数论综合

合集下载

六年级数论综合奥数题

六年级数论综合奥数题

六年级数论综合奥数题一、数论基础知识回顾1. 整除的概念若整数公式除以非零整数公式,商为整数,且余数为零,我们就说公式能被公式整除(或说公式能整除公式),记作公式。

例如公式,余数为公式,则说公式。

2. 因数与倍数如果公式能被公式整除,公式就叫做公式的倍数,公式就叫做公式的因数。

例如在公式中,公式是公式的倍数,公式是公式的因数。

3. 质数与合数质数是指在大于公式的自然数中,除了公式和它本身以外不再有其他因数的自然数。

例如公式、公式、公式、公式等。

合数是指自然数中除了能被公式和本身整除外,还能被其他数(公式除外)整除的数。

例如公式,公式,所以公式、公式是合数。

4. 分解质因数把一个合数写成几个质数相乘的形式叫做分解质因数。

例如公式。

二、典型数论综合奥数题及解析求公式的因数有多少个?解析:1. 先将公式分解质因数:公式。

2. 根据因数个数定理:对于一个数公式(公式为质数,公式为正整数),它的因数个数为公式。

3. 对于公式,其因数个数为公式个。

题目2:已知两个数的最大公因数是公式,最小公倍数是公式,其中一个数是公式,求另一个数。

解析:1. 根据两个数的积等于这两个数的最大公因数和最小公倍数的积。

设另一个数为公式。

2. 则公式。

3. 先计算公式,那么公式。

题目3:有一个三位数,它是公式的倍数,且它各位数字之和是公式的倍数,百位数字与个位数字之和等于十位数字,这个三位数是多少?1. 设这个三位数为公式(公式为百位数字,公式为十位数字,公式为个位数字)。

2. 已知公式,且公式是公式的倍数。

将公式代入公式可得公式是公式的倍数,因为公式是一位数,所以公式。

3. 又因为这个数是公式的倍数,根据公式的倍数特征:各个数位上的数字之和是公式的倍数,这个数就是公式的倍数。

已知公式。

4. 满足公式的组合有公式、公式、公式、公式等,所以这个三位数可以是公式、公式、公式、公式等。

五升六第6讲 数论综合(一)

五升六第6讲  数论综合(一)

第6讲数论综合(一)一、知识要点4的倍数特征:整数末两位被4整除。

例如:124、764、1148……7的倍数特征:整数末三位与前几位的差是7的倍数。

8的倍数特征:整数末三位是8的倍数。

9的倍数特征:整数各个位数字和是9的倍数。

11的倍数特征:1、整数末三位与前几位的差是11的倍数。

2、整数奇数位数字之和与偶数位数字之和的差是11的倍数。

13的倍数特征:整数末三位与前几位的差是13的倍数。

25的倍数特征:整数末两位是25的倍数。

125的倍数特征:整数末三位是125的倍数二、例题精选【例1】三个相邻的自然数的乘积是3360,这三个自然数分别是多少?【巩固1】整数1到10被分为两组,使得第一组数的乘积可被第二组数的乘积整除。

这个商的最小可能值是几?【例2】有一个四位数74a b可被72整除,请问a b⨯有几种可能不同的值?【巩固2】如果形如34AB的四位数能被9整除,那么这样的四位数有几个?【例3】假设1232010201114n A⨯⨯⨯⋯⋯⨯⨯=⨯,其中n与A都是正整数。

请问n可能的最大值是什么?【巩固3】求1×2×3×......×2010×2011结果的末尾有多少个0?【例4】有15位同学,每位同学都有编号,他们是1号到15号,1号同学写了一个自然数,其余各位同学都说这个数能被自己的编号数整除.1号作了检验:只有编号连续的两位同学说的不对,其余同学都对,问:⑴说的不对的两位同学,他们的编号是哪两个连续自然数?⑵如果告诉你1号写的数是五位数,请找出这个数.-中的5个数字,【巩固4】一位魔术师让观众写下一个六位数a,并将a的各位数字相加得b,他让观众说出。

a b 观众报出1、3、5、7、9,魔术师便说出余下的那个数字,那个数字是几?【例5】N为自然数,且1N+、……、9N+与690都有大于l的公约数.N的最小值为多少?N+,2【例6】有一个袋子里边装着红、黄、蓝三种颜色的球,现在小峰每次从口袋中取出3个球,如果发现三个球中有两个球的颜色相同,就将第三个球放还回口袋,如果三个球的颜色各不相同,就往口袋中放一个黄球,已知原来有红球42个、黄球23个、蓝球43,那么取到不能再取的时候,口袋里还有蓝球,那么蓝球有多少个?。

数论综合

数论综合

数论综合
数论是专门研究整数的数学分支。

小学里面讲的数论主要包括以下方面的内容:数的整除性、奇数与偶数、质数与合数、分解质因数、约数与倍数、带余数的除法、数的十进制和完全平方数等。

【1】一个六位数2003□□能被99整除,它的最后两位数是____
【2】一个数的20倍减去1能被153整除,这样的自然数中最小的是_____
【3】在算式A×(B+C)=110+C 中,A、B、C 是三个互不相等的质数,那么三个数分别是____ ,____ ,____
【4】是否存在自然数a 和b,使得ab(a+5b)=15015
【5】两个质数的和是2001,这两个质数的乘积是_________
【6】如果一个质数分别加上2、8、14、26 后,得到的和都是质数。

那么原来的质数是 ________
【7】一个长方体的长宽高是三个两两互质且均大于1 的自然数,长方体的体积是8721,那么它的表面积是__________
【8】四个连续自然数,它们从小到大依次是3 的倍数、5 的倍数、7 的倍数、9 的倍数,这四个连续自然数的和最小是__________
【9】一个大于1 的自然数去除300、243,205 时,得到相同的余数,则这个自然数是__________
【10】一个两位数十位数字是7,将这个两位数的两个数字交换,相差的数是一个完全平方数,这个两位数是__________。

第20讲 数论综合二完整版

第20讲 数论综合二完整版

第20讲数论综合二兴趣篇1.有4个不同的正整数,它们中任意2个数的和都是2的倍数,任意3个数的和都是3的倍数,要使这4个数的和尽可能小,请问:这4个数应该分别是多少?答案:1、7、13、19解析:“任意2个数的和都是2的倍数”说明四个数奇偶性相同,“任意3个数的和都是3的倍数”说明四个数除以3的余数相同.若这四个数为奇数,第一个数为1,依次加6可得四个数为1、7、13、19.若这四个数为偶数,第一个数为2,依次加6可得四个数为2、8、14、20.显然第一组更小.2.已知算式(1+2+3+…+n)+ 2007的结果可表示为n(n>l)个连续自然数的和.请问:共有多少个满足要求的自然数n?答案:5个解析:1+2+3+…+n是项数为n的等差数列之和,我们考虑将2007平均分成n份,加到每一项上即可.2007=32×223,有6个约数,分别为1、3、9、223、669、2007。

