实数完备性的六大基本定理的相互证明(共30个)

合集下载

六大定理互相证明总结

六大定理互相证明总结

六大定理的相互证明总结XXX 学号数学科学学院 数学与应用数学专业 班级指导老师 XXX摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明.关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理1 确界定理1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b .显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞→n n n a b ∴βα=即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1]证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界{}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y .由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,有N n y y ≥,从而n y >εβ-.也就是说:当n >N 时,有 n y -≤β0<ε 所以 β→n y 2 单调有界原理2.1 单调有界原理 单调有界数列有极限. 2.2 单调有界原理证明致密性定理在证明定理之前,我们要先证明一个引理:任意一个数列{}n x 必存在单调子数列. 证明:⑴若{}n x 中存在递增子序列{}k n x ,则引理已证明;⑵若{}n x 中无递增子序列,那么∃1n >0,使n >1n ,恒有1n x >n x .同样在{}n x (n >1n )中也无递增子序列.于是又存在2n >0,使2n >n ,恒有2n x <n x <1n x .如此无限进行下去便可得到一严格递减子序列{}k n x . 引理得证.下面证明定理:由引理知,有界数列必有有界单调子数列.又由单调有界原理知,该有界单调子数列必有极限,即该子数列是收敛的.故有界数列必有收敛子列. 2.3 单调有界原理证明区间套定理[1]由定理的条件立即知道{}n a 是单调增加有上界的数列,{}n b 是单调递减有下界的数列.根据定理,则n n a ∞→lim 存在,且极限等于{}n a 的上确界.同样,n n b ∞→lim 也存在,且极限等于{}n b 的下确界.亦即对任何正整数k ,有n n k n n k b b a a ∞→∞→≥≤lim ,lim (*)由定理的另一条件: ()0lim =-∞→n n n a b ,并且由于已知{}n a 及{}n b 的极限都存在,则有()0lim lim lim =-=-∞→∞→∞→n n n n n n n a b a b .从而证明了两个极限相等,且设ξ是它们的同一极限.于是定理前一部分的结果即已证得.剩下要证的是:ξ是所有区间的唯一公共点.由(*)的两个不等式,即有 n k b a ≤≤ξ(3,2,1=k …)也就是ξ是所有区间的一个公共点.现在要证明ξ是所有区间的唯一公共点.设除点ξ外,所设区间列还有另外一个公共点'ξ,且ξξ≠'.由于n n b a ≤≤',ξξ(3,2,1=n …),故有ξξ-≥-'n n a b (3,2,1=n …) 由数列极限的性质知道:()ξξ-≥-∞→'lim n n n a b由于()0lim =-∞→n n n a b ,故有0'≤-ξξ从而有ξξ='.到此定理的全部结果都已得证. 3 区间套定理3.1 区间套定理 设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b ,则区间的端点所成两数列{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点.3.2 区间套定理证明单调有界原理 证明:设数列{}n x 递增有上界.取闭区间[]11,b a ,使1a 不是数列{}n x 的上界,1b 是数列{}n x 的上界.显然在闭区间[]11,b a 内含有数列{}n x 的无穷多项,而在[]11,b a 外仅含有数列{}n x 的有限项. 对分[]11,b a ,取[]22,b a ,使其具有[]11,b a 的性质.故在闭区间[]22,b a 内含有数列{}n x 的无穷多项,而在[]22,b a 外仅含有数列{}n x 的有限项.以此方法,得区间列{[,n a ]n b }.由区间套定理,ξ是所有区间的唯一公共点.显然,在ξ的任何邻域内有数列{}n x 的无穷多项,即ε∀>0,∃*N N ∈,当n >N 时,有ξ-n x <ε. 所以ξ=∞→n n x lim 定理得证.3.3 区间套定理证明致密性定理[1]证明:设{}n y 为有界数列,即存在两个数b a ,,使b y a n ≤≤.等分区间[]b a ,为两个区间,则至少有一个区间含有{}n y 中的无穷个数.把这个区间记为[]11,b a ,如果两个区间都含有无穷个n y ,则任取其一作为[]11,b a .再等分区间[]11,b a 为两半,记含有无穷个n y 的区间为[]22,b a .这个分割手续可以继续不断的进行下去,则得到一个区间列{[,n a ]n b },这个区间列显然适合下面两个条件:(1)[][][]⊃⊃⊃2211,,,b a b a b a … (2)02→-=-nn n ab a b 于是由区间套定理,必存在唯一点[]b a ,∈ξ使ξξ→→n n b a ,,且[]k k b a ,∈ξ(3,2,1=k …).每一[]k k b a ,中均含有{}n y 的无穷个元素.在[]11,b a 中任取{}n y 的一项,记为1n y ,即{}n y 的第1n 项.由于[]22,b a 也含有无穷个n y ,则它必含有1n y 以后的无穷多个数,在这些数中任取其一,记为2n y ,则1n <2n .继续在每一[]k k b a ,中都这样取出一个数k n y ,即得{}n y 的一个子列{}k n y ,其中1n <2n <…<k n <…,且k n k b y a k ≤≤.令∞→k ,由于,,ξξ→→k k b a 故ξ→k n y .这就是定理所要的结果.4 致密性定理4.1 致密性定理 又称魏尔斯特拉斯定理,任一有界数列必有收敛子列. 4.2 致密性定理证明单调有界原理证明:不妨设{}n x 单调递增且有界,根据致密性定理有收敛子列{}k n x . 令a x k n k =∞→lim .于是,对ε∀>0,∃0k ,当k >0k 时,有a x k n -<ε (*) 由于{}n x 单调递增,显然恒有a x n ≤(3,2,1=n …). 由此(*)式可改成0k n x a -≤<ε (k >0k ) 取0k n N =,当n >N 时有 k n n x a x a -≤-≤0<ε 所以 a x n n =∞→lim4.3 致密性定理证明柯西收敛原理[1] 证明:首先证明条件的必要性:设a x n →,则对任意给定ε>0,有一正整数N ,当k >N 时,有 a x k -<2ε从而当n m ,>N 时,有m n m n x a a x x x -+-≤-<2ε+2ε=ε 其次证明条件的充分性:首先,证明满足条件的任何数列必有界.从所设条件,取ε=1,必有一正整数0N ,当n m ,>0N 时,有m n x x -<1特别地,当n >0N 且10+=N m 时,有 10+-N n x x <1 从而当n >0N 时,有 1100+++-≤N N n n x x x x <1+10+N x这就证明了{}n x 的有界性.由致密性定理,必有收敛子列{}k n x ,设a x k n k =∞→lim .根据子列收敛定义,对任意给定的ε>0,必有正整数K ,当k >K 时,有 a x n -<ε取一正整数()1,1m ax 0++=N K k .于是0k >K ,且11+≥≥+N n n N k o >N .因此,当n >N 时,由已知条件有0k n n x x -<ε,所以a x x x a x k k n n n n -+-≤-00<ε+ε=2ε即 a x n n =∞→lim5 柯西收敛原理5.1 柯西收敛原理 数列{}n x 有极限的必要与充分条件是:对任意给定的ε>0,有正整数N ,当m , n >N 时,有m n x x -<ε. 5.2 柯西收敛原理证明单调有界原理证明:反证法,设{}n x 为一递增且有上界M 的数列.假设其没有极限,则用柯西收敛原理表达就是ε∃>0,对*N N ∈∀,当n m ,>N 时,有 m n x x -ε≥ 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x . 又由于数列{}n x 为一递增的数列,所以1212n n n n x x x x -=-1≥ 取1=ε,必有一正整数1N ,当32,n n >1N 时,有123≥-n n x x 取1=ε,必有一正整数1N ,当43,n n >1N 时,有134≥-n n x x …………… …………… …………… 取1=ε,必有一正整数1N ,当1,+k k n n >1N 时,有11≥-+k k n n x x 将以上式子相加,得11+≥+k x k n ∞→ (∞→k ) 与数列{}n x 有上界M 矛盾,假设不成立. 即,单调有界数列有极限. 5.3 柯西收敛原理证明致密性定理证明:反证法,设{}n x 为一有上界M 的数列. 假设其没有收敛子列.由子列收敛的定义,则ε∃>0,对*N N ∈∀,当k k n n ,1+>N 时,有ε≥-+k k n n x x 1. 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x 取2=ε,必有一正整数2N ,当32,n n >2N 时,有223≥-n n x x 取3=ε,必有一正整数3N ,当43,n n >3N 时,有334≥-n n x x…………… …………… …………… 取k =ε,必有一正整数k N ,当1,+k k n n >k N 时,有k x x k k n n ≥-+1 显然与数列{}n x 有上界M 矛盾,假设不成立. 即,任一有界数列必有收敛子列. 6 有限覆盖定理6.1有限覆盖定理 若开区间所组成的区间集E 覆盖一个闭区间[a ,b ],则总可以从E 中选出有限个区间,使这有限个区间覆盖[a ,b ]. 6.2 有限覆盖定理证明确界定理证明:在这里我们只说明定理的上确界部分.设不为空集的区间E ⊂R ,∀x ∈E ,有x ≤M ,任取一点0x ∈E ,假设E 无上确界,那么∀x ∈[0x ,M ]:ⅰ)当x 为E 的上界时,必有更小的上界1x <x ,因而x 存在一开邻域∆x ,其中每一点均为E 的上界,称其为第一类区间;ⅱ)当x 不是E 的上界时,则有2x ∈E 使2x >x ,那么x 存在一开邻域∆x ,其中每点均不是E 的上界,称其为第二类区间.∴ 当x 取遍[0x ,M ]上每一点找出一个邻域∆x .显然∆x 不是第一类区间就是第二类区间.这些邻域组成闭区间[0x ,M ]的一个开覆盖,由有限覆盖定理,必存在有限子区间覆盖[0x ,M ].显然M 所在的开区间应为第一类区间,与其邻接的开区间∆x 有公共点.所以∀x ∈∆x ,x 均为E 的上界.而与∆x 相邻接的开区间∆'x 有公共点,所以∀x ∈∆'x ,x 均为E 的上界. 依此类推,0x 所在的开区间也是第一类区间,则0x 为E 的上界. 又 0x E ∈,∴E 为常数集.由此矛盾引出. 得证.同理,E 有下确界.6.3 有限覆盖定理证明致密性定理证明:设{}n x 是一有界数列,现在证明{}n x 有收敛子列.(1)如果{}n x 仅由有限个数组成,那么至少有一个数ξ要重复无限多次,即ξ===21n n x x …==kn x … 因而子列{}kn x 收敛于ξ.(2)如果{}n x 是由无穷多个数组成,由有界性知,存在闭区间[]b a ,,使对一切自然数n 都有a <n x <b在[]b a ,内至少存在一点0x ,使对于任意的正数δ,在()δδ+-00,x x 内都含有{}n x 中无穷多个数.事实上,倘若不然,就是说对于[]b a ,中每一点x ,都有x δ>0,在()x x x x δδ+-,内,仅有{}n x 中的有限个数.考虑所有这样的开区间所成之集:{=μ(,x x δ-)x x δ+},μ完全覆盖了闭区间[]b a ,,依有限覆盖定理,存在μ中的有限多个区间.()11111,x x x x δδ+-=∆,…,()n n x n x n n x x δδ+-=∆,,他们也覆盖了[]b a ,,并且在每一个i ∆(,2,1=i …,n )中都只含{}n x 中的有限多个数.因此{}n x 也最多是由有限个数组成,这与假设矛盾. 于是,对于k δ=k1(,3,2,1=k …),于()k k x x δδ+-00,内取{}n x 中无穷多个点,就得到{}n x 的子列{}k n x 满足:0x x k n -<kk 1=δ(,3,2,1=k …)从而∞→k lim 01x x n =得证.总结:六大定理可以分为两类: ① 有限覆盖定理:反映区间上的整体性质; ② 其余五个:反映函数在一点上的性质.实数的六个基本定理在理论上很有用,在之后的闭区间上的函数的性质的证明上发挥着重要的作用.本文在写作过程中得到了XXX 老师的多次精心指导,在此表示感谢.参考文献:[1] 陈传璋 金福临 朱学炎 .《数学分析(上)》.高等教育出版社.1983.7。

