一元一次方程的应用教案
初中七年级上册数学《解一元一次方程》教案优质优秀10篇
初中七年级上册数学《解一元一次方程》教案优质优秀10篇初中七年级上册数学《解一元一次方程》教案优质篇一一、学生起点分析学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。
符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。
学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。
同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。
学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。
二、教学任务分析对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。
为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。
教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。
本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。
教学方法是“引导分类归纳”。
本课时的教学目标如下:1.经历探索有理数加法法则的过程,理解有理数的加法法则;2.能熟练进行整数加法运算;3.培养学生的数学交流和归纳猜想的能力;4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。
一元一次方程的课堂应用教案
一元一次方程的课堂应用教案第一章:引言1.1 课程目标让学生理解一元一次方程的概念,掌握一元一次方程的解法,并能应用于实际问题中。
1.2 教学内容1.2.1 一元一次方程的定义引导学生通过具体例子,理解一元一次方程的定义,即形如ax + b = 0的方程,其中a和b是已知数,x是未知数。
1.2.2 一元一次方程的解法讲解一元一次方程的解法,即通过移项、合并同类项、化简等步骤,求出未知数x的值。
1.3 教学方法采用讲授法,结合具体例子,引导学生理解一元一次方程的概念和解法。
第二章:一元一次方程的解法2.1 课程目标让学生掌握一元一次方程的解法,并能应用于实际问题中。
2.2 教学内容2.2.1 移项讲解移项的概念,即把方程中的未知数移到等式的一边,常数移到等式的另一边。
2.2.2 合并同类项讲解合并同类项的概念,即把方程中同类项合并,化简方程。
2.2.3 化简讲解化简的概念,即通过运算,使方程更加简洁。
2.3 教学方法采用讲授法,结合具体例子,引导学生掌握一元一次方程的解法。
第三章:实际问题中的应用3.1 课程目标让学生能运用一元一次方程解决实际问题,提高学生的应用能力。
3.2 教学内容3.2.1 问题的提出通过具体实例,提出实际问题,引导学生思考如何用一元一次方程解决。
3.2.2 方程的建立讲解如何根据实际问题,建立一元一次方程。
3.2.3 方程的求解讲解如何求解一元一次方程,找到实际问题的答案。
3.3 教学方法采用案例教学法,引导学生通过分析实际问题,建立方程,求解问题。
第四章:巩固练习4.1 课程目标让学生通过练习,巩固对一元一次方程的理解和掌握。
4.2 教学内容提供一系列练习题,让学生运用一元一次方程解决问题。
4.3 教学方法采用自主学习法,让学生独立完成练习题,教师进行辅导和讲解。
5.1 课程目标5.2 教学内容5.3 教学方法第六章:案例分析6.1 课程目标让学生通过分析具体案例,进一步理解和掌握一元一次方程的解法及其应用。
一元一次方程教案最新7篇
一元一次方程教案最新7篇元一次方程教学设计篇一一、教材分析1、教材地位和作用本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。
是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。
并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。
要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
2、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义⒈.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念⒈.体会解决问题的一种重要的思想方法----尝试检验法⒈.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程3、教学重点和难点重点:一元一次方程的概念和用尝试检验法求方程的解难点:利用等式的两个性质解一元一次方程二、教法与学法分析:教法方法与手段:本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。
采用教师引导,学生自主探索、观察、归纳的教学方式。
利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。
学法指导:根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。
通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。
小学数学《一元一次方程的应用》教案
小学数学《一元一次方程的应用》教案元一次方程篇一教学目标1.使学生正确认识含有字母系数的一元一次方程。
2.使学生掌握含有字母系数的一元一次方程的解法。
3.使学生会进行简单的公式变形。
4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力。
5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣。
教学重点:(1)含有字母系数的一元一次方程的解法。
(2)公式变形。
教学难点:(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系。
(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形。
