念,同时考查学生的逻辑思维能力和分析问题以及解决问题的能力.20.已知曲线C是到点和到直线距离相等的点的轨迹,l是过点Q(﹣1,0)的直线,M是C上(不在l上)的动点;A、B在l上,MA∪l,MB∪x轴(如图).(∪)求曲线C的方程;(∪)求出直线l的方程,使得为常数.【考点】轨迹方程;直线的一般式方程.【专题】计算题;压轴题.【分析】(I)设N(x,y)为C上的点,进而可表示出|NP|,根据N到直线的距离和|NP|进而可得曲线C的方程.(II)先设,直线l:y=kx+k,进而可得B点坐标,再分别表示出|QB|,|QM|,|MA|,最后根据|QA|2=|QM|2﹣|AM|2求得k.【解答】解:(I)设N(x,y)为C上的点,则,N到直线的距离为.由题设得,化简,得曲线C的方程为.(II)设,直线l:y=kx+k,则B(x,kx+k),从而.在Rt∪QMA中,因为=,.所以,∪,.当k=2时,,从而所求直线l方程为2x﹣y+2=0.【点评】本题主要考查求曲线轨迹方程,两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.21.已知a是实数,函数(∪)求函数f(x)的单调区间;(∪)设g(a)为f(x)在区间[0,2]上的最小值.(i)写出g(a)的表达式;(ii)求a的取值范围,使得﹣6≤g(a)≤﹣2.【考点】利用导数研究函数的单调性;函数解析式的求解及常用方法;利用导数求闭区间上函数的最值;不等式的证明.【专题】计算题;压轴题.【分析】(∪)求出函数的定义域[0,+∞),求出f′(x),因为a为实数,讨论a≤0,(x>0)得到f′(x)>0得到函数的单调递增区间;若a>0,令f'(x)=0,得到函数驻点讨论x取值得到函数的单调区间即可.(∪)①讨论若a≤0,f(x)在[0,2]上单调递增,所以g(a)=f(0)=0;若0<a<6,f(x)在上单调递减,在上单调递增,所以;若a≥6,f(x)在[0,2]上单调递减,所以.得到g(a)为分段函数,写出即可;②令﹣6≤g(a)≤﹣2,代到第一段上无解;若0<a<6,解得3≤a<6;若a≥6,解得.则求出a的取值范围即可.【解答】解;(∪)解:函数的定义域为[0,+∞),(x>0).若a≤0,则f'(x)>0,f(x)有单调递增区间[0,+∞).若a>0,令f'(x)=0,得,当时,f'(x)<0,当时,f'(x)>0.f(x)有单调递减区间,单调递增区间.(∪)解:(i)若a≤0,f(x)在[0,2]上单调递增,所以g(a)=f(0)=0.若0<a<6,f(x)在上单调递减,在上单调递增,所以.若a≥6,f(x)在[0,2]上单调递减,所以.综上所述,改天(ii)令﹣6≤g(a)≤﹣2.若a≤0,无解.若0<a<6,解得3≤a<6.若a≥6,解得.故a的取值范围为.【点评】本题主要考查函数的性质、求导数的应用等基础知识,同时考查分类讨论思想以及综合运用所学知识分析问题和解决问题的能力.22.已知数列{a n},a n≥0,a1=0,a n+12+a n+1﹣1=a n2(n∈N•).记S n=a1+a2+…+a n..求证:当n∈N•时,(∪)a n<a n+1;(∪)S n>n﹣2.(∪)T n<3.【考点】不等式的证明;数列的求和;用数学归纳法证明不等式.【专题】证明题;压轴题.【分析】(1)对于n∈N•时的命题,考虑利用数学归纳法证明;(2)由a k+12+a k+1﹣1=a k2,对k取1,2,…,n﹣1时的式子相加得S n,最后对S n进行放缩即可证得.(3)利用放缩法由,得≤(k=2,3,…,n﹣1,n≥3),≤(a≥3),即可得出结论.【解答】(∪)证明:用数学归纳法证明.①当n=1时,因为a2是方程x2+x﹣1=0的正根,所以a1<a2.②假设当n=k(k∈N*)时,a k<a k+1,因为a k+12﹣a k2=(a k+22+a k+2﹣1)﹣(a k+12+a k+1﹣1)=(a k+2﹣a k+1)(a k+2+a k+1+1),所以a k+1<a k+2.即当n=k+1时,a n<a n+1也成立.根据①和②,可知a n<a n+1对任何n∈N*都成立.(∪)证明:由a k+12+a k+1﹣1=a k2,k=1,2,…,n﹣1(n≥2),得a n2+(a2+a3+…+a n)﹣(n﹣1)=a12.因为a1=0,所以S n=n﹣1﹣a n2.由a n<a n+1及a n+1=1+a n2﹣2a n+12<1得a n<1,所以S n>n﹣2.(∪)证明:由,得:,所以,故当n≥3时,,又因为T1<T2<T3,所以T n<3.【点评】本题主要考查数列的递推关系,数学归纳法、不等式证明等基础知识和基本技能,同时考查逻辑推理能力.。
2008年 浙江省高考数学试卷(理科)
2008年浙江省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2008•浙江)已知a是实数,是纯虚数,则a=()A.1 B.﹣1 C.D.﹣2.(5分)(2008•浙江)已知U=R,A={x|x>0},B={x|x≤﹣1},则(A∩∁U B)∪(B∩∁U A)=()A.∅B.{x|x≤0} C.{x|x>﹣1} D.{x|x>0或x≤﹣1}3.(5分)(2008•浙江)已知a,b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.(5分)(2008•浙江)在(x﹣1)(x﹣2)(x﹣3)(x﹣4)(x﹣5)的展开式中,含x4的项的系数是()A.﹣15 B.85 C.﹣120 D.2745.(5分)(2008•浙江)在同一平面直角坐标系中,函数(x∈[0,2π])的图象和直线的交点个数是()A.0 B.1 C.2 D.46.(5分)(2008•浙江)已知{a n}是等比数列,a2=2,a5=,则a1a2+a2a3+…+a n a n+1=()A.16(1﹣4﹣n) B.16(1﹣2﹣n)C.(1﹣4﹣n)D.(1﹣2﹣n)7.(5分)(2008•浙江)若双曲线的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是()A.3 B.5 C.D.8.(5分)(2008•浙江)若,则tanα=()A.B.2 C. D.﹣29.(5分)(2008•浙江)已知,是平面内两个互相垂直的单位向量,若向量满足(﹣)•(﹣)=0,则||的最大值是()A.1 B.2 C.D.10.(5分)(2008•浙江)如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()A.圆B.椭圆 C.一条直线 D.两条平行直线二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2008•浙江)已知平面内三点A(2,﹣3),B(4,3),C(5,a)共线,则a=12.(4分)(2008•浙江)已知F1、F2为椭圆=1的两个焦点,过F1的直线交椭圆于A、B两点,若|F2A|+|F2B|=12,则|AB|=.13.(4分)(2008•浙江)在△ABC中,角A、B、C所对的边分别为a、b、C、若(b﹣c)cosA=acosC,则cosA=.14.(4分)(2008•浙江)如图,已知球O的面上四点A、B、C、D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=,则球O的体积等于.15.(4分)(2008•浙江)已知t为常数,函数y=|x2﹣2x﹣t|在区间[0,3]上的最大值为2,则t=.16.(4分)(2008•浙江)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是(用数字作答).17.