高中数学第2轮总复习 专题6 第5课时 轨迹问题课件 文

合集下载

高中数学动点轨迹问题专题讲解

高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-.当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y , 当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF AE =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k +=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k-++. ∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+,∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且3k ≠±. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN x ⋅=,……………………………………………3分∵MP MN PN MN ⋅=⋅,∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0M N A F =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得k =. 故存在直线l:3y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2x M .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x y x y x841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤求直线l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204y x -+=,即动点N 的轨迹方程为24y x =. (2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-, O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==--∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x t y t y t y y t y y =++=+++ 2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得2222363(31)31t t t =---考虑几何求法!!解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||20AB =点P 满足OP OA OB =+.记动点P 的轨迹为C . (I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线5y x =和5y x =-上的点,故可设11(,)5A x x,22(,)5B x x -. ∵OP OA OB =+,∴1212,()5x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,2x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由DN DM λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(y x =) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:||1010AB =⇒=,又11y x =,22y x =,则1221()3y y x x +=-,2112)3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在)14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l的距离为d ,已知||2PF =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b-=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围.解:(I )依题意有:2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +b k0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0.∴k的取值范围是113(,(,0)(0,)(,)22-∞-+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。

高中数学必修二《轨迹方程》课件

高中数学必修二《轨迹方程》课件
求“轨迹方程”是求什么? 求点M的横坐标、纵坐标的关 系等式 归纳步骤:
方法一:直接法
如果已知动点满足的等量关系,那么直 接把动点的坐标代入等式,即得动点的 轨迹方程。
注意规范步骤
练习1:设A(-c,0)、B(c,0)(c>0)为两定点,动 点P到A点的距离与到B点的距离的比为定值 a(a>0),求P点的轨迹。Zxx``k
先求方程,再说轨迹。
结论:到两定点的距离之比为定 值的点的轨迹为直线或圆。
问题2:如图,圆O1和圆O2的半径都是1,O1O2=4, 过动点P分别作圆O1和圆O2的切线,切点为M、N, 且使得|PM|=|PN|,问点P的运动轨迹是什么曲线

yP
无系先建系
(x-6)2+y2=33
M
O1 o
P的轨迹是圆
步骤:1、找到动点G与A的坐标关系; 2、把A的坐标用G的坐标表示; 3、把A的坐标代入A的方程; 4、化简后去多补少下结论 。
练习4:已知圆:x2+y2=r2,定点A(a,0),其中a,
r>0.P,B是圆上两点,作矩形PABQ,求点Q的
轨迹。
y
Q
P
GB
oA
x
问题5:已知动点P(x,y)的坐标满足下列关系, 求动点P(x,y)的轨迹方程和轨迹。
高中数学课件
灿若寒星整理制作
问题1:已知动点M与两定点O(0,0)、A(3,0) 的距离之比为,求点M的轨迹方程和轨迹。
动点的横坐标 与纵坐标的关 系等式(曲线 方程)
动点的运动 路线(曲线 )
专题二
《求点的轨迹与轨迹方程 》
F(x,y)=0
问题1:已知动点M与两定点O(0,0)、A(3,0) 的距离之比为,求点M的轨迹方程和轨迹。

(完整版)高中数学动点轨迹问题专题讲解

(完整版)高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-.当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k-++. ∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+,∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN x ⋅=……………………………………………3分∵MP MN PN MN ⋅=⋅,∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得54k =±. 故存在直线l :534y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2x M .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x FB FA y x FB y x FA841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤求直线l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204y x -+=,即动点N 的轨迹方程为24y x =. (2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-, O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得 2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||20AB =点P 满足OP OA OB =+.记动点P 的轨迹为C . (I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线5y x =和5y x =-上的点,故可设11()A x x,22(,)B x x . ∵OP OA OB =+,∴1212,()5x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,2x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由DN DM λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(3y x =±) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:()221212||10()10AB x x y y =⇒-+-=,又1133y x =-,2233y x =, 则12213()3y y x x +=-,21123()3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在) 14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知2||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b -=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围. 解:(I )依题意有:lxyCGFOPM2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0.∴k 的取值范围是113(,)(,0)(0,)(,)3223-∞--+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。

第六讲 几何轨迹

第六讲 几何轨迹

第六讲 几何轨迹几何轨迹的基本知识一、轨迹的意义1.定义给定条件或性质C ,满足条件C 的一切点所构成的图形F,称为由条件C 所决定的轨迹。

2.轨迹命题的两面证明: “不漏不滥”(1)完备性:符合条件C 的任何点都在图形F 上,或不在F 上的任一点均不满足条件C 。

即点无遗漏。

(2)纯粹性:在图形F 上的任一点都符合条件C ;或不符合条件C 的任一点都不在图形F 上。

保证图形F 上的点没有鱼目混珠或冒充的点。

一般来说,图形F 是知其形而不知其性,轨迹是知其性而不知其形。

研究轨迹问题,就是探求适合一定条件的点的集合形成什么样的图形,使形和性得到完美统一。

3.轨迹命题的三种类型轨迹问题根据结论部分叙述是否完整可分为三种类型:第I 类:命题结论中明确说明了轨迹图形的形状、位置和大小。

第II 类:命题结论中只说出了轨迹图形的形状,但位置和大小或缺,或叙述不全。

第III 类:命题结论中只说求适合某条件的轨迹,对轨迹图形的形状、位置和大小没有直接提供任何信息。

一般把第I 类、第II 类命题称为轨迹定理,把第III 类命题称为轨迹问题。

二、基本轨迹命题命题1 和一个定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆。

命题2 和两个定点距离相等的点的轨迹是连结这两个定点的线段的中垂线。

命题3 和一条已知直线的距离等于定长的点的轨迹,是平行于已知直线且位于此直线两侧并和这直线的距离等于定长的两条平行线。

命题4 与两条平行线距离相等的点的轨迹是和这两条平行线距离相等的一条平行线。

命题5 与相交两直线距离相等的点的轨迹,是分别平分两已知直线交角的互相垂直的两条直线。

命题6 对已知线段的视角等于定角(0180)αα<<的点的轨迹,是以已知线段为弦,所含圆周角等于α的两段弓形弧。

命题7 和一个定点的距离等于定长的点的轨迹是以定点为球心,定长为半径的球面。

命题8 和两条平行线距离相等的点的轨迹是这两平行直线公垂线段的中垂面。

高考数学文科二轮专题复习课件:第一部分 六大数学核心素养(共32张PPT)