教学方法启发式教学和讨论式教学相结合教学手段多媒体教学过程(一)复习提问提出问题:1.什么是一元一次方程?在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.2.解一元一次方程的步骤是什么?答:(1)去分母、去括号。
(2)移项——未知项移到等号一边常数项移到等号另一边。
注意:移项要变号。
(3)合并同类项——提未知数。
(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程。
(二)引入新课提出问题:一个数的a倍(a≠0)等于b,求这个数。
引导学生列出方程:ax=b(a≠0).让学生讨论:(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程。
)强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项。
(三)新课1.含有字母系数的一元一次方程的定义ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程。
2.含有字母系数的一元一次方程的解法教师提问:ax=b(a≠0)是一元一次方程,而a、b是已知数,就可以当成数看,就像解一般的一元一次方程一样,如下解出方程:ax=b(a≠0).由学生讨论这个解法的思路对不对,解的过程对不对?在学生讨论的基础上,教师归纳总结出含有字母函数的一元一次方程和过去学过的一元一次方程的解法的区别和联系。
求解一元一次方程数学教案(精选6篇)
求解一元一次方程数学教案(精选6篇)解一元一次方程的教案篇一一、教学目标知识与技能1、会根据实际问题中的数量关系列方程解决问题。
2、熟练掌握一元一次方程的解法。
过程与方法培养学生的数学建模能力,以及分析问题解、决问题的能力。
情感态度与价值观1、通过问题的解决,培养学生解决问题的能力。
2、通过开放性问题的设计,培养学生的创新能力和挑战自我的意识,增强学生的学习兴趣。
二、重点难点重点根据题意,分析各类问题中的等量关系,熟练的列方程解应用题。
难点弄清题意,用列方程解决实际问题。
三、学情分析学生在上一节课已经学习了一元一次方程的解法,对于学生来说解方程已不是问题了,本节课是以上一节课为基础,用方程来解决实际问题,只要学生读懂题意,建立数学模型,用一元一次方程会解决就行了。
四、教学过程设计教学环节问题设计师生活动备注情境创设讨论交流:按怎样的解题步骤解方程才最简便?由此你能得到怎样的启发。
创设问题情境,引起学生学习的兴趣。
学生动手解方程自主探究问题一:一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是,乙每天的工作效率是,两人合作3天完成的工作量是,此时剩余的工作量是。
问题二:某项工作,甲单独做需要4小时,乙单独做需要6小时,如果甲先做30分钟,然后甲、乙合作,问甲、乙合作还需要多久才能完成全部工作?问题三:整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同。
解一元一次方程的教案篇二一、目标:知识目标:能熟练地求解数字系数的一元一次方程(不含去括号、去分母)。
过程方法目标:经历和体会解一元一次方程中“转化”的思想方法。
情感态度目标:在数学活动中获得成功的喜悦,增强自信心和意志力,激发学习兴趣。
二、重难点:重点:学会解一元一次方程难点:移项三、学情分析:知识背景:学生已学过用等式的性质来解一元一次方程。
能力背景:能比较熟练地用等式的性质来解一元一次方程。
求解一元一次方程数学教案(优秀7篇)
求解一元一次方程数学教案(优秀7篇)解一元一次方程的教案篇一教学目标知识技能:1.用一元一次方程解决“数字型”问题;2.能熟练的通过合并,移项解一元一次方程;3.进一步学习、体会用一元一次方程解决实际问题。
过程方法通过学生自主探究,师生共同研讨,体验将实际问题转化成数学问题,学会探索数列中的规律,建立等量关系并加以解决,同时进一步渗透化归思想。
情感态度经历运用方程解决实际问题的过程,发展抽象、概括、分析和解决问题的能力,体会数学对实践的指导意义。
重点建立一元一次方程解决实际问题的模型。
难点探索并发现实际问题中的等量关系,并列出方程。
环节教学问题设计教学活动设计情境引入牵线搭桥,解下列方程:(1)-5x+5=-6x;(2);(3)0.5x+0.7=1.9x;总结解“ax+b=cx+d”类型的一元一次方程的步骤方法。
引出问题即课本例3问:你能利用所学知识解决有关数列的问题吗?教师:出示题目,提出要求。
学生:独立完成,根据讲评核对、自我评价,了解掌握情况。
探究一:数字问题例3有一列数,按一定规律排列成1,-3,9,-27,81,-243……其中某三个相邻数的和是-1701,这三个数各是多少?1.引导学生观察这列数有什么规律?①数值变化规律?②符号变化规律?结论:后面一个数是前一个数的-3倍。
2.怎样求出这三个数?①设三个相邻数中的第一个数为x,那么其它两个数怎么表示?②列出方程:根据三个数的和是-1701列出方程。
③解略变式:你能设其它的数列方程解出吗?试一试。
比比较哪种设法简单。
探究二:百分比问题(习题3.2第8题)某乡改种玉米为种优质杂粮后,今年农民人均收入比去年提高20%.今年人均收入比去年的1.5倍少1200元。
这个乡去年农民人均收入是多少元?①若设这个乡去年农民人均收入是x元,今年人均收入比去年提高20%,那么今年的收入是_________元;②因为今年的人均收入比去年的1.5倍少1200元,所以今年的收入又可以表示为_________元。
解一元一次方程 教学设计【优秀3篇】
解一元一次方程教学设计【优秀3篇】篇一:解一元一次方程教学设计1白话文的我细心为您带来了解一元一次方程教学设计【优秀3篇】,希望能够帮助到大家。
篇一:解一元一次方程教案设计篇一一。
教学目标:1。
学问目标:了解一元一次方程的概念,驾驭含括号的一元一次方程的解法。
2。
实力目标:培育学生的运算实力与解题思路。
3。
情感目标:通过主动探究,合作学习,相互沟通,体会数学的严谨,感受数学的魅力,增加学习数学的爱好。
二。
教学的重点与难点:1。
重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。
2。
难点:括号前面是负号时,去括号时遗忘变号。
移项法则的敏捷运用。
三。
教学方法:1。
教法:讲课结合法2。
学法:看中学,讲中学,做中学3。
教学活动:讲授四。
课型:新授课五。
课时:第一课时六。
教学用具:彩色粉笔,小黑板,多媒体七。
教学过程1。
创设情景:今日让我们一起做个小小的嬉戏,这个嬉戏的名字叫:猜猜你心中的她心里想一个数将这个数+2将所得结果最终+7将所得的结果告知老师(抽一个同学,让他把他计算的`结果告知老师,由老师通过计算得到他最起先所想的数字。