实数完备性等价命题及证明

实数完备性等价命题及证明

一、问题提出确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2 (单调有界定理)任何单调有界数列必定收敛.定理1.3 (区间套定理)设为一区间套:.则存在唯一一点定理1.4 (有限覆盖定理) 设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理) 直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则) 数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类下面来完成(1)~(7)的证明.二、等价命题证明(1)(用确界定理证明单调有界定理)(2)(用单调有界定理证明区间套定理)(3)(用区间套定理证明确界原理)*(4)(用区间套定理证明有限覆盖定理)*(5)(用有限覆盖定理证明聚点定理)*(6)(用聚点定理证明柯西准则)*(7)(用柯西准则证明单调有界定理)(1)(用确界定理证明单调有界定理)〔证毕〕(返回)(2)(用单调有界定理证明区间套定理)设区间套.若另有使,则因.[证毕][推论]设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.(返回)(3) (用区间套定理证明确界原理)证明思想:构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.[证毕](返回)*(4)(用区间套定理证明有限覆盖定理)设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.[证毕][说明]当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.(返回)*(5)(用有限覆盖定理证明聚点定理)设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[证毕][推论(致密性定理)]有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点.(返回)*(6)(用聚点定理证明柯西准则)柯西准则的必要性容易由数列收敛的定义直接证得,这里只证其充分性.已知条件:当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.[证毕](返回)*(7)(用柯西准则证明单调有界原理) 设为一递增且有上界M的数列.用反证法(借助柯西准则)可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“当时,满足”.这是因为它同时保证了对一切,恒有.倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ]在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.[例]证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义);(ii) 在内含有中至少一个点;(iii) ,时,使.证:(i)(ii) 显然成立.(ii)(iii) 由(ii),取,;再取;……一般取;……由的取法,保证,,.(iii)(i)时,必有,且因各项互不相同,故内含有中无限多个点.[证毕]。

《数学分析》实数完备性七大定理证明与七大定理相互证明

《数学分析》实数完备性七大定理证明与七大定理相互证明

《数学分析》实数完备性七大定理证明与七大定理相互证明在数学分析中,实数完备性是一个非常重要的概念。

实数完备性是指实数轴上不存在任何空缺的性质,即任何实数序列都有收敛的子序列。

实数完备性可由七大定理进行证明,并且这七个定理之间也可以相互证明。

下面将对这七大定理进行证明,并且展示它们之间的相互证明。

第一个定理是确界定理(或称上确界定理)。

它的表述是:有上界的非空实数集必有上确界。

证明如下:先证明存在性,假设S是有上界的非空实数集,令M为S的一个上界,那么对于S中的任意元素x,都有x≤M。

接下来我们来证明M是S的上确界。

首先,我们要证明M是S的一个上界,即对于任意x∈S,x≤M。

其次,我们要证明对于任意ε>0,存在一个元素s∈S,使得M-ε<s≤M。

这两点都可以使用导致上确界的性质来证明。

因此,我们证明了确界定理。

第二个定理是区间套定理。

它的表述是:若{[an,bn]}是一个递减的闭区间序列,并且满足an≤bn,则存在一个唯一的实数x同时含于所有闭区间[an,bn]中。

证明如下:首先,我们证明了区间套的任意两个闭区间之间的交集不为空。

其次,我们证明了{an}是一个递增有上界的实数序列,{bn}是一个递减有下界的实数序列。

因此,根据实数完备性的定义,存在唯一的实数x满足an≤x≤bn,即x属于所有闭区间的交集。

第三个定理是柯西收敛准则。

它的表述是:一个实数序列是收敛的充分必要条件是它满足柯西收敛准则,即对于任意ε>0,存在自然数N,使得当m,n≥N时,有,am-an,<ε。

证明如下:首先,我们证明了柯西收敛准则蕴含了实数序列的有界性。

其次,我们证明了柯西收敛准则蕴含了实数序列的单调性。

因此,根据实数完备性的定义,实数序列的柯西收敛准则是实数序列收敛的充分必要条件。

第四个定理是实数域的离散性。

它的表述是:任意两个实数之间必存在有理数和无理数。

证明如下:假设a和b是两个实数,并且a<b。

实数完备性基本定理相互证明

实数完备性基本定理相互证明

关于实数连续性的基本定理关键词:实数基本定理 确界定理 单调有界原理 区间套定理 有限覆盖定理 紧致性定理 柯西收敛定理 等价证明以上的定理表述如下:实数基本定理:对R 的每一个分划A|B ,都∃唯一的实数r ,使它大于或等于下类A 中的每一个实数,小于或等于上类B 中的每一个实数。

确界定理:在实数系R 内,非空的有上(下)界的数集必有上(下)确界存在。

单调有界原理:若数列}{n x 单调上升有上界,则}{n x 必有极限。

区间套定理:设{,[n a ]n b }是一个区间套,则必存在唯一的实数r,使得r 包含在所有的区间里,即∞=∈1],[n n n b a r 。

有限覆盖定理:实数闭区间[a,b]的任一覆盖E,必存在有限的子覆盖。

紧致性定理:有界数列必有收敛子数列。

柯西收敛定理:在实数系中,数列}{n x 有极限存在的充分必要条件是:εε<->>∃>∀||,,,0m n x x ,N m N n N 有时当。

这些定理虽然出发的角度不同,但描写的都是实数连续性这同一件事,它们之间是相互等价的,即任取其中两个定理,它们可以相互证明。

那么,它们在证明过程中有哪些联系?作为工具,它们又各具有什么特点?以下先给出它们的等价证明。

(二)实数基本定理的等价证明一.用实数基本定理证明其它定理 1.实数基本定理→单调有界定理证明:设数列}{n x 单调上升有上界。

令B 是数列}{n x 全体上界组成的集合,即B={b|n b x n ∀≤,},而A=R ﹨B ,则A|B 是实数的一个分划。

事实上,由单调上升}{n x ,故1x -1∈A ,即A 不空,由A=R ﹨B ,知A 、B 不漏。

又对任给a ∈A ,b ∈B ,则存在0n ,使a <0n x ≤b ,即A 、B 不乱。

故A|B 是实数的一个分划。

根据实数基本定理,A ,a R r ∈∀∈∃使得对,b r aB ,b ≤≤∈有。

实数完备性六个定理的互相证明

实数完备性六个定理的互相证明
n
0 , x S ,使得 x ,
记为 xn a ( n ) 。如果不存在实数 a,使 xn 收敛于 a,则称数列 xn 发散。
lim xn a 0 , N N , n N ,有 xn a 。

二、一些基本概念
1.有界集: 设 S 是一个非空数集,如果 M R ,使得 x S ,有 x M ,则称 M 是 S 的
一个上界;如果 m R ,使得 x S ,有 x m ,则称 m 是 S 的一个下界。当数集 S 既有上界,又有下界时,称 S 为有界集。
a1 b1 a b a b , b1 S ,则记 a2 , b2 = 1 1 , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 2 2 2 an 1 bn 1 an 1 bn 1 a b an1 , bn1 二等分为 , bn 1 ,若 n 1 n 1 , bn 1 S , an 1 , 、 2 2 2
则记 a2 , b2 =
a1 b1 a b , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 an 1 , bn 1 二等分为 2 2
an 1 bn 1 an 1 bn 1 a b , bn 1 ,若 n 1 n 1 非 s 的上界,则记 、 an 1 , 2 2 2 an 1 bn 1 a b an , bn = , bn 1 否则记 an , bn = an 1 , n 1 n 1 ;...,得到一列闭区间 2 2
上界,则记 a2 , b2 =