(4分)(2008•浙江)若a≥0,b≥0,且当时,恒有ax+by≤1,则以a、b为坐标的点P(a,b)所形成的平面区域的面积等于.三、解答题(共5小题,满分72分)18.(12分)(2008•浙江)如图,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=.(Ⅰ)求证:AE∥平面DCF;(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°?19.(14分)(2008•浙江)一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.(Ⅰ)若袋中共有10个球,从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ.(Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于.并指出袋中哪种颜色的球个数最少.20.(15分)(2008•浙江)已知曲线C是到点和到直线距离相等的点的轨迹,l是过点Q(﹣1,0)的直线,M是C上(不在l上)的动点;A、B在l上,MA⊥l,MB⊥x轴(如图).(Ⅰ)求曲线C的方程;(Ⅱ)求出直线l的方程,使得为常数.21.(15分)(2008•浙江)已知a是实数,函数(Ⅰ)求函数f(x)的单调区间;(Ⅱ)设g(a)为f(x)在区间[0,2]上的最小值.(i)写出g(a)的表达式;(ii)求a的取值范围,使得﹣6≤g(a)≤﹣2.22.(16分)(2008•浙江)已知数列{a n},a n≥0,a1=0,a n+12+a n+1﹣1=a n2(n∈N•).记S n=a1+a2+…+a n..求证:当n∈N•时,(Ⅰ)a n<a n+1;(Ⅱ)S n>n﹣2.(Ⅲ)T n<3.。
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(浙江卷)(理科)
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(浙江卷)(理科) 测试题 2019.91,若==+θθπ2cos ,53)2sin(则 .2,已知F 1、F 2为椭圆192522=+y x 的两个焦点,过F 1的直线交椭圆于A 、B 两点若|F 2A|+|F 2B|=12,则|AB|= 。
3,在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c 。
若,c o s co s )3(C a A c b =-则cos A= .4,如图,已知球O 的面上四点,DA ⊥平面ABC 。
AB ⊥BC ,DA=AB=BC=3,则球O 的体积等于 。
5,已知a 是平面内的单位向量,若向量b 满足b ·(a-b)=0,则|b|的取值范围是 .6,用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻。
这样的六位数的个数是 (用数字作答)7,已知a 是实数,是纯虚数,则a =( )(A )1 (B )-1 (C )2(D )-28,已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则 ( ) (A )∅ (B )(C ) (D )A B C D 、、、1a ii -+()()u u A C B B C A ={}|0x x ≤{}|1x x >-{}|01x x x >≤-或9,已知a ,b 都是实数,那么“22b a >”是“a >b ”的( ) (A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件10,在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是( )(A )-15 (B )85(C )-120 (D )274测试题答案1,解析:本小题主要考查诱导公式及二倍角公式的应用。
由可知,;而。
2, 8解析:本小题主要考查椭圆的第一定义的应用。
2008年普通高等学校招生全国统一考试浙江卷
2008年普通高等学校招生全国统一考试(浙江卷)数 学(理科)本试题卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共4页,第Ⅰ卷1至2页,第Ⅱ卷3至4页. 满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.第Ⅰ卷(共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.参考公式:如果事件A B ,互斥,那么球的表面积公式24πS R = ()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么球的体积公式34π3V R =()()()P A B P A P B =其中R 表示球的半径如果事件A 在一次试验中发生的概率是p 那么n 次独立重复试验中恰好发生 k 次的概率:()(1)k kn k n n P k C p p -=-一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知a 是实数,1a ii-+是纯虚数,则a =( )A .1B .1-CD .2.已知U =R ,{}|0A x x =>,{}|1B x x =-≤,则()()U UA B B A 痧=( )A .∅B .{}|0x x ≤C .{}|1x x >-D .{}|01x x x >-或≤3.已知a b ,都是实数,那么“22a b >”是“a b >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.在(1)(2)(3)(4)(5)x x x x x -----的展开式中,含4x 的项的系数是( ) A .15-B .85C .120-D .2745.在同一平面直角坐标系中,函数3πcos 22x y ⎛⎫=+ ⎪⎝⎭([02π]x ∈,)的图象和直线12y =的交点个数是( ) A .0 B .1C .2D .46.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a ++++=( ) A .16(14)n--B .16(12)n-- C .32(14)3n -- D .32(12)3n --7.若双曲线22221x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( ) A .3B .5CD8.若cos 2sin αα+=tan α=( ) A .12B .2C .12-D .2-9.已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()0--=a c b c ,则c 的最大值是( ) A .1B .2CD.210.如图,AB 是平面α的斜线段...,A 为斜足,若点P 在平面α内运动,使得ABP △的面积为定值,则动点P 的轨迹是( ) A .圆 B .椭圆 C .一条直线 D .两条平行直线A B P α(第10题)2008年普通高等学校招生全国统一考试数 学(理科) 第Ⅱ卷(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上. 2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑. 二、填空题:本大题共7小题,每小题4分,共28分.11.已知0a >,若平面内三点23(1)(2)(3)A a B a C a -,,,,,共线,则a = .12.