高考数学文科二轮专题复习课件:第一部分 六大数学核心素养(共32张PPT)

x-y≥2, [变式训练] (1)已知实数 x,y 满足条件xx+≥y0≤,3,
y≥0, 则 x+3y 的最大值为________.
(2)如图所示是毕达哥拉斯(Pythagoras)的 生长程序:正方形上连接着等腰直角三角形,
等腰直角三角形边上再连接正方形,如此继续,
若共得到 4 095 个正方形,设初始正方形的边长为 22,则 最小正方形的边长为________.
解析:(1)作出不等式组表示的平面区域如图所示,
则当目标函数 z=x+3y 经过点 A52,12时,z 取到最 大值,所以 zmax=52+3×12=4.
(2)依题意,正方形的边长构成以 22为首项,公比为 22的等比数列.
因为共有 4 095 个正方形,则 1+2+22+…+2n-1=4
095,
对于④,φ(x)=exf(x)=
ex x
,φ′(x)=
ex(x-1) x2
,x
∈(0,+∞).
易知φ(x)在x=1时取到最小值φ(1)=e,则④具有性
质“ ”.
综上可知,①②④中的函数具有性质“ ”.
答案:①②④
热点 3 数学建模与数据分析核心素养 【例 3】 (2017·全国卷Ⅱ)海水养殖场进行某水产品 的新、旧网箱养殖方法的产量对比,收获时各随机抽取 了 100 个网箱,测量各箱水产品的产量(单位:kg),其频 率分布直方图如下:
(2)从点 P(-1,3)向直线 kx-y+k-1=0 作垂线, 垂足为 N,则 N 的轨迹方程为________________.
解析:(1)由题意知,“甲看乙、丙的成绩,不知道自 己的成绩”说明乙、丙两人一个是优秀一个是良好,因 此甲、丁两人一个优秀一个良好.则乙看了丙的成绩, 可知道自己的成绩,丁看了甲的成绩,也可以知道自己 的成绩,选项 D 正确.

高中数学高考数学学习资料:专题6 第5讲 数学思想方法与答题模板建构

高中数学高考数学学习资料:专题6 第5讲 数学思想方法与答题模板建构

[例2]
(1)(2011· 绍兴一中)为了解某校高三学生的视力情况,
随机地抽查了该校100名高三学生的视力情况,得到频率 分布直方图如下图,由于不慎将部分数据丢失,但知道前 4组的频数成等比数列,后6组的频数成等差数列,设最大 频率为a,视力在4.6到5.0之间的学生数为b,则a,b的值 分别为 ( )
[例1] (2011· 北京高考)用数字2,3组成四位数,且数字2,3 至少都出现一次,这样的四位数共有______个(用数字作答
).zxxk
[解析] 数字 2,3 至少都出现一次,包括以下情况:
1 “2”出现 1 次,“3”出现 3 次,共可组成 C4 =4(个)四位数. 2 “2”出现 2 次 ,“3”出现 2 次,共可组成 C4 =6(个)四位数. 3 “2”出现 3 次,“3”出现 1 次,共可组成 C4 =4(个)四位数.
综上所述,共可组成 14 个这样的四位数.
[答案] 14
[点评] 在解决排列组合应用问题时,要根据事件发
生情形进行恰当分类.分类时要做到不重不漏,且标
准要统一.zxxk
2.数形结合思想 数形结合思想在本专题的应用主要体现在:
(1)频率分布直方图、茎叶图的应用.
(2)算法框图. (3)复数的几何意义.
(2)ξ 可能取的值有 0,2,4,6,8.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(5 分) 1 1 1 P(ξ=0)= × = ;┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(6 分) 4 2 8 1 1 1 1 5 P(ξ=2)= × + × = ;┄┄┄┄┄┄┄┄┄┄┄┄┄┄(7 分) 4 4 2 2 16 1 1 1 1 1 1 5 P(ξ=4)= × + × + × = ;┄┄┄┄┄┄┄┄┄┄┄(8 分) 2 4 4 2 4 4 16 1 1 1 1 3 P(ξ=6)= × + × = ;┄┄┄┄┄┄┄┄┄┄┄┄┄┄(9 分) 2 4 4 4 16 1 1 1 P(ξ=8)= × = .┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(10 分) 4 4 16

立体几何中的轨迹问题(总结+讲义+练习)

立体几何中的轨迹问题(总结+讲义+练习)