六大定理互相证明总结

六大定理互相证明总结

六大定理的相互证明总结XXX 学号数学科学学院 数学与应用数学专业 班级指导老师 XXX摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明.关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理1 确界定理1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b .显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞→n n n a b ∴βα=即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1]证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界{}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y .由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,有N n y y ≥,从而n y >εβ-.也就是说:当n >N 时,有 n y -≤β0<ε 所以 β→n y 2 单调有界原理2.1 单调有界原理 单调有界数列有极限. 2.2 单调有界原理证明致密性定理在证明定理之前,我们要先证明一个引理:任意一个数列{}n x 必存在单调子数列. 证明:⑴若{}n x 中存在递增子序列{}k n x ,则引理已证明;⑵若{}n x 中无递增子序列,那么∃1n >0,使n >1n ,恒有1n x >n x .同样在{}n x (n >1n )中也无递增子序列.于是又存在2n >0,使2n >n ,恒有2n x <n x <1n x .如此无限进行下去便可得到一严格递减子序列{}k n x . 引理得证.下面证明定理:由引理知,有界数列必有有界单调子数列.又由单调有界原理知,该有界单调子数列必有极限,即该子数列是收敛的.故有界数列必有收敛子列. 2.3 单调有界原理证明区间套定理[1]由定理的条件立即知道{}n a 是单调增加有上界的数列,{}n b 是单调递减有下界的数列.根据定理,则n n a ∞→lim 存在,且极限等于{}n a 的上确界.同样,n n b ∞→lim 也存在,且极限等于{}n b 的下确界.亦即对任何正整数k ,有n n k n n k b b a a ∞→∞→≥≤lim ,lim (*)由定理的另一条件: ()0lim =-∞→n n n a b ,并且由于已知{}n a 及{}n b 的极限都存在,则有()0lim lim lim =-=-∞→∞→∞→n n n n n n n a b a b .从而证明了两个极限相等,且设ξ是它们的同一极限.于是定理前一部分的结果即已证得.剩下要证的是:ξ是所有区间的唯一公共点.由(*)的两个不等式,即有 n k b a ≤≤ξ(3,2,1=k …)也就是ξ是所有区间的一个公共点.现在要证明ξ是所有区间的唯一公共点.设除点ξ外,所设区间列还有另外一个公共点'ξ,且ξξ≠'.由于n n b a ≤≤',ξξ(3,2,1=n …),故有ξξ-≥-'n n a b (3,2,1=n …) 由数列极限的性质知道:()ξξ-≥-∞→'lim n n n a b由于()0lim =-∞→n n n a b ,故有0'≤-ξξ从而有ξξ='.到此定理的全部结果都已得证. 3 区间套定理3.1 区间套定理 设一无穷闭区间列{[,n a ]n b }适合下面两个条件:(1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b )n a }所成的数列收敛于零,即()0lim =-∞→n n n a b ,则区间的端点所成两数列{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点.3.2 区间套定理证明单调有界原理 证明:设数列{}n x 递增有上界.取闭区间[]11,b a ,使1a 不是数列{}n x 的上界,1b 是数列{}n x 的上界.显然在闭区间[]11,b a 内含有数列{}n x 的无穷多项,而在[]11,b a 外仅含有数列{}n x 的有限项. 对分[]11,b a ,取[]22,b a ,使其具有[]11,b a 的性质.故在闭区间[]22,b a 内含有数列{}n x 的无穷多项,而在[]22,b a 外仅含有数列{}n x 的有限项.以此方法,得区间列{[,n a ]n b }.由区间套定理,ξ是所有区间的唯一公共点.显然,在ξ的任何邻域内有数列{}n x 的无穷多项,即ε∀>0,∃*N N ∈,当n >N 时,有ξ-n x <ε. 所以ξ=∞→n n x lim 定理得证.3.3 区间套定理证明致密性定理[1]证明:设{}n y 为有界数列,即存在两个数b a ,,使b y a n ≤≤.等分区间[]b a ,为两个区间,则至少有一个区间含有{}n y 中的无穷个数.把这个区间记为[]11,b a ,如果两个区间都含有无穷个n y ,则任取其一作为[]11,b a .再等分区间[]11,b a 为两半,记含有无穷个n y 的区间为[]22,b a .这个分割手续可以继续不断的进行下去,则得到一个区间列{[,n a ]n b },这个区间列显然适合下面两个条件:(1)[][][]⊃⊃⊃2211,,,b a b a b a … (2)02→-=-nn n ab a b 于是由区间套定理,必存在唯一点[]b a ,∈ξ使ξξ→→n n b a ,,且[]k k b a ,∈ξ(3,2,1=k …).每一[]k k b a ,中均含有{}n y 的无穷个元素.在[]11,b a 中任取{}n y 的一项,记为1n y ,即{}n y 的第1n 项.由于[]22,b a 也含有无穷个n y ,则它必含有1n y 以后的无穷多个数,在这些数中任取其一,记为2n y ,则1n <2n .继续在每一[]k k b a ,中都这样取出一个数k n y ,即得{}n y 的一个子列{}k n y ,其中1n <2n <…<k n <…,且k n k b y a k ≤≤.令∞→k ,由于,,ξξ→→k k b a 故ξ→k n y .这就是定理所要的结果.4 致密性定理4.1 致密性定理 又称魏尔斯特拉斯定理,任一有界数列必有收敛子列. 4.2 致密性定理证明单调有界原理证明:不妨设{}n x 单调递增且有界,根据致密性定理有收敛子列{}k n x . 令a x k n k =∞→lim .于是,对ε∀>0,∃0k ,当k >0k 时,有a x k n -<ε (*) 由于{}n x 单调递增,显然恒有a x n ≤(3,2,1=n …). 由此(*)式可改成0k n x a -≤<ε (k >0k ) 取0k n N =,当n >N 时有 k n n x a x a -≤-≤0<ε 所以 a x n n =∞→lim4.3 致密性定理证明柯西收敛原理[1] 证明:首先证明条件的必要性:设a x n →,则对任意给定ε>0,有一正整数N ,当k >N 时,有 a x k -<2ε从而当n m ,>N 时,有m n m n x a a x x x -+-≤-<2ε+2ε=ε 其次证明条件的充分性:首先,证明满足条件的任何数列必有界.从所设条件,取ε=1,必有一正整数0N ,当n m ,>0N 时,有m n x x -<1特别地,当n >0N 且10+=N m 时,有 10+-N n x x <1 从而当n >0N 时,有 1100+++-≤N N n n x x x x <1+10+N x这就证明了{}n x 的有界性.由致密性定理,必有收敛子列{}k n x ,设a x k n k =∞→lim .根据子列收敛定义,对任意给定的ε>0,必有正整数K ,当k >K 时,有 a x n -<ε取一正整数()1,1m ax 0++=N K k .于是0k >K ,且11+≥≥+N n n N k o >N .因此,当n >N 时,由已知条件有0k n n x x -<ε,所以a x x x a x k k n n n n -+-≤-00<ε+ε=2ε即 a x n n =∞→lim5 柯西收敛原理5.1 柯西收敛原理 数列{}n x 有极限的必要与充分条件是:对任意给定的ε>0,有正整数N ,当m , n >N 时,有m n x x -<ε. 5.2 柯西收敛原理证明单调有界原理证明:反证法,设{}n x 为一递增且有上界M 的数列.假设其没有极限,则用柯西收敛原理表达就是ε∃>0,对*N N ∈∀,当n m ,>N 时,有 m n x x -ε≥ 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x . 又由于数列{}n x 为一递增的数列,所以1212n n n n x x x x -=-1≥ 取1=ε,必有一正整数1N ,当32,n n >1N 时,有123≥-n n x x 取1=ε,必有一正整数1N ,当43,n n >1N 时,有134≥-n n x x …………… …………… …………… 取1=ε,必有一正整数1N ,当1,+k k n n >1N 时,有11≥-+k k n n x x 将以上式子相加,得11+≥+k x k n ∞→ (∞→k ) 与数列{}n x 有上界M 矛盾,假设不成立. 即,单调有界数列有极限. 5.3 柯西收敛原理证明致密性定理证明:反证法,设{}n x 为一有上界M 的数列. 假设其没有收敛子列.由子列收敛的定义,则ε∃>0,对*N N ∈∀,当k k n n ,1+>N 时,有ε≥-+k k n n x x 1. 取1=ε,必有一正整数1N ,当21,n n >1N 时,有112≥-n n x x 取2=ε,必有一正整数2N ,当32,n n >2N 时,有223≥-n n x x 取3=ε,必有一正整数3N ,当43,n n >3N 时,有334≥-n n x x…………… …………… …………… 取k =ε,必有一正整数k N ,当1,+k k n n >k N 时,有k x x k k n n ≥-+1 显然与数列{}n x 有上界M 矛盾,假设不成立. 即,任一有界数列必有收敛子列. 6 有限覆盖定理6.1有限覆盖定理 若开区间所组成的区间集E 覆盖一个闭区间[a ,b ],则总可以从E 中选出有限个区间,使这有限个区间覆盖[a ,b ]. 6.2 有限覆盖定理证明确界定理证明:在这里我们只说明定理的上确界部分.设不为空集的区间E ⊂R ,∀x ∈E ,有x ≤M ,任取一点0x ∈E ,假设E 无上确界,那么∀x ∈[0x ,M ]:ⅰ)当x 为E 的上界时,必有更小的上界1x <x ,因而x 存在一开邻域∆x ,其中每一点均为E 的上界,称其为第一类区间;ⅱ)当x 不是E 的上界时,则有2x ∈E 使2x >x ,那么x 存在一开邻域∆x ,其中每点均不是E 的上界,称其为第二类区间.∴ 当x 取遍[0x ,M ]上每一点找出一个邻域∆x .显然∆x 不是第一类区间就是第二类区间.这些邻域组成闭区间[0x ,M ]的一个开覆盖,由有限覆盖定理,必存在有限子区间覆盖[0x ,M ].显然M 所在的开区间应为第一类区间,与其邻接的开区间∆x 有公共点.所以∀x ∈∆x ,x 均为E 的上界.而与∆x 相邻接的开区间∆'x 有公共点,所以∀x ∈∆'x ,x 均为E 的上界. 依此类推,0x 所在的开区间也是第一类区间,则0x 为E 的上界. 又 0x E ∈,∴E 为常数集.由此矛盾引出. 得证.同理,E 有下确界.6.3 有限覆盖定理证明致密性定理证明:设{}n x 是一有界数列,现在证明{}n x 有收敛子列.(1)如果{}n x 仅由有限个数组成,那么至少有一个数ξ要重复无限多次,即ξ===21n n x x …==kn x … 因而子列{}kn x 收敛于ξ.(2)如果{}n x 是由无穷多个数组成,由有界性知,存在闭区间[]b a ,,使对一切自然数n 都有a <n x <b在[]b a ,内至少存在一点0x ,使对于任意的正数δ,在()δδ+-00,x x 内都含有{}n x 中无穷多个数.事实上,倘若不然,就是说对于[]b a ,中每一点x ,都有x δ>0,在()x x x x δδ+-,内,仅有{}n x 中的有限个数.考虑所有这样的开区间所成之集:{=μ(,x x δ-)x x δ+},μ完全覆盖了闭区间[]b a ,,依有限覆盖定理,存在μ中的有限多个区间.()11111,x x x x δδ+-=∆,…,()n n x n x n n x x δδ+-=∆,,他们也覆盖了[]b a ,,并且在每一个i ∆(,2,1=i …,n )中都只含{}n x 中的有限多个数.因此{}n x 也最多是由有限个数组成,这与假设矛盾. 于是,对于k δ=k1(,3,2,1=k …),于()k k x x δδ+-00,内取{}n x 中无穷多个点,就得到{}n x 的子列{}k n x 满足:0x x k n -<kk 1=δ(,3,2,1=k …)从而∞→k lim 01x x n =得证.总结:六大定理可以分为两类: ① 有限覆盖定理:反映区间上的整体性质; ② 其余五个:反映函数在一点上的性质.实数的六个基本定理在理论上很有用,在之后的闭区间上的函数的性质的证明上发挥着重要的作用.本文在写作过程中得到了XXX 老师的多次精心指导,在此表示感谢.参考文献:[1] 陈传璋 金福临 朱学炎 .《数学分析(上)》.高等教育出版社.1983.7。

实数完备性的六大基本定理的相互证明

实数完备性的六大基本定理的相互证明

1 确界原理非空有上(下)界数集,必有上(下)确界。

2 单调有界原理 任何单调有界数列必有极限。

3 区间套定理 若]},{[n n b a 是一个区间套, 则存在唯一一点ξ,使得 ,2,1],,[=∈n b a n n ξ。

4 Heine-Borel 有限覆盖定理 设],[b a 是一个闭区间,H 为],[b a 上的一个开覆盖,则在H 中存在有限个开区间,它构成],[b a 上的一个覆盖。

5 Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。

) 直线上的有解无限点集至少有一个聚点。

6 Cauchy 收敛准则数列}{n a 收敛⇔对任给的正数ε,总存在某一个自然数N ,使得N n m >∀,时,都有ε<-||n m a a 。

一.确界原理1.确界原理证明单调有界定理证 不妨设{ a n }为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n }.下面证明a 就是{ a n } 的极限. 事实上,任给ε> 0, 按上确界的定 义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n }的递增性,当n ≥ N时有a - ε < a N ≤ a n .另一方面,由于a 是{ a n }的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当 n ≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理 证明:1设 [an,bn] 是一个闭区间套,即满足: 1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an =我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设sup S =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an ≤ξ,(n =1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)唯一性: 假设还有另外一点R ∈'ξ且],[n n b a ∈'ξ,则||||n n b a -≤'-ξξ,0→ 即ξξ'=。