)老师:同学们知道老师是怎样猜到的吗?同学:不知道。
老师:那同学们想知道老师是怎样猜到的吗?这就是我们今日所要学习的内容解一元一次方程。
2。
探究新知:一元一次方程的概念:前面我们遇到的一些方程,例如 3老师:大家视察这些方程,它们有什么共同特征?(提示:视察未知数的个数和未知数的次数。
)(抽同学起来回答,然后再由老师概括。
)只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程。
老师:同学们从这个概念中,能找出关键的字吗?能用它来推断一个式子是否是一元一次方程吗?再次强调特征:(1)只含一个未知数;(2)未知数的次数为1;(3)是一个整式。
(留意:这几个特征必需同时满意,缺一不行。
)3。
例题讲解:例1推断如下的式子是一元一次方程吗?(写在小黑板上,让学生推断,并分别抽同学起来回答,假如不是,要说出理由。
一元一次方程的应用教案
一元一次方程的应用教案第一章:引言1.1 教学目标了解一元一次方程的概念及其在实际生活中的应用。
学会列出一元一次方程并解之。
1.2 教学内容引出一元一次方程的概念。
通过实际例子展示一元一次方程的应用。
1.3 教学方法采用问题解决的方式,引导学生通过思考和讨论来理解一元一次方程的概念。
1.4 教学步骤引入一元一次方程的概念,并给出简单的例子。
让学生尝试解决实际问题,并引导他们发现问题可以用方程来表示。
讲解一元一次方程的解法,并通过练习题巩固学生的理解。
第二章:一元一次方程的解法2.1 教学目标学会解一元一次方程。
2.2 教学内容讲解一元一次方程的解法,包括加减法、乘除法等。
2.3 教学方法通过例题和练习题,引导学生掌握一元一次方程的解法。
2.4 教学步骤讲解一元一次方程的解法,包括加减法、乘除法等。
提供练习题,让学生通过解题来巩固所学的方法。
第三章:实际问题与一元一次方程3.1 教学目标学会将实际问题转化为一元一次方程,并解决之。
3.2 教学内容讲解如何将实际问题转化为一元一次方程。
提供实际问题的例子,让学生尝试解决。
3.3 教学方法通过实际问题的例子,引导学生将问题转化为方程,并解决之。
3.4 教学步骤给出一个实际问题,引导学生思考如何将其转化为方程。
讲解如何解这个方程,并通过练习题巩固学生的理解。
第四章:应用举例4.1 教学目标学会使用一元一次方程解决实际问题。
4.2 教学内容提供一些应用一元一次方程的例子。
4.3 教学方法通过实际问题的例子,引导学生应用一元一次方程解决问题。
4.4 教学步骤给出一个实际问题,引导学生思考如何应用一元一次方程来解决。
讲解如何应用方程,并通过练习题巩固学生的理解。
第五章:总结与提高5.1 教学目标总结一元一次方程的应用,提高解题能力。
5.2 教学内容总结一元一次方程的应用。
5.3 教学方法通过练习题,引导学生总结一元一次方程的应用。
5.4 教学步骤提供一些练习题,让学生通过解题来总结一元一次方程的应用。
一元一次方程教案(4篇)
一元一次方程教案〔4篇〕元一次方程教案篇一一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、学问与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:〔1〕通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进展猜测、推断。
〔2〕运用所学过的数学学问进展分析,演练、合作探究,体会数学学问在社会活动中的运用,提高应用学问的力气和社会实践力气。
3、情感态度与价值观:通过数学活动,激发学生学习数学兴趣,增加自信念,进一步进展学生合作沟通的意识和力气,体会数学与现实的联系,培育学生求真的科学态度。
三、重难点与关键1、重点:经受探究具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。
2、难点:以上重点也是难点3、关键:明确问题中的量与未知量间的关系,查找等量关系。
四、教具预备:投影仪,每人一根质地均匀的直尺,一些一样的棋了和一个支架。
五、教学过程:(一)活动1一种商品售价为2.2元件,假设买100件以上超过100件局部的售价为2元/件,某人买这种商品n件,争论下面问题:这个人买了n件商品需要多少元?教师活动:〔1〕把学生每四人分成一组,进展合作学习,并参入学生中一起探究。
〔2〕教师对学生在发表解法时存在的问题加以指正。
学生活动:〔1〕分组后对活动一的问题开放争论,探究解决问题的方法。
〔2〕学生派代表上黑板板演,并发表解法。
解:2.2nn1002.2100+2(n-100)n100问题转换:一种商品售价为2.2元/件,假设买100件以上超过100件局部的售价为2元/件,某人买这种商品共花了n元,争论下面的问题:〔1〕这个人买这种商品多少件?〔2〕假设这个人买这种商品的件数恰是0.48n,那么n的值是多少?教师活动:同上学生活动:同上解:(1)n220100+n220〔2〕=0.48nn=0100+=0.48nn=500(二)活动2:本活动课前布置学生做好活动前的预备工作:1、预备一根质地均匀的直尺,一些一样的棋子和一个支架。
九年级数学教案 一元一次方程的应用9篇
九年级数学教案一元一次方程的应用9篇一元一次方程的应用 15.3 用方程解决问题(2)--打折销售学习目标:1、进一步经历运用方程解决实际问题的过程。
2、提高学生找等量关系列方程的能力。
3、培养学生的抽象、概括、分析和解决问题的能力。
4、学会用数学的眼光去看待、分析现实生活中的情景。
重点:1.如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性.2. 解决打折销售中的有关利润、成本价、卖价之间的相关的现实问题。
难点:如何从实际问题中寻找等量关系建立方程.学习指导:一、知识准备1.通过社会调查,亲历打折销售这一现实情境,了解打折销售中的成本价、卖价和利润之间的关系。
进而能根据现实情境提出数学问题。
2.谈一谈:请举例说明打折、利润、利润率、提价及削价的含义分别是什么?3.算一算:(1)原价100元的商品,打8折后价格为元;(2)原价100元的商品,提价40%后的价格为元;(3)进价100元的商品,以150元卖出,利润是元。
二、学习新课一、思考:1、把下面的“折扣”数改写成百分数。
九折八八折七五折2、你是怎样理解某种商品打“八折”出售的?二、问题:1、说说“打折销售”中自己有过的亲身经历。