立体几何中的轨迹问题在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有: 1、 几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;2、 代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.轨迹问题【例1】 如图,在正四棱锥S -ABCD 中,E 是BC 的中点,P 点在侧面△SCD 内及其边界上运动,并且总是保持PE ⊥AC .则动点P 的轨迹与△SCD 组成的相关图形最有可能的是 ( )解析:如图,分别取CD 、SC 的中点F 、G ,连结EF 、EG 、FG 、BD .设AC 与BD 的交点为O ,连结SO ,则动点P 的轨迹是△SCD 的中位线FG .由正四棱锥可得SB ⊥AC ,EF ⊥AC .又∵EG ∥SB∴EG ⊥AC∴AC ⊥平面EFG ,∵P ∈FG ,E ∈平面EFG , ∴AC ⊥PE .另解:本题可用排除法快速求解.B 中P 在D 点这个特殊位置,显然不满足PE ⊥AC ;C 中P 点所在的轨迹与CD 平行,它与CF 成π4角,显然不满足PE ⊥AC ;D 于中P 点所在的轨迹与CD 平行,它与CF 所成的角为锐角,显然也不满足PE ⊥AC .评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹.【例2】 (1)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.(2) 正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是 线段B 1C .(3) 正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 线段MN (M 、N 分别为前右两面的中心).(4) 已知正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体的侧面BCC 1B 1上到点A 距离为233的点的集合形成一条曲线,那么这条曲线的形状是 ,它的长度是 .若将“在正方体的侧面BCC 1B 1上到点A 距离为23 3 的点的集合”改为“在正方体表面上与点A 距离为233的点的集合” 那么这条曲线的形状又是 ,它的长度又是 .1AC C 1AEC C 1A AB1A 1(1)(2)(3)(4)DDA .B .C .D . A【例3】 (1)(04北京)在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 ( D )A . A 直线B .圆C .双曲线D .抛物线 变式:若将“P 到直线BC 与直线C 1D 1的距离相等”改为“P 到直线BC 与直线C 1D 1的距离之比为1:2(或2:1)”, 则动点P 的轨迹所在的曲线是 椭圆 (双曲线). (2)(06北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支解:设l 与l 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A . (3)已知正方体ABCD —A 1B 1C 1D 1的棱长为1,M 在棱AB 上,且AM =13,点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为 抛物线 .(4)已知正方体ABCD —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 π6. 【例4】 (04重庆)若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )【例5】 四棱锥P -ABCD ,AD ⊥面P AB ,BC ⊥面P AB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分 分析:∵AD ⊥面P AB ,BC ⊥平面P AB ∴AD ∥BC 且AD ⊥P A ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴AD P A =CB PB ∴PB =2P A在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0) ∴P 的轨迹是(B )BABCDA3P A BC D立体几何中的轨迹问题(教师版)1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为(D ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分 简析 本题主要考查点到直线距离的概念,线面垂直及抛物线的定义.因为B 1C 1⊥面AB 1,所以PB 1就是P 到直线B 1C 1的距离,故由抛物线的定义知:动点的轨迹为抛物线的一段,从而选D .2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为(B ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为(C ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是(A ).A .圆或圆的一部分B .抛物线或其一部分C .双曲线或其一部分D .椭圆或其一部分 简析 由条件易知:AC 是平面BB 1D 1D 的法向量,所以EP 与直线AC 成等角,得到EP 与平面BB 1D 1D 所成的角都相等,故点P 的轨迹有可能是圆或圆的一部分.5.已知正方体ABCD A B C D -1111的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD 内的动点,且点P 到直线A D 11的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为(A ). A .抛物线B .双曲线C .直线D .圆简析在正方体ABCD A B C D -1111中,过P 作PF ⊥AD ,过F 作FE ⊥A 1D 1,垂足分别为F 、E ,连结PE .则PE 2=a 2+PF 2,又PE 2-PM 2=a 2,所以PM 2=PF 2,从而PM =PF ,故点P 到直线AD 与到点M 的距离相等,故点P 的轨迹是以M 为焦点,AD 为准线的抛物线.6.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为__________. 简析 在解题中,我们要找到运动变化中的不变因素,通常将动点聚焦到某一个平面.易证BD 1⊥面ACB 1,所以满足BD 1⊥AP 的所有点P 都在一个平面ACB 1上.而已知条件中的点P 是在侧面BCC 1B 1及其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1交线上,故所求的轨迹为线段B 1C .本题的解题基本思路是:利用升维,化“动”为“静”,即先找出所有点的轨迹,然后缩小到符合条件的点的轨迹.7.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.答案 线段MN (M 、N 分别为SC 、CD 的中点)8.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.(除去两点的圆) 9.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与∆ABC 组成的图形可能是:(D )A A AP PP PB C B C B C B C A B C D简析 动点P 在侧面ABC 内,若点P 到AB 的距离等于到棱BC 的距离,则点P 在∠ABC 的内角平分线上.现在P 到平面BCD 的距离等于到棱AB 的距离,而P 到棱BC 的距离大于P 到底面BCD 的距离,于是,P 到棱AB 的距离小于P 到棱BC 的距离,故动点P 只能在∠ABC 的内角平分线与AB 之间的区域内.只能选D . 10.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是(B ). A .圆 B .椭圆 C .双曲线 D .抛物线解题的要领就是化空间问题为平面问题,把一些重要元素集中在某一个平面内,利 用相关的知识去解答,象平面几何知识、解析几何知识等.11.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________. 简析以B 为圆心,半径为33且圆心角为π2的圆弧,长度为36π. 12.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 . 