实数完备性基本定理的相互证明

实数完备性基本定理的相互证明

实数完备性基本定理的相互证明(30个)一.确界原理1.确界原理证明单调有界定理证 不妨设{}n a 为有上界的单调递增数列.由确界原理,数列{}n a 有上确界,令{}n a sup a =,下面证明:lim n n a a →∞=.对任意的0ε>,由上确界的定义,存在数列{}n a 中某一项N a ,使得:N a a ε->. 由于{}n a 单调递增,故对任意的n N >,有:n N a a a ε-<<.另一方面,由于a 是{}n a 的一个上界,故对任意的正整数n 都有:n a a a ε≤<+. 所以任意的n N >,有:n a a a εε-<<+,即:n a a ε-<.由极限的定义,lim n n a a →∞=.同理可证单调递减有下界的数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理证明:设[]{},n n a b 是一个闭区间套. 令数集{}n S a =.由于任一n b 都是数列{}n a 的上界,由确界原理,数集S 有上确界,设supS ξ=. 下证ξ属于每个闭区间[](),1,2,3,n n a b n =L显然,()1,2,3,n a n ξ≤=L ,故只需证明对任意正整数n ,都有n b ξ≤.事实上,对任意正整数n ,n b 都是S 的上界,而上确界是最小上界,故必有n b ξ≤. 所以存在实数ξ,使得[](),1,2,3,n n a b n ξ∈=L下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=L .则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.3.确界原理证明有限覆盖定理证明:欲证闭区间[],a b 的任一开覆盖H 都有有限的子覆盖. 令[]{}|,S x a x H a x b =<≤能被中有限个开区间覆盖,显然S 有上界.又H 覆盖闭区间[],a b ,所以,存在一个开区间(),H αβ∈,覆盖住了a .取(),x a β∈,则[],a x 显然能被H 中有限个开区间覆盖(1个),x S ∈,从而S 非空. 由确界原理,令supS ξ=.先证明b ξ=.用反证法,若b ξ≠,则a b ξ<<.由H 覆盖闭区间[],a b ,一定存在开区间()11,H αβ∈,覆盖住了ξ.取12,x x ,使:11211,x x x S αξβ<<<<∈ ,则[]1,a x 能被H 中有限个开区间覆盖,把()11,αβ加进去,就得到[]2,a x 也能被H 中有限个开区间覆盖,即2x S ∈,这与supS ξ=矛盾,故b ξ=.最后证明b S ∈.设开区间()22,H αβ∈,覆盖住了b .由b supS =,故存在y 使得:2y b α<≤且y S ∈.则[],a y 能被H 中有限个开区间覆盖,把()22,αβ加进去,就得到[],a b 也能被H 中有限个开区间覆盖. 4.确界原理证明聚点定理证明:设S 有界无限点集,则由确界原理令inf S ξ=.若ξ是S 的一个聚点,则命题已经成立,下面设ξ不是S 的聚点.令 ){}|,T x x S ξ=⎡⎣中只包含中有限个元素.因为ξ不是S 的聚点,所以存在00ε>,使得()()000;,U ξεξεξε=-+只包含S 中有限个数,故0T ξε+∈,从而T 非空.又S 有界,所以S 的所有上界就是T 的上界,故T 有上确界,令sup T η=. 下面证明η是S 的一个聚点.对任意的0ε>,S ηε+∉,故),ξηε+⎡⎣包含S 中无穷多个元素.由上确界的定义,存在(],ληεη∈-,使得S λ∈,故),ξλ⎡⎣中只包含S 中有限多个元素.从而我们得知)(),;U ληεηε+⊂⎡⎣中包含了S 中无穷多个元素,由聚点的定义,η是S 的一个聚点.5.确界原理证明Cauchy 收敛准则证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.令数集{}{}|,n n S x x x x x n =≥∀中只有有限项小于或,明显数列{}n x 的下界都属于S ,并且{}n x 的上界就是S 的上界.由确界存在定理,令sup S ξ=.对条件给定的0ε>和N ,S ξε+∉,故(),ξε-∞+包含{}n x 中无穷多项.由上确界的定义,存在(],λξεξ∈-,使得S λ∈,故(),λ-∞中只包含S 中有限多个元素.从而我们得知)()(),;,U ληεηεηεηε+⊂=-+⎡⎣中包含了S 中无穷多个元素,设()(),1,2,3,k n x U k ξε∈=L则对任意正整数n N >,总存在某个k n N >,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=.从而lim n n x ξ→∞=.二.单调有界定理6.单调有界定理证明确界定理证明:我们不妨证明非空有上界的数集S必有上确界.设{}|T r r S =为数集的有理数上界.明显T 是一个可数集,所以假设:{}12,,,,n T r r r =L L .令{}1min n i i nx r ≤≤=.则得单调递减有下界的数列,由单调有界定理得,令lim n n x ξ→∞=先证ξ是上界.任取s S ∈,有n n s r x ≤≤,由极限的保序性,s ξ≤.其次对于任意的0ε>,取一个有理数(),r ξεξ∈-%,它明显不是S 的上界,否则lim n n x r ξξ→∞=≤<%产生矛盾!故存在s S ∈,使得s ξε>-,我们证明了ξ是数集S 上确界.7.单调有界定理证明区间套定理若[]{},n n a b 是一个区间套,则{}n a 为单调递增有上界的数列,由单调有界定理, 令lim n n a ξ→∞=,并且容易得到()1,2,3,n a n ξ≤=L .同理,单调递减有下界的数列{}n b 也有极限,并按区间套的条件有:()lim lim 0n n n n n n b a b a ξξ→∞→∞=+-=+=⎡⎤⎣⎦,并且容易得到()1,2,3,n b n ξ≥=L .所以[](),1,2,3,n n a b n ξ∈=L下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=L .则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.8.单调有界定理证明有限覆盖定理设[]{}|,,T r a r H r r b =∈≤¤可以被的开区间有限开覆盖,且.容易得到T 中包含无穷多个元素,并且T 是一个可数集,所以假设:{}12,,,,n T r r r =L L .令{}1max n i i nx r≤≤=.则得单调递增有上界的数列,由单调有界定理得,令lim n n x ξ→∞=.先证明b ξ=.用反证法,若b ξ≠,则a b ξ<<.由H 覆盖闭区间[],a b ,一定存在开区间()11,H αβ∈,覆盖住了ξ.取,i j x r y =,使:11i j x r y αξβ<=<<< ,则[]1,a x 能被H 中有限个开区间覆盖,把()11,αβ加进去,就得到[],a y 也能被H 中有限个开区间覆盖,即y S ∈,这与supS ξ=矛盾,故b ξ=.最后证明b S ∈.设开区间()22,H αβ∈,覆盖住了b .由b supS =,故存在k l x r =使得:2k l x r b α<=≤.则[],l a r 能被H 中有限个开区间覆盖,把()22,αβ加进去,就得到[],a b 也能被H 中有限个开区间覆盖.9.单调有界定理证明聚点定理证明:设S 是一有界无限点集,在S 中选取一个单调{}n a ,下证数列{}n a 有聚点.(1)如果在{}n a 的任意一项之后,总存在最大的项,设1a 后的最大项是1n a ,1n a 后的最大项是2n a ,且显然()2121n n a a n n ≤>; 一般地,将kn a 后的最大项记为1k n a +,则有:()11,2,3,k k n n a a k +≤=L .这样,就得到了{}n a 的一个单调递减子列{}k n a .(2)如果(1)不成立 则从某一项开始,任何一项都不是最大的,不妨设从第一项起,每一项都不是最大项.于是,取11n a a =,因1n a 不是最大项,所以必存在另一项()2121n n a a n n >>又因为2n a 也不是最大项,所以又有:()3232n n a a n n >> ,这样一直做下去,就得到了{}n a 的一个单调递增子列{}k n a .综上所述,总可以在S 中可以选取一个单调数列{}k n a ,利用单调有界定理,{}k n a 收敛,极限就是S 的一个聚点.10.单调有界定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.参考9的做法,可知数列{}n a 有一个单调子列{}k n a ,由单调有界定理,{}k n a 收敛,令lim k n k x ξ→∞=.则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.三.区间套定理11.区间套定理证明确界原理证明:仅证明非空有上界的数集S 必有上确界取一个闭区间[],a b ,使得[],a b 包含S 中的元素,并且b 为S 的上界. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为数集S 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦. 再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为数集S 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b .由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =L 并且每个闭区间[],n n a b 都包含S 中的元素,并且右端点n b 为S 的上界.由于对任意s S ∈,有n s b ≤,所有由极限的保序性,lim n n s b ξ→∞≤=,从而ξ是数集S 的上界.最后,对于任意0ε>,存在n ,使得0n n b a ε<-<.由闭区间套的选取,[],n n a b 包含了S 中某个元素s ,从而有n n s a b εξε≥>->-.故ξ是数集S 的上确界. 12. 区间套定理证明单调有界定理设{}n x 是单调有界数列,不妨设其为单调递增且有上界取一个闭区间[],a b ,使得[],a b 包含{}n x 中的项,并且b 为{}n x 的上界. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为{}n x 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦. 再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为{}n x 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =L 并且每个闭区间[],n n a b 都包含{}n x 中的项,并且右端点n b 为{}n x 的上界.下面证明lim n n x ξ→∞=.对任意的0ε>,存在n ,使得0n n b a ε<-<.由闭区间套的选取,[],n n a b 包含了{}n x 中某一项N x ,从而有N n n x a b εξε≥>->-.由于{}n x 单调递增,故对任意的n N >,有:N n x x ξε-<<. 又n n n x b a εξε<<+<+,故有n x ξεξε-<<+,即n x ξε-<. 13. 区间套定理证明有限覆盖定理若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b .由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =L .显然[],a b ξ∈,考虑H 中覆盖ξ的开区间(),αβ,取{}0min ,δξαβξ<<--.由于lim lim n n n n a b ξ→∞→∞==,所以存在N ,对一切正整数n N >,有,n n a b ξξδ--<,故此时[]()(),;,n n a b U ξδαβ⊂⊂.从而[](),n n a b n N >可以被H 中的一个开区间(),αβ覆盖,产生矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖. 14. 区间套定理证明聚点定理证明:已知点集S 是有界无限点集.设[],S a b ⊂. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,每个闭区间包含了点集S 中无穷多个元素.由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =L .下证ξ是点集S 的一个聚点.因为lim lim n n n n a b ξ→∞→∞==,故对任意的0ε>,必定存在一个N ,对一切正整数n N >,有,n n a b ξξε--<,从而[]()(),;n n a b U n N ξε⊂>.又每个闭区间[],n n a b 包含了点集S 中无穷多个元素,故();U ξε包含了点集S 中无穷多个元素.由聚点的定义,ξ是点集S 的一个聚点.15. 区间套定理证明Cauchy 收敛准则必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.取一个闭区间[],a b ,使得[],a b 包含所有{}n x 中的项. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了{}n x 中无穷多项,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了{}n x 中无穷多项,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且每个闭区间[],n n a b 都包含{}n x 中无穷多项.由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =L现在取一个子列{}k n x ,满足[](),1,2,3,k n k k x a b k ∈=L .因为lim lim n n n n a b ξ→∞→∞==和夹逼定理,lim k n k x ξ→∞=.则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.四.有限覆盖定理16.有限覆盖定理证明确界原理证明:不妨设S 为非空有上界的数集,我们证明S 有上确界. 设b 为S 的一个上界,下面用反证法来证明S 一定存在上确界.假设S 不存在上确界,取a S ∈.对任一[],x a b ∈,依下述方法确定一个相应的邻域(开区间)()();,x x x x U U x x x δδδ==-+.(1)若x 不是S 的上界,则至少存在一点x S '∈,使x x '>,这时取x x x δ'=-.(2)若x 是S 的上界,由假设S 不存在上确界,故有0x δ>,使得](,x x x δδ- 中不包含S 中的点.此时取(),x x x U x x δδ=-+,可知它也不包含S 中的点.于是我们得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈ 根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖.很明显(1)的开区间右端点属于S ,(2)的开区间中不包含S 中的点.显然a 所属的开区间是属于(1)的,b 所属的开区间是属于(2)的,所以至少有一个(1)中的开区间与某个(2)中的开区间相交,这是不可能的.17.有限覆盖定理证明单调有界定理证明:设{}n x 是单调有界数列,不妨设其为单调递增且有上界.任取b 为{}n x 的一个上界以及{}n x 中某项t x ,构造出闭区间[],t x b ,对任意的[],t x x b ∈,依下述方法确定一个相应的邻域(开区间)()();,x x x x U U x x x δδδ==-+.(1) 若x 不是{}n x 的上界,则{}n x 中至少存在一项i x ,使i x x >,这时取x x x δ'=-.(2) 若x 是{}n x 的上界,由假设{}n x 发散,故不会收敛到x .即有存在某个00ε>,对任何正整数N ,存在n N >,使得()()000;,n x U x x x εεε∉=-+.由于{}n x 递增,有上界x ,所以{}n x 中的所有项均不落在()()000;,U x x x εεε=-+中.此时取0x δε=.于是我们得到了[],t x b 的一个开覆盖:()[]{},|,x x x t H U x x x x b δδ==-+∈. 根据有限覆盖定理,[],t x b 可以被H 中有限个开区间{}1inx i U =覆盖.很明显(1)的开区间右端点属于{}n x ,(2)的开区间中不包含{}n x 中的项.显然t x 所属的开区间是属于(1)的,b 所属的开区间是属于(2)的,所以至少有一个(1)中的开区间与某个(2)中的开区间相交,这是不可能的.18. 有限覆盖定理证明区间套定理 证明:用反证法.假设[]{}(),1,2,3,nna b n =L 没有公共点,则对任意一点[]11,x a b ∈,它都不会是[]{}(),1,2,3,nna b n =L 的公共点,从而存在正整数xn,使得,x x n n x a b ⎡⎤∉⎣⎦.故总存在一个开区间(),x x x U x x δδ=-+,使得:(),,xnx x n nx x a b δδ⎡⎤-+⋂=∅⎣⎦,于是我们得到了[]11,a b 的一个开覆盖:()[]{}11,|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[]11,a b 可以被H 中有限个开区间{}1ikx i U =覆盖.注意到闭区间套之间的包含关系,则所有{}1ikx i U =一定和某个最小的闭区间001,,i i kn n n n i a b a b =⎡⎤⎡⎤=⎣⎦⎣⎦U 无交.从而:[]{}0000001111,,,,i i k kn n x n n x n n i i a b a b U a b U a b ==⎧⎫⎡⎤⎡⎤⎡⎤⋂⊂⋂=⋂=∅⎨⎬⎣⎦⎣⎦⎣⎦⎩⎭U I .产生矛盾!19. 有限覆盖定理证明聚点定理证明:设点集S 是有界无限点集.设[],S a b ⊂.用反证法,假设S 没有聚点.利用聚点定义,对任意的[],x a b ∈,存在一个领域(),x x x U x x δδ=-+,使得x U 中只包含点集S 中有限个点.这样得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖. 由于每个x U 中只包含点集S 中有限个点,所以[]1,inx i a b U=⊂U 也只包含了S 中有限个点,这与S 是无限点集相矛盾!故假设不成立,即S 有聚点. 20. 有限覆盖定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:(使用反证法)现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<. 先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.假设{}[],n x a b ⊂.若{}n x 发散,则对任意的[],x a b ∈,可以找到一个(),x x x U x x δδ=-+,使得{}n x 中只有有限项落在()0;U x ε中.否则对任何0δ>,(),x x δδ-+中均包含{}n x 中无限项,则可以证明{}n x 收敛. 这样得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖. 所以[]1,inx i a b U=⊂U 也只包含了{}n x 中的有限项,矛盾!故假设不成立,{}n x 收敛.五.聚点定理21.聚点定理证明确界原理证明:仅证明非空有上界的数集S 必有上确界.取一个闭区间[],a b ,使得[],a b 包含S 中的元素,并且b 为S 的上界. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为数集S 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦. 再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为数集S 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由于{}n b 明显有界,所有它有聚点ξ.对任意0,s S ε>∈,设()();,k b U ξεξεξε∈=-+,则k s b ξε≤<+.由ε的任意性,s ξ≤,故ξ是S 的一个上界.其次,对任意0ε>,取()();,k a U ξεξεξε∈=-+,设s S ∈包含于闭区间[],k k a b ,则k s a ξε≥>-.从而我们证明了ξ是S 的一个上确界. 22.聚点定理证明单调有界定理证明:设{}n x 是单调有界数列,则它一定存在聚点ξ.下证:lim n n x ξ→∞=.对任意的0ε>,由聚点的定义,()(),,U ξεξεξε=-+中包含{}n x 中的无穷多项,设{}()(),,kn x U ξεξεξε⊂=-+.则取1N n =,对一切正整数1n N n >=,假设kn n <.利用{}nx 是单调的,nx介于1n x 与k n x 之间,所以由()1,,k n n x x U ξε∈,可知(),n x U ξε∈,从而由极限的定义,lim n n x ξ→∞=23.聚点定理证明区间套定理证明:设{}{}n n S a b =⋃,则S 是有界无限点集 由聚点定理得数集S 聚点ξ.若存在一个某个正整数0n ,使得00,n n a b ξ⎡⎤∉⎣⎦,不妨假设00n n a b ξ<<.取00n b εξ=-,则对一切0n n >,有00n n n a b b ξε<≤=-.于是()()000;,U ξεξεξε=-+中只包含S 中有限个点,这与ξ是数集S 的聚点矛盾!故[](),1,2,3,n n a b n ξ∈=L下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=L .则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.24.聚点定理证明有限覆盖定理证明:若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且[](),1,2,3n n a b =L 均不能被H 有限开覆盖显然,{}n a 是有界的,故它存在聚点ξ.明显[],a b ξ∈.考虑H 覆盖中覆盖住ξ的开区间(),αβ.取{}min ,εξαβξ<--,则在()();,U ξεξεξε=-+中包含了{}n a 中的无穷多项,设{}()();,kn a U ξεξεξε⊂=-+.又()02n n nb aba n --=→→+∞ 于是存在某个0k n ,使得0k k n n b a βξε-<--故0n a ξεα>->;()00n n b a βξεξεβξεβ<+--<++--=.故[]00,,n n a b αβ⎡⎤⊂⎣⎦.这与[](),1,2,3n n a b =L 均不能被H 有限开覆盖矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖.25.聚点定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.故它存在聚点,设为ξ.对条件中的0ε>,由聚点的定义,假设{}()();,k n x U ξεξεξε⊂=-+ 则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.六.Cauchy 收敛准则26. Cauchy 收敛准则证明确界原理证明: 设S 为非空有上界数集.由实数的阿基米德性,对任何正数α,存在整数k α ,使得k ααλα=为S 的上界,而()1k ααλαα-=-不是S 的上界, 即存在S α'∈使得()1k ααα'>- 分别取()11,2,3,n n α==L ,则对每一个正整数n ,存在相应的n λ,使得n λ为S 的上界,而1nnλ-不是S 的上界,故存在S α'∈,使得1n nαλ'>-又对正整数m ,m λ是S 的上界,故有m λα'≥.所以1m n n λαλ'≥>-,即有1m n m λλ-<.同理有1m n nλλ-<,于是得到11min ,m n m n λλ⎧⎫-<⎨⎬⎩⎭. 于是,对任意的0ε>,存在正整数N ,使得当,m n N >时有m n λλε-<.由柯西收敛准则,数列{}n λ收敛.记lim n n λλ→∞=现在证明λ就是S 的上确界.首先,对任何S α∈和正整数n ,有n αλ≤,有极限的保序性,lim n n αλλ→∞≤=,故λ是S 的上界其次,对于任意的0δ>,存在充分的的正整数n ,使得12n δ<并且2n δλλ>-. 由于1n n λ-不是S 的上界,所以存在S α'∈,并且1n nαλ'>-. 于是122n n δδαλλλδ'>->--=-.故λ就是S 的上确界. 27. Cauchy 收敛准则证明单调有界定理证明:设{}n x 是单调有界数列,不妨假设{}n x 单调递增有上界.若{}n x 发散,则又柯西收敛准则,存在00ε>,对一切正整数N ,存在m n N >>,使得0m n m n x x x x ε-=-≥. 于是容易得到{}n x 的子列{}k n x ,使得10k k n n x x ε+-≥.进而()101k n n x x k ε>+- 故()k n x k →+∞→∞,这与{}n x 是有界数列矛盾!所有假设不成立,即{}n x 收敛. 28. Cauchy 收敛准则证明区间套定理证明:设[]{},n n a b 为闭区间套.因为lim 0n n n a b →∞-=,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.由于{}n a 单调递增,{}n b 单调递减,由极限的保序性, 所以[](),1,2,3,n n a b n ξ∈=L下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=L .则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.29.Cauchy 收敛准则证明有限覆盖定理证明:若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且[](),1,2,3n n a b =L 均不能被H 有限开覆盖.因为lim lim02n n nn n b aa b →∞→∞--==,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.由于{}n a 单调递增,{}n b 单调递减,由极限的保序性, 所以[](),1,2,3,n n a b n ξ∈=L .考虑H 覆盖中覆盖住ξ的开区间(),αβ.取{}min ,εξαβξ<--,则存在正整数N ,对一切n N >,,n n a b ξξε--<.即有[]()(),;,n n a b U ξεαβ⊂⊂.这与[](),1,2,3n n a b =L 均不能被H 有限开覆盖矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖. 30. Cauchy 收敛准则证明聚点定理证明:已知点集S 是有界无限点集.设[],S a b ⊂. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,每个闭区间包含了点集S 中无穷多个元素.因为lim lim02n n nn n b aa b →∞→∞--==,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.下证ξ是S 的一个聚点.对任意的0ε>,存在正整数N ,对一切n N >,,n n a b ξξε--<.即有[]()(),;,n n a b U ξεξεξε⊂=-+.故()();,U ξεξεξε=-+中包含了S 中无穷多个元素,由聚点的定义,ξ是S 的一个聚点.。