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若2212F A F B +=,则AB = .13.在ABC △中,角A B C ,,所对的边分别为a b c ,,.若)cos cos c A a C -=,则cos A = .14.如图,已知球O 的面上四点A B C D ,,,,DA ⊥平面ABC ,AB BC ⊥,DA AB BC ===,则球O 的体积等于 .15.已知t 为常数,函数22y x x t =--在区间[03],上的最大值为2,则t = . 16.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是 (用数字作答)17.若00a b ,≥≥,且当001x y x y ⎧⎪⎨⎪+⎩,,≥≥≤时,恒有1ax by +≤,则以a b ,为坐标的点()P a b ,所形成的平面区域的面积等于 .三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤. 18.(本题14分)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE CF ∥,90BCF CEF ∠=∠=,AD =2EF =.(Ⅰ)求证:AE ∥平面DCF ;(Ⅱ)当AB 的长为何值时,二面角A EF C --的大小为60?ACD (第14题)DA BEFC(第18题)19.(本题14分)一个袋中装有若干个大小相同的黑球,白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是25;从袋中任意摸出2个球,至少得到1个白球的概率是79. (Ⅰ)若袋中共有10个球,(ⅰ)求白球的个数;(ⅱ)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望E ξ. (Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于710.并指出袋中哪种颜色的球个数最少.20.(本题15分) 已知曲线C 是到点1328P ⎛⎫- ⎪⎝⎭,和到直线58y =-距离相等的点的轨迹. l 是过点(10)Q -,的直线,M 是C 上(不在l 上)的动点;A B ,在l 上,MA l ⊥,MB x ⊥轴(如图).(Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得2QBQA为常数.21.(本题15分)已知a是实数,函数())f x x a =-.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)设()g a 为()f x 在区间[02],上的最小值.(ⅰ)写出()g a 的表达式;(ⅱ)求a 的取值范围,使得6()2g a --≤≤.22.(本题14分)已知数列{}n a ,0n a ≥,10a =,22*111()n n n a a a n +++-=∈N .记:12n n S a a a =+++,112121111(1)(1)(1)(1)(1)n n T a a a a a a =+++++++++.求证:当*n ∈N 时, (Ⅰ)1n n a a +<; (Ⅱ)2n S n >-; (Ⅲ)3n T <2008年普通高等学校招生全国统一考试(浙江卷)数 学(理科)参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分 1.A 2.D 3.D 4.A 5.C 6.C 7.D 8.B 9.C 10.B二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分. 11.1+ 12.8 13.3 14. 9π215.1 16.40 17.1 三、解答题18.本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分. 方法一:(Ⅰ)证明:过点E 作EG CF ⊥交CF 于G ,连结DG ,可得四边形BCGE 为矩形,又ABCD 为矩形, 所以AD EG∥,从而四边形ADGE 为平行四边形, 故AE DG ∥.因为AE ⊄平面DCF ,DG ⊂平面DCF , 所以AE ∥平面DCF .(Ⅱ)解:过点B 作BH EF ⊥交FE 的延长线于H ,连结AH . 由平面ABCD ⊥平面BEFC ,AB BC ⊥,得 AB ⊥平面BEFC , 从而AH EF ⊥.所以AHB ∠为二面角A EF C --的平面角. 在Rt EFG △中,因为EG AD ==2EF =,所以60CFE ∠=,1FG =.又因为CE EF ⊥,所以4CF =, 从而3BE CG ==.于是sin BH BE BEH =∠=.DA B EFCHG因为tan AB BH AHB =∠, 所以当AB 为92时,二面角A EF C --的大小为60. 方法二:如图,以点C 为坐标原点,以CB CF ,和CD 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系C xyz -. 设AB a BE b CF c ===,,,则(000)C ,,,)A a ,,0)B ,,0)E b ,,(00)F c ,,. (Ⅰ)证明:(0)AE b a =-,,,(30)CB =,,,(00)BE b =,,, 所以0CB CE =,0CB BE =,从而CB AE ⊥,CB BE ⊥, 所以CB ⊥平面ABE .因为CB ⊥平面DCF ,所以平面ABE ∥平面DCF . 故AE ∥平面DCF .(Ⅱ)解:因为(0)EF c b =-,,(30)CE b =,,, 所以0EF CE =,||2EF=,从而3()02b c b -+-=⎧=,,解得34b c ==,.所以0)E ,,(040)F ,,. 设(1)n y z =,,与平面AEF 垂直, 则0n AE =,0n EF =,解得(1n a=,. 又因为BA ⊥平面BEFC ,(00)BA a =,,, 所以||1|cos |2||||4BA n n BA BA n a <>===,,得到92a =. 所以当AB 为92时,二面角A EF C --的大小为60.19.本题主要考查排列组合、对立事件、相互独立事件的概率和随机变量分布列和数学期望等概念,同时考查学生的逻辑思维能力和分析问题以及解决问题的能力.满分14分. (Ⅰ)解:(i )记“从袋中任意摸出两个球,至少得到一个白球”为事件A ,设袋中白球的个数为x ,则2102107()19xC P A C -=-=,得到5x =.故白球有5个.(ii )随机变量ξ的取值为0,1,2,3,分布列是ξ的数学期望155130123121212122E ξ=⨯+⨯+⨯+⨯=. (Ⅱ)证明:设袋中有n 个球,其中y 个黑球,由题意得25y n =, 所以2y n <,21y n -≤,故112y n -≤. 记“从袋中任意摸出两个球,至少有1个黑球”为事件B ,则23()551yP B n =+⨯- 231755210+⨯=≤. 所以白球的个数比黑球多,白球个数多于25n ,红球的个数少于5n . 故袋中红球个数最少.20.本题主要考查求曲线的轨迹方程、两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分. (Ⅰ)解:设()N x y ,为C 上的点,则||NP =N 到直线58y =-的距离为58y +.58y =+.化简,得曲线C 的方程为21()2y x x =+. (Ⅱ)解法一:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而||1|QB x +.