提示轨迹的图形是一个平行四边形.13.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积.简析 由于M 、N 都是运动的,所以求的轨迹必须化“动”为“静”,结合动点P 的几何性质,连结DP ,因为MN=2,所以PD=1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P 的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即1843163⨯⨯=ππ. 14.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( ) 简析:如图,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4.在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上.又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点.因此所求点的轨迹是四个点,故选C .16.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分简析:因为⊥AD 面PAB ,⊥BC 面PAB ,所以AD//BC ,且︒=∠=∠90CBP DAP . 又8BC ,4AD ,CPB APD ==∠=∠,可得CPB tan PB CB PA AD APD tan ∠===∠,即得2ADCBPA PB == 在平面PAB 内,以AB 所在直线为x 轴,AB 中点O 为坐标原点,建立平面直角坐标系,则A (-3,0)、B(3,0).设点P (x ,y ),则有2y )3x (y )3x (|PA ||PB |2222=+++-=,整理得09x 10y x 22=+++由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B .17.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB .所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B .18.如图,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线简析:因为P 到11D C 的距离即为P 到1C 的距离,所以在面1BC 内,P 到定点1C 的距离与P 到定直线BC 的距离相等.由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D .19.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线简析:如图4,以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系.设P (x ,y ),作AD PE ⊥于E 、11D A PF ⊥于F ,连结EF ,易知1x |EF ||PE ||PF |2222+=+=又作CD PN ⊥于N ,则|1y ||PN |-=.依题意|PN ||PF |=, 即|1y |1x 2-=+,化简得0y 2y x 22=+- 故动点P 的轨迹为双曲线,选B .20.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线分析:由于线段AB是定长线段,而△ABP的面积为定值,所以动点P到线段AB 的距离也是定值.由此可知空间点P在以AB为轴的圆柱侧面上.又P在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB是平面的斜线段),得到的切痕是椭圆.P的轨迹就是圆柱侧面与平面a的交线.21.如图,动点P在正方体1111ABCD A B C D-的对角线1BD上.过点P作垂直于平面11BB D D的直线,与正方体表面相交于M N,.设BP x=,MN y=,则函数()y f x=的图象大致是()分析:将线段MN投影到平面ABCD内,易得y为x一次函数.22.已知异面直线a,b成︒60角,公垂线段MN的长等于2,线段AB两个端点A、B分别在a,b上移动,且线段AB长等于4,求线段AB中点的轨迹方程.图5简析:如图5,易知线段AB的中点P在公垂线段MN的中垂面α上,直线'a、'b为平面α内过MN的中点O分别平行于a、b的直线,'a'AA⊥于'A,'b'BB⊥于'B,则P'B'AAB=⋂,且P也为'B'A的中点.由已知MN=2,AB=4,易知,2AP,1'AA==得32'B'A=.则问题转化为求长等于32的线段'B'A的两个端点'A、'B分别在'a、'b上移动时其中点P的轨迹.现以'OB'A∠的角平分线为x轴,O为原点建立如图6所示的平面直角坐标系.A BCDMNPA1 B1C1D1yxOyxOyxOyxO图6设)y ,x (P ,n |'OB |,m |'OA |==, 则)n 21,n 23('B ),m 21,m 23('A - )n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++- 消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为1y 9x 22=+.点评:例5和例6分别将立体几何与解析几何中的双曲线与椭圆巧妙地整合在一起,相互交汇和渗透,有利于培养运用多学科知识解决问题的能力.立体几何中的轨迹问题1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是 ( ) A .圆或圆的一部分 B .抛物线或其一部分 C .双曲线或其一部分 D .椭圆或其一部分 5.已知正方体ABCD A B C D -1111的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD 内的动点,且点P 到直线A D 11的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为( ) A .抛物线B .双曲线C .直线D .圆6.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与∆ABC 组成的图形可能是 ( ) A A AP PP PB C B C B C B CA B C DA B C D 7.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是 ( )A .圆B .椭圆C .双曲线D .抛物线8.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A .一个圆B .两条平行直线C .四个点D .两个点9.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( ) A .圆 B .不完整的圆 C .抛物线 D .抛物线的一部分 10.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点11.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线12.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线 13.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )14.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________.15.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.16.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.17.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________.18.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 .19.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 中点P 的轨迹与正方体的面所围成的几何体的体积是 .20.已知异面直线a ,b 成︒60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且线段AB 长等于4,求线段AB 中点的轨迹方程.ABC D MNP A 1B 1C 1D 1 yxOyxOyxOyx O。