其中1舍去,有5个满足要求的自然数。

3.有些自然数能够写成一个质数与一个合数之和的形式,并且在不计加数顺序的情况下,这样的表示方法至少有4种,请问:所有满足上述条件的自然数中最小的一个是多少?答案:11解析:因为有四种表示方法,至少涉及四个质数,最小的四个质数是2、3、5、7,最小的四个合数是4、6、8、9,恰好有11=7+4=5+6=3+8= 2+9.因此满足条件最小的数是11.4.甲、乙两个自然数的乘积比甲数的平方小2008.请问:满足上述条件的自然数有几组?答案:4组解析:由题目条件得,甲×甲-甲×乙=甲×(甲-乙)2008,将2008写成两个数乘积的形式,有如下几种:2008=2008×1=1004×2=502×4=251×8.因此满足条件的甲、乙数为(2008,2007)、(1004,1102)、(502,498)、(251,243),共有4组.5.两个不同两位数的乘积为完全平方数,请问:它们的和最大可能是多少?答案:170解析(1)两个数均为平方数,则它们的乘积仍为平方数,这种情况和最大为81+64=145.(2)两个数均不是平方数,则这两个数为a×m2,a×n2(其中m不等于n).对可能的情况进行讨论:当a=2时,这两个数最大是2×72、2×62,和为98+72=170.当a=3时,这两个数最大是3×25、3×16,和为75+48=123.当a=5时,这两个数最大是5×16、5×9,和为80+45=125.当a=6时,这两个数最大是6×16、6×9,和为96+54=150.……经讨论,和最大为170.6.n个自然数,它们的和乘以它们的平均数后得到2008.请问:n最小是多少?答案:502解析:由于2008=2008×1=1004×2=502×4=251×8,如果这挖个数的和为2008,平均数为1,那么n为2008.如果这n个数的和为1004,平均数为2,那么n为502.知果这n个数的和为502,平均数为4,那么这不可能,如果这n 个数的和为251,平均数为8,那么这不可能,因此n最小是502.7.一个正整数若能表示为两个正整数的平方差,则称这个数为“智慧数”,比如16=52-32,16就是一个“智慧数”,请问:从1开始的自然数列中,第2008个“智慧数”是多少?答案:2680解析:通过尝试可以发现如下规律:相邻两个平方数的差为3,5,7,9,11…即除1外,所有的奇数均为“智慧数’’.相邻两个奇数的平方差与相邻两个偶数的平方差为8,12,16,20,24,28…即除4之外,所有4的倍数的数是“智慧数”,所以1~2000的“智慧数”有2000÷2 +2000÷4-2=1498个.1~2500的“智慧数”有2500÷2+2500÷4-2=1873个.1~2700的“智慧数”有2700÷2+2700÷4-2=2023个.因此第2008个“智慧数”为2680.8.将1001-5分别除以2,3,4,…,100,可以得到99个余数(余数有可能为0).请问:这99个余数的和是多少?答案:4565解析:100!能够被2,3,4,…,100整除,100!-5除以100的余数为100-5=95,100!-5除以99的余数为99 -5=94,100! -5除以98的余数为98- 5=93,…,100!-5除以6的余数为6-5 =1,除以5余0,除以4余3,除以3余1,除以2余1(判断除以2、3、4的余数,只需用2、3、4的倍数减5即可).所以余数和为1+1+3+0+1+2+…+94+95=5+(1+95)×95÷2 = 4565.9.卡莉娅、小高和墨莫三人经常去电影院,卡莉娅每隔2天去一次,小高每隔4天去一次,墨莫每隔6天去一次.今天他们三人都去电影院,将来会有连续三天都有人去电影院.如果今天是第1天,那么最早出现的具有上述性质的连续三天是哪三天?答案:第6天、第7天和第8天解析:由题意知,卡莉娅将在第4天、第7天、第10天……去电影院.小高将在第6天、第11天、第16天……去电影院.墨莫将在第8天、第15天、第22天……去电影院.则最早出现的连续三天是第6天、第7天和第8天.10.有三个连续的自然数,它们的平方从小到大依次是10、9、8的倍数.请问:这三个数中最小的一个是多少?答案:50解析:三个连续自然数的平方从小到大依次是10、9、8的倍数,则三个连续自然数从小到大依次是10、3、4的倍数.由龀可推断出三个数中最小的数是10的倍数,并且除以3余2,除以4余2.满足上述条件最小的数是50.拓展篇1.有一个正整数,它加上100后是一个完全平方数,加上168后也是一个完全平方数.请问:这个正整数是多少?答案:156解析:设这个正整数为n ,则n+100=b 2,n+168=a 2,两式相减得a 2-b 2=68,而a 2-b 2=(a+b)×(a-b ),68=1×68 =2×34=4×17,由此可得⎩⎨⎧==+,,2b -a 34b a 解得⎩⎨⎧==,16b ,18a 所以n 为156.2.如果三个正整数a 、b 、c 满足a 2 +b 2=c 2,则称这三个数构成一个勾股数组(a ,b ,c).与5有关的勾股数组有两组:(3,4,5)和(5,12,13),请问:与13有关的勾股数组有哪些?答案:(5,12.13)、(13, 84, 85)解析:当c= 13时,则很显然(5,12,13)是一组勾股数.当a=13时,则132 +b 2=169+b 2=C 2,即c 2-b 2=(c+b)×(c-b)=169×1,由此可得⎩⎨⎧==+,1b -c ,169b c 解得⎩⎨⎧==84,b ,85c 因此(13, 84, 85)也是一组勾股数.3.小高往一个水池里扔石子.第一次扔1颗石子,第二次扔2颗石子,第三次扔3颗石子,第四次扔4颗石子……他准备扔到水池的石子总数是106的倍数,请问:小高最少需要扔多少次?答案:52次解析:小高扔的石子数为n ×(n+1)÷2,而106=2×53,因此,n 或n+1其中有一个应是53或53的倍数,当n=52时,满足石子数是106的倍数,因此小高最少需要扔52次.4.已知两个自然数的最大公约数是6,两数之和为1998.请问:满足上述条件的数一共有多少组?答案:108组解析:设甲、乙两数分别为6a、6b,其中a与b互质,且6a+6b=1998,即a+b=333=32×37,将333分成两数之和,共有166组分法,其中当两数是3或37的倍数时.两数不互质.同时166÷3=55……1,166÷37 =4……18,其中111被算了两次,因此满足条件的组数有166-55-4+1=108组.5.数学老师把一个两位数的约数个数告诉了墨莫,聪明的墨莫仔细思考了一下后算出了这个数,同学们,你们知道这个数可能是多少吗?答案:64或36解析:若约数个数为2个,是质数,这样的两位数有很多.若约数个数为3个,可以用a2来表示,也有很多.约数个数为4个的两位数也有很多.约数个数为5个的数可以表示为a4,有16和81,不唯一,约数个数为6个的两位数也不唯一,约数个数为7个的两位数表示为a6,只有26 =64,是唯一的,同样的,约数个数为9个的两位数也是唯一的,只有36.约数个数更多的两位数,或者不唯一,或者不存在,因此这个数可能为64或36.6.在一个正整数的所有约数中,个位数字为0,1,2,…,9的数都出现过,请问:这样的正整数最小是多少?答案:270解析:若约数的个位数字为0,则这个数应为10的倍数.若约数的个位数字为9,则这个数至少是9的倍数,这样个位数字为0、1、2、3、5、6、8、9都不用再考虑.再考虑个位数字为7,则至少是7的倍数,或者为27的倍数也可以,满足上述条件的数为630或270.两者都含有个位数字为4的约数.因此最小为270.7.甲、乙两个三位数的乘积是一个五位数,这个五位数的后四位数是3456.如果甲的数字和是8,乙的数字和是14,那么甲、乙两数之差是多少?答案:30解析:甲的数字和是8,乙的数字和是14,若没有进位,乘积的数字和应为112,除以9余4,若有进位,每进一位,数字和减少9,最终乘积酌数字和仍然除以9余4,因此这个五位数只能为43 456.分解质因数得43456=26×7×97,容易找到满足条件的数为224和194,差为30.8.A 求最小的正整数n ,使得2006+7n 是完全平方数,答案:29解析:452=2025,2025-2006=19不是7的倍数.462=2116,2116-2006=110不是7的倍数.472 =2209, 2209-2006=203是7的倍数,商为29.因此满足条件的最小的正整数n 为29.9.请写出由不同的两位数组成的最长的等比数列.答案:16、24、36、54、81解析:容易想到的结果为10、20、40、80,即公比为2.但实际上公比还可以更小,比如23,此时要求第一项应为24 =16的倍数,因此等比数列可以为16、24、36. 54.。