在Rt QMA △中,因为222||(1)14x QM x ⎛⎫=++ ⎪⎝⎭,2222(1)2||1x x k MA k ⎛⎫+- ⎪⎝⎭=+.所以222222(1)||||||(2)4(1)x QA QM MA kx k +=-=++. ||QA =22||2(112||||QB k x QA k x k++=+.当2k =时,2||||QB QA = 从而所求直线l 方程为220x y -+=.解法二:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B xkx k +,,从而||1|QB x =+.过Q (10)-,垂直于l 的直线11:(1)l y x k=-+. 因为||||QA MH =,所以||QA =22||2(112||||QB k x QA k xk++=+.当2k =时,2||||QB QA = 从而所求直线l 方程为220x y -+=.21.本题主要考查函数的性质、求导、导数的应用等基础知识,同时考查分类讨论思想以及综合运用所学知识分析问题和解决问题的能力.满分15分.(Ⅰ)解:函数的定义域为[0)+∞,,()f x '==(0x >). 若0a ≤,则()0f x '>,()f x 有单调递增区间[0)+∞,.若0a >,令()0f x '=,得3ax =, 当03ax <<时,()0f x '<, 当3ax >时,()0f x '>. ()f x 有单调递减区间03a ⎡⎤⎢⎥⎣⎦,,单调递增区间3a ⎛⎫+∞ ⎪⎝⎭,. (Ⅱ)解:(i )若0a ≤,()f x 在[02],上单调递增, 所以()(0)0g a f==.若06a <<,()f x 在03a ⎡⎤⎢⎥⎣⎦,上单调递减,在23a ⎛⎤ ⎥⎝⎦,上单调递增,所以()3a g a f ⎛⎫== ⎪⎝⎭若6a ≥,()f x 在[02],上单调递减,所以()(2))g a f a ==-.综上所述,00()06)6a g a a a a ⎧⎪⎪=<<⎨-,≤,,,≥. (ii )令6()2g a --≤≤.若0a ≤,无解.若06a <<,解得36a <≤.若6a ≥,解得62a +≤≤故a的取值范围为32a +≤≤22.本题主要考查数列的递推关系,数学归纳法、不等式证明等基础知识和基本技能,同时考查逻辑推理能力.满分14分.(Ⅰ)证明:用数学归纳法证明.①当1n =时,因为2a 是方程210x x +-=的正根,所以12a a <.②假设当*()n k k =∈N 时,1k k a a +<,因为221k k a a +-222211(1)(1)k k k k a a a a ++++=+--+- 2121()(1)k k k k a a a a ++++=-++,所以12k k a a ++<.即当1n k =+时,1n n a a +<也成立.根据①和②,可知1n n a a +<对任何*n ∈N 都成立.(Ⅱ)证明:由22111k k k a a a +++-=,121k n =-,,,(2n ≥), 得22231()(1)n n a a a a n a ++++--=.因为10a =,所以21n n S n a =--.由1n n a a +<及2211121n n n a a a ++=+-<得1n a <,所以2n S n >-.(Ⅲ)证明:由221112k k k k a a a a +++=+≥,得111(2313)12k k ka k n n a a ++=-+≤,,,,≥ 所以23421(3)(1)(1)(1)2n n n a a a a a a -+++≤≥, 于是2222232211(3)(1)(1)(1)2()22n n n n n n a a n a a a a a ---=<++++≤≥, 故当3n ≥时,21111322n n T -<++++<,又因为123T T T <<,所以3n T <.。
2008高考全国卷Ⅰ数学理科试题含答案(全word版)
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn n P k C P P k n -=-= ,,,一、选择题1.函数y =)A .{}|0x x ≥B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( ) A .21x e-B .2xeC .21x e+D .22x e+7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞ ,, B .(1)(01)-∞- ,, C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,, 10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A .B .C .D .ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.......... 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法: 方案甲:逐个化验,直到能确定患病动物为止.CDE AB方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=.(Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<; (Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.2008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅰ)参考答案1. C. 由()10,0,1,0;x x x x x -≥≥≥=得或2. A .根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图像可知;3. A. 由()2AD AB AC AD -=-,322AD AB AC c b =+=+ ,1233AD c b =+ ;4. D. ()()()22221210,1a i i a ai i a a i a +=+-=-+->=-;5. C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=;6. B.由()()()()212121,1,y x x y x e f x e f x e --=⇒=-==;7.D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----; 8.A.55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数sin 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像. 9.D .由奇函数()f x 可知()()2()0f x f x f x x x--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.D .由题意知直线1x ya b+=与圆221x y +=22111a b+1,≥. 另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1a bαα+= 由⋅≤m n m n可得cos sin 1a b αα=+11.C .