高中数学 轨迹问题专题

高中数学 轨迹问题专题

轨迹问题专题一.综述(一)求动点的轨迹方程的基本步骤:⒈依据题目建立适当的坐标系,设出动点M (x ,y )的坐标.⒉写出点M 的集合(几何关系).⒊将几何关系转化为代数关系,列出方程f (x ,y )=0,化简方程为最简形式.4.检验特殊点,进行必要的文字说明.(二)高考中常见的求轨迹方程的方法有:1.直译法与定义法,2.相关点法;3.参数法;4.交轨法(三)求轨迹方程一般以解答题第一问的形式出现,偶尔也会在小题中考查.二.例题精讲 破解规律例1. 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .证明为定值,并写出点E 的轨迹方程.分析: 题目中要求证明为定值,容易知道, E 的轨迹是椭圆,根据条件求出相关的参数即可.222150x y x ++-=EA EB +EA EB+点评:平面几何相关知识是解决本题的关键,平时学习中要加以重视.规律总结: (1)直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简即可.(2)定义法求轨迹方程:轨迹方程问题中,若能得到与我们所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.(3)定义法求轨迹方程本质上还是直译法,只是我们利用了直译法得到的结论. 现学现用1:如图,矩形中, 且, 交于点.若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程.例2. 已知线段的端点的坐标是,端点在圆上运动.求线段的中点的轨迹的方程;规律总结:相关点法求轨迹方程: 题中涉及了两个动点N 、M ,且点N 的运动是有规律的(轨迹方程已知),而M 的运动是由N 的运动而引发的,这样的题目可采用相关点法求动点M 的轨迹方程.基本方法是设M 的坐标,再反解出N 的坐标,然后带入N 所在曲线的轨迹方程,整理即可.现学现用2: 设O 为坐标原点,动点M 在椭圆C :上,过M 做x 轴ABCD ()()()()2,0,2,0,2,2,2,2A B C D --,AM AD DN DC λλ==[]0,1,AN λ∈BM Q Q P P x y P AB B ()6,5A ()()221:434C x y -+-=AB P 2C 2212x y +=的垂线,垂足为N ,点P 满足.求点P 的轨迹方程;例3: 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.点评:本题考查抛物线定义与几何性质、直线与抛物线位置关系、轨迹求法规律总结: 当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一变量(或多个)的关系,再消去参变量,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法现学现用3: 已知为椭圆的左、右焦点,点在椭圆上移动时, 的内心的轨迹方程为__________.三.课堂练习 强化技巧 2NP NM =C 22y x =F x 12,l l C A B ,C P Q ,F AB R PQ AR FQ ∥PQF △ABF △AB 12,F F 22:143x y C +=P C 12PF F ∆I1. 已知|| =3,A ,B 分别在x 轴和y 轴上运动,O 为原点, ,则点P 的轨迹方程为( ).A .B .C .D .2. 若动圆与圆和圆都外切,则动圆的圆心的轨迹( ) A . 是椭圆 B . 是一条直线 C . 是双曲线的一支 D . 与的值有关3. 已知直线过抛物线: 的焦点, 与交于, 两点,过点, 分别作的切线,且交于点,则点的轨迹方程为________.四.课后作业 巩固内化1. 设过点的直线分别与轴的正半轴和轴的正半轴交于、两点,点与点关于轴对称, 为原点,若为的中点,且,则点的轨迹方程为__________.2. 已知A(1,14),B(−1,14),直线AM ,BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的差是12,则点M 的轨迹C 的方程是___________.3. .点P 是圆C:(x +2)2+y 2=4上的动点,定点F (2,0),线段PF 的垂直平分线与直线CP 的交点为Q ,则点Q 的轨迹方程是___. AB 12OP OA OB 33=+22y x 14+=22x y 14+=22x y 19+=22y x 19+=P ()22:21M x y ++=()()22:314N x y λλ++=≤≤P λl C 24y x =l C A B A B C P P (),P x y x y A B Q P y O P AB 1OQ AB ⋅=P4. 如下图,在平面直角坐标系中,直线与直线之间的阴影部分即为,区域中动点到的距离之积为1.求点的轨迹的方程;5. 已知动圆过定点,且在轴上截得的弦长为.求动圆的圆心点的轨迹方程;6. 在平面直角坐标系中,设动点到两定点, 的距离的比值为的轨迹为曲线.求曲线的方程;7. 已知动点E 到点A 与点B 的直线斜率之积为,点E 的轨迹为曲线C .求C 的方程;8. 平面直角坐标系中,圆的圆心为.已知点,且为圆上的动点,线段的中垂线交于点.求点的轨迹方程;9. 设M,N,T 是椭圆x 216+y 212=1上三个点,M,N 在直线x =8上的射影分别为xOy 1:l y x =2:l y x =-W W (),P x y 12,l l PC G ()4,0F y 8G G xOy P ()2,0M -()1,0N 2C C ()2,0()2,0-14-xOy 222150x y x ++-=M ()1,0N T M TN TM P PM1,N1.(1)若直线MN过原点O,直线MT,NT斜率分别为k1,k2,求证:k1k2为定值;(2)若M,N不是椭圆长轴的端点,点L坐标为(3,0),ΔM1N1L与ΔMNL面积之比为5,求MN中点K的轨迹方程.10. 已知椭圆Γ:x2a2+y2b2=1(a>b>0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O为坐标原点.(1)求椭圆Γ的方程;(2)设点A在椭圆Γ上,点B在直线y=2上,且OA⊥OB,求证:1OA2+1OB2为定值;(3)设点C在椭圆Γ上运动,OC⊥OD,且点O到直线CD的距离为常数√3,求动点D 的轨迹方程.轨迹问题专题答案一.综述(一)求动点的轨迹方程的基本步骤:⒈依据题目建立适当的坐标系,设出动点M (x ,y )的坐标.⒉写出点M 的集合(几何关系).⒊将几何关系转化为代数关系,列出方程f (x ,y )=0,化简方程为最简形式.4.检验特殊点,进行必要的文字说明.(二)高考中常见的求轨迹方程的方法有:1.直译法与定义法,2.相关点法;3.参数法;4.交轨法(三)求轨迹方程一般以解答题第一问的形式出现,偶尔也会在小题中考查.二.例题精讲 破解规律例1. 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .证明为定值,并写出点E 的轨迹方程.分析: 题目中要求证明为定值,容易知道, E 的轨迹是椭圆,根据条件求出相关的参数即可.222150x y x ++-=EA EB +EA EB +答案:() 解析:因为,,故,所以,故.又圆的标准方程为,从而,所以. 由题设得,,,由椭圆定义可得点的轨迹方程为: (). 点评:平面几何相关知识是解决本题的关键,平时学习中要加以重视.规律总结: (1)直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简即可.(2)定义法求轨迹方程:轨迹方程问题中,若能得到与我们所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.(3)定义法求轨迹方程本质上还是直译法,只是我们利用了直译法得到的结论. 现学现用1:如图,矩形中, 且, 交于点.若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程.13422=+y x 0≠y ||||AC AD =AC EB //ADC ACD EBD ∠=∠=∠||||ED EB =||||||||||AD ED EA EB EA =+=+A 16)1(22=++y x 4||=AD 4||||=+EB EA )0,1(-A )0,1(B 2||=AB E 13422=+y x 0≠y ABCD ()()()()2,0,2,0,2,2,2,2A B C D --,AM AD DN DC λλ==[]0,1,AN λ∈BM Q Q P P x y P解析:设,由,求得, ∵,∴, ∴,整理得. 可知点的轨迹为第二象限的椭圆,由对称性可知曲线的轨迹方程为. 例2. 已知线段的端点的坐标是,端点在圆上运动.求线段的中点的轨迹的方程;分析:设点的坐标为,点的坐标为,根据点坐标,和点是线段的中点,得, ,再由点在圆上运动,求得点的轨迹方程,进而可求得点的轨迹的方程;答案:解析:设点的坐标为,点的坐标为,由于点的坐标为, 且点是线段的中点,所以, 于是有, ①因为点在圆上运动,所以点的坐标满足的方程 即: ②把①代入②,得整理,得所以点的轨迹的方程为.(),Q x y ,AM AD DN DC λλ==()()2,2,42,2M N λλ--1,22QA AN QB BM k k k k λλ====-11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭1224y y x x ⋅=-+-()22120,014x y x y +=-≤≤≤≤Q 14P 2214x y +=AB B ()6,5A ()()221:434C x y -+-=AB P 2C P (),x y A ()00,x y B P AB 026x x =-025y y =-A 1C A P 2C ()()22541x y -+-=P (),x y A ()00,x y B ()6,5P AB 062x x +=052y y +=026x x =-025y y =-A 1C A 1C ()()22434x y -+-=()()2200434x y -+-=()()222642534x y --+--=()()22541x y -+-=P 2C ()()22541x y -+-=规律总结:相关点法求轨迹方程: 题中涉及了两个动点N 、M ,且点N 的运动是有规律的(轨迹方程已知),而M 的运动是由N 的运动而引发的,这样的题目可采用相关点法求动点M 的轨迹方程.基本方法是设M 的坐标,再反解出N 的坐标,然后带入N 所在曲线的轨迹方程,整理即可.现学现用2: 设O 为坐标原点,动点M 在椭圆C :上,过M 做x 轴的垂线,垂足为N ,点P 满足.求点P 的轨迹方程;解析:设,,即 代入椭圆方程,得到 ∴点的轨迹方程。

