相交线与平行线之命题,定理,平移

相交线与平行线之命题,定理,平移
相交线与平行线之命题,定理,平移

命题、定理、推论、平移

【教学目标】

1、了解命题,定理,推论

2、理解平移,以及平移的特点

【教学重点与难点】

重点:平移的特点

难点:非单方向的平移

【教学方法】

以问题为导向给学生提供思考的空间,引导学生积极思考。使教学过程成为在教师指导下学生的一种自主思考的学习过程,引到学生在学习思考中形成自己的观点。

【教学过程】

一、复习前文

1、复习平行线的判定1、

2、3

2、复习平行线的性质1、2、3

3、讲解习题

二、承前启后,引入新课概念

1、由平行线的判定1.同位角相等,两直线平行。得出

命题由题设和结论两部分组成,题设是已知项,结论是由已知事项推出的事项。

题设成立,结论一定成立的命题叫真命题

题设成立,不能保证结论一定成立的命题叫假命题

一些命题的正确性是经过推理证实的,这样的真命题叫定理

一个命题的正确性需要经过推理才能做出判断,这个推理的过程叫做证明

2、回顾证明平行线的判定1的画图方法,我们观察三角板ABC和A1B1C1的位置和大小?

得出:

把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同

新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。

图形的这种移动叫平移(平移并不限于水平的)

三、初步应用

1、下列语句中,是命题的是()

①对顶角相等,②若∠1=60°,∠2=60°,则∠1=∠2,③若|x|=1,则x=1,④

同一平面内两条直线的位置关系不是相交就是平行,⑤垂线段最短

四、.反思总结

1.本节课你学习了什么?

(本节主要学习什么是命题,什么是定理和。以及命题的推论过程叫证明)

2、图形的简单平移

五、布置作业

1、命题的题设是事项,结论是由事项推出的事项。

2、对于下列的假命题,各举一个反例

(1)如果ac=bc,那么a=b 是一个假命题

反例:

(2)两个锐角之和是钝角。

反例:

3、判断下列语句是不是命题?

(1)两直线相交,只有一个交点

(2)对顶角相等

(3)两点之间,线段最短

(4)角平分线是一条射线

4、如图:在直角三角形Rt△ACB中,∠ACB=90°,CD⊥AB,垂足为D。求证:∠BCD=∠A.

5.填空题

(1)将点P(3,-2)向左平移3个单位得到点P’,则点P’的坐标为( ) 。(2)线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(-4,–1)的对应点D的坐标为()

专题:全等三角形常见辅助线做法及典型例题

《全等三角形》辅助线做法总结 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 一、截长补短法(和,差,倍,分) 截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相等(截取----全等----等量代换) 补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长----全等----等量代换) 例如:1,已知,如图,在△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD。 2,已知:如图,AC∥BD,AE和BE分别平分∠CAB和∠DBA,CD过点E.求证:(1)AE⊥BE;(2)AB=AC+BD. 二、图中含有已知线段的两个图形显然不全等(或图形不完整)时,添加公共边(或一其中 一个图形为基础,添加线段)构建图形。(公共边,公共角,对顶角,延长,平行)例如:已知:如图,AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。 三、延长已知边构造三角形 例如:如图6:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BC D C B A 1 10 图 O A B C D E O

四、遇到角平分线,可自角平分线上的某个点向角的两边作垂线(“对折”全等) 例如:已知,如图,AC 平分∠BAD ,CD=CB ,AB>AD 。求证:∠B+∠ADC=180。 五、遇到中线,延长中线,使延长段与原中线等长(“旋转”全等) 例如:1如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。(三角形一边上的中线小 于其他两边之和的一半) 2,已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。 3,如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE. E C B D A 六、遇到垂直平分线,常作垂直平分线上一点到线段两端的连线(可逆 :遇到两组线段相等, 可试着连接垂直平分线上的点) 例如:在△ABC 中,∠ACB=90,AC=BC,D 为△ABC 外一点,且AD=BD,DE ⊥AC 交AC 的延长 线于E,求证:DE=AE+BC 。 七、遇到等腰三角形,可作底边上的高,或延长加倍法(“三线合一”“对折”) A D B C C A E B D