六年级奥数优胜教育第21讲:数论综合含答案

六年级奥数优胜教育第21讲:数论综合含答案

第二十一讲第二十一讲 数论综合数论综合例1:将4个不同的数字排在一起,可以组成24个不同的四位数(4×3×2×1=24)。

将这24个四位数按从小到大的顺序排列的话,第二个是5的倍数;按从大到小排列的话,第二个是不能被4整除的偶数;按从小到大排列的第五个与第二十个的差在3000-4000之间。

请求出这24个四位数中最大的一个。

例2:一个5位数,它的各个位数字和为43,且能被11整除,求所有满足条件的5位数?例3:由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?例4:从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形。

按照上面的过程不断的重复,最后剪得的正方形的边长是多少毫米?例5:一根木棍长100米,现从左往右每6米画一根标记线,从右往左每5米作一根标记线,请问所有的标记线中有多少根距离相差4米?例6:某住宅区有12家住户,他们的门牌号分别是1,2,…,12.他们的电话号码依次是12个连续的六位自然数,并且每家的电话号码都能被这家的门牌号整除,已知这些电话号码的首位数字都小于6,并且门牌号是9的这一家的电话号码也能被13整除,问:这一家的电话号码是什么数?A1.一个六位数2323□□5656□是□是88的倍数的倍数,,这个数除以88所得的商是所得的商是_______________或或_____.2.下面一个1983位数3333……3□4444……4中间漏写了一个数字中间漏写了一个数字((方框方框),),),已知这已知这已知这991个 991个个多位数被7整除,那么中间方框内的数字是整除,那么中间方框内的数字是_____. _____.3.只修改21475的某一位数字的某一位数字,,就可知使修改后的数能被225整除整除,,怎样修改?怎样修改?4.2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数和它本身为约数..已知一个长方形的长和宽都是质数个单位的长和宽都是质数个单位,,并且周长是36个单位个单位..问这个长方形的面积至多是多少个平方单位?5. 把7、1414、、2020、、2121、、2828、、30分成两组,每三个数相乘,使两组数的乘积相等分成两组,每三个数相乘,使两组数的乘积相等. .B6.有这样的两位数有这样的两位数,,它的两个数字之和能被4整除整除,,而且比这个两位数大1的数的数,,它的两个数字之和也能被4整除整除..所有这样的两位数的和是所有这样的两位数的和是____. ____.7. 学生1430人参加团体操人参加团体操,,分成人数相等的若干队分成人数相等的若干队,,每队人数在100至200之间之间,,问哪几种分法分法? ?8. 四只同样的瓶子内分别装有一定数量的油四只同样的瓶子内分别装有一定数量的油,,每瓶和其他各瓶分别合称一次每瓶和其他各瓶分别合称一次,,记录千克数如下:8:8、、9、1010、、1111、、1212、、13.13.已知四只空瓶的重量之和以及油的重量之和均为质数已知四只空瓶的重量之和以及油的重量之和均为质数已知四只空瓶的重量之和以及油的重量之和均为质数,,求最重的两瓶内有多少油两瓶内有多少油? ?9.一个小于200的自然数的自然数,,它的每位数字都是奇数它的每位数字都是奇数,,并且它是两个两位数的乘积并且它是两个两位数的乘积,,那么这个自然数是然数是_____. _____.1010.试问.试问.试问,,能否将由1至100这100个自然数排列在圆周上个自然数排列在圆周上,,使得在任何5个相连的数中个相连的数中,,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明则需给出说明. .C11.11.一个学校参加兴趣活动的学生不到一个学校参加兴趣活动的学生不到100人,其中男同学人数超过总数的4/7,女同学的人数超过总数的2/5 。

六年级奥数(精品)数论综合(最新整理)

六年级奥数(精品)数论综合(最新整理)

第19讲数论综合知识点精讲一、特殊数的整除特征1.尾数判断法1)能被2整除的数的特征:2)能被5整除的数的特征:3)能被4(或25)整除的数的特征:4)能被8(或125)整除的数的特征:2.数字求和法:3.99的整除特性:4.奇偶位求差法:5.三位截断法:特别地:7×11×13=1001,abcabc=abc×1001二、多位数整除问题技巧:1>目的是使多位数“变短”,途径是结合数的整除特征和整除性质2>对于没有整除特性的数,利用竖式解决。