2、假设你是一个商店老板,你的追求是什么?3、你是怎样理解商品的利润?三、新知探讨1 、你认为商品的标价、折数与商品的卖价之间有怎样的关系?2、结合实际,说说你从打折销售中可以获得哪些数学问题?(1)某商店出售一种录音机,原价430元,现在打九折出售,比原价便宜多少钱?(2)一种画册原价每本16元,现在按每本11.2元出售。
这种画册按原价打了几折?(3)、为庆祝“六一儿童节”,某书店所有儿童读物一律八折优惠,小明花了24元买了一套读物,请问这套读物原价是多少?(4)一家商店将某种服装按成本价提高40%后卖出,已知每件服装的成本价是125元,每件服装获利多少?2、例题:一家商店将某种服装按成本价提高40%后标价,又以8 折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?如果设每件服装的成本价为x元,根据题意,(1)每件服装的标价为:()(2)每件服装的实际售价为:()(3)每件服装的利润为:()(4)列出方程,并解答:四、回顾与反思通过这节课的学习,你最大的收获是什么?在调查中你还遇到哪些难解的问题,看看大家是不是可以给你解答?作业:作业纸。
浙教版数学七年级上册5.4一元一次方程的应用(教案)
5.4.1一元一次方程的应用(教案)课题 5.4一元一次方程的应用(1)单元第5章一元一次方程学科数学年级七年级学习目标情感态度和价值观目标比较列算式和列方程解应用题的异同,感受列方程解应用题的优越性.能力目标培养逻辑思维能力,提高他们发现问题、分析问题和解决问题的能力.知识目标 1.寻找等量关系列方程2.会列一元一次方程解决实际问题.重点掌握列方程解应用题的一般步骤.难点.会找相等关系;学法合作、交流、归纳、反思.教法启发式、问题引导探究法.教学过程教学环节教师活动学生活动设计意图导入新课导入新课第16届亚运会在我国广州进行.会徽(如图)设计以柔美上升的线条,构成了一个造型酷似火炬的五羊外形轮廓,象征亚运会的圣火熊熊燃烧、永不熄来灭.我国获得416枚奖牌,其中银牌119枚,金牌数是铜牌数的2倍还多3枚.请你算一算,其中金牌有多少枚?阅读..引入本节课的探究.讲授新课列一元一次方程解决实际问题的一般步骤:(1)能直接列出算式求2010年亚运会我国获得的金牌数吗?(2)如果用列方程的方法来解,设哪个知数为x?(3)题目中的相等关系是什么?根据相等关系你能列出怎样的方程?方程的解是多少?进行探究.比较列算式和列方程解应用题的异同,感受列方程解应用题的优越性.典例解析:例1某文艺团体为“希望工程”募捐义演,全价票为每张18元,学生享受半价.某场演出共售出966张,收入15480元,问这场演出共售出学生票多少张?分析:题中涉及的数量有人数、票价、总票价,它们之间的相等关系有:票数×票价=____________;学生的票价=______ ×全价票的票价;全价票张数+学生票张数=________;全价票的总票价+学生票的总票价=______.设这场演出售出学生票x张,完成下表:针对练习:人民公园售出两种门票,成人票每张8元,儿童票每张5元,现在共售出3500张,总金额为23500元,这两种门票各售出多少张?列一元一次方程解决实际问题的一般步骤是:1、审题:分析题意,找出题中的数量及其关系;2、设元:选择一个适当的未知数用字母表示x;3、列方程:根据相等关系列出方程;4、解方程:求出未知数的值;5、检验:检查求得的值是否正确和符合实际情形,并写出答案.例2 A、B两地相距60千米,甲乙两人从A、B两地骑自行车出发,相向而行.甲每小时比乙多行2千米,经过2小时相遇.问甲乙两人的速度分别是多少?分析本题涉及路程、速度、时间三个基本量,它们之间有如下关系:路程=______________;甲的速度=______________;甲的行程+乙的行程=______.设乙的速度为x千米/时,完成下表:完成例1和针对练习.归纳一元一次方程解简单应用题的步骤.完成例2及针对练习.理解一元一次方程解简单应用题的方法和步骤.理解并掌握一元一次方程解简单应用题的步骤.针对练习:甲乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行110公里.(1)两车同时开出,背向而行,多少小时后两车相距800公里?(2)两车同时开出,同向而行,出发时快车在慢车的后面,多少小时后两车相距40公里?完成例4及针对练习.会列出一元一次方程解简单的行程问题.巩固提升1、今年小明和小刚分别为15岁和6岁,那么什么时候小明的年龄是小刚的2倍?若设x年后,小明的年龄是小刚的2倍,根据题意建立方程为()A.15+x=2x+6 B.15+x=2(x+6)C.15x=2(x+6)D.2x+15=x+62、甲、乙两车同时分别从A,B两地相向而行,甲车速度是45 km/h.两地相距190 km,2 h后相遇,问:乙车的速度是多少?设乙车的速度是x km/h,那么下列方程正确的是()A.2(45-x)=190 B.2(x-45)=190C.2(45+x)=190 D.45+x=190×23、A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t小时两车相距50千米,则t的值是()A.2或2.5 B.2或10C.10或12.5 D.2或12.5 完成练习.通过练习,掌握列一元一次方程解简单的实际问题.拓展提升:“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,请利用方程求小张的车速应为多少?(2)相遇时,小张走了多少路程?针对练习:父子俩在同一工厂工作,父亲从家到工厂步行需40分钟,儿子步行需30分钟,两人都步行上班,如果父亲比儿子早动身5分钟,儿子多长时间能追上父亲?课堂小结列一元一次方程解决实际问题的一般步骤是:审题、设元、列方程、解方程、检验.对本节课的知识点进行归纳.培养学生归纳总结的能力,掌握列一元一次方程解简单的应用题.板书列一元一次方程解决实际问题的一般步骤是:审题、设元、列方程、解方程、检验.例1例2。
七年级数学教案 一元一次方程9篇