三角形常见的辅助线

全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1. 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折” 2. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 3. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线, 利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常 是角平分线的性质定理或逆定理. 4. 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5. 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用 三角形全等的有关性质加以说明?这种作法,适合于证明线段的和、差、倍、分等类的题目 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 应用:1、(09崇文二模)以ABC 的两边AB 、AC 为腰分别向外作等腰Rt^ABD 和等腰Rt^ACE , ? BAD = ? CAE = 90 (1)如图① 当 ABC 为直角三角形时,AM 与 DE 的位置关系是 线段AM 与DE 的数量关系是 (2)将图①中的等腰Rt'ABD 绕点A 沿逆时针方向旋转 二(0<二<90)后,如图②所示,(1 )问中得到的两个结论是否发生改 变?并说明理由. 连接DE ,M 、N 分别是 BC 、DE 的中点?探究: AM 与DE 的位置关系及数量关系. 例1、已知, 例2、如图, 例3、如图,

第5章 力的简化

第5章 力系的简化——思考题——解答 5-1 将图(a)所示平面结构中作用于B 处的力F 平移到D 处,并按力的平移 定理加上相应的附加力偶M = F·a ,如图(b)所示,试问它们对结构的作用效应是否相同?为什么? 5-1 解答 它们对结构的作用效应是不同的。因为杆OA 与杆AB 不是同一刚体,而是组成 了刚体系统,在简化前力F 作用于杆AB 上,而简化后力F 作用于杆OA 上,虽然按力的平移定理施加了相应的附加力偶,但也是不等效简化。 5-2 如图所示,半径为r 的两个均质圆盘均处于平衡状态,试问:(1) 图(a) 中能否说力偶M 与力F 作用效果相反?图(b)中能否说力1F 与力2F 作用效果相反?为什么? 5-2 解答: (1) 对于图(a),不能说“力偶M 与力F 作用效果相反”,因为力偶和一个力都是 力系的最简形式,因而力偶和一个力不能相互平衡,因此不能说力偶和一个力的 思考题5-1图 (a) 思考题5-1图 (b) 思考题5-2图 (a) 思考题5-2图 (b) 2

作用效果相同或相反。 (2) 对于图(b),不能说“力1F 和力2F 作用效果相反”,均质圆盘处于平衡状态,所以21F F ,即两个力的大小相等、方向相同,但两个力的作用点不同,因此不 能说“力1F 和力2F 作用效果相反”。应该说“力1F 对点O 的矩和力2F 对点O 的 矩的大小相等、转向相反”。 5-3 试问力系的主矢和对某点的主矩与力系的合力和合力偶的概念有什么区别?有什么联系? 5-3 解答:待解答 5-4 某空间力系对不共线的三点的主矩均为零,能否说该力系一定是平衡力系?为什么? 5-4 解答: 某空间力系对不共线的三点的主矩均为零,不能判断该力系一定平衡。因为空间平衡力系有六个独立的平衡方程,对不共线的三点的主矩为零只满足了三个独立的平衡方程,因此不能就此判断该空间力系是平衡力系。

2017中考全等三角形专题(8种辅助线的作法)

全等三角形问题中常见得辅助线得作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折瞧,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试瞧。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1、等腰三角形“三线合一”法:遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题 2、倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3、角平分线在三种添辅助线 4、垂直平分线联结线段两端 5、用“截长法”或“补短法”: 遇到有二条线段长之与等于第三条线段得长, 6、图形补全法:有一个角为60度或120度得把该角添线后构成等边三角形 7、角度数为30、60度得作垂线法:遇到三角形中得一个角为30度或60度,可以从角一边上一点向角得另一边作垂线,目得就是构成30-60-90得特殊直角三角形,然后计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角。从而为证明全等三角形创造边、角之间得相等条件。 8、计算数值法:遇到等腰直角三角形,正方形时,或30-60-90得特殊直角三角形,或40-60-80得特殊直角三角形,常计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角,从而为证明全等三角形创造边、角之间得相等条件。 常见辅助线得作法有以下几种:最主要得就是构造全等三角形,构造二条边之间得相等,二个角之间得相等。 1)遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题,思维模式就是全等变 换中得“对折”法构造全等三角形. 2)遇到三角形得中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用得思 维模式就是全等变换中得“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线得方法,(1)可以自角平分线上得某一点向角得两边作垂