数学分析7.1关于实数集完备性的基本定理

数学分析7.1关于实数集完备性的基本定理

第七章 实数的完备性 1 关于实数集完备性的基本定理一、区间套定理与柯西收敛准则 定义1:设区间列{[a n ,b n ]}具有如下性质: 1、[a n ,b n ]⊃[a n+1,b n+1], n=1,2,…;(即a 1≤a 2≤…≤a n ≤…≤b n ≤…≤b 2≤b 1) 2、∞→x lim (b n -a n )=0, 则称{[a n ,b n ]}为闭区间套,或简称区间套.定理7.1:(区间套定理)若{[a n ,b n ]}是一个区间套,则在实数系中存在唯一的一点ξ,使得ξ∈[a n ,b n ], n=1,2,…, 即a n ≤ξ≤b n , n=1,2,…. 证:由a 1≤a 2≤…≤a n ≤…≤b n ≤…≤b 2≤b 1知: {a n }递增有界,∴{a n }有极限ξ,且a n ≤ξ,n=1,2,….又{b n }递减有界,∴{b n }有极限,又∞→nlim (b n -a n )=0,∴∞→n lim b n =∞→n lim a n =ξ, 且b n ≤ξ,n=1,2,…,即a n ≤ξ≤b n , n=1,2,….设数ξ’∈[a n ,b n ], n=1,2,…,则|ξ-ξ’|≤b n -a n , n=1,2,…,则|ξ-ξ’|≤∞→nlim (b n -a n )=0,∴ξ’=ξ. 原命题得证.推论:若ξ∈[a n ,b n ] (n=1,2,…)是区间套{[a n ,b n ]}所确定的点,则对任给的ε>0,存在N>0,使得当n>N 时有[a n ,b n ]⊂U(ξ; ε).例:证明:定理2.10:(数列的柯西收敛准则)数列{a n }收敛的充要条件是:对任给的ε>0,存在N>0,使得对m,n>N 有|a m -a n |<ε.证:[必要性]设∞→n lim a n =A ,由数列极限定义, 对任给的ε>0,存在N>0,当m,n>N 时,有|a m -A|<2ε,|a n -A|<2ε, ∴|a m -a n |≤|a m -A|+|a n -A|<ε.[充分性]∵对任给的ε>0,存在N>0,使得对n ≥N 有|a n -a N |≤ε,即 即在区间[a N -ε,a N +ε]内含有{a n }中几乎所有项(即除有限项外的所有项). 令ε=21,则存在N 1,在区间[a 1N -21,a 1N +21]内含有{a n }中几乎所有项.记[α1, β1]=[a 1N -21,a 1N +21].令ε=221,则存在N 2(>N 1),在[a 2N -221,a 2N +221]含有{a n }几乎所有项. 记[α2, β2]=[a 2N -221,a 2N +221]∩[α1, β1],[α2, β2]含有{a n }几乎所有项,且满足[α1, β1]⊃[α2, β2]及β2-α2≤21.依次令ε=321,…,n 21,…, 可得闭区间列{[αn , βn ]},其中每个区间都含有{a n }几乎所有项,且 满足[αn , βn ]⊃[αn+1, βn+1], n=1,2,…, βn -αn ≤1-n 21→0 (n →∞), 即{[αn , βn ]}是区间套,由区间套定理, 存在唯一的一点ξ,使得ξ∈[αn , βn ], n=1,2,….又对任给的ε>0,存在N>0,使得当n>N 时有[αn , βn ]⊂U(ξ; ε),∴在U(ξ; ε)内含有{a n }几乎所有项,∴∞→nlim a n =ξ.二、聚点定理与有限覆盖定理定义2:设S 为数轴上的点集,ξ为定点. 或ξ的任何邻域内都含有S 中无穷多个点,则称ξ为点集S 的一个聚点. 如:点集S={(-1)n +n 1}有两个聚点ξ1=-1, ξ2=1;点集S={n1}只有一个聚点ξ=0; 又若S 为开区间(a,b),则(a,b)内每一点以及端点a,b 都是S 的聚点; 根据定义,正整数集N +没有聚点,任何有限数集也没有聚点。

实数完备性的等价命题及证明

实数完备性的等价命题及证明

一、问题提出确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2 (单调有界定理)任何单调有界数列必定收敛.定理1.3 (区间套定理)设为一区间套:.则存在唯一一点定理1.4 (有限覆盖定理) 设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理) 直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则) 数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类下面来完成(1)~(7)的证明.二、等价命题证明(1)(用确界定理证明单调有界定理)(2)(用单调有界定理证明区间套定理)(3)(用区间套定理证明确界原理)*(4)(用区间套定理证明有限覆盖定理)*(5)(用有限覆盖定理证明聚点定理)*(6)(用聚点定理证明柯西准则)*(7)(用柯西准则证明单调有界定理)(1)(用确界定理证明单调有界定理)〔证毕〕(返回)(2)(用单调有界定理证明区间套定理)设区间套.若另有使,则因.[证毕][推论]设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.(返回)(3) (用区间套定理证明确界原理)证明思想:构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.[证毕](返回)*(4)(用区间套定理证明有限覆盖定理)设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.[证毕][说明]当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.(返回)*(5)(用有限覆盖定理证明聚点定理)设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[证毕][推论(致密性定理)]有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点.(返回)*(6)(用聚点定理证明柯西准则)柯西准则的必要性容易由数列收敛的定义直接证得,这里只证其充分性.已知条件:当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.[证毕](返回)*(7)(用柯西准则证明单调有界原理) 设为一递增且有上界M的数列.用反证法(借助柯西准则)可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“当时,满足”.这是因为它同时保证了对一切,恒有.倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ]在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.[例]证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义);(ii) 在内含有中至少一个点;(iii) ,时,使.证:(i)(ii) 显然成立.(ii)(iii) 由(ii),取,;再取;……一般取;……由的取法,保证,,.(iii)(i)时,必有,且因各项互不相同,故内含有中无限多个点.[证毕]。