七年级数学教案一元一次方程9篇一元一次方程 1一、素质教育目标(一)知识教学点1.要求学生学会用移项解方程的方法.2.使学生掌握移项变号的基本原则.(二)能力训练点由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.(三)德育渗透点用代数方法解方程中,渗透了数学中的化未知为已知的重要数学思想.(四)美育渗透点用移项法解方程明显比用前面的方法解方程方便,体现了数学的方法美.二、学法引导1.教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛.2.学生学法:练习→移项法制→练习三、重点、难点、疑点及解决办法1.重点:移项法则的掌握.2.难点:移项法解一元一次方程的步骤.3.疑点:移项变号的掌握.四、课时安排3课时五、教具学具准备投影仪或电脑、自制胶片、复合胶片.六、师生互动活动设计教师出示探索性练习题,学生观察讨论得出移项法则,教师出示巩固性练习,学生以多种形式完成.七、教学步骤(一)创设情境,复习导入师提出问题:上节课我们研究了方程、方程的解和解方程的有关知识,请同学们首先回顾上节课的有关内容;回答下面问题.(出示投影1)利用等式的性质解方程(1) ; (2) ;解:方程的两边都加7,解:方程的两边都减去,得,得,即 . 合并同类项得 .【教法说明】通过上面两小题,对用等式性质解方程进行巩固、回忆,为讲解新方法奠定基础.提出问题:下面我们观察上面方程的变形过程,从中观察变化的项的规律是什么?(二)探索新知,讲授新课投影展示上面变形的过程,用制作复合式运动胶片将上面的变形展示如下,让学生观察在变形过程中,变化的项的变化规律,引出新知识.(出示投影2)师提出问题:1.上述演示中,两个题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果派代表上报教师,最好分四组,这样节省时间.师总结学生活动的结果:大家讨论的结论,有如下共同点:①方程(1)的已知项从左边移到了方程右边,方程(2)的项从右边移到了左边;②这些位置变化的项都改变了原来的符号.【教法说明】在这里的投影变化中,教师要抓住时机,让学生发现变化的规律,准确掌握这种变化的法则,也是为以后解更复杂方程打下好的基础.师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.(三)尝试反馈,巩固练习师提出问题:我们可以回过头来,想一想刚解过的两个方程哪个变化过程可以叫做移项.学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.【教法说明】可由学生对前面两个解方程问题用移项过程,重新写一遍,以理解解方程的步骤和格式.对比练习:(出示投影3)解方程:(1) ; (2) ;(3) ; (4) .学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、合并同类项、检验.)【教法说明】这部分教学旨在于使学生学会用移项这一手段解方程的方法,通过学生动手尝试,理解解方程的步骤,从而掌握移项这一法则.巩固练习:(出示投影4)通过移项解下列方程,并写出检验.(1) ; (2) ;(3) ; (4) .【教法说明】这组题训练学生解题过程的严密性,故采取学生亲自动手做,四个同学板演形式完成.(四)变式训练,培养能力(出示投影5)口答:1.下面的移项对不对?如果不对,错在哪里?应怎样改正?(1)从,得到;(2)从,得到;(3)从,得到;2.小明在解方程时,是这样写的解题过程:;(1)小明这样写对不对?为什么?(2)应该怎样写?【教法说明】通过以上两题进一步印证移项这种变形的规律,即“移项要变号”.要使学生认清这里的移项是把某项从方程的一边移到另一边而不是在同一边交换位置,弄懂解方程的书写格式是方程在变形,变形时保持“左右两边相等”这一数学模式.(出示投影6)用移项解方程:(1) ; (2) ;(3) ; (4) .【教法说明】这组题增加了难度,即移项变形是左右两边都有可移的项,教学时由学生思考后再进行解答书写,可提醒学生先分组讨论,各组由一名同学叙述解题过程,教师归纳出最严密最精炼的解题过程,最后全体学生都做这几个题目.学生活动:5分钟竞赛:规则是分两大组,基础分100分,每组同学全对1人加10分,不全对1人减10分,互相判题,学习委员记分.(出示投影7)解下列方程:(1) ; (2) ; (3) ;(4) ; (5) ; (6) .【教法说明】这组题用竞赛的形式,由学生独立完成是为了培养学生的解方程的速度和能力,同时激发学生的竞争意识,从而达到调动全体学生参与的目的,而互相评判更增加了课堂上的民主意识.(五)归纳小结师:今天我们学习了解方程的变形方法,通过学习我们应该明确两个方面的问题:①解方程需把方程中的项从一边移到另一边,移项要变号这是重点.②检验要把所得未知数的值代入原方程.八、随堂练习1.判断下列移项是否正确(1)从得()(2)从得()(3)从得()(4)从得()2.选择题(1)对于方程,移项正确的是()A. B.C. D.(2)对于方程移项正确的是()A. B.C. D.3.用移项法解方程,并写出检验(1) ;(2) ;(3) .九、布置作业课本第205页A组1.(1)(3)(5).十、板书设计随堂练习答案1.×××√2.D C3.略作业答案(5)解:移项得合并同类项得检验:略探究活动运动与学习成绩班里共有25个学生,其中17人会骑自行车,13人会游泳,8人会打篮球.全部掌握这三种运动项目的学生一个也没有.在这25个学生中,有6人数学成绩不及格.而参加以上运动的学生中,有2人数学成绩优秀,没有数学不及格的(学习成绩分优秀、良好、及格、不及格).问:全班数学成绩优秀的学生有几名?既会游泳又会打篮球的有几人?参考答案:全班数学成绩及格的学生有25-6=19(人),参加运动的人次共有17+13+8=38,因没有一个学生掌握三个运动项目,且数学没有不及格的,所以参加运动的学生共19人.每人掌握两个运动项目,19人中有17个会骑自行车,只有两个学生同时会游泳又会打篮球.参加运动的共19人,且数学成绩全部及格,不参加运动的数学全不及格,所以全班数学成绩优秀的学生只有2名.一元一次方程 2一元一次方程的复习复习目标:(1)了解方程、一元一次方程以及方程的解等基本概念。
《一元一次方程》教学设计精选11篇
《一元一次方程》教学设计精选11篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《一元一次方程》教学设计精选11篇作为一位优秀的人·民教师,常常需要准备教案,教案是教学蓝图,可以有效提高教学效率。
一元一次方程的解法数学教案设计5篇
一元一次方程的解法数学教案设计5篇元一次方程篇一方程是处理问题的一种很好的途径,而解方程又是这种途径必须要掌握的。
这节课上学生是带着上一节课的内容来学习的,现对这部分内容总结如下:本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,当然今天是第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。
总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;(划线的两种情况出现最多);针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。