力的平移定理

第四章平面一般力系 第一节力得平移定理 上面两章已经研究了平面汇交力系与平面力偶系得合成与平衡。为了将平面一般力系简化为这两种力系,首先必须解决力得作用线如何平行移动得问题。 设刚体得A点作用着一个力F(图4-3(a)),在此刚体上任取一点O。现在来讨论怎样才能把力F平移到O点,而不改变其原来得作用效应?为此,可在O点加上两个大小相等、方向相反,与F平行得力F′与F〞,且F′=F〞=F(图4-3(b))根据加减平衡力系公理,F、F′与F〞与图4-3(a)得F对刚体得作用效应相同。显然F〞与F组成一个力偶,其力偶矩为 这三个力可转换为作用在O点得一个力与一个力偶(图4-3(c))。由此可得力得平移定理: 作用在刚体上得力F,可以平移到同一刚体上得任一点O,但必须附加一个力偶,其力偶矩等于力F对新作用点O之矩。 顺便指出,根据上述力得平移得逆过程,共面得一个力与一个力偶总可以合成为一个力,该力得大小与方向与原力相同,作用线间得垂直距离为: 力得平移定理就是一般力系向一点简化得理论依据, 也就是分析力对物体作用效应得一个重要方法。例如,图4 -4a所示得厂房柱子受到吊车梁传来得荷载F得作用,为 分析F得作用效应,可将力F平移到柱得轴线上得O点上, 根据力得平移定理得一个力F′,同时还必须附加一个力 偶(图4-4(b)).力F经平移后,它对柱子得变形效果就可 以很明显得瞧出,力F′使柱子轴向受压,力偶使柱弯曲。 第二节平面一般力系向作用面内任一点简化 一、简化方法与结果 设在物体上作用有平面一般力系F1,F2,…,F n,如图 4-5(a)所示。为将这力系简化,首先在该力系得作用面内任选一点O作为简化中心,根据力得平移定理,将各力全部平移到O点(图4-5(b)),得到一个平面汇交力系F1′,F2′,…,F n′与一个附加得平面力偶系. 其中平面汇交力系中各力得大小与方向分别与原力系中对应得各力相同,即 F1′=F1,F2′=F2,…,F n′=F n

全等三角形常用辅助线做法

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点?下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用 截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ ABC 中,/ ABC=60 ° , AD、CE 分别平分/ BAC、/ ACB .求证: AC=AE+CD . 分析:要证AC=AE+CD , AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明 CF=CD . 证明:在AC上截取AF=AE,连接OF. ?/ AD、CE 分别平分/ BAC、/ ACB,/ ABC=60 ° ???/ 1 + Z 2=60 ° ,A Z 4=Z 6= / 1 + Z 2=60 ° . 显然,△ AEO ◎△ AFO,?/ 5= / 4=60 ° ,?/ 7=180° — (/ 4+ / 5) =60 ° 在厶DOC 与厶FOC 中,/ 6= / 7=60°,/ 2= / 3, OC=OC ???△ DOC ◎△ FOC, CF=CD ? AC=AF+CF=AE+CD 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等, 或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作 法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD// BC 点E在线段AB上,/ ADE=/CDE / DC=Z ECB 求证: CD=AD F BC 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CDAC+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CE,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC如图乙 6 = CS CE= CE ???△ FCE^A BCE(SAS, ???/ 2=Z 1。 又??? AD// BC ???/ ADG-Z BCD:180°, ???/ DC+Z CD=90°,

初中几何常见辅助线作法50种

初中常见辅助线作法 任何几何题目都需分析题目条件和结论找到解题思路,本讲从常见的条件和结论出发说明50种辅助线作法,分三角形部分、四边形部分、解直角三角形部分、圆。每种辅助线作法均配备了例题和练习。 三角形部分 1.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某 边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题. 例:如图,已知D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE . 证法(一):将DE 向两边延长,分别交AB 、AC 于M 、N 在△AMN 中, AM + AN >MD +DE +NE ① 在△BDM 中,MB +MD >BD ② 在△CEN 中,CN +NE >CE ③ ①+②+③得 AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +CE 证法(二)延长BD 交AC 于F ,延长CE 交BF 于G , 在△ABF 和△GFC 和△GDE 中有, ①AB +AF >BD +DG +GF ②GF +FC >GE +CE ③DG +GE >DE ∴①+②+③有 AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE ∴AB +AC >BD +DE +CE 注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证 有关的量)移到同一个或几个三角形中去然后再证题. 练习:已知:如图P 为△ABC 内任一点, 求证: 1 2 (AB +BC +AC )<P A +PB +PC <AB +BC +AC 2.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来, 可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题. 例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC 证法(一):延长BD 交AC 于E , F G N M E D C B A