《高三数学轨迹方程》PPT课件

《高三数学轨迹方程》PPT课件
说明:用交轨法求交点的轨迹方程时, 不一定非要求出交点坐标,只要能消 去参数,得到交点的两个坐标间的关 系即可。交轨法实际上是参数法中的 一种特殊情况。
六、点差法:
例6(2004年福建,22)如图,P是抛物线C:y 1 x 2
上一点,直线 l过点P且与抛物线C交于另一点Q。2 若直线 l 与过点P的切线垂直,求线段PQ中点M的
练习:(待定系数法题型)在 PMN 中,
tan PMN 1 , tan MNP 2 ,且 PMN
2
的面积为1,建立适当的坐标系,求以M,N为焦点, 且过点P的椭圆方程。
二、定义法题型: 例2 如图,某建筑工地要挖一个横截面为半圆的柱 形土坑,挖出的土只能沿AP、BP运到P处,其中 AP=100m,BP=150m,∠APB=600,问怎能样运 才能最省工?
2.要注意求得轨迹方程的完备性和纯粹性。在最后 的结果出来后,要注意挖去或补上一些点等。
【典型例题选讲】 一、直接法题型:
例1 已知直角坐标系中,点Q(2,0),圆C的方程
为 x 2 y 2 1 ,动点M到圆C的切线长与 MQ的
比等于常数( 0) ,求动点M的轨迹。
说明:求轨迹方程一般只要求出方程即可,求轨迹 却不仅要求出方程而且要说明轨迹是什么。
的结果出来后,要注意挖去或补上一些点等。
【作业】教材P131闯关训练。
然而作差求出曲线的轨迹方程。
二、注意事项:
1.直接法是基本方法;定义法要充分联想定义、灵 活动用定义;代入法要设法找到关系式x’=f(x,y), y’=g(x,y);参数法要合理选取点参、角参、斜率参等 参数并学会消参;交轨法要选择参数建立两曲线方 程再直接消参;几何法要挖掘几何属性、找到等量 关系。

第5讲-二次函数轨迹问题

第5讲-二次函数轨迹问题
②证明:设P(t, t2),
PA= = t2+1,PB= t2-(-1)= t2+1,
PA=PB,∴∠PAB=∠PBA,∵PB⊥l,∴PB∥y轴,∴∠PBA=∠OAB,
∴∠PAB=∠PAB,∴AB平分∠OAP.
∵抛物线 的顶点D都在某条抛物线 上,∴抛物线 的解析式为:y=- +x+2.
练习
(1)已知抛物线y=- +2ax- 的顶点为P,当a变化时,点P总在直线l上.求直线l的解析式;
解:∵y=- +2ax- =- +4a-4,∴P(a,4a-4).
∵当a变化时,点P总在直线l上,∴直线l的解析式为:y=4x-4.
∴点P的坐标是(2,4);
②设点Q的坐标为(xQ,yQ),点N的坐标为(xN,yN).∵M(2,0).
-
由点Q是线段MN的中点,可以求得,xN=2xQ-2,yN=2yQ.
∵ayN=-xN2+8.
∴2yQ=-(2xQ-2)2+8,即yQ=-2xQ2+4xQ+2,
②若a=-1,点M坐标为(2,0)是x轴上的点,N为抛物线C1上的点,Q为线段MN的中点.设点N在抛物线C1上运动时,Q的运动轨迹为抛物线C2,求抛物线C2的解析式.
解:①∵y=ax2-4a+4=a(x2-4)+4,该函数图象过第一象限内的定点P,
∴x2-4=0,解得x=2或x=-2(舍去),则y=4,
∴抛物线C2的解析式为:y=-2x2+4x+2.
习2
(2)如图1,直线y=kx-k2(k>0)与抛物线y=ax2有唯一的公共点.
①求抛物线的解析式;
②已知点A(0,1),直线l:y=-1,如图2,P是抛物线上一个动点,PB⊥l于B点,连PA、PB,求证:AB平分∠OAP.
解:① ,ax2-kx+k2=0,△=k2-4ak2=0,a= ,y= x2.

人教版高一数学课件-轨迹问题

人教版高一数学课件-轨迹问题
于是 x≠1 且 x≠-1,此时,MA 的斜率为x+y 1,MB 的斜率为x-y 1,
由题意,有x+y 1·x-y 1=4,化简可得,4x2-y2-4=0, 故动点 M 的轨迹 C 的方程为 4x2-y2-4=0(x≠1 且 x≠ -1).
1
学海导航
理数
3.(2010·广东卷改编)一条双曲线x22-y2=1 的左、右顶 点分别为 A1,A2,点 P(x1,y1),Q(x1,-y1)是双曲线上不 同的两个动点.求直线 A1P 与 A2Q 交点的轨迹 E 的方程式.
1
学海导航
解析:设 P 点的坐标为(x,y), 则由方程 x2+2y2=4,得 2y2=4-x2, 所以 y=± 4-2 x2, 所以 A,B 两点的坐标分别为: (x, 4-2 x2),(x,- 4-2 x2),
理数
1
学海导航
又P→A·P→B=1, 所以(0, 4-2 x2-y)·(0,- 4-2 x2-y)=1, 即 y2-4-2 x2=1,所以x62+y32=1, 又直线 l 与椭圆交于两点,所以-2<x<2, 所以点 P 的轨迹方程为x62+y32=1(-2<x<2).
1
学海导航
理数
2.(2012·四川卷改编)如图,动点 M 与两定点 A(-1,0)、 B(1,0)构成△MAB,且直线 MA、MB 的斜率之积为 4.设动点 M 的轨迹为 C.求轨迹 C 的方程.
1
学海导航
理数
解析:设 M 的坐标为(x,y),当 x=-1 时,直线 MA 的斜率不存在;当 x=1 时,直线 MB 的斜率不存在.
1
理数
解析:由曲线与方程的关系可知,q⇒p,但p q,故 选B.
1
学海导航
理数