关于实数完备性的基本定理

关于实数完备性的基本定理

无穷多个点,记其为[a3 , b3 ], 则
[a2 , b2 ] [a3 , b3 ], 且 b3 - a3 = 1 M (b2 - a2 ) = . 2 2
无限进行,则得区间列{[an , bn ]}, 满足
[an , bn ] [an+1, bn+1 ], n = 1, 2,
M b a = , n n 2n -1 0, (n ),
k
下证 lim an = a,
n
0, N1 0,当n,m N1时, 有 an - am
由lim ank = a, 0, N 2 0, 当k N 2时, 有 ank - a
k
0, N = max{N1, N2} 0,当n, k N时,
[an , bn ] [an+1 , bn+1 ], n = 1,2,L, 1 bn - an = n (b - a) 0 (n ). 2 即{[ an , bn ]}是区间套, 且其中每一个闭区间都不能用H中有限个
有限个开区间来覆盖, 由区间套定理
x [an , bn ], n = 1,2,L,由于H是[a, b]的一个开覆盖
•定理的证明:
单调有界定理 区间套定理
n
由区间套定义知a 为递增有界数列,
an 依单调有界定理, 有极限x,且有 a x,n = 1,2, L.
n
b 同理,递减有界数列 也有极限,并按区间套的条件(ii )有
n
lim b = lim a = x , 且 b x,n = 1,2, L. n n
n
xn S
,则其极限
显然 显然 定义2 定义2 定义2 定义2

实数完备性的六大基本定理的相互证明(共30个)

实数完备性的六大基本定理的相互证明(共30个)

1 确界原理非空有上(下)界数集,必有上(下)确界。

2 单调有界原理 任何单调有界数列必有极限。

3 区间套定理 若]},{[n n b a 是一个区间套, 则存在唯一一点ξ,使得 ,2,1],,[=∈n b a n n ξ。

4 Heine-Borel 有限覆盖定理 设],[b a 是一个闭区间,H 为],[b a 上的一个开覆盖,则在H 中存在有限个开区间,它构成],[b a 上的一个覆盖。

5 Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。

) 直线上的有解无限点集至少有一个聚点。

6 Cauchy 收敛准则数列}{n a 收敛⇔对任给的正数ε,总存在某一个自然数N ,使得N n m >∀,时,都有ε<-||n m a a 。

一.确界原理1.确界原理证明单调有界定理证 不妨设{ a n }为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n }.下面证明a 就是{ a n } 的极限. 事实上,任给ε> 0, 按上确界的定 义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n }的递增性,当n ≥ N时有a - ε < a N ≤ a n .另一方面,由于a 是{ a n }的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当 n ≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理 证明:1设 [an,bn] 是一个闭区间套,即满足: 1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an =我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设sup S =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an ≤ξ,(n =1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)唯一性: 假设还有另外一点R ∈'ξ且],[n n b a ∈'ξ,则||||n n b a -≤'-ξξ,0→ 即ξξ'=。

实数完备性基本理论的证明

实数完备性基本理论的证明

实数完备性基本理论的证明默认分类 2010-05-08 16:15:08 阅读95 评论0 字号:大中小订阅摘要:通过对实数完备性的相关理论的学习,我们虽然掌握了证明七条定理的某些方法,但我们没有对他们进行依次的推证,下面我对其进行了依次的推证,从确界定理单调有界原理 Cauchy 准则致密性定理聚点定理闭区间套定理有限覆盖定理确界定理关键词:确界定理单调有界原理 Cauchy 准则致密性定理聚点定理闭区间套定理有限覆盖定理我们知道,实数空间是一种集合R,其中的元素为实数,且在这个集合上定义了加”+”,乘,运算,以及序关系”<”,满足以下的公理:1. 域公理即任意的x, y, z∈R(实数域)有:(1).交换律 x+y = y+x, x﹡y = y﹡x .(2).结合律 (x+y)+ z = x + (y+z),(x﹡y) ﹡z = x﹡(y﹡z).(3).分配律 x﹡(y+z) = x﹡y + x﹡z.(4).有两个特殊的成员0与1,对任意的x∈R有 x+0 = x, x﹡1= x.(5).每个x∈R有关于"+"的逆元-x;关于"﹡"的逆元1/x,使得x+(-x)=0,x﹡(1/x)=1.2.与加"+"、乘"﹡"运算相容的全序公理:(1)任意的x,y∈R,以下三种关系:x<y,x=y,x>y必有一个且仅有一个成立.(2).传递性若x<y,y<z,则x<z.(3).与“加法”相容性若x<y,z∈R,则x+z<y+z.(4).与“乘法”相容性若x<y,z>0,则x﹡z<y﹡z.3.(Archimedes公理)任意 x>0, y>0,存在n∈N ,使得nx≥y.与有理数不同,实数具有完备性.4.完备性公理:有上界的非空集合必有上确界.鉴于此,我们对实数有了大体的了解,而下面用实数的7个基本定理以不同的形式刻画了实数的连续性.一、七条定理的内容分别如下:(1).(确界定理)任何R中的非空集E,若它有上界,则必有上确界supE∈R(等价的若有下界,必有下确界)(2) .(单调有界原理)任何R中的单调递增、有上界的序列{ Xn },必有极限lim Xn∈R(n 趋于∞).(等价地,单调递减、有下界也必有极限.)(3).( Cauchy 准则)对R中的序列{ Xn }收敛的充分必要条件是任意的a>0,存在N,当m,n>N时,有 | Xn—Xm | < a.(4). (致密性定理) 任何有界的无穷序列必有收敛的子序列.(5). (聚点定理) 任何有界无穷集,至少有一个聚点.(6). (闭区间套定理) 任何闭区间套,必存在唯一的公共点.(7).(有限覆盖定理) 闭区间上的任意开覆盖,必存在有限子覆盖.二、下面为七条定理的相互推证。