由题意知三棱锥1A ABC -为正四面体,设棱长为a,则1AB =,棱柱的高13AO===(即点1B到底面ABC的距离),故1AB与底面ABC所成角的正弦值为113AOAB=另解:设1,,AB AC AA为空间向量的一组基底,1,,AB AC AA的两两间的夹角为060长度均为a,平面ABC的法向量为111133OA AA AB AC=--,11AB AB AA=+211112,33OA AB a OA AB⋅===则1AB与底面ABC所成角的正弦值为11113OA ABAO AB⋅=.12.B.分三类:种两种花有24A种种法;种三种花有342A种种法;种四种花有44A种种法.共有234444284A A A++=.另解:按A B C D---顺序种花,可分A C、同色与不同色有43(1322)84⨯⨯⨯+⨯=13.答案:9.如图,作出可行域,作出直线:20l x y-=,将l平移至过点A处时,函数2z x y=-有最大值9.14. 答案:2.由抛物线21y ax=-的焦点坐标为1(0,1)4a-为坐标原点得,14a=,则2114y x=-与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯= 15.答案:38.设1AB BC==,7cos18B=-则222252cos9AC AB BC AB BC B=+-⋅⋅= 53AC=,582321,21,3328ca c ea=+====.16.答案:16.设2AB=,作CO ABDE⊥面,OH AB⊥,则CH AB⊥,CHO∠为二面角C AB D--cos1CH OH CH CHO=⋅∠=,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则AN EM CH==11(),22AN AC AB EM AC AE =+=- ,11()()22AN EM AB AC AC AE ⋅=+⋅-= 12故EM AN ,所成角的余弦值16AN EM AN EM ⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系,则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,1111(,(,2222M N ---,则31131(,(,,22222AN EM AN EM ==-⋅= 故EM AN ,所成角的余弦值16AN EM ANEM ⋅= .17.解析:(Ⅰ)在ABC △中,由正弦定理及3cos cos 5a Bb Ac -= 可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+ 即sin cos 4cos sin A B A B =,则tan cot 4A B =; (Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B B A B A B B B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取BC 中点F ,连接DF 交CE 于点O ,AB AC =,∴AF BC ⊥,又面ABC ⊥面BCDE ,∴AF ⊥面BCDE ,∴AF CE ⊥. tan tan CED FDC ∠=∠=, ∴90OED ODE ∠+∠= ,90DOE ∴∠= ,即CE DF ⊥,CE ∴⊥面ADF ,CE AD ∴⊥.(2)在面ACD 内过C 点作AD 的垂线,垂足为G .CG AD ⊥,CE AD ⊥,AD ∴⊥面CEG ,EG AD ∴⊥, 则CGE ∠即为所求二面角的平面角.3AC CD CG AD ==,3DG =,3EG ==,CE =222cos 210CG GE CE CGE CG GE +-∠==- ,πarccos 10CGE ⎛∴∠=- ⎝⎭,即二面角C AD E --的大小πarccos 10⎛- ⎝⎭.19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为3a x -=即()f x在⎛-∞ ⎝⎭递增,⎝⎭递减,⎫+∞⎪⎪⎝⎭递增 (2)23133a -⎨-+⎪-⎪⎩,且23a>解得:74a ≥20.解:对于乙:0.20.4⨯+.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠==由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率e = (Ⅱ)过F 直线方程为()a y x c b =--,与双曲线方程22221x y a b-=联立将2a b =,c =代入,化简有22152104x x b b-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369x y -=。
2008年高考浙江卷(理科数学)
2008年普通高等学校招生全国统一考试理科数学(浙江卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a 是实数,ii a +-1是纯虚数,则a =A .1B .1-CD .2.已知U R =,{|0}A x x =>,{|1}B x x =≤-,则()()u u A C B B C A =A .∅B .{|0}x x ≤C .{|1}x x ≥-D .{|10}x x x ≤->或3.已知a ,b 都是实数,那么“22b a >”是“a b >”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是A .15-B .85C .120-D .2745.在同一平面直角坐标系中,函数3cos()22x y π=+([02]x π∈,)的图象和直线 21=y 的交点个数是 A .0 B .1 C .2 D .46.已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a = A .16(14)n -- B .16(12)n -- C .32(14)3n -- D .32(12)3n -- 7.若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是A .3B .5CD .58.若cos 2sin a a +=a tan =A .21B .2C .21- D .2-9.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足()()0a c b c -⋅-=,则c 的最大值是A .1B .2 C.22 10.如图,AB 是平面α的斜线段,A 为斜足,若点P 在平面α内运动,使得ABP ∆的面积为定值,则动点P 的轨迹是A .圆B .椭圆C .一条直线D .两条平行直线二、填空题:本大题共7小题,每小题4分,共28分.11.已知0a >,若平面内三点(1,)A a -,2(2,)B a ,3(3,)C a 共线,则a = .12.已知1F 、2F 为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点 若1222=+B F A F ,则AB = .13.在ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c .若)cos cos c A a C -=,则=A cos .14.如图,已知球O 的面上四点A ,B ,C ,D ,DA ⊥平面ABC ,AB BC ⊥,DA AB BC ===,则球O 的体积等于 .15.已知t 为常数,函数t x x y --=22在区间[0,3]上的最大值为2,则t = .16.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是 .