力的作用点平移

项目三:力的平移定理 【教学题目】 力的平移定理 【教材版本】 孔七一主编,《应用力学》。北京:人民交通出版社,2012 【教学目标与要求】 一、知识目标 理解力的平移定理; 二、能力目标 会使用力的平移定理。 三、教学要求 将力的平移定理的用法讲透彻。 【教学思想】 通过对知识的学习、分析,培养学生的逻辑思维能力。 【难点分析】 力的作用点平移后所附加的力偶矩计算。 【教学方法和策略】 讲练法。 【教学资源】 1.姬慧主编,《土木工程力学》。北京:化学工业出版社,2010 2.同济大学基础力学教学研究部主编,《理论力学》。同济大学出版社,2010 3.王长连主编,《建筑力学》。北京:清华大学出版社,2009 【教学安排】 1学时(45分钟)。 【教学过程】 一、导入课程 从中学物理学的解体过程入手,深层次讲解力的平移定理。 启发教学:重力的产生是地球对物体上每一个部分的吸引力,为什么在计算的时候要把重力画在几何中心上?

二、课堂教学 力的平移定理:作用于物体上的力,可以平行移动到刚体的任何一点,但必须同时附加一个力偶,其力偶矩等于原力对新作用点的矩。 注:力的平移不能移出刚体。 1.力在其作用线上的平移 力可以在其作用线上移动到刚体上的任一点,而不改变该力对刚体的作用效果。也称为力的可传性 2.力不在其作用线上的平移 力可以平行移动到刚体的任何一点,但必须同时附加一个力偶,其力偶矩等于原力对新作用点的矩。 注意:普遍适用,当在其作用线上平移时,附加的力偶矩为0。 力的平移定理主要用于对平面一般力系的处理 三、中学物理受力图分析 如下图:A物体水平置于地面上,其在受到推力F的作用下,仍处于静止状态,试分析A的受力状况。

三角形中的常用辅助线方法总结

数学:三角形中的常用辅助线 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°, ∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。

力的平移定理

第四章 平面一般力系 第一节 力的平移定理 上面两章已经研究了平面汇交力系与平面力偶系的合成与平衡。为了将平面一般力系简化为这两种力系,首先必须解决力的作用线如何平行移动的问题。 设刚体的A 点作用着一个力F (图4-3(a )),在此刚体上任取一点O 。现在来讨论怎样才能把力F 平移到O 点,而不改变其原来的作用效应?为此,可在O 点加上两个大小相等、方向相反,与F 平行的力F ′和F 〞,且F ′=F 〞=F (图4-3(b )) 根据加减平衡力系公理,F 、F ′和F 〞与图4-3(a )的F 对刚体的作用效应相同。显然F 〞和F 组成一个力偶,其力偶矩为 )(O F M Fd m == 这三个力可转换为作用在O 点的一个力和一个力偶(图4-3(c ))。由此可得力的平移定理: 作用在刚体上的力F ,可以平移到同一刚体上的任一点O ,但必须附加一个力偶,其力偶矩等于力F 对新作用点O 之矩。 顺便指出,根据上述力的平移的逆过程,共面的一个力和一个力偶总可以合成为一个力,该力的大小和方向与原力相同,作用线间的垂直距离为: F m d '= 力的平移定理是一般力系向一点简化的理论依据,也是分析力对物体作用效应的一个重要方法。例如,图4-4a 所示的厂房柱子受到吊车梁传来的荷载F 的作用,为分析F 的作用效应,可将力F 平移到柱的轴线上的O 点上,根据力的平移定理得一个力F ′,同时还必须附加一个力偶(图4-4(b ))。力F 经平移后,它对柱子的变形效果就可以很明显的看出,力F ′使柱子轴向受压,力偶使柱弯曲。 第二节 平面一般力系向作用面内任一点简化 一、简化方法和结果 设在物体上作用有平面一般力系F 1,F 2,…,F n ,如图4-5(a )所示。为将这力系简化,首先在该力系的作用面内任选一点O 作为简化中心,根据力的平移定理,将各力全部平移到O 点(图4-5(b )),得到一个平面汇交力系F 1′,F 2′,…,F n ′和一个附加的平面力偶系n 21,,,m m m 。