(由于时间的关系,本节课这一点做得还不够完善,可从学生的作业中反应出来。
)再让学生总结注意点,教师进行点拨。
最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。
总的来说,虽然课堂上同学们总结错误点总结的不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。
在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。
另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。
初中七年级上册数学《解一元一次方程》教案优质篇二教学目的:知识与技能目标:会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。
一元一次方程的应用说课稿范文(17篇)
一元一次方程的应用说课稿范文(17篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、党团范文、工作计划、演讲稿、活动总结、行政公文、文秘知识、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, Party and Youth League model essays, work plans, speeches, activity summaries, administrative documents, secretarial knowledge, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次方程的应用说课稿范文(17篇)教案模板可以帮助教师记录教学过程中的问题和反思,为教学改进提供参考。
《一元一次方程的应用》教案
《一元一次方程的应用》教案教学目标1、了解一元一次方程在解决实际问题中的应用、体会运用方程解决问题的关键是抓住等量关系,建立数学模型等量关系,建立数学模型. .2、学会通过分析图形问题中的基本等量关系,并由此关系列方程解相关的应用题、学会通过分析图形问题中的基本等量关系,并由此关系列方程解相关的应用题. .3、能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题、能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题..熟悉行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换. .4、整体把握打折问题中的基本量之间的关系:整体把握打折问题中的基本量之间的关系:商品利润商品利润商品利润==商品售价-商品成本价;商品售价-商品成本价;商品商品的利润率的利润率==利润÷成本×100%.5、探索打折问题中的等量关系,建立一元一次方程、探索打折问题中的等量关系,建立一元一次方程. .教学重点与难点重点:重点:((1)寻找图形问题中的等量关系,寻找图形问题中的等量关系,建立方程;建立方程;建立方程;((2)根据具体问题列出的方程,根据具体问题列出的方程,掌握掌握其简单的解方程的方法其简单的解方程的方法. .难点:寻找图形问题中的等量关系,建立数学模型,建立一元一次方程,使实际问题数学化学化. .教学准备多媒体课件、例题用到的实物多媒体课件、例题用到的实物. .教学过程一、创新情境,引入新课一、创新情境,引入新课教师:怎样解答本章“情景导航”中的问题?与同学交流教师:怎样解答本章“情景导航”中的问题?与同学交流教师:根据题意,请思考下列问题:教师:根据题意,请思考下列问题:(1)题目中哪些是已知量?哪些是未知量?题目中哪些是已知量?哪些是未知量?…………(3)题目中的等量关系是什么?题目中的等量关系是什么?…………二、合作探究,展示交流二、合作探究,展示交流根据题意列出方程:根据题意列出方程:x +2x +4x +8x +16x +32x +64x =381. 我们可以把这个方程看做“宝塔问题”的一个“数学模型”我们可以把这个方程看做“宝塔问题”的一个“数学模型”. .教师:很好,我这儿有一个问题:某居民楼顶有一个底面直径和高均为4m 的圆柱形储水箱、现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m 减少为3.2m ,那么在容积不变的前提下,水箱的高度将由原先的4m 增高为多少米?你能帮他吗?帮他吗?学生:用一元一次方程来解、这个问题的等量关系:旧水箱的体积学生:用一元一次方程来解、这个问题的等量关系:旧水箱的体积==新水箱的体积新水箱的体积. . 教师:同学们分析得很好,列方程时,关键是找出问题中的等量关系教师:同学们分析得很好,列方程时,关键是找出问题中的等量关系..下面我们如果设新水箱的高为x m ,通过填写下表来看一下旧水箱的体积和新水箱的体积、,通过填写下表来看一下旧水箱的体积和新水箱的体积、旧水箱旧水箱 新水箱新水箱 底面半径底面半径//m2 1、6 高/m4 x 体积体积//m 3 π×22×4 π×1、62×x(学生计算填表,让一位同学说出自己的结果学生计算填表,让一位同学说出自己的结果) )学生:旧水箱的圆柱的底面半径为4÷2=2m ,高为4米,所以旧水箱的圆柱的体积为π×222×4m 33;新水箱的圆柱的底面半径为3.2÷2=1.6m ,高设为x m ,所以新水箱的体积为π×1.62×x .由等量关系我们便可得到方程:π×22×4=π×1.62×x .教师:列出方程我们只是走完“万里长征”重要的第一步,如何解这个方程呢?教师:列出方程我们只是走完“万里长征”重要的第一步,如何解这个方程呢? 学生:将π换成3.14,算出x 的系数π×22,然后将系数化为1就解出了方程就解出了方程. .学生:我认为应先观察方程的特点,左右两边都含有π,可用等式的第二个性质,方程两边同时除以π,可使方程变得简单,可使方程变得简单. .教师:这位同学的想法很好、下面我们共同把这个题的过程写一下教师:这位同学的想法很好、下面我们共同把这个题的过程写一下. .解:设新水箱圆柱的高为x 厘米,厘米,根据题意,列出方程π×22×4=π×1.62×x ,解得x =254. 答:高变成了254米. 教师:通过本题的解答过程,你能总结一下列一元一次方程解决实际问题的步骤吗? (学生认真思考后,小组内交流、教师适时引导共同归纳出列一元一次方程解决实际问题的步骤:理解题意、寻找等量关系、设未知数列方程、解方程、作答题的步骤:理解题意、寻找等量关系、设未知数列方程、解方程、作答.) .)