实数完备性基本定理的相互证明

实数完备性基本定理的相互证明

实数完备性基本定理的相互证明(30个)一.确界原理1.确界原理证明单调有界定理证 不妨设{}n a 为有上界的单调递增数列.由确界原理,数列{}n a 有上确界,令{}n a sup a =,下面证明:lim n n a a →∞=.对任意的0ε>,由上确界的定义,存在数列{}n a 中某一项N a ,使得:N a a ε->. 由于{}n a 单调递增,故对任意的n N >,有:n N a a a ε-<<.另一方面,由于a 是{}n a 的一个上界,故对任意的正整数n 都有:n a a a ε≤<+. 所以任意的n N >,有:n a a a εε-<<+,即:n a a ε-<.由极限的定义,lim n n a a →∞=.同理可证单调递减有下界的数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理证明:设[]{},n n a b 是一个闭区间套. 令数集{}n S a =.由于任一n b 都是数列{}n a 的上界,由确界原理,数集S 有上确界,设supS ξ=. 下证ξ属于每个闭区间[](),1,2,3,n n a b n =显然,()1,2,3,n a n ξ≤=,故只需证明对任意正整数n ,都有n b ξ≤.事实上,对任意正整数n ,n b 都是S 的上界,而上确界是最小上界,故必有n b ξ≤. 所以存在实数ξ,使得[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.3.确界原理证明有限覆盖定理证明:欲证闭区间[],a b 的任一开覆盖H 都有有限的子覆盖. 令[]{}|,S x a x H a x b =<≤能被中有限个开区间覆盖,显然S 有上界.又H 覆盖闭区间[],a b ,所以,存在一个开区间(),H αβ∈,覆盖住了a .取(),x a β∈,则[],a x 显然能被H 中有限个开区间覆盖(1个),x S ∈,从而S 非空. 由确界原理,令supS ξ=.先证明b ξ=.用反证法,若b ξ≠,则a b ξ<<.由H 覆盖闭区间[],a b ,一定存在开区间()11,H αβ∈,覆盖住了ξ.取12,x x ,使:11211,x x x S αξβ<<<<∈ ,则[]1,a x 能被H 中有限个开区间覆盖,把()11,αβ加进去,就得到[]2,a x 也能被H 中有限个开区间覆盖,即2x S ∈,这与supS ξ=矛盾,故b ξ=.最后证明b S ∈.设开区间()22,H αβ∈,覆盖住了b .由b supS =,故存在y 使得:2y b α<≤且y S ∈.则[],a y 能被H 中有限个开区间覆盖,把()22,αβ加进去,就得到[],a b 也能被H 中有限个开区间覆盖. 4.确界原理证明聚点定理证明:设S 有界无限点集,则由确界原理令inf S ξ=.若ξ是S 的一个聚点,则命题已经成立,下面设ξ不是S 的聚点.令 ){}|,T x x S ξ=⎡⎣中只包含中有限个元素.因为ξ不是S 的聚点,所以存在00ε>,使得()()000;,U ξεξεξε=-+只包含S 中有限个数,故0T ξε+∈,从而T 非空.又S 有界,所以S 的所有上界就是T 的上界,故T 有上确界,令sup T η=. 下面证明η是S 的一个聚点.对任意的0ε>,S ηε+∉,故),ξηε+⎡⎣包含S 中无穷多个元素.由上确界的定义,存在(],ληεη∈-,使得S λ∈,故),ξλ⎡⎣中只包含S 中有限多个元素.从而我们得知)(),;U ληεηε+⊂⎡⎣中包含了S 中无穷多个元素,由聚点的定义,η是S 的一个聚点.5.确界原理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.令数集{}{}|,n n S x x x x x n =≥∀中只有有限项小于或,明显数列{}n x 的下界都属于S ,并且{}n x 的上界就是S 的上界.由确界存在定理,令sup S ξ=.对条件给定的0ε>和N ,S ξε+∉,故(),ξε-∞+包含{}n x 中无穷多项.由上确界的定义,存在(],λξεξ∈-,使得S λ∈,故(),λ-∞中只包含S 中有限多个元素.从而我们得知)()(),;,U ληεηεηεηε+⊂=-+⎡⎣中包含了S 中无穷多个元素,设()(),1,2,3,k n x U k ξε∈=则对任意正整数n N >,总存在某个k n N >,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=.从而lim n n x ξ→∞=.二.单调有界定理6.单调有界定理证明确界定理证明:我们不妨证明非空有上界的数集S必有上确界.设{}|T r r S =为数集的有理数上界.明显T 是一个可数集,所以假设:{}12,,,,n T r r r =.令{}1min n i i nx r ≤≤=.则得单调递减有下界的数列,由单调有界定理得,令lim n n x ξ→∞= 先证ξ是上界.任取s S ∈,有n n s r x ≤≤,由极限的保序性,s ξ≤.其次对于任意的0ε>,取一个有理数(),r ξεξ∈-,它明显不是S 的上界,否则lim n n x r ξξ→∞=≤<产生矛盾!故存在s S ∈,使得s ξε>-,我们证明了ξ是数集S 上确界.7.单调有界定理证明区间套定理若[]{},n n a b 是一个区间套,则{}n a 为单调递增有上界的数列,由单调有界定理, 令lim n n a ξ→∞=,并且容易得到()1,2,3,n a n ξ≤=.同理,单调递减有下界的数列{}n b 也有极限,并按区间套的条件有:()lim lim 0n n n n n n b a b a ξξ→∞→∞=+-=+=⎡⎤⎣⎦,并且容易得到()1,2,3,n b n ξ≥=.所以[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.8.单调有界定理证明有限覆盖定理设[]{}|,,T r a r H r r b =∈≤可以被的开区间有限开覆盖,且.容易得到T 中包含无穷多个元素,并且T 是一个可数集,所以假设:{}12,,,,n T r r r =.令{}1max n i i nx r ≤≤=.则得单调递增有上界的数列,由单调有界定理得,令lim n n x ξ→∞=.先证明b ξ=.用反证法,若b ξ≠,则a b ξ<<.由H 覆盖闭区间[],a b ,一定存在开区间()11,H αβ∈,覆盖住了ξ.取,i j x r y =,使:11i j x r y αξβ<=<<< ,则[]1,a x 能被H 中有限个开区间覆盖,把()11,αβ加进去,就得到[],a y 也能被H 中有限个开区间覆盖,即y S ∈,这与supS ξ=矛盾,故b ξ=.最后证明b S ∈.设开区间()22,H αβ∈,覆盖住了b .由b supS =,故存在k l x r =使得:2k l x r b α<=≤.则[],l a r 能被H 中有限个开区间覆盖,把()22,αβ加进去,就得到[],a b 也能被H 中有限个开区间覆盖.9.单调有界定理证明聚点定理证明:设S 是一有界无限点集,在S 中选取一个单调{}n a ,下证数列{}n a 有聚点.(1)如果在{}n a 的任意一项之后,总存在最大的项,设1a 后的最大项是1n a ,1n a 后的最大项是2n a ,且显然()2121n n a a n n ≤>; 一般地,将k n a 后的最大项记为1k n a +,则有:()11,2,3,k k n n a a k +≤=.这样,就得到了{}n a 的一个单调递减子列{}k n a .(2)如果(1)不成立 则从某一项开始,任何一项都不是最大的,不妨设从第一项起,每一项都不是最大项.于是,取11n a a =,因1n a 不是最大项,所以必存在另一项()2121n n a a n n >>又因为2n a 也不是最大项,所以又有:()3232n n a a n n >> ,这样一直做下去,就得到了{}n a 的一个单调递增子列{}k n a .综上所述,总可以在S 中可以选取一个单调数列{}k n a ,利用单调有界定理,{}k n a 收敛,极限就是S 的一个聚点.10.单调有界定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.参考9的做法,可知数列{}n a 有一个单调子列{}k n a ,由单调有界定理,{}k n a 收敛,令lim k n k x ξ→∞=.则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.三.区间套定理11.区间套定理证明确界原理证明:仅证明非空有上界的数集S 必有上确界取一个闭区间[],a b ,使得[],a b 包含S 中的元素,并且b 为S 的上界. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为数集S 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦.再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为数集S 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =并且每个闭区间[],n n a b 都包含S 中的元素,并且右端点n b 为S 的上界.由于对任意s S ∈,有n s b ≤,所有由极限的保序性,lim n n s b ξ→∞≤=,从而ξ是数集S 的上界.最后,对于任意0ε>,存在n ,使得0n n b a ε<-<.由闭区间套的选取,[],n n a b 包含了S 中某个元素s ,从而有n n s a b εξε≥>->-.故ξ是数集S 的上确界. 12. 区间套定理证明单调有界定理设{}n x 是单调有界数列,不妨设其为单调递增且有上界取一个闭区间[],a b ,使得[],a b 包含{}n x 中的项,并且b 为{}n x 的上界. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为{}n x 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦. 再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为{}n x 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =并且每个闭区间[],n n a b 都包含{}n x 中的项,并且右端点n b 为{}n x 的上界.下面证明lim n n x ξ→∞=.对任意的0ε>,存在n ,使得0n n b a ε<-<.由闭区间套的选取,[],n n a b 包含了{}n x 中某一项N x ,从而有N n n x a b εξε≥>->-.由于{}n x 单调递增,故对任意的n N >,有:N n x x ξε-<<. 又n n n x b a εξε<<+<+,故有n x ξεξε-<<+,即n x ξε-<.若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =.显然[],a b ξ∈,考虑H 中覆盖ξ的开区间(),αβ,取{}0min ,δξαβξ<<--.由于lim lim n n n n a b ξ→∞→∞==,所以存在N ,对一切正整数n N >,有,n n a b ξξδ--<,故此时[]()(),;,n n a b U ξδαβ⊂⊂.从而[](),n n a b n N >可以被H 中的一个开区间(),αβ覆盖,产生矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖. 14. 区间套定理证明聚点定理证明:已知点集S 是有界无限点集.设[],S a b ⊂. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,每个闭区间包含了点集S 中无穷多个元素.由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =.下证ξ是点集S 的一个聚点.因为lim lim n n n n a b ξ→∞→∞==,故对任意的0ε>,必定存在一个N ,对一切正整数n N >,有,n n a b ξξε--<,从而[]()(),;n n a b U n N ξε⊂>.又每个闭区间[],n n a b 包含了点集S 中无穷多个元素,故();U ξε包含了点集S 中无穷多个元素.由聚点的定义,ξ是点集S 的一个聚点.必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.取一个闭区间[],a b ,使得[],a b 包含所有{}n x 中的项. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了{}n x 中无穷多项,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了{}n x 中无穷多项,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且每个闭区间[],n n a b 都包含{}n x 中无穷多项.由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =现在取一个子列{}k n x ,满足[](),1,2,3,k n k k x a b k ∈=.因为lim lim n n n n a b ξ→∞→∞==和夹逼定理,lim kn k x ξ→∞=.则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.四.有限覆盖定理16.有限覆盖定理证明确界原理证明:不妨设S 为非空有上界的数集,我们证明S 有上确界. 设b 为S 的一个上界,下面用反证法来证明S 一定存在上确界.假设S 不存在上确界,取a S ∈.对任一[],x a b ∈,依下述方法确定一个相应的邻域(开区间)()();,x x x x U U x x x δδδ==-+.(1)若x 不是S 的上界,则至少存在一点x S '∈,使x x '>,这时取x x x δ'=-.(2)若x 是S 的上界,由假设S 不存在上确界,故有0x δ>,使得](,x x x δδ- 中不包含S 中的点.此时取(),x x x U x x δδ=-+,可知它也不包含S 中的点.于是我们得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈ 根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖.很明显(1)的开区间右端点属于S ,(2)的开区间中不包含S 中的点.显然a 所属的开区间是属于(1)的,b 所属的开区间是属于(2)的,所以至少有一个(1)中的开区间与某个(2)中的开区间相交,这是不可能的.17.有限覆盖定理证明单调有界定理证明:设{}n x 是单调有界数列,不妨设其为单调递增且有上界.任取b 为{}n x 的一个上界以及{}n x 中某项t x ,构造出闭区间[],t x b ,对任意的[],t x x b ∈,依下述方法确定一个相应的邻域(开区间)()();,x x x x U U x x x δδδ==-+.(1) 若x 不是{}n x 的上界,则{}n x 中至少存在一项i x ,使i x x >,这时取x x x δ'=-.(2) 若x 是{}n x 的上界,由假设{}n x 发散,故不会收敛到x .即有存在某个00ε>,对任何正整数N ,存在n N >,使得()()000;,n x U x x x εεε∉=-+.由于{}n x 递增,有上界x ,所以{}n x 中的所有项均不落在()()000;,U x x x εεε=-+中.此时取0x δε=.于是我们得到了[],t x b 的一个开覆盖:()[]{},|,x x x t H U x x x x b δδ==-+∈. 根据有限覆盖定理,[],t x b 可以被H 中有限个开区间{}1inx i U =覆盖.很明显(1)的开区间右端点属于{}n x ,(2)的开区间中不包含{}n x 中的项.显然t x 所属的开区间是属于(1)的,b 所属的开区间是属于(2)的,所以至少有一个(1)中的开区间与某个(2)中的开区间相交,这是不可能的.18. 有限覆盖定理证明区间套定理 证明:用反证法.假设[]{}(),1,2,3,nna b n =没有公共点,则对任意一点[]11,x a b ∈,它都不会是[]{}(),1,2,3,nna b n =的公共点,从而存在正整数xn,使得,x x n n x a b ⎡⎤∉⎣⎦.故总存在一个开区间(),x x x U x x δδ=-+,使得:(),,xnx x n nx x a b δδ⎡⎤-+⋂=∅⎣⎦,于是我们得到了[]11,a b 的一个开覆盖:()[]{}11,|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[]11,a b 可以被H 中有限个开区间{}1ikx i U =覆盖.注意到闭区间套之间的包含关系,则所有{}1ikx i U =一定和某个最小的闭区间001,,i i k n n n n i a b a b =⎡⎤⎡⎤=⎣⎦⎣⎦无交.从而:[]{}0000001111,,,,i ik k n n x n n x n n i i a b a b U a b Ua b ==⎧⎫⎡⎤⎡⎤⎡⎤⋂⊂⋂=⋂=∅⎨⎬⎣⎦⎣⎦⎣⎦⎩⎭.产生矛盾!19. 有限覆盖定理证明聚点定理证明:设点集S 是有界无限点集.设[],S a b ⊂.用反证法,假设S 没有聚点.利用聚点定义,对任意的[],x a b ∈,存在一个领域(),x x x U x x δδ=-+,使得x U 中只包含点集S 中有限个点.这样得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖. 由于每个x U 中只包含点集S 中有限个点,所以[]1,i n x i a b U =⊂也只包含了S 中有限个点,这与S 是无限点集相矛盾!故假设不成立,即S 有聚点.20. 有限覆盖定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:(使用反证法)现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<. 先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.假设{}[],n x a b ⊂.若{}n x 发散,则对任意的[],x a b ∈,可以找到一个(),x x x U x x δδ=-+,使得{}n x 中只有有限项落在()0;U x ε中.否则对任何0δ>,(),x x δδ-+中均包含{}n x 中无限项,则可以证明{}n x 收敛. 这样得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖. 所以[]1,i n x i a b U =⊂也只包含了{}n x 中的有限项,矛盾!故假设不成立,{}n x 收敛.五.聚点定理21.聚点定理证明确界原理证明:仅证明非空有上界的数集S 必有上确界.取一个闭区间[],a b ,使得[],a b 包含S 中的元素,并且b 为S 的上界. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为数集S 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦. 再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为数集S 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由于{}n b 明显有界,所有它有聚点ξ.对任意0,s S ε>∈,设()();,k b U ξεξεξε∈=-+,则k s b ξε≤<+.由ε的任意性,s ξ≤,故ξ是S 的一个上界.其次,对任意0ε>,取()();,k a U ξεξεξε∈=-+,设s S ∈包含于闭区间[],k k a b ,则k s a ξε≥>-.从而我们证明了ξ是S 的一个上确界. 22.聚点定理证明单调有界定理证明:设{}n x 是单调有界数列,则它一定存在聚点ξ.下证:lim n n x ξ→∞=.对任意的0ε>,由聚点的定义,()(),,U ξεξεξε=-+中包含{}n x 中的无穷多项,设{}()(),,kn x U ξεξεξε⊂=-+.则取1N n =,对一切正整数1n N n >=,假设kn n <.利用{}nx 是单调的,nx介于1n x 与k n x 之间,所以由()1,,k n n x x U ξε∈,可知(),n x U ξε∈,从而由极限的定义,lim n n x ξ→∞=23.聚点定理证明区间套定理证明:设{}{}n n S a b =⋃,则S 是有界无限点集 由聚点定理得数集S 聚点ξ.若存在一个某个正整数0n ,使得00,n n a b ξ⎡⎤∉⎣⎦,不妨假设00n n a b ξ<<.取00n b εξ=-,则对一切0n n >,有00n n n a b b ξε<≤=-.于是()()000;,U ξεξεξε=-+中只包含S 中有限个点,这与ξ是数集S 的聚点矛盾!故[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.24.聚点定理证明有限覆盖定理证明:若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且[](),1,2,3n n a b =均不能被H 有限开覆盖显然,{}n a 是有界的,故它存在聚点ξ.明显[],a b ξ∈.考虑H 覆盖中覆盖住ξ的开区间(),αβ.取{}min ,εξαβξ<--,则在()();,U ξεξεξε=-+中包含了{}n a 中的无穷多项,设{}()();,k n a U ξεξεξε⊂=-+.又()02n n n b ab a n --=→→+∞ 于是存在某个0k n ,使得0k k n n b a βξε-<--故0n a ξεα>->;()00n n b a βξεξεβξεβ<+--<++--=. 故[]00,,n n a b αβ⎡⎤⊂⎣⎦.这与[](),1,2,3n n a b =均不能被H 有限开覆盖矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖.25.聚点定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.故它存在聚点,设为ξ.对条件中的0ε>,由聚点的定义,假设{}()();,k n x U ξεξεξε⊂=-+ 则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.六.Cauchy 收敛准则26. Cauchy 收敛准则证明确界原理证明: 设S 为非空有上界数集.由实数的阿基米德性,对任何正数α,存在整数k α ,使得k ααλα=为S 的上界,而()1k ααλαα-=-不是S 的上界, 即存在S α'∈使得()1k ααα'>- 分别取()11,2,3,n nα==,则对每一个正整数n ,存在相应的n λ,使得n λ为S 的上界,而1n nλ-不是S 的上界,故存在S α'∈,使得1n nαλ'>-又对正整数m ,m λ是S 的上界,故有m λα'≥.所以1m n n λαλ'≥>-,即有1m n m λλ-<.同理有1m n nλλ-<,于是得到11min ,m n m n λλ⎧⎫-<⎨⎬⎩⎭. 于是,对任意的0ε>,存在正整数N ,使得当,m n N >时有m n λλε-<.由柯西收敛准则,数列{}n λ收敛.记lim n n λλ→∞=现在证明λ就是S 的上确界.首先,对任何S α∈和正整数n ,有n αλ≤,有极限的保序性,lim n n αλλ→∞≤=,故λ是S 的上界其次,对于任意的0δ>,存在充分的的正整数n ,使得12n δ<并且2n δλλ>-. 由于1n n λ-不是S 的上界,所以存在S α'∈,并且1n nαλ'>-. 于是122n n δδαλλλδ'>->--=-.故λ就是S 的上确界. 27. Cauchy 收敛准则证明单调有界定理证明:设{}n x 是单调有界数列,不妨假设{}n x 单调递增有上界.若{}n x 发散,则又柯西收敛准则,存在00ε>,对一切正整数N ,存在m n N >>,使得0m n m n x x x x ε-=-≥. 于是容易得到{}n x 的子列{}k n x ,使得10k k n n x x ε+-≥.进而()101k n n x x k ε>+- 故()k n x k →+∞→∞,这与{}n x 是有界数列矛盾!所有假设不成立,即{}n x 收敛. 28. Cauchy 收敛准则证明区间套定理证明:设[]{},n n a b 为闭区间套.因为lim 0n n n a b →∞-=,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.由于{}n a 单调递增,{}n b 单调递减,由极限的保序性, 所以[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.29.Cauchy 收敛准则证明有限覆盖定理证明:若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且[](),1,2,3n n a b =均不能被H 有限开覆盖.因为lim lim02n n nn n b aa b →∞→∞--==,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.由于{}n a 单调递增,{}n b 单调递减,由极限的保序性, 所以[](),1,2,3,n n a b n ξ∈=.考虑H 覆盖中覆盖住ξ的开区间(),αβ.取{}min ,εξαβξ<--,则存在正整数N ,对一切n N >,,n n a b ξξε--<.即有[]()(),;,n n a b U ξεαβ⊂⊂.这与[](),1,2,3n n a b =均不能被H 有限开覆盖矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖.30. Cauchy 收敛准则证明聚点定理证明:已知点集S 是有界无限点集.设[],S a b ⊂. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,每个闭区间包含了点集S 中无穷多个元素.因为lim lim02n n nn n b aa b →∞→∞--==,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.下证ξ是S 的一个聚点.对任意的0ε>,存在正整数N ,对一切n N >,,n n a b ξξε--<.即有[]()(),;,n n a b U ξεξεξε⊂=-+.故()();,U ξεξεξε=-+中包含了S 中无穷多个元素,由聚点的定义,ξ是S 的一个聚点.。