三、质数合数1.基本定义【质数】——【合数】——注:自然数包括0、1、质数、合数.【质因数】——【分解质因数】——用短除法和分拆相乘法分解质因数。

任何一个合数分解质因数的结果是唯一的。

分解质因数的标准表示形式:N=a1×a2×a3×……×a n,其中a1、a2、a3……a n都是合数N的质因数,且a1<a2<a3<……<a n。

【互质数】——【偶数】——【奇数】——2.质数重要性质1)100以内有25个质数:2)除了2和5,其余的质数个位数字只能是:3)1既不是质数,也不是合数4)在质数中只有2是偶数,其他质数都是奇数5)最小的质数是2.最小的奇质数是36)有无限多个3.质数的判断:1)定义法:判断整除性2)熟记100以内的质数3)平方判断法:例如:对2011,首先442<2011<452,然后用1至44中的全部质数去除2011,即可叛断出2011为质数. 4.合数1)无限多个2)最小的合数是43)每个合数至少有三个约数5.互质数1)什么样的两个数一定是互质数?注意:分解质因数是指一个合数写成质因数相乘的形式.因此,要分解的合数应写在等号左边,如:21=3⨯7,不能写成:3⨯7=21.6.偶数和奇数1)0属于偶数2)十进制中,个位数字是0,2,4,6,8的数是偶数;个位数字是1,3,5,7,9的数是奇数3)除2外所有的正偶数均为合数4)相邻偶数的最大公约数为2,最小公倍数是他们乘积的一半5)奇±奇=偶偶±偶=偶偶±奇=奇奇×奇=奇偶×奇=偶偶×偶=偶四、约数与倍数1.约数与倍数概念:2.一个数约数的个数:3.平方数与约数个数的关系:4.最大公约数与最小公倍数求法:分解质因数:辗转相除法:5.两数的最大公约数乘以最小公倍数等于这两个数的乘积。

小升初奥数第5讲数论综合

小升初奥数第5讲数论综合

第九讲:小升初专项复习(七)——数论综合一、训练目标知识传递:掌握数论的相关知识,并能用之分析、解决一些数论基本问题。

能力强化:分析能力、理解能力、推理能力、转化能力、推算能力、综合能力。

思想方法:整除思想、奇偶思想、比较思想、对应思想、恒等思想、同余思想。

二、知识与方法归纳数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力,数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”.因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了.任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作.”所以在国内外各级各类的数学竞赛中,数论显得格外重要,数论研究的是奇数、偶数、素数、合数,这些最简单的数——整数及其内部关系,但是从这些简单的数中诞生了“哥德巴赫猜想”这样的难题,它们吸引数学家们花费数十年、甚至整世纪努力研究.小学数学竞赛和小升初择校考试中的数论问题,常常涉及整数的整除性、质数与合数、约数与倍数、带余除法、奇数与偶数和整数的分解与分拆同余、中国剩余定理等.三、经典例题例1.某自然数除2840,余数是32,这个自然数最小是多少?例2.有四个小朋友,年龄逐个增加一岁,4个人年龄的乘积是3024,问其中年龄最大的一个是几岁?例3.要使4个数的乘积135×975×342×()的结果最后5位数字全是0,()内的数最小应是多少?例4.一本陈年老账上记着:88只桶,共□67.9□元。

这里□处字迹不清。

请把□处数字补上,并求桶的单价。

例5.在2012后面补上3个数字,组成一个七位数,使它能分别被3、4、5整除,这个七位数最大是多少?例6.一个正整数a与1080的乘积是一个完全平方数,求a的最小值与这个完全平方数。

例7.甲数是24,甲、乙两数的最小公倍数是168,最大公约数是4,求乙数.例8.○×(□+△)=209.在○、□、△中各填一个质数,使上面算式成立.例9.有三根铁丝,长度分别是120厘米、180厘米和300厘米。

六年级奥数讲义-数论综合(含答案)

六年级奥数讲义-数论综合(含答案)

学科培优数学“数论综合”学生姓名授课日期教师姓名授课时长数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.【题目】己知五个数依次是13,12, 15, 25,20它们每相邻的两个数相乘得四个数,这四个数每相邻的两个数相乘得三个数,这三个数每相邻的两个数相乘得两个数,这两个数相乘得一个数。

请问最后这个数从个位起向左数、可以连续地数到几个0?【题目】有4个不同的自然数,它们当中任意2个数的和是2的倍数,任意3个数的和是3的倍数.为了使得这4个数的和尽可能地小,这4个数分别是多少?【题目】将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是.【题目】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个?【题目】从1,2,3,……n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为_______。

【题目】一个自然数与自身相乘的结果称为完全平方数。

已知一个完全平方数是四位数,且各位数字均小于7。

如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数。

【题目】4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【题目】有一电话号码是 ABC-DEF-GHIJ ,其中每个字母代表一个不同的数字。

数论综合知识经典

数论综合知识经典

数论综合应用1.20082+除以7的余数是多少?220082.一个自然数被7,8,9除的余数分别是1,2,3,并且三个商数的和是570,求这个自然数?3.若2836,4582,5164,6522四个自然数都被同一个自然数相除,所得余数相同且为两位数,除数和余数的和为多少?4.已知60,154,200被某自然数除所得的余数分别是1a-,求该a-,2a,31自然数的值?5.求12÷的余数为多少?6443196.六张卡片上分别标上1193、1258、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1张,结果发现甲、乙各自手中卡片上的数之和一个人是另—个人的2倍,则丙手中卡片上的数是多少?7.设20092009的各位数字之和为A,A的各位数字之和为B,B的各位数字之和为C,C的各位数字之和为D,那么D=?8.有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和?9.有三个连续自然数,其中最小的能被15整除,中间的能被17整除,最大的能被19整除,请写出一组这样的三个连续自然数?10.设n为正整数,2004nk=,k被7除余数为2,k被11除余数为3,求n的最小值?11.求19973的最后两位数?12.2222+++++除以7的余数是多少?1232001200213.12342005+++++除以10所得的余数为多少?1234200514.3个三位数乘积的算式234235286⨯⨯= (其中a b cabc bca cab>>),在校对时,发现右边的积的数字顺序出现错误,但是知道最后一位6是正确的,问原式中的abc是多少?15.一个大于1的数去除290,235,200时,得余数分别为a,2a+,5a+,则这个自然数是多少?。

数论综合复习

数论综合复习

第三部分数论知识一、奇偶性判断奇±奇=偶奇×奇=奇奇±偶=奇奇×偶=偶偶±偶=偶偶×偶=偶奇数的连乘永远是奇数,若干个整数连乘,如果其中有一个是偶数,那么乘积一定为偶数。

相邻两个自然数的和必为奇数,相邻两个自然数的乘积必为偶数。

奇数用2K+1 或2K-1(K 是整数)表示;偶数用2K 表示。

典型题1:用0,1,2,…9十个数字组成五个两位数,每个数字只用一次,要求它们的和是一个奇数,并且尽可能的小,那么这五个两位数的和是多少?典型题2:用1,2,3,4,5这五个数两两相乘,可以得到10个不同的乘积,问:乘积中是偶数多还是奇数多?典型题3:3—9这七个数,两两相乘后得到乘积的和,是奇数还是偶数?为什么?重点1:两个整数之和与这两个整数之差有着相同的奇偶性典型题4:能否用1,2,3…101这101个数各一次及“+”,“-”运算符合,列出一个结果为0的算式?若能,请列出一个,若不能,说明理由。