(word完整版)三角形常见辅助线做法总结,推荐文档

数学专题一一三角形中的常用辅助线 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,△ ABC是等腰直角三角形,/ BAC=90,BD平分/ ABC交AC于点D, CE垂直于BD,交BD的延长线于点E。求证:BD=2CE (2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 例2:如图,已知△ ABC中, AD是/BAC的平分线,AD又是BC边上的中线求证:△ ABC是等腰三角形。

li (3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利 用的思维模式是三角形全等变换中的 “对折”,所考知识点常常是角平分线的性 质定理或逆定理。 例 3:已知,如图,AC 平分/ BAD CD=CB AB>AD 求证:/ B+Z ADC=180。 ① 关于角平行线的问题,常用两种辅助线; (4) 过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式 是全等变换中的“平移”或“翻转折叠” 例4:如图,△ ABC 中,AB=AC E 是AB 上一点,F 是AC 延长线上一点,连 EF 交BC 于D,若EB=CF 求证:DE=DF B

浙教版八年级数学上册等三角形问题中常见的辅助线的作法(有答案)

全等三角形问题中常见的辅助线的作法(有答案) 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转”法构造全等三角形.

工程力学 阶段1试卷及答案

阶段试卷1 一、判断题。(每题1分,共10分) 1、若作用在刚体上的三个力的作用线汇交于同一点,则该刚体必处于平衡状态。( ) 2、根据力线平移定理,可以将一个力分解为一个力和一个力偶。反之一个力和一个力偶肯定能合成一个力。( ) 3、只要接触面间有正压力存在,则必然会产生滑动摩擦力。( ) 4、有一空间力系,已知它向某不共线的三点简化时所得的主矩相同,则该力系简化的最简结果应该是一个合力偶。( ) 5、刚体做定轴转动时,其角加速度为正值,则该刚体一定做加速运动。( ) 6、牵连运动是指动系上在该瞬时与动点重合的点对于定系的运动。( ) 7、平面图形上任意两点的速度在任一直线上的投影始终相等。( ) 8、两个自由质点,仅其运动微分方程相同,还不能肯定其运动规律也相同。( ) 9、若系统的动量守恒,则其对任意点的动量矩一定守恒,若系统对某点的动量矩守恒,则其动量一定守恒。( ) 10、凡是具有对称面、对称轴、对称中心的物质,重心一定在物体的对称面、对称轴、对称中心上。( ) 二、选择题。(每题3分,共24分) 1、下面叙述中不正确的是( )。 A 、物体所受重力与物体的运动状态无关,只与物体的质量和当地的重力加速度有关; B 、表面光滑的两物体相互作用,作用力一定与接触表面垂直; C 、具有规则几何形状的物体,重心必在几何中心; D 、拖拉机后轮的花纹很深是为了增大摩擦力。 2、有两个大小恒定的力,作用在一点上。当两力同向时,合力为A ,反向时合力为B ,当两力相互垂直时,其合力的大小为( )。 A 、2 2 B A +; B 、2/)(22B A +; C 、B A +; D 、2/)(B A +。

常见三角形辅助线口诀

常见三角形辅助线口诀-CAL-FENGHAI.-(YICAI)-Company One1

初二几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 由角平分线想到的辅助线

一、截取构全等 如图,AB证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。 四、角平分线+平行线 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。 分析:AB上取E使AC=AE,通过全等和组成三角形边边边的关系可证。 由线段和差想到的辅助线 五、截长补短法 AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。

分析:过C点作AD垂线,得到全等即可。 由中点想到的辅助线 一、中线把三角形面积等分 如图,ΔABC中,AD是中线,延长AD到E,使DE=AD,DF是ΔDCE的中线。已知ΔABC的面积为2,求:ΔCDF的面积。 分析:利用中线分等底和同高得面积关系。 二、中点联中点得中位线 如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H。求证:∠BGE=∠CHE。 分析:联BD取中点联接联接,通过中位线得平行传递角度。 三、倍长中线 如图,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长。 分析:倍长中线得到全等易得。 四、RTΔ斜边中线

三角形和四边形中常见的辅助线的作法和类型(绝对经典)

D C B A E D F C B A 三角形和四边形中常见的辅助线的作法和类型(绝对 经典) 一、倍长中线(线段)造全等 例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小. 例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE. E D C B A 二、截长补短 1、如图,ABC ?中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC C D B A

E D C B A D C B A P Q C B A 2、如图,AD ∥BC,EB,EA 分别平分∠CBA,∠DAB ,CD 过点E ,求证;AB =AD+BC 注意:三角形中位线与梯形中位线 3、如图,已知在ABC 内,0 60BAC ∠=,0 40C ∠=,P ,Q 分别在BC ,CA 上,并且AP , BQ 分别是BAC ∠,ABC ∠的角平分线。求证:BQ+AQ=AB+BP 4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0 180=∠+∠C A

P 21 D C B A 5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC 三、平移变换 例1 AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P . 例2 如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.