(用数字作答)A B P αAB C D17.若0a ≥,0b ≥且当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于 .三.解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE //CF ,BCF CEF ∠=∠ 90=,AD =2EF =.(Ⅰ)求证:AE //平面DCF ;(Ⅱ)当AB 的长为何值时,二面角A EF C --大小为60?19.(本题满分14分)一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是52;从袋中任意摸出2个球,至少得到1个白球的概率是97. (Ⅰ)若袋中共有10个球,①求白球的个数;②从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望ξE . (Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于107.并指出袋中哪种颜色的球个数最少.20.(本题满分15分)已知曲线C 是到点13()28P -,和到直线85-=y 距离相等的点的轨迹.l 是过点(1,0)Q -的直线,M 是C 上(不在l 上)的动点,A 、B 在l 上,MA l ⊥,MB x ⊥轴(如图).(Ⅰ)求曲线C 的方程; B A C D E F(Ⅱ)求出直线l 的方程,使得QA QB 2为常数.21.(本题满分15分) 已知a是实数,函数())f x x a =-.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)设)(a g 为()f x 在区间[0,2]上的最小值.①写出)(a g 的表达式;②求a 的取值范围,使得2)(6-≤≤-a g .22.(本题满分14分)已知数列{}n a ,0≥n a ,01=a ,22111n n n a a a +++-=(n N *∈).记 n n a a a S +++= 21.)1()1)(1(1)1)(1(11121211n n a a a a a a T +++++++++= .求证:当∙∈N n 时, (Ⅰ)1+<n n a a ;(Ⅱ)2->n S n ;(Ⅲ)3<n T .。
2008年高考数学试卷(浙江.理)含详解
梦想不会辜负一个努力的人2008年普通高等学校招生全国统一考试数学(理科)浙江卷一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知a 是实数,iia +-1是纯虚数,则a = (A )1 (B )-1 (C )2 (D )-2(2)已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()=A C B B C A u u (A )∅ (B ){}|0x x ≤ (C ){}|1x x >- (D ){}|01x x x >≤-或 (3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (4)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是 (A )-15 (B )85 (C )-120 (D )274 (5)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x xy 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4(6)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a = (A )16(n --41) (B )16(n--21)(C )332(n --41) (D )332(n--21)(7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5 (8)若,5sin 2cos -=+a a 则a tan =(A )21 (B )2 (C )21- (D )2- (9)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是(A )1 (B )2 (C )2 (D )22 (10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是梦想不会辜负一个努力的人ABPA B CDEFA BCD(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线二.填空题:本大题共7小题,每小题4分,共28分。
2008年高考理科数学试题(浙江卷)
安康市水利旅游规划(安康市旅游局)一、发展定位通过努力,把安康建成集沿江观光、滨水度假、水上漂流、水上娱乐、体育竞技、水上体验、古镇游憩、乡村旅游、生态教育等主要功能为一体的国家级江河型生态文化旅游区、汉江旅游发展最精华的区段、陕西水体旅游休闲度假基地。
二、发展战略一是旅游汉江战略。
以汉江为轴线,通过主要支流将两岸旅游资源串联在一起,将安康建设成为川陕巴楚地区最具竞争力和吸引力的旅游目的地。
二是生态汉江战略。
做到开发有序、经营规范、管理得力、措施到位、效益明显,严禁“竭泽而渔”式的破坏性开发。
三是文化汉江战略。
多元文化为汉江旅游开发提供了丰厚的文化底蕴,为彰显汉江旅游特色以及内部各段的文化特色奠定了基础。
四是宜居汉江战略。
在沿江各城镇实施休闲宜居战略,将沿江城镇建设成为旅游发展的重要旅游节点。
五是和谐汉江战略。
建立合理有效的管理体制,以协调各县之间、政府各部门之间、政府与企业和社区之间的利益关系。
三、空间结构整合汉江旅游资源,形成“一核、两心、四段、六环、八大节点”的空间结构。
其中:一核:瀛湖旅游区。
两心:东翼集散中心—安康市区和西翼集散中心—石泉县城。
四段:根据分段原则,从上游到下游依次为:石泉—喜河江段:从石泉汉中界—喜河镇,包括喜河库区和石泉库区;汉阳—瀛湖江段:从汉阳—瀛湖,即安康库区;市区—旬阳江段:从中心城市—旬阳大坝,即旬阳库区;蜀河—白河江段:从旬阳大坝—白河勋西界,包括蜀河库区和夹河库区。
六环:由汉江与两岸景点经道路交通系统连接形成的旅游环线。
包括:石泉—汉阴旅游环线:石泉县城—后柳—喜河镇(或经熨斗镇)—汉阳镇—漩涡镇—汉阴县城—石泉县城;紫阳—恒口—汉阴环线:紫阳县城—漩涡镇(或经汉王镇)—汉阴县城—恒口镇—流水镇—洞河镇—紫阳县城;五里—流水—瀛湖—安康环线:中心城区—五里镇—恒口镇—凤凰山森林公园—流水镇—瀛湖镇—-中心城区;安康—瀛湖—岚皋—平利—旬阳环线:中心城区—岚皋—平利—中心城区;旬阳—蜀河—庙坪—羊山环线:蜀河古镇—八卦山风景区—羊山生态旅游区—旬阳县城—蜀河古筝;十天—汉江环线:即由十天高速和汉江构成的旅游环线。
2008年浙江省高考理科数学试卷参考答案
2008年普通高等学校招生全国统一考试浙江省数学(理科)参考答案(11) 1 、、2 (12) 8(13)乜39(14)(15) 1 (16) 40 (17) 1三•解答题:本大题共 (18)(本题14分) 解:(1)5小题,共72分。
解答应写出文字说明、证明过程或演算步骤。
BC 丄AB,BC 丄BE 】〒古'占BC 丄平面ABEABP]BE=B JBC 丄CD, BC 丄CF ] 〒古' BC 丄平面DCF CD^CF =C J(2)作BG _ EF 交EF 的延长线为 G ,连结AG 由矩形ABCD 垂直梯形BEFC ,得AB _ EF平面AB^/平面DCF = AE //平面 AE 平面ABEDCF又BG _ EF ,所以EF _平面ABG 即EF _ AG 因为.CEF= 90,所以 BG//CE , 即.AGB 就是二面角A-EF-C 的平面角。