设计意图:设置丰富的问题情境,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望学习的欲望. .探究:周长相等问题探究:周长相等问题教师:用你手中的铁丝围成一个四边形,在所有的四边形中他们的周长有什么特点? 学生:不变,都相等学生:不变,都相等. .教师:所围成的四边形的面积变化吗?动手操作试一试教师:所围成的四边形的面积变化吗?动手操作试一试. .(学生动手操作,操作完成后让学生汇报结果学生动手操作,操作完成后让学生汇报结果) )学生:面积发生变化学生:面积发生变化. .教师:下面以小组为单位,借助你手中的铁丝,依据上一题的解题经验,教师:下面以小组为单位,借助你手中的铁丝,依据上一题的解题经验,小组内分工合小组内分工合作完成下面问题作完成下面问题. .例:用一根长为10米的铁丝围成一个长方形米的铁丝围成一个长方形. .(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?米,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?它围成的长方形与(1)中所围成的长方形相比,面积有什么变化?中所围成的长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与所围成的面积与((2)中相比又有什么变化?中相比又有什么变化?教学建议:小组讨论解题过程中,教师巡视课堂,指导、参与学生的讨论制作,帮助有学习有难的个人或小组有学习有难的个人或小组..在讨论解答完成后,让小组选代表阐述解题的步骤、思路并展示自己小组所做的长方形自己小组所做的长方形((或正方形或正方形)),指导学生反思各组的解答过程并讨论:解决这道题的关键是什么?从解这道题中你有何收获和体验、通过猜测、验证说明三个长方形面积变化的规律,教师及时引导学生给予评价,表扬鼓励,同时用多媒体展示解题步骤,进一步规范学生的解题格式生的解题格式. .解:解:((1)设此时长方形的宽为x m ,则它的长为,则它的长为((x +1.4)m ,根据题意,得x +(x +1.4)=10×12, 解这个方程,得x =1.8,x +1.4=1.8+1.4=3.2,此时长方形的长为3.2m ,宽为1.8m .(2)此时长方形的宽为x m ,则它的长为,则它的长为((x +0.8)m ,根据题意,得x +(x +0.8)=10×12、解这个方程,得x =2.1, x +0.8=2.1+0.8=2.9,此时长方形的长为2.9m ,宽为2.1m ,面积为2.1×2.9=6.09m 2,(1)中长方形的面积为3、2×1.8=5.76m 2,此时长方形的面积比,此时长方形的面积比((1)中长方形面积增大6.09-5.76=0.33m 2. (3)设正方形的边长为x m ,根据题意,得4x =10×12,解这个方程,得x =2.5,正方形的边长为2.5m ,正方形的面积为2.5×2.5=6.25m 22,比,比((2)中面积增大6.25-6.09=0.16m 22. 教师:我们解答这个题的关键是我们在改变长方形的长和宽的同时,长方形的周长不变,始终是铁丝的长度10米,由此便可建立“等量关系”,但是我们可以发现,虽然长方形的周长不变,改变长方形的长和宽,长方形的面积却在发生变化,而且围成正方形的时候面积达到最大到最大. .设计意图:通过例题让学生再次感受找到题目中的等量关系是列方程解应用题的关键,让学生经历知识的探索、发现、掌握、应用的过程、使学生体验让学生经历知识的探索、发现、掌握、应用的过程、使学生体验“数学化”“数学化”过程,使学生在实际动手计算、制作中体验合作的愉快及成功的喜悦,进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性. .三、训练反馈,应用提升三、训练反馈,应用提升1、问答题、问答题(1)小明家离学校有1000米,他骑车的速度是25米/分,那么小明从家到学校需那么小明从家到学校需_________小时小时小时. .(2)甲、乙两地相距1600千米,一列火车从甲地出发去乙地,经过16小时,距离乙地还有240千米千米..这列火车每小时行驶多少千米?这列火车每小时行驶多少千米?2、抢答题、抢答题(1)用一元一次方程解决问题的基本步骤:用一元一次方程解决问题的基本步骤:____________. ____________.(2)行程问题主要研究、三个量的关系行程问题主要研究、三个量的关系. .路程路程=_____=_____=_____,速度,速度,速度=_____=_____=_____,时间,时间,时间=_____. =_____.(3)若小明每秒跑4米,那么他10秒跑秒跑_________米米.自主学习自主学习例:小明早晨要在7:50以前赶到距家1000米的学校上学,一天,小明以80m /min 的速度出发,5min 后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180m /min 的速度去追小明,并且在途中追上了他追小明,并且在途中追上了他. .(1)爸爸追上小明用了多长时间?爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?追上小明时,距离学校还有多远?独立思考,完成上面的问题独立思考,完成上面的问题. .1、根据题目已知条件,画出线段图:、根据题目已知条件,画出线段图:2、找出等量关系:、找出等量关系:小明走过的路程=爸爸走过的路程小明走过的路程=爸爸走过的路程. .3、板书规范写出解题过程:、板书规范写出解题过程:解:解:((1)设爸爸追上小明用了x min .根据题意,得80×5+80x =180x化简得100x =400.解得,x =4.因此,爸爸追上小明用了4min .(2)180×4=720(m )1000-720=280(m )所以,追上小明时,距离学校还有280米.(学生独立完成,找到等量关系并列出方程,教师巡视学生并给予检查和指导教师巡视学生并给予检查和指导..请书写规范的学生到前面板演,并讲解其解题思路,其他同学对照黑板谈谈自己的不足之处范的学生到前面板演,并讲解其解题思路,其他同学对照黑板谈谈自己的不足之处.) .)分析出发时间不同的追及问题,分析出发时间不同的追及问题,能画出线段图,能画出线段图,进行图形语言、符号语言与文字语言之间的相互转化,理解题中的等量关系,培养学生思维的灵活性,进一步列出方程,解决问题,既能娴熟使用“线段图”又能利用方程的思想解决问题既能娴熟使用“线段图”又能利用方程的思想解决问题. .