典型题5:在下图的每个○中填入5个自然数(可重复),使得任意两个相邻的○中的数字之差(大数减小数)都等于图中两个○之间的那个数,能否办到?为什么?重点2:利用“奇数不等于偶数”证明一些较复杂的奇偶性问题典型题6:小明与小光参加数学竞赛,比赛试题共50道,评分标准是:(1)每对一题给3分;(2)不答给1分;(3)答错倒扣1分小明说:“我得了107分”,小光说:“我得了98”,他们两人中只有一人说对了,你能判断出是非吗?请说明理由典型题7:图中每条直线上都有四个圆圈,将这些圆圈任意涂上红色或蓝色,是否可以使得恰好有三条直线上的红圈数是奇数?典型题8:在一个联欢会上,有5位同学,他们中的每一位同学与三位同学各握一次手,这可能吗?二、位值原则形如:abc=100a+10b+c,这是解决数论问题时我们经常用到的。

典型题1:三位数abc与它反序数cba的差能被99整除吗?若能,这个商是多少?典型题2:已知abcd+abc+ab+a=1370,求abcd。

数论综合

数论综合

数论综合例题⒈一个六位数3434ab能同时被8和9整除,已知a+b=c,求c的值。

⒉将自然数1、2、3……依次写下去形成一个多位数123456789101112……,当写到某个数N时,所形成的多位数恰好第一次能被90整除。

请问:N是多少?⒊下面这个199位整数:1001被13除,余数是多少?1001001001⒋一批书大约300本到400本,包装成每包12本,剩下11本;每包18本,缺1本;每包15本,就有7包每包各多2本。

这批书有多少本?⒌一个三位数是9的倍数,并且除以8余1,除以7余2,这个三位数最小是多少?⒍在一根木棍上,有2种刻度线,第1种刻度线将木棍分成10等份;第2种将木棍分成12等份。

如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?做一做⒈已知一个四十一位数55……55□99……99(其中5和9各20个)能被7整除,那么中间方格内的数字是多少?⒉一个数除以5余2,除以6余4,除以7余6,这个数最小是多少?课后练习⒈ 要使15ABC6能被36整除,而且所得的商最小,那么A 、B 、C 分别是多少?⒉ n个2008200820082008能被11整除,那么,n 的最小值为多少?⒊ 一个六位数,能够被9和11整除。

去掉这个6位数的首、尾两个数字,中间的4个数字是1997,那么这个6位数是多少?⒋ 排练团体操时,要求队伍变成10行、15行、18行、24行时,队形都能成为长方形,最少需要多少人参加团体操的排练。

⒌1到500之间被3、4、5除余1的数共有多少个?⒍六年级的人数在80—110之间,若8人组成一级,则有1个小组多5人,若12人组成一组,则3个小组各少1人,六年级共有学生多少人?⒎一个数是7的倍数,并且除以5余2,除以3余1,这个数最小是多少?⒏在一根木棍上,有2种刻度线,第1种刻度线将木棍分成6等份;第2种将木棍分成9等份。

如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?。

沪教版(上海)六年级第一学期第1讲 数论综合课件

沪教版(上海)六年级第一学期第1讲 数论综合课件
第一讲
数论综合
数论
数论是数学的一个分科,主要研 究整数的性质及其有关的规律。
整除 因倍 同余
一、整数 二、整除
整数a除以整数b ,商为整数,且余数为零,则a 能被 b 整除(或b能整除a) a为被除数,b为除数 即 b | a,读作"b整除a"或"a被b整除" ( "|" 是整除符号)
三、位值原理 四、整除性特征
四、分数的最大公因数与最小公倍数
五、因数个数与因数和
求72的因数个数及所有因数之和.
例 4
例 4
例 4
例 5
例 6
例 6
例 7
练 习 1
练 习 2
练 习 3
练 习 4
练 习 5
在 15,17,1008,120,30 五个数中: 能被2整除的数是______________; 能被3整除的数是______________; 能被5整除的数是______________; 能同时被2,3整除的数是______________; 能同时被3,5整除的数是______________; 能同时被2,5整除的数是______________; 能同时被2,3,5整除的数是______________.
1
性质1 若 a | b,b | a,则 a=±b 性质2 若 a | b,b | c,则 a | c 性质3 若 a | b,则 a | mb 性质4 若 a | b,a | c,则 a | (mb±nc) 性质5 若 a | bc,且a,c互质,则 a | b 性质6 若 b | a,c | a,且b,c互质,则 bc | a
四、整除性特征
能被 2 整除的数有什么特点?能被 5 整除的数有什么特点?why?除的数有什么特点?why?

M5J414 数论综合(二)——奇偶、抽屉

M5J414  数论综合(二)——奇偶、抽屉

数论综合——奇偶、抽屉月日姓名【知识要点】奇数和偶数的运算定律:偶数±偶数=偶数奇数±偶数=奇数偶数±奇数=奇数奇数±奇数=偶数偶数×偶数=偶数偶数×奇数=偶数奇数×偶数=偶数奇数×奇数=奇数性质:奇数个奇数相加和为奇数;偶数个奇数相加和为偶数;无论多少个偶数相加和都为偶数。

抽屉原理:1.把n+1件东西放入n个抽屉里,则至少有一个抽屉里至少有2件东西。

2.把K件东西放入N个抽屉中,当K能被N整除时,那么至少有一个抽屉至少有K÷N件东西,当K 不能被N整除时,则至少有一个抽屉至少有[K÷N]+1件东西,[A]表示不大于数A的最大整数。

【引入】例1 已知a、b、c中有一个是9,一个是10,一个是11,求证:a-1,b-2,c-3的乘积一定是偶数。

例2 在23×23方格纸中,将1~9这9个数字填入每个小方格如图所示,并对所有形如此图的“+”字图形中的5个数字求和,和数相等的“+”字图形至少有多少个?【练习】1.一副扑克牌有54张(含两张王),问:至少取多少张牌才能保证其中必有4张牌,它们的点数一样?2.用0、1、2、3、……9组成五个两位数,每个数字只能用一次,要求他们的和是奇数,并尽可能大,求这个和是多少?3.在自然数1、2、3、……100中,任取21个数,证明其中一定有2个数的差小于5。

4.一只电动老鼠从下图的A点出发,沿格线奔跑,并且每到一个格点不是向左转就是向右转,当这只电动老鼠又回到A点时,甲说它共转了81次弯,乙说它共转了82次弯。

如果甲、乙二人有一人说对了,那么谁正确?答:。

5.一些科学家参观一个学术讨论会,他们每人只会英语、俄语、德语、法语、日语、拉丁语中的三门语言,至少有多少人参加讨论会,才能保证有两人所说的外语相同。

6.一次考试共20道题,规定答对一题得2分,答错一题扣1分,不答不得分,小明最后得了23分。

奥数讲义-数论--综合-第1讲

奥数讲义-数论--综合-第1讲

第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

小学数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。

因此,不等式x <y与x≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有:1.十进制表示形式:n=a n10n+a n-110n-1+…+a0;2.带余形式:a=bq+r;4.2的乘方与奇数之积式:n=2mt,其中t为奇数。

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。

数论综合(小升初)

数论综合(小升初)