由 Rt EBC L Rt CEF ,得EB CEBC EF即 cos 乙 BCE =——,得/ BEC= 30CE 2所以BE 二BCtan ^BECBC tan30BG =BE sin BEG=BE sin 60、3 —233 2又 AB _ BG, • AGB =60,所以AB =BG tan AGB(佃)(本题14分) 解: ( 1)2(i )黑球数=10 X - = 4 (个)5设白球为x 个,记“从袋中任意摸出2个球,至少得到1个白球的概率”为 p (白)2整理得x T9x • 20 = 0,解得:X | =5,X 2 =14 (舍去)即白球有5个;24即从袋中任意摸出 2个球,至少得到1个黑球的概率不大于 由题意知:P (黑)岂—V - = P (白)10 90 1 2 3 p 1 5 5 112 12 12 12 所以E =0丄 1 — 2 — 3丄=3 12 12 12 12 2 5 (2)设袋中有a 个黑球,则袋中共有球 5 a 个, 2记“从袋中任意摸出 2个球,至少得到1个黑球的概率”为 P (黑),则_a p(黑)= 2 C f-a2 16a-4 16 12 ---------- = -----+ -------------- 25a -10 25 125a-50由|a 为整数知「2的偶数, 所以p (黑)16 12 --- -f --------------25 125a-507 25 125 2 -50107 10则 QA= ' (a 1)2(1a 2)(a+1)2(k —如(a+1)gak + 1).k 2 1因此袋中白球数多于黑球数,即白球数多于a 个,红球数小于 旦个,袋中红球数最少。
2008年浙江省高考理科数学试卷参考答案
2008年普通高等学校招生全国统一考试浙江省数学(理科)参考答案二.填空题:本大题共7小题,每小题4分,共28分。
(11)1+(12)8 (13)3 (14)92π (15)1 (16)40 (17)1 三.解答题:本大题共5小题,共72分。
解答应写出文字说明、证明过程或演算步骤。
(18)(本题14分) 解:(1),////,BC AB BC BE BCABE AB BE B ABE DCF AE DCF AE ABE BC CD BC CF BC DCF CD CF C ⊥⊥⎫⎫⇒⊥⎬⎪=⎫⎭⎪⇒⇒⎬⎬⊂⊥⊥⎫⎪⇒⊥⎬⎪=⎭⎭平面 平面平面平面平面 平面 (2)作BG EF ⊥交EF 的延长线为G,连结AG由矩形ABCD 垂直梯形BEFC,得AB EF ⊥又BG EF ⊥,所以EF ABG ⊥平面 即EF AG ⊥ 因为∠CEF=︒90,所以BG//CE ,即∠AGB 就是二面角A-EF-C 的平面角。
由,EB BC EB Rt EBCRt CEF BCE CE EF CE ∆∆==∠==得cos ∠BEC=30︒ 所以3tan tan 30BC BCBE BEC ====∠︒,sin sin 60322BG BE BEG BE =⨯∠=⨯︒=⨯= 又,60AB BG AGB ⊥∠=︒,所以9tan 2AB BG AGB =⨯∠== (19)(本题14分) 解:(1) (i )黑球数=10×52=4(个) 设白球为x 个,记“从袋中任意摸出2个球,至少得到1个白球的概率”为p(白)则P(白)=2111021079x x xC C C C -+= 整理得219200x x -+=,解得:125,14(x x ==舍去) 即白球有5个;(ii )ξ的分布列为所以E 0123121212122ξ⨯+⨯+⨯+⨯==(2)设袋中有a 个黑球,则袋中共有球52a 个,记“从袋中任意摸出2个球,至少得到1个黑球的概率”为P (黑),则211322521641612()25102512550a a aaC C C a P C a a +-===+--黑由52a 为整数知2a ≥的偶数, 所以16121612725125502512525010P a =+≤+=-⨯-(黑)即从袋中任意摸出2个球,至少得到1个黑球的概率不大于107由题意知:77109P ≤(黑)<=P(白)因此袋中白球数多于黑球数,即白球数多于a 个,红球数小于2a个,袋中红球数最少。
2008高考浙江数学理科试卷含详细解答(全word版)-推荐下载
c2 a2 c
∴双曲线的离心率 e c 5. a
(8)若 cos 2sin 5, 则 tan =( B )
1
(A)
2
(B)2
,依题
c2 a2
c c2 a2
a2 c
c
解析:本小题主要考查三角函数的求值问题。由 cos 2 sin 5 可知,
c
2008 年普通高等学校招生全国统一考试
y2 b2
则双曲线的离心率是( D )
(A)3
(B)5
1的两个焦点到一条准线的距离之比为 3:2,
(C) 3
解析:本小题主要考查双曲线的性质及离心率问题。依题不妨取双曲线的右准线 x a2 , c
则左焦点 F1 到右准线的距离为
为c a2 c
Pn (k)
球的表面积公式
S=4 R 2
其中 R 表示球的半径
求的体积公式 V= 4 R3 3
其中 R 表示球的半径
(B)x | x 0
ห้องสมุดไป่ตู้
(D)x | x 0或x 1
第 1 页 共 12 页
C
k n
pk
(1
p)nk
2008 年普通高等学校招生全国统一考试
解析:本小题主要考查集合运算。 A Cu B x | x 0 B Cu A x | x 1 A Cu B B Cu A x | x 0或x 1
(A)
(C)x | x 1
湖南洞口一中 曾维勇
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
浙江高考理科数学卷参考答案
2008年浙江高考理科数学卷参考答案ADDAC CDBCB
简析
1:直接或者验证
2:直接法。
答案好像就是AUB
3:举反例或者利用y=x2图像
4:利用排列组合思想。
其实就是-(1+2+3+4+5)=-15 5:化简函数解析式,作图即可。
6:先求出通项公式,直接或者特殊法。
7:直接法
8:观察法,显然符合题意。
9:展开,取模。
利用。
或者利用坐标运算,转化为圆上的点到原点距离的最大值。
10:其实就是一个平面斜截一个圆柱表面的问题。
2008浙江高考理科卷若干填空题的解答思路
11:1+根号2
12:8
13:根号3/3
14:关键是找出球心,从而确定球的半径。
由题意,三角形DAC,三角形DBC都是直角三角形,且有公共斜边。
所以DC边的中点就是球心(到D、A、C、B四点距离相等),所以球的半径就是线段DC长度的一半。
14另一个答案:9π/2
15:1
16:40
17:思路一:可考虑特殊情形,比如x=0,可得a=1;y=0可得b=1。
所以猜测a介于0和1之间,b介于0和1之间。
点P(a,b)确定的平面区域就是一个正方形,面积为1.
18 :(2)4.5
19:(1)5 (2)1.5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A . 16(
1﹣
﹣
4
n)
B
.
16 (
1﹣
2 ﹣ n)
C.
( 1﹣4﹣n) D.
( 1﹣2﹣n)
【考点】 等比数列の前 n 项和. 【专题】 计算题. 【分析】 首先根据 a2 和 a5 求出公比 q,根据数列 {a nan+1} 每项の特点发现仍是等比数列,且
首项是 a1a2=8,公比为 .进而根据等比数列求和公式可得出答案.
则双曲线の离心率是(
)
A . 3 B. 5 C.
D.
【考点】 双曲线の定义.
【专题】 计算题.
【分析】 先取双曲线の一条准线,然后根据题意列方程,整理即可.