四、拓展应用四、拓展应用1、用多媒体展示收集的各商场打折销售情景;、用多媒体展示收集的各商场打折销售情景;2、通过情景剧了解打折销售活动,弄清相关概念及内在联系、通过情景剧了解打折销售活动,弄清相关概念及内在联系. .讨论分析商品销售中的几个概念:讨论分析商品销售中的几个概念:(1)进价:购进商品时的价格进价:购进商品时的价格.(.(.(有时也叫成本价有时也叫成本价有时也叫成本价) )(2)售价:在销售商品时的售出价售价:在销售商品时的售出价.(.(.(有时称成交价,卖出价有时称成交价,卖出价有时称成交价,卖出价) )(3)标价:在销售时标出的价标价:在销售时标出的价.(.(.(有时称原价,定价有时称原价,定价有时称原价,定价) )(4)利润:在销售商品的过程中纯收入,即:利润利润:在销售商品的过程中纯收入,即:利润==售价-进价售价-进价. .(5)利润率:利润占进价的百分率,即:利润率利润率:利润占进价的百分率,即:利润率==利润÷进价×100%.(6)打折:卖货时,按照标价乘以十分之几或百分之几十,按照标价乘以十分之几或百分之几十,则称将标价进行了几折则称将标价进行了几折则称将标价进行了几折((或理解为:销售价占标价的百分率解为:销售价占标价的百分率).).).例如某种服装打例如某种服装打8折即按标价的百分之八十出售折即按标价的百分之八十出售. .新课讲解新课讲解1、主题分析:一家商店将某种服装按成本价提高40%后标价,以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?元,这种服装每件的成本是多少元?想一想:这15元的利润是怎么来的?元的利润是怎么来的?2、例题分析:商店对某种商品作调价,按原价的9折出售,此时商品的利润率是15%,此商品的进价为1800元商品的原价是多少?商品的原价是多少?教师引导学生完成教师引导学生完成. .巩固新知巩固新知让学生完成课本让学生完成课本“挑战自我”“挑战自我”“挑战自我”及相关练习,做完后小组讨论交流,教师对其中出现的问及相关练习,做完后小组讨论交流,教师对其中出现的问题进行及时的指导题进行及时的指导. .五、课堂小结五、课堂小结教师:通过本节课的学习,你有哪些收获?还有那些困惑?教师:通过本节课的学习,你有哪些收获?还有那些困惑?教学建议:先让学生畅所欲言,着重引导学生总结以下三个方面:教学建议:先让学生畅所欲言,着重引导学生总结以下三个方面:1、通过对“水箱变高了”的了解,我们知道“旧水箱的体积、通过对“水箱变高了”的了解,我们知道“旧水箱的体积==新水箱的体积”,“变形前周长等于变形后周长”是解决此类问题的关键,即变的是什么,不变的是什么周长等于变形后周长”是解决此类问题的关键,即变的是什么,不变的是什么. .2、遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验方程,并进行方程解的检验. .3、解出的数学问题要联系生活实际问题来检验它的结果的合理性、解出的数学问题要联系生活实际问题来检验它的结果的合理性. .4、会借“线段图”分析行程问题、会借“线段图”分析行程问题. .5、各种行程问题中的规律及等量关系、各种行程问题中的规律及等量关系. .同向追及问题:同向追及问题:(1)同时不同地——甲路程+路程差=乙路程;甲时间=乙时间同时不同地——甲路程+路程差=乙路程;甲时间=乙时间. .(2)同地不同时——甲时间+时间差=乙时间;甲路程=乙路程同地不同时——甲时间+时间差=乙时间;甲路程=乙路程. .6、能理解商品销售问题中的基本概念及相等关系,熟练地应用“利润、能理解商品销售问题中的基本概念及相等关系,熟练地应用“利润==售价-成本价”“利润率“利润率==利润÷成本价×100%”来寻找商品销售中的相等关系”来寻找商品销售中的相等关系. .7、能联系以前研究过的问题,加深理解用一元一次方程解决实际问题的一般步骤、能联系以前研究过的问题,加深理解用一元一次方程解决实际问题的一般步骤. .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程的应用教案
5.3用方程解决问题(2)--打折销售
学习目标:
1、进一步经历运用方程解决实际问题的过程。
2、提高学生找等量关系列方程的能力。
3、培养学生的抽象、概括、分析和解决问题的能力。
4、学会用数学的眼光去看待、分析现实生活中的情景。
重点:
1.如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性.
2.解决打折销售中的有关利润、成本价、卖价之间的相关的现实问题。
难点:
如何从实际问题中寻找等量关系建立方程.
学习指导:
一、知识准备
1.通过社会调查,亲历打折销售这一现实情境,了解打折销售中的成本价、卖价和利润之间的关系。
进而能根据现实情境提出数学问题。
2.谈一谈:
请举例说明打折、利润、利润率、提价及削价的含义分别是什么?
3.算一算:
(1)原价100元的商品,打8折后价格为元;
(2)原价100元的商品,提价40%后的价格为元;
(3)进价100元的商品,以150元卖出,利润是元。
二、学习新课
一、思考:
1、把下面的“折扣”数改写成百分数。
九折八八折七五折
2、你是怎样理解某种商品打“八折”出售的?
二、问题:1、说说“打折销售”中自己有过的亲身经历。
2、假设你是一个商店老板,你的追求是什么?
3、你是怎样理解商品的利润?
三、新知探讨
1、你认为商品的标价、折数与商品的卖价之间有怎样的关系?
2、结合实际,说说你从打折销售中可以获得哪些数学问题?
(1)某商店出售一种录音机,原价430元,现在打九折出售,比原价便宜多少钱?
(2)一种画册原价每本16元,现在按每本11.2元出售。
这种画册按原价打了几折?
(3)、为庆祝“六一儿童节”,某书店所有儿童读物一律八折优惠,小明花了24元
买了一套读物,请问这套读物原价是多少?
(4)一家商店将某种服装按成本价提高40%后卖出,已知每件服装的成本价是125元,每件服装获利多少?
2、例题:一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?
如果设每件服装的成本价为x元,根据题意,
(1)每件服装的标价为:()
(2)每件服装的实际售价为:()
(3)每件服装的利润为:()
(4)列出方程,并解答:
四、回顾与反思通过这节课的学习,你最大的收获是什么?在调查中你还遇到哪些难
解的问题,看看大家是不是可以给你解答?
作业:作业纸。
感谢您的阅读。
祝语:如果有一个白胡子老爷爷爬进来,把你装进袋子里,你一定不要惊慌,那是我告诉圣诞老人我最想要的礼物是一个象你这样的朋友!。