小升初数论综合知识概要一、奇数与偶数:1、判断一个多位数奇数还是偶数,只要看这个数的个位,个位是奇数,这个数就是奇数,个位是偶数,这个数就是偶数。

2、加减法结果的奇偶性判断方法:只看算式中奇数的个数,个数是奇数,结果就是奇数;个数是偶数,结果就是偶数。

(奇数个奇数的和或差还是奇数)3、乘法结果的奇偶性判断方法:只看有没有偶数,有偶数,结果就是偶数;无偶数,结果就是奇数。

(有偶则偶,无偶为奇)4、数列与奇偶数个数结合时,利用周期问题的知识解决。

二、因数与倍数:(一)最大公约数与最小公倍数如果一个自然数a 能被自然数b (不为零)整除,则称a 是b 的倍数,b 是a 的约数。

1、 几个自然数公有的约数,叫做这几个自然数的公约数。

公约数中最大的一个公约数,称为这几个自然数的最大公约数。

一般用符号()a b ,表示a 、b 的最大公约数。

公约数只有1的两个数,这两个数互质。

2、 几个自然数公有的倍数,叫做这几个自然数的公倍数。

公倍数中最小的一个大于零的公倍数,叫做这几个数的最小公倍数。

一般用符号[]a b ,表示a 、b 的最小公倍数。

3、最大公约数和最小公倍数之间的关系设a 、b 为两个正整数,则()a b ,和[]a b ,有如下关系(,)[,][,]=(,)ab ab a b a b a b a b =⨯或 4、求最大公约数和最小公倍数常用的方法:(1)分解质因数法;(2)短除法;(3)辗转相除法。

(二)最大公约数与最小公倍数的常用性质两个自然数分别除以它们的最大公约数,所得的商互质。

如果m 为A 、B 的最大公约数,且A ma =,B mb =,那么a b 、互质,所以A 、B 的最小公倍数为mab ,所以最大公约数与最小公倍数有如下一些基本关系:①A B ma mb m mab ⨯=⨯=⨯,这两个数的积等于两个数的最大公约数与最小公倍数之积;②两个数的和等于最大公约数乘这两个数独有因数的和③两个数的差等于最大公约数乘这两个数独有因数的差;④两个数的最小公倍数除以最大公约数等于两个数独有因数的乘积;⑤两个数的最小公倍数等于两个数的最大公约数乘两个数的独有因数。

奥数杯赛-第3讲-专题3-数论综合-学生版

奥数杯赛-第3讲-专题3-数论综合-学生版

奥数杯赛-第3讲-专题3-数论综合同学须知:本讲内容比较多,倍数、余数、质数、合数,都要涉及到,题量不能太大,所以,基本上就是讲基础。

内容设计25道题,尽量涵盖数论的基本问题。

课后练习5道题。

【基本特点汇总】整除的一些基本性质:1、尾数判断法:(1)能被2、5整除的数的特征:个位数字能被2或5整除。

【尾数系】(2)能被4、25整除的数的特征:末两位能被4和25整除。

【双尾数】(3)能被8、125整除的数的特征:末三位能被8和125整除。

【三尾数】2、数字求和法:能被3、9整除的数的特征:各个数位的数字之和能被3或9整除;弃3法,弃9法。

3、奇偶位求差法:能被11整除的数的特征:“奇位和”与“偶位和”的差能被11整除。

(大减小)4、和的整除性与差整除性:两个数如果都能被自然数a整除,那么他们的和与差也能被a整除。

5、能被7、11、13整除的数的特征:求末三位数与之前的数之差(大减小)6、能被99整除的数的特征:两位截断求和(从右向左截断)。

【1】能同时被2,3,5整除的最大的三位数是()。

【2】能同时被2,5,7整除的最大的五位数是()。

【3】1到100之内所有不能被3整除的数的和是()。

【4】小猪写了一个两位数59,小牛写了一个两位数89,他们让小羊写一个一位数放在59和89之间拼成一个五位数8959□,使得这个五位数能被7整除,那么小羊写的数应该是()。

【提示】后三位截断法+尝试法。

【5】如果九位数789AB 1234能被99整除,那么AB 代表的两位数是()。

【6】(试除法)在1992后面补上三个数字,组成7位数,使他能被2,3,5,11整除,这个七位数最小值是()。

【提示】首先求出2,3,5,11的最小公倍数,用1992000除以最小公倍数(试除法),然后采用“补余”法,求出最小值。

【7】特点:余数的和等于(被除数)和的余数;原则上余数小于除数,特殊情况下除外。

有一个自然数,用它去除63、91、129得到3个余数的和是25,这个自然数是()。

小学奥数之第10讲 数论综合(一)

小学奥数之第10讲 数论综合(一)

第10讲数论综合(一)涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.1.如果把任意n个连续自然数相乘,其积的个位数字只有两种可能,那么n是多少?【分析与解】我们知道如果有5个连续的自然数,因为其内必有2的倍数,也有5的倍数,则它们乘积的个位数字只能是0。