三角形常见辅助线作法

D C B A E D F C B A 全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1)遇到等腰三角形,可作底边上的高,利用“三线合一”(垂直平分线、角平分线、中线) 的性质解题,思维模式是全等变换中的“对折”. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转”. 3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角 形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平 移”或“翻转折叠” 5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条 线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________. 例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF 的大小.

例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE. E D C B A 应用: 1、(09崇文二模)以ABC ?的两边AB 、AC 为腰分别向外作等腰Rt ABD ?和等腰Rt ACE ?,90,BAD CAE ∠=∠=?连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系. (1)如图① 当ABC ?为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ; (2)将图①中的等腰Rt ABD ?绕点A 沿逆时针方向旋转? θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.

三角形中的常用辅助线方法总结

三角形中的常用辅助线方法 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

数学:三角形中的常用辅助线 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助 线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,

三角形问题常见辅助线添加学生版

三角形问题常见辅助线添加方法专题 三角形问题常见辅助线添加方法 1、等腰三角形利用“三线合一”的性质解题 2、倍长中线:使延长线段与原中线长相等,构造全等三角形 3、角平分线五种添加辅助线 4、垂直平分线连接线段两端 5、用截长或补短法:遇到有线段和差问题的 6、图形补全法:有一个60°或120°角,把该角添线后构成等边三角形 7、角度数为30°、60°的作垂线法,可以从角一边上一点向角的另一边作垂线 8、计算数值法:遇到等腰直角三角形、正方形,计算边长与角的度数,这样可以得到 在数值上相等的二边或二角,从而为证明全等创造边、角条件 9、利用翻折,构造全等三角形 10、引平行线构造全等三角形 11、作连线构造等腰三角形 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 解题后的思考: 遇到求证一条线段等于另两条线段之和时,一般方法是截长法或补短法:截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条; 补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。1)对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将其放在一个三角形中证明。 2)在利用三角形三边关系证明线段不等关系时,如直接证明不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明。 小结:三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角形。三角形中两中点,连接则成中位线。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

全等三角形中常见辅助线的添加方法举例

全等三角形中常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边 各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 四、截长补短法作辅助线。 A B C D E F N 1 图1234 2 图A B C D E F M 123 4A B C D E A B C D E F 4 图

例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 六、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 例如:如图7:AB ∥CD ,AD ∥BC 求证:AB=CD 。 七有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 图8 八、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。 九、取线段中点构造全等三有形。 例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D N M P 5 图1 2A B C D E 6 图O A B C D 7 图1 2 3 4 D C B A 110 图O 10 图D C B A M N

常见三角形辅助线口诀

初二几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 由角平分线想到的辅助线

一、截取构全等 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自已试一试。 二、角分线上点向两边作垂线构全等 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。 三、三线合一构造等腰三角形 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。 四、角平分线+平行线 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

三角形中辅助线的常见的添加方法

知识点一:三角形问题添加辅助线方法 1)、方法1:三角形中线--------------中线加倍。 含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。 2)、方法2:含有平分线------------构造全等三角形。 常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。 3)、方法3:证明两线段相等,可通过 构成全等三角形; 利用关于平分线段的一些定理; 转化到同一三角形中,证明角相等; 4)、方法4:证明一条线段与另一条线段之和等于第三条线段-----------常采用截长法或补短法。 截长法是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。 三角形中作辅助线的常用方法举例 一.倍长中线 1:已知△ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向形外作等腰直角三角形,如图5-2,求证EF=2AD。 在△ABC中,AD

AC+CD。 三、延长已知边构造三角形: 例如:如图7-1:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BC 练习 如图,在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD的长。 四、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 例如:如图8-1:AB∥CD,AD∥BC 求证:AB=CD。 练习题

已知: 如图所示,在梯形ABCD 中,AD ∥BC ,AE =BE ,DF =CF . 求证: EF ∥BC ,EF =21(AD +BC ). 五、取线段中点构造全等三角形。 例如:如图11-1:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 二 由角平分线想到的辅助线 一般方法 可向两边作垂线; 也可将图对折看,对称以后关系现; 角平分线平行线,等腰三角形来添。④角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a 、 ; b 、角平分线上的点到角两边的距离 。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 注:通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线; 其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 如图1-1图示,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。

相关文档
最新文档