2020年高考数学二轮复习 5.5 轨迹问题课件 理 精品

2020年高考数学二轮复习 5.5 轨迹问题课件 理 精品
●例2 如图,在以点O为圆心,|AB|=4为直径的半圆 中,P是半圆弧上一点,∠POB=30°.曲线C是满足||MA| -|MB||为定值的动点M的轨迹,且曲线C过点P.建立适当的 平面直角坐标系,求曲线C的方程.
【分析】根据题意,用双曲线定义求出曲线C的方程.
【解析】 (1)以O为原点, AB、AB中垂线所在直线分别 为x轴、y轴,建立平面直角坐标系,则A(-2, 0), B(2, 0), P( 3 , 1),依题意得由Fra bibliotekBP=2
PA
可得a=
3 2
x,
b=3y,
所以x>0,
y>0,又 AB =(-a,
b)=(- 3 2
x,
3y),
由OQ
AB=1可得
3 x2+3y2=1(x>0, 2
y>0).
[答案] D
考点二 定 义 法
命题规律 定义法求轨迹方程,运用解析几何中一些常
用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出 轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方 程.
| MA | | MB | | PA | | PB |
= (2 3 )2 12 - (2 3 )2 12 =2 2 < AB=4, ∴曲线C是以原点O为中心, A、B为焦点的双曲线. 设实半轴长为a,虚半轴长为b,半焦距为c, 则∴c曲=线2,C2的a=方2程为2 ,x∴2 a2y=2=2,1b.2=c2-a2=2,
(OA
OB)知P为AB的中点,

x=4-+kk2,
消去参数k得4x2+y2-y=0.

y=4+4 k2.
当k不存在时, A、B中点为坐标原点(0, 0),也满足方程

k高考轮复习数学:轨迹问题

k高考轮复习数学:轨迹问题

本文为自本人珍藏 版权所有 仅供参考8.5 轨迹问题•知识梳理本节主要内容是轨迹的概念及轨迹方程的求法•求轨迹方程常用的方法:(1)结合解析几何中某种曲线的定义, 从定义出发寻找解决问题的方法; (2)利用几何性质,若所求的轨 迹与图形的性质相关,往往利用三角形或圆的性质来解问题;(3)如果点P 的运动轨迹或所在曲线已知,又点 Q 与点P 之间的坐标可以建立某种关系,则借助点 P 的轨迹可以得到点Q 的轨迹;(4)参数法••点击双基1•动点P 到直线x=1的距离与它到点 A (4,0)的距离之比为 2,则P 点的轨迹是 A. 中心在原点的椭圆 B. 中心在(5,0)的椭圆 C. 中心在原点的双曲线 D. 中心在(5,0)的双曲线 解析:直接法• 答案:B6)已知双曲线的两个焦点为F i (—75, 0)、F 2( J 5 ,0), P|PF 1| • |PF 2|=2,则该双曲线的方程是2 2 xyB. —=13 22 2yD.x —=14由题意『Ff — |PF 2||=2a , 22/ 匚、2|PF i |+|PF 2| = (2 5 ).又T |PF i | • |PF 2|=2 , ••• a=2, b=1.2匚—y 2=i.42.( 2005年春季北京, 是此双曲线上的一点,且x 2 y 2A. — =12 32 c. i — y 2=14PF 」PF 2, 解析:设双曲线的方程为2X ~~2 a 2計.故双曲线方程为答案:C3•已知 A (0, 7)、B ( 0,— 7)、 的另一个焦点F 的轨迹方程是2A. y 2—= 1 (y W — 1)4822x dC.y —=— 148解析:由题意丨AC | = 13, | BC | = 15,C ( 12, 2),以C 为一个焦点作过 A 、B 的椭圆,椭圆 2B.y 2 — — = 1482D.x 2— J = 148I AB |= 14,又 | AF | + | AC | = | BF | + | BC | , • I AF |-| BF | = | BC |-| AC |= 2.故F 点的轨迹是以 A 、B 为焦点,实轴长为 2的双曲线下支.又c=7, a=1 , b 2= 48, x 2 =1 (y w — 1).48答案:A 2 2 ,x +y =4. 答案:5•已知△ ABC 中,B (1, 0)、C ( 5, 0),点 A 在x 轴上方移动,且 tanB+tanC=3,则 △ ABC 的重心 G 的轨迹方程为 _________________ .解析:设 A (X o , y o ), ■/ tanB+tanC=3,•- ——— ———— =3,点 A 的轨迹方程为 y °= — — (x 。

高中数学第2轮总复习 专题7 第5课时 轨迹问题课件 理 新人教B版

高中数学第2轮总复习 专题7 第5课时 轨迹问题课件 理 新人教B版

变试题 已知双曲线x y 2的右焦点为F,过点
2 2
F的动直线与双曲线相交于A,B两点,点C的坐标 是 1,0 ,若动点M 满足CM CA CB CO(其中O 为坐标原点),则点M的轨迹方程为 ______ .
解析:设M ( x,y ),A( x1,y1 ),B ( x2,y2 ), 则CM ( x 1,y ), CA ( x1 1,y1 ), CB ( x2 1,y2 ), CO 1,0 . x 1 x1 x2 3 由CM CA CB CO,得 , y y1 y2
2
y 1 k1 x 方法2:交点P的坐标( x,y )满足 , y 1 k2 x y 1 k1 x 故知x 0.从而 ,代入k1k2 2 0, k y 1 2 x y 1 y 1 2 2 得 2 0.整理后,得2x y 1, x x 所以交点P在椭圆2x 2 y 2 1上.
2 2 2
所以点M 的轨迹方程为 x 2p y 2 4p 2 .
2
【评析】本题是利用交轨法求轨迹方程.用交轨法 求交点的轨迹方程时,不一定非要求出交点坐标, 只要能消去参数,得到交点的两个坐标间的关系 即可.交轨法实际上是参数法中的一种特殊情况.
1.直接法:如果题设条件给出(或通过分析图形 性质得出)的动点所满足的几何关系,则只须把这 种关系转化成含有x,y的表达式,通过化简整理 便可得到曲线的轨迹方程.这种求轨迹方程的方 法我们称之为直接法.
设M ( x,y ),A( x1,y1 ),B( x2,y2 ), 则CM ( x 1,y ), CA ( x1 1,y1 ), CB ( x2 1,y2 ), CO 1,0 . 4k 则x1 x2 2 ,②y1 y2 k x1 x2 4 k 1 4k 2 4k k( 2 4) 2 .③由①②③得 k 1 k 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