所以n小于5.:当n为4时,如果其内含有5的倍数(个位数字为O或5),显然其内含有2的倍数,那么它们乘积的个位数字为0;如果不含有5的倍数,则这4个连续的个位数字只能是1,2,3,4或6,7,8,9;它们的积的个位数字都是4;所以,当n为4时,任意4个连续自然数相乘,其积的个位数字只有两科可能.:当n为3时,有1×2×3的个位数字为6,2×3×4的个位数字为4,3×4×5的个位数字为0,……,不满足.:当n为2时,有1×2,2×3,3×4,4×5的个位数字分别为2,6,4,0,显然不满足.至于n取1显然不满足了.所以满足条件的n是4.2.如果四个两位质数a,b,c,d两两不同,并且满足,等式a+b=c+d.那么,(1)a+b的最小可能值是多少?(2)a+b的最大可能值是多少?【分析与解】两位的质数有11,13,17,19,23,29,3l,37,41,43,47,53,59,6l,67,71,73,79,83,89,97.可得出,最小为11+19=13+17=30,最大为97+71=89+79=168.所以满足条件的a+b最小可能值为30,最大可能值为168.3.如果某整数同时具备如下3条性质:①这个数与1的差是质数;②这个数除以2所得的商也是质数;③这个数除以9所得的余数是5.那么我们称这个整数为幸运数.求出所有的两位幸运数.【分析与解】条件①也就是这个数与1的差是2或奇数,这个数只能是3或者偶数,再根据条件③,除以9余5,在两位的偶数中只有14,32,50,68,86这5个数满足条件.其中86与50不符合①,32与68不符合②,三个条件都符合的只有14.所以两位幸运数只有14.4.在555555的约数中,最大的三位数是多少?【分析与解】555555=5×111×1001=3×5×7×11×13×37显然其最大的三位数约数为777.5.从一张长2002毫米,宽847毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形.按照上面的过程不断地重复,最后剪得正方形的边长是多少毫米?【分析与解】从长2002毫米、宽847毫米的长方形纸板上首先可剪下边长为847毫米的正方形,这样的正方形的个数恰好是2002除以847所得的商.而余数恰好是剩下的长方形的宽,于是有:2002÷847=2……308,847÷308=2……231,308÷231=1……77.231÷77=3.不难得知,最后剪去的正方形边长为77毫米.6.已知存在三个小于20的自然数,它们的最大公约数是1,且两两均不互质.请写出所有可能的答案.【分析与解】设这三个数为a、b、c,且a<b<c,因为两两不互质,所以它们均是合数.小于20的合数有4,6,8,9,10,12,14,15,16,18.其中只含1种因数的合数不满足,所以只剩下6,10,12,14,15,18这6个数,但是14=2×7,其中质因数7只有14含有,无法找到两个不与14互质的数.所以只剩下6,10,12,15,18这5个数存在可能的排列.所以,所有可能的答案为(6,10,15);(10,12,15);(10,15,18).7.把26,33,34,35,63,85,91,143分成若干组,要求每一组中任意两个数的最大公约数是1.那么最少要分成多少组?【分析与解】26=2×13,33=3×11,34=2×17,35=5×7,63=23×7,85=5×17,91=7×13,143=11×13.由于质因数13出现在26、91、143三个数中,故至少要分成三组,可以分成如下3组:将26、33、35分为一组,91、34、33分为一组,而143、63、85分为一组.所以,至少要分成3组.8.图10-1中两个圆只有一个公共点A,大圆直径48厘米,小圆直径30厘米.两只甲虫同时从A 出发,按箭头所指的方向以相同的速度分别爬了几圈时,两只甲虫首次相距最远?【分析与解】圆内的任意两点,以直径两端点得距离最远.如果沿小圆爬行的甲虫爬到A点,沿大圆爬行的甲虫恰好爬到B点,两甲虫的距离便最远.小圆周长为π×30=307r,大圆周长为48π,一半便是24π,30与24的最小公倍数时120.120÷30=4.120÷24=5.所以小圆上甲虫爬了4圈时,大圆上甲虫爬了5个12圆周长,即爬到了过A的直径另一点B.这时两只甲虫相距最远.9.设a与b是两个不相等的非零自然数.(1)如果它们的最小公倍数是72,那么这两个自然数的和有多少种可能的数值?(2)如果它们的最小公倍数是60,那么这两个自然数的差有多少种可能的数值?【分析与解】 (1)a与b的最小公倍数72=2×2×2×3×3,有12个约数:1,2,3,4,6,8,9,12,18,24,36,72.不妨设a>b.:当a=72时,b可取小于72的11种约数,a+b≥72+1=73;:当a=36时,b必须取8或24,a+b的值为44或60,均不同第一种情况中的值;:当a=24时,b必须取9或18,a+b的值为33或42,均不同第一、二种情况中的值;当a=18时,b必须取8,a+b=26,不同于第一、二、三种情况的值;:当a=12时,b无解;:当a=9时,b必须取8,a+b=17,不同于第一、二、三、四情况中的值.总之,a+b可以有ll+2+2+1+1=17种不同的值.(2)60=2×2×3×5,有12个约数:1,2,3,4,5,6,10,12,15,20,30,60.a、b为60的约数,不妨设a>b.:当a=60时,b可取60外的任何一个数,即可取11个值,于是a-b可取11种不同的值:59,58,57,56,55,54,50,48,45,40,30;.当a=30时,b可取4,12,20,于是a-b可取26,18,10;:当a=20时,b可取3,6,12,15,所以a-b可取17,14,8,5;当a=15时,b可取4,12,所以a-b可取11,3;: 当a=12时,b可取5,10,所以a-b可取7,2.总之,a-b可以有11+3+4+2+2=22种不同的值.10.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳142米,黄鼠狼每次跳324米,它们每秒钟都只跳一次.比赛途中,从起点开始每隔3128米设有一个陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?【分析与解】由于3128÷142=114,3128÷324=92.所以狐狸跳4个3128米的距离时将掉进陷阱,黄鼠狼跳2个3128米的距离时,将掉进陷阱.又由于它们都是一秒钟跳一次,因此当狐狸掉进陷阱时跳了11秒,黄鼠狼掉进陷阱时跳了9秒,因此黄鼠狼先掉进陷阱,此时狐狸跳了9秒.距离为9×142=40.5(米).11.在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0)【分析与解】我们知道18,33的最小公倍数为[18,33]=198,所以每198个数一次.1~198之间只有1,2,3,…,17,198(余O)这18个数除以18及33所得的余数相同,而999÷198=5……9,所以共有5×18+9=99个这样的数.12.甲、乙、丙三数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2倍.求A等于多少?【分析与解】由题意知4倍393除以A的余数,等于2倍939除以A的余数,等于甲603除以A的余数.即603÷A=a……k;(2×939)÷A=b……k;(4×393)÷A=c……k.于是有(1878-603)÷A=b-a;(1878-1572)÷A=b-c;(1572-603)÷A=c-a.所以A为1275,306,969的约数,(1275,306,969)=17×3=51.于是,A可能是51,17(不可能是3,因为不满足余数是另一余数的4倍).当A为51时,有603÷51=11……42;939÷51=18……21;393÷51=7……36.不满足;当A为17时,有603÷17=35……8;939÷17=55……4;393÷17=23……2;满足.所以,除数4为17.13.证明:形如11,111,1111,11111,…的数中没有完全平方数.【分析与解】我们知道奇数的完全平方数是奇数,偶数的完全平方数为偶数,而奇数的完全平方数除以4余1,偶数的完全平方数能被4整除.现在这些数都是奇数,它们除以4的余数都是3,所以不可能为完全平方数.4n+4n+1,显然除以4余1.评注:设奇数为2n+1,则它的平方为214.有8个盒子,各盒内分别装有奶糖9,17,24,28,30,31,33,44块.甲先取走一盒,其余各盒被乙、丙、丁3人所取走.已知乙、丙取到的糖的块数相同且为丁的2倍.问:甲取走的一盒中有多少块奶糖?【分析与解】我们知道乙、丙、丁三人取走的七盒中,糖的块数是丁所取糖块数的5倍.八盒糖总块数为9+17+24+28+30+31+33+44=216.从216减去5的倍数,所得差的个位数字只能是1或6.观察各盒糖的块数发现,没有个位数字是6的,只有一个个位数字是1的数31.因此甲取走的一盒中有3l块奶糖.15.在一根长木棍上,有三种刻度线.第一种刻度线将木棍分成10等份;第二种将木棍分成12等份;第三种将木棍分成15等份.如果沿每条刻度线将木棍锯断,那么木棍总共被锯成多少段?【分析与解】 10,12,15的最小公倍数[10,12,15]=60,把这根木棍的160作为一个长度单位,这样,木棍10等份的每一等份长6个单位;12等份的每等份长5个单位;15等份的每等份长4单位.不计木棍的两个端点,木棍的内部等分点数分别是9,11,14(相应于10,12,15等份),共计34个.由于5,6的最小公倍数为30,所以10与12等份的等分点在30单位处相重,必须从34中减1.又由于4,5的最小公倍数为20,所以12与15等份的等分点在20单位和40单位两处相重,必须再减去2.同样,6,4的最小公倍数为12,所以15与10等份的等分点在12,24,36,48单位处相重,必须再减去4.由于这些相重点各不相同,所以从34个内分点中减去1,再减去2,再减去4,得27个刻度点.沿这些刻度点把木棍锯成28段.。