【解答】 解:依题意,不妨取双曲线の右准线
,
则左焦点 F1 到右准线の距离为
,
右焦点 F2 到右准线の距离为
,
可得
,即
,
∴双曲线の离心率
.
故选 D . 【点评】 本题主要考查双曲线の性质及离心率定义.
2
【解答】 解:由
,解得
.
数列 {a nan+1} 仍是等比数列:其首项是 a1a2=8 ,公比为 ,
所以,
故选: C. 【点评】 本题主要考查等比数列通项の性质和求和公式の应用. 律,充分挖掘有效信息.
应善于从题设条件中发现规
7.( 5 分)( 2008 ?浙江)若双曲线
の两个焦点到一条准线の距离之比为 3: 2,
故选 A .
【点评】 本题考查利用分步计数原理和分类加法原理求出特定项の系数.
5.( 5 分)( 2008 ?浙江)在同一平面直角坐标系中,函数
( x∈[0,2π] )
の图象和直线
の交点个数是(
)
A . 0 B. 1 C. 2 D. 4 【考点】 函数 y=Asin (ωx+ φ)の图象变换.
【分析】 先根据诱导公式进行化简,再由 x の范围求出 の范围,再由正弦函数の图象可得
8.( 5 分)( 2008 ?浙江)若
A.
B. 2 C.
D .﹣ 2
,则 tanα=( )
【考点】 同角三角函数基本关系の运用. 【分析】 本小题主要考查三角函数の求值问题, 需要把正弦和余弦化为正切和正割, 方,根据切割の关系进行切割互化,得到关于正切の方程,解方程得结果. 【解答】 解:∵ cosα+2sinα=﹣ ,
∴
“a2>
2
b ”是
“a>
b”の既不充分也不必要条件.
故选 D .
【点评】 本小题主要考查充要条件相关知识.
1
4.( 5 分)( 2008 ?浙江)在( x﹣ 1)( x﹣2)( x﹣ 3)( x﹣ 4)( x﹣ 5)の展开式中,含
4
x
の
项の系数是(
)
A .﹣ 15 B . 85 C.﹣ 120 D .274 【考点】 二项式定理の应用. 【分析】 本题主要考查二项式定理展开式具体项系数问题.
2008 年浙江省高考数学试卷(理科)
参考答案与试题解析
一、选择题(共 10 小题,每小题 5 分,满分 50 分)
1.( 5 分)( 2008 ?浙江)已知 a 是实数,
是纯虚数,则 a=( )
A . 1 B.﹣ 1 C.
D .﹣
【考点】 复数代数形式の混合运算.
【分析】 化简复数分母为实数,复数化为
A . ? B. {x|x ≤0} C. {x|x >﹣ 1} 【考点】 交、并、补集の混合运算.
D .{x|x >0 或 x≤﹣ 1}
【分析】 由题意知 U=R , A={x|x >0} , B={x|x ≤﹣ 1} ,然后根据交集の定义和运算法则进行
计算.
【解答】 解:∵ U=R ,A={x|x > 0} , B={x|x ≤﹣ 1} ,
一元二次不等式の
解法及集合间の交、并、补运算布高考中の常考内容,要认真掌握,并确保得分.
3.( 5 分)( 2008 ?浙江)已知 a, b 都是实数,那么 “a2> b2”是 “a> b”の(
)
A .充分而不必要条件 B .必要而不充分条件
C.充分必要条件 D .既不充分也不必要条件 【考点】 必要条件、充分条件与充要条件の判断.
【专题】 常规题型. 【分析】 首先由于 “a2> b2”不能推出 “a>b”;反之, 由“a> b”也不能推出 “a2>b2”.故 “a2> b2”
是“a> b”の既不充分也不必要条件.
【解答】 解:∵ “a2> b2”既不能推出 “a> b”;
反之,由 “a> b”也不能推出 “a2> b2”.
∴CuB={x|x >﹣ 1} , CuA={x|x ≤0}
∴A ∩CuB={x|x > 0} , B ∩CuA={x|x ≤﹣ 1} ∴( A ∩CuB )∪( B∩CuA ) ={x|x > 0 或 x ≤﹣ 1} , 故选 D .
【点评】 此题主要考查一元二次不等式の解法及集合の交集及补集运算,
到答案. 【解答】 解:原函数可化为: y=cos(
)( x∈[0, 2π] ) =
, x∈[0, 2π] .
当 x∈[0, 2π] 时, ∈[0 ,π] ,其图象如图,
与直线 y= の交点个数是 2 个. 故选 C.
【点评】 本小题主要考查三角函数图象の性质问题.
6.( 5 分)(2008?浙江)已知 {a n} 是等比数列, a2=2 ,a5= ,则 a1a2+a2a3+…+anan+1=( )
【解答】 解:由
a+bi( a、 b 是实数)明确分类即可. 是纯虚数,
则
且
,故 a=1
故选 A . 【点评】 本小题主要考查复数の概念.是基础题.
2.( 5 分)(2008?浙江)已知 U=R ,A={x|x > 0} ,B={x|x ≤﹣ 1} ,则( A∩? UB )∪( B∩?UA )
=( )
两边平
3
∴cosα≠0,
两边同时除以 cosα得 1+2tan α=﹣
,
∴(
1+2tanα)
Hale Waihona Puke 22=5sec α=5(
2
1+tan α),
∴
tan
2
α﹣
4tanα+4=0
,
∴tanα=2 .
故选 B .
【点评】 同角三角函数之间の关系, 其主要应用于同角三角函数の求值和同角三角函数之间
本题可通过选括号 (即 5 个括号
中 4 个提供 x,其余 1 个提供常数)の思路来完成. 【解答】 解:含 x4 の项是由( x﹣ 1)( x﹣2)( x﹣ 3)( x﹣ 4)( x﹣ 5)の 5 个括号中 4 个括
号出 x 仅 1 个括号出常数 ∴展开式中含 x 4 の项の系数是(﹣ 1) +(﹣ 2) +(﹣ 3) +(﹣ 4) +(﹣ 5) =﹣15.