即 d1 d2 4 4d1d2 sin 2 2(常数)<2,
即 PA PB || 2 1 (常数)< AB 2,
故点P的轨迹C是以A,B为焦点,实轴长 2a 2 1
的双曲线,所以a 1 ,c 1,则b2 1 a 2 .
故所求轨迹C的方程为:x2 y2 1.
1
精选ppt
2
y0
1 2


x
0
y 0
2x 1 2y 1
2
.
2
又 点 P在 椭 圆 上 , 将 点 P的 坐 标
代 入 椭 圆 方 程 , 得 2 x 12 (2y 1 )2 1,
4
2
即 (x 1 )2 4( y 1 )2 1为 所 求 点 M 的 轨 迹 方 程 .
2
4
精选ppt
【思维启迪】本题主要考查椭圆的标准方程及几何 性质、中点坐标公式,考查“代入法”求点的轨迹的 基本方法及转化的数学思想.利用“代入法”求 点的轨迹方程的关键是用从动点的坐标x、y来表示 主动点的坐标x0、y0,其表示的途径主要有:①利 用定比分点坐标公式;②利用向量相等等有关知 识;③利用圆锥曲线的定义;④利用对称知识.
解析:设点P(x,y),则Q(1,y). 由QPQFFPFQ,
得x1,0(2, y)(x1,y)(2,y),
化简y2 4x.所以动点P的轨迹C的方程为y2 4x.
精选ppt
【思维启迪】本题主要考查平面向量的坐标 运算、数量积运算﹑抛物线的基础知识, 考查利用“直接法”求点的轨迹方程最基 ,0的距离
分别为d1和d2,APB2,且存在常数 (0<<1),使得d1d2sin2.证明:动点P的轨
迹C为双曲线,并求出C的方程.
精选ppt
解 析 : 在 P A B中 ,A B
2,2 2
d
2 1
d
5 2
2d1d 2 cos 2,
则4 d1 d2 2 4d1d2 sin2 ,
因 为 左 焦 点 为 F ( 3,0 ), 所 以 c 3 . 由 a 2 b 2 c 2, 得 b 1 , 故 椭 圆 方 程 为 x 2 y 2 1.
4 精选ppt
2令
M
( x,
y ),







P

(
x

0
y 0 ).
因 为 M 为 P A的 中 点 ,


x
y
x0 1
CB (x2 1,y2 ),CO 1, 0.
由CM CA CB CO,

x
y
1 y1
x1 y2
x2
3,

x1 y1
x2 y2
x y
2 .①
精选ppt
当直线AB不与x轴垂直时,
设直线AB的方程是y k x 2 (k 1),
代入x2 y2 2,有 1 k 2 x2 4k 2 x 4k 2 2 0,
则 x1
x2
4k 2 ,② k2 1
y1 y2 k x1 x2 4
k
(
4k 2 k2
1
4)
k
4
2
k
1
.③
精选ppt
由①②③得x
2
k42k21,④y
4k ,⑤ k2 1
由④⑤消去参数k,
得x2 y2 4.当AB与x轴垂直时,x1 x2 2,
的 坐 标 - 解 析 法 (坐 标 法 ).
2寻 求 动 点 与 已 知 点 满 足 的 关 系 式 几 何 关 系 . 3将 动 点 与 已 知 点 坐 标 代 入 几 何 关 系 代 数 化 . 4化 简 整 理 方 程 简 化 . 5 证 明 所 得 方 程 为 所 求 的 轨 精选ppt迹 方 程 完 成 其 充 要 性 .
3.求轨迹方程应注意的问题
1求轨迹方程后一定要注意轨迹的纯粹性和完备性,
以保证方程的解与曲线上的点具有一一对应的关系, 尤其是题中涉及三角形、斜率、参数方程中参数的 限制,否则使方程产生增根.
2要注意区别“轨迹”与“轨迹方程”是两个不同
的概念.
精选ppt
考点1 直接法与定义法求轨迹
例 1: 如 图 , 已 知 点 F1,0, 直 线 l: x1, P为 平 面
上 的 动 点 , 过 P作 直 线 l的 垂 线 , 垂 足 为 Q , 且 QPQF FPFQ , 则 动 点 P的 轨 迹 C的 方 程 为 ________.
精选ppt
4
分 析 : 设 P (x, y), 因 为 Q PQ FF PF Q 是 本 题 条 件 中 最 关 键 的 一 个 条 件 等 式 , 所 以 只 须 用 P 点 的 坐 标 及 已 知 条 件 将 此 等 式 转 化 为 代 数 等 式 即 可 得 到 结 论 .
专题六
解析几何
第5课时 轨迹问题
精选ppt
1. 轨 迹 定 义 : 轨 迹 是 符 合 一 定 条 件 的 动 点 所 形 成 的图形,或者说,符合一定条件的点的全体所组成 的集合,叫做满足该条件的点的轨迹. 2. 求 轨 迹 的 一 般 步 骤
1建 立 适 当 的 平 面 直 角 坐 标 系 , 设 出 轨 迹 上 任 一 点
与 从 动 点 的 轨 迹 问 题 , 利 用 代 入 法 即 可 解 决 .
精选ppt
解 析 : 1 由 于 椭 圆 的 中 心 在 O 0 , 0 ,
焦 点 在 x轴 上 , 则 设 椭 圆 的 标 准 方 程 为 x 2 y 2 1.
a2 b2
由 于 右 顶 点 为 D 2,0 , 则 a 2.
精选ppt
变试题已知双曲线x2y2 2的右焦点为F,过点 F的动直线与双曲线相交于A,B两点,点C的坐标
是1,0,若动点M满足CMCACBCO(其中O
为坐标原点),则点M的轨迹方程为______.
精选ppt
解析:设M ( x,y),A( x1,y1 ),B( x2,y2 ), 则CM (x 1,y),CA (x1 1,y1 ),
考点2 代入法与参数法求轨迹
已知在平面直角坐标系中的一个椭圆的中心
在原点,左焦点F (,0),右顶点D 2,0,设
点A(1,1 ). 2
1 求该椭圆的标准方程; 2 若P是椭圆上的动点,求线段PA的中点M 的
轨迹方程.
精选ppt
分 析 : 第 1小 题 直 接 应 用 焦 点 坐 标 及 顶 点 坐 标 即 可 求 得 a、 b; 第 2小 题 属 于 主 动 点
相关文档
最新文档