数论综合(一)

数论综合(一)

年级六年级学科奥数版本通用版课程标题数论综合(一)编稿老师宋玲玲一校林卉二校黄楠审核高旭东谈到数论,顾名思义是和数有关的理论,具体地说是和整数有关的理论,小学奥数中的数论问题包括:整数的整除性,同余,奇数与偶数,质数与合数,约数与倍数,整数的分解与分拆等。

作为一个理论性比较强的专题,数论在各种考试中都会占很大的比重,而且数论还和数字谜,不定方程等内容有着密切的联系,其重要性是不言而喻的。

对整数a和b(b不为0),如果存在一个整数q,使a=b×q,则a能被b整除,也可以说b整除a,否则就说a不能被b整除。

例如:72=8×9,所以72能被8(或9)整除。

整除有许多性质,下面列出最常用的几个:1. 如果b整除a,则b整除a的倍数;2. 如果b整除a与c,则b整除(a c);3. 如果b整除a,a又整除c,则b一定能整除c;4. 如果a整除c,b也整除c,并且a与b互质,则ab整除c。

在整除问题中,能被2、3、4、5、7、8、9、11、13、25等数整除的数有如下特征:1. 能被2整除的数的特征:个位数字是0、2、4、6、8的整数必能被2整除;2. 能被5整除的数的特征:个位是0或5;3. 能被3(或9)整除的数的特征:各数位上的数字之和能被3(或9)整除;4. 能被4(或25)整除的数的特征:末两位数能被4(或25)整除;5. 能被8(或125)整除的数的特征:末三位数能被8(或125)整除;6. 能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(以大减小)是11的倍数;7. 能被7(11或13)整除的数的特征:这个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除例1. 一个五位数382□□,如果它是3和5的倍数,则□□里最大可以填几?【分析与解】这个五位数382□□能被5整除,则它的个位数字是0或5;又因五位数382□□能被3整除,那么3+8+2+□+□的和能被3整除,即13+□+□的和能被3整除。

2数论综合(学生)

2数论综合(学生)

一、 奇数与偶数的运算性质1.偶数±偶数=偶数,奇数±奇数=偶数。

2.偶数±奇数=奇数。

3.偶数个奇数的和或差是偶数。

4.奇数个奇数的和或差是奇数。

5.偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数。

6.加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。

7.对于任意两个整数a、b ,有a+b 与a-b 同奇或同偶。

二、 常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除。

2. 一个数各位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除。

3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除。

4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除。

三、 整除的性质1. 如果数a 和数b 都能被数c 整除,那么它们的和或差也能被c 整除。

2. 如果数a 能被数b 整除,b 又能被数c 整除,那么a 也能被c 整除。

第二讲数论综合知识概述3. 如果数a 能被数b 与数c 的积整除,那么a 也能被b 或c 整除。

4. 如果数a 能被数b 整除,也能被数c 整除,且数b 和数c 互质,那么a 一定能被b 与c 的乘积整除。

5. 如果数a 能被数b 整除,那么am 也能被bm 整除。

(m 为非0整数)6. 如果数a 能被数b 整除,数c 能被数d 整除,那么bd 也能被ac 整除。

四、 质数与合数1. 质数:一个数除了1和本身没有其他的约数,这个数就称为一个质数,也叫做素数。

2. 合数:一个数除了1和本身还有其他的约数,这个数就称为一个合数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数论综合
A卷
1.两个连续奇数的和乘它们的差,积是304,这两个奇数分别是()和()。

2.一个数分别与相邻的两个奇数相乘,得到的两个乘积相差40,这个数是()。

3.有两个质数,它们之和既是一个小于100的奇数,又是17的倍数,这两个质数的积是()。

4.如果P,P+10,P+20是质数,那么P+2011=()。

5.在89,121,135,480,483中,是3的倍数的有()个。

6.若1a219b7是99的倍数,则a+b的值为()。

7.把91,85,77,65,51,33这六个数分为两组,每组三个数,使两组的积相等,则两组之差为()。

8.已知三个连续偶数的和比其中最大的一个偶数的2倍还多2,这三个偶数分别是()()()。

9.小明在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加,重复这样做,每次所得的和都是7,8,9,10中的一个数,并将这4个数都能取到,猜猜看,小明在这4张纸片上写的数分别是()。

10.一个三位数,各位数字分别为A,B,C,它们互不相等,且都不为0,用A,B,C排得6个不同的三位数,若这6个三位数之和是2664,则这6个三位数中最大的可能是()。

11.已知在一个除法算式中,被除数能被除数整除,除数与商都是质数,被除数,除数和商的积为441.则被除数为()。

12.1到1000的自然数中,不能被3也不能被5整除的数共有()个。

13.一个三位数,既能被8整除,又能被9整除,且5是它的因数,则这个三位数最小是()。

14.一个三位小数四舍五入到百分位约是2.96,这个三位小数最大是()。

15.1008乘一个正整数a,积是一个完全平方数,则a的最小值为()。

16.能被3整除的最小的四位数是()。

17.三个质数的和为140,则这三个质数乘积的最大值是()。

B卷
1.在10以内任意选两个不同的质数,就可以写一个分数,其中最小的是(),能化成有限小数的最简真分数是()。

2.任意两个连续的自然数中,两个数都是质数的有()组。

3.两个质数的倒数相加的和的分子是31,和的分母是()。

4.三个质数的倒数之和为,这三个质数的和是()。

5.在1~~2015这2015个数中,与21互质的数共有()个。

6.12345678987654321除本身之外的最大因数是()。

7.已知A=2×3×3×3×3×5×5×7,在A的两位数的因数中,最大的是()。

8.将2004加上一个整数,使和能被23与31整除,加的整数要尽可能小,那么所加的整数是()。

9.七位数12()345()能被72整除,这()内两个数的积是()。

10.两数相除,商4余3,被除数,除数,商,余数四数之和等于135,则被除数是()。

11.有以下两个数串:1,3,5,7……1991,1993,1995,1997,1999和1,4,10,……1990,1993,1996,1999,同时出现在这两个数串中的数有()个。

12.两个数被13除分别余7和10,那么这两个数的和被13除余()。

13.m个连续自然数之和为35(m>1),m的所有可能取的值之和为()。

14.一个三位数用四舍五入法取近似值是8.30,这个数原来最大是()。

15.一个自然数与4的和能被6整除,与4的差能被8整除,则满足上述条件的最小的自然数是()。

16.一个自然数除以11余2,除以13余9,则这个数最小是()。

相关文档
最新文档