实数完备性定理相互等价的证明

实数完备性定理相互等价的证明

易证。

因此,有。

由于 bn 都为 S 的上界,所以也为 S 的上界。

从而可知,。

即,故为 S 的上确界。

(38 定理定理 2(Cauchy 收敛准则单调有界定理证不妨设 {xn } 为单增有上界数列。

假设 {x n } 无极限,Cauchy 收敛准则可知,但是。

由 N 的任意性,不难得到 {x n } 的一个严格单增的子列 {xn k } ,满足。

由于时,有,故 {x n } 收敛。

所以当。

这与 {x n } 为有界数列矛盾, (39 定理定理 3(Cauchy 收敛准则区间套定理证设 {[ a n , bn ]} 是 Cantor 区间套。

则由可知,时,有。

由于{a n } 单调递增,{bn } 中的每一个元素都为 {a n } 的上界。

故,则有。

故由 Cauchy 收敛准则可知 {a n } 收敛,记其极限为。

由(3.1 易证。

由 {a n } , {bn } 的单调性可知有n , bn ] 。

(40 定理定理 4(Cauchy 收敛准则-Borel 有限覆盖定理证(反证法假设闭区间 [ a, b] 有一个开覆盖不能用它的任有限个开区间覆盖。

定义性质 P :不能用中有限个开区间覆盖。

仿(9的证明,利用二等分法容易构造出满足性质 P 的区间套 {[ a n , bn ]} 。

仿(39的证明可知,,从而,,有 [a n , bn ],这与 [a n , bn ] 具有性质 P 矛盾。

这就证明了 Heine–Borel 有限复盖定理。

(41 定理定理 5(Cauchy 收敛准则聚点原理证设 S 为直线上有界点集,则使得 S 。

定义性质 P : 至少含有 S 中的无限多个点。

利用二等分法容易构造出具有性质 P 的区间套 {[ a n ,bn ]} 满足(3.1 。

由性质 P 任意挑选 S 中不同的点构成的数列 {x n } 使得n , bn ] 。

,由(3.1和极限定义知,由定义知 {x n } 是 Cauchy 列。

关于实数连续性的6个基本定理的互证

关于实数连续性的6个基本定理的互证

这就证明了 { xn } 的有界性.
记 A = x xn中大于x的有无穷项} 显然 A 为有界集合,则由确界定理知 A 有上确界 记 β = sup A . 则 ∀ε > 0,满足xn > β − ε的有无穷多项,且xn > β + ε的有有限项 所以 { xn } 中有无穷多项满足 β − ε < xn < β + ε
1
a n2 …… a nk ,满足 n1
< n2 < ......nk < ...... ,那么我们就已经得到一个单调下降
的子列 {an } . ②数列 {an } 只有有穷多项具有性质 M,那么 ∃ N ,当 n
1
N ,有 an 不具有
性质 M, 即 ∃i > n, 有an < ai , 从中任取一项记为 an , 因为它不具有性质 M, ∴ ∃n2 > n1 , 使an1 < an2 ,……,如此继续下去,我们得到一子列 ank 单调
n →∞
∵ {bn } 是 A 的上界,∴ ∀ x ∈ A ,有 x ≤ bn (n=1,2,……) ,
令 n → ∞ , x ≤ lim bn = r
n →∞

r 是 A 的上界.
而 ∀ε > 0, 由 lim
n→ ∞
an
= r 知 ∀ε > 0, 知∃N,当n > N,有r − ε < an,
∴ r=supA.
{ xn } 中大于 3; ε 的项只有有限个.
∴ 在( r − ε , r + ε )中有 { xn } 的无穷多项,即 ∀ ε > 0 , ∀ n, ∃n > N ,使

用有限覆盖定理证明实数完备性的几个定理

用有限覆盖定理证明实数完备性的几个定理

用有限覆盖定理证明实数完备性的几个定理实数完备性是指实数集在实数轴上没有空隙,并且实数集没有空缺。

有限覆盖定理是证明实数完备性的一个重要工具。

下面我将用有限覆盖定理证明实数完备性的几个定理。

1.实数的确界性:任意非空有上界的实数集合A必有上确界。

证明过程如下:假设A是一个非空有上界的实数集合,我们要证明A存在上确界b。

由于集合A非空,因此存在一个实数x1,使得x1∈A。

由于A有上界,因此存在一个实数M,使得对于任意的a∈A,有a≤M。

我们可以构造一个实数集合B={M-δ,δ>0},即B中的每个元素都是M减去一个正数。

根据有限覆盖定理,实数集合B必存在上确界c。

根据实数的稠密性,存在一个实数x2,使得x2∈A,并且x2>c-δ,其中δ>0。

从而得出M>x2>M-δ=c,即x2是集合A的一个上界。

综上所述,集合A的上界x2是集合A的上确界,即A存在上确界。

2.单调有界定理:单调有界数列必有极限。

证明过程如下:假设{an}是一个单调递增的有上界的数列,要证明数列{an}收敛。

由于数列{an}有上界,根据有限覆盖定理,存在一个实数b,使得b为数列{an}的上确界。

根据实数的稠密性,存在一个实数x,使得b>x>x-1,即x在实数轴上有一个邻域(x-1,x)。

由于数列{an}是递增的,因此存在一个正整数N,使得对于任意的n > N,都有an > x。

那么对于n > N,我们有:x - 1 < x < an ≤ b,即an在实数轴的邻域(x-1,x)中。

根据极值定理,我们得知数列{an}的确存在极限。

3.至少有一个无理数存在于任意两个有理数之间:证明过程如下:假设存在两个有理数p和q,且p<q。

我们要证明在p和q之间至少存在一个无理数。

根据有限覆盖定理,我们可以构造一个区间[p,q],即区间的端点为p和q。

根据实数的稠密性,存在一个实数x,使得p<x<q。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 确界原理非空有上(下)界数集,必有上(下)确界。

2 单调有界原理 任何单调有界数列必有极限。

3 区间套定理 若]},{[n n b a 是一个区间套, 则存在唯一一点ξ,使得 ,2,1],,[=∈n b a n n ξ。

4 Heine-Borel 有限覆盖定理 设],[b a 是一个闭区间,H 为],[b a 上的一个开覆盖,则在H 中存在有限个开区间,它构成],[b a 上的一个覆盖。

5 Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。

) 直线上的有解无限点集至少有一个聚点。

6 Cauchy 收敛准则数列}{n a 收敛⇔对任给的正数ε,总存在某一个自然数N ,使得N n m >∀,时,都有ε<-||n m a a 。

一.确界原理1.确界原理证明单调有界定理证 不妨设{ a n }为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n }.下面证明a 就是{ a n } 的极限. 事实上,任给ε> 0, 按上确界的定 义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n }的递增性,当n ≥ N时有a - ε < a N ≤ a n .另一方面,由于a 是{ a n }的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当 n ≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理 证明:1设 [an,bn] 是一个闭区间套,即满足: 1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an =我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设sup S =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an ≤ξ,(n =1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)唯一性: 假设还有另外一点R ∈'ξ且],[n n b a ∈'ξ,则||||n n b a -≤'-ξξ,0→ 即ξξ'=。

从而唯一性得证。

3.确界原理证明有限覆盖定理即闭区间[a,b]的任一开覆盖H 都有有限的子覆盖证① 令S ={x|a<x ≤b,[a,x]能被H 中有限个开区间覆盖}; ②显然S有上界因H 覆盖闭区间[a,b],所以,存在一个开区间(α,β)∈H 使a ∈(α,β)取x ∈(α,β),则[a,x]能被H中有限个开区间覆盖从而,x ∈S,故S 非空;③ 由确界原理存在ζ=supS;④ 现证ζ=b用反证法若ζ≠b,则a<ζ<b由H 覆盖闭区间[a,b],一定存在(α1,β1)∈H,使ζ∈(α1,β1)取x1,x2使α<x1<ζ<x2<β1 ,且x1∈S则[a,x1]能被H 中有限个开区间覆盖,把(α1,β1)加进去,就推得x2∈S这与ζ =sup S 矛盾,故ζ=b,即定理结论成立4.确界原理证明聚点定理证 设S 是直线上的有界无限点集,则由确界原理有S S inf ,sup ==ξη。

若ξη,中有一点不是S 的孤立点,则显然就是S 的一个聚点。

否则,令S R x E ∈={:中仅有有限个数小于}x 。

显然E 非空且有上界。

令E sup ='η,则由E 的构造方法可知,0>∀ε必有∉+'εηE ,即S 中有无限个数小于εη+'大于η'。

所以),(εηεη+'-'中含有S 的无限个数,故η'是S 的聚点。

5.确界原理证明Cauchy 收敛准则即数列{xn}收敛 ∀ε>0,∃N,当n,m >N 时有|xn-xm|<ε 必要性:略充分性:① 构造非空有界数集S,因为欲证明数列{xn}收敛,故数集S 必须含有数列{xn 中的无限多个数,为此,令S = x|{(-∞,x)∩{xn}是空集或有限点集}; ②由于满足Cauchy 收敛准则充分条件的数列是有界的,故知数列{xn}的下界a∈S,上界b也是S 的上界,所以S 是非空有上界的数集由确界原理数集S 有上确界ζ=sup S;③ 对ε>0,(-∞,ζ)∩{xn}是无限点集,否则,就与ζ=sup S矛盾 因(-∞,ζ-ε)∩{xn}至多含有{xn}的有限多个点故(ζ-ε,ζ+ε)含有{xn}的无限多个点设xnk∈(ζ-ε,ζ+ε),k=1,2,⋯,且n1<n2<⋯取N1=max{N,n1},则当n>N1时,总存在nk>N1使xn-ζ≤|xn-xnk|+|xnk-ζ|<2ε,因此xn=ζ.二.单调有界定理6.单调有界定理证明确界定理证:我们不妨证明非空有上界的数集S必有上确界(1).欲求一实数使它是非空数集S的上确界利用非空有上界的数集S,构造一数列使其极限为我们所要求的实数选取性质p:不小于数集S中的任一数的有理数将具有性质p的所有有理数排成一个数列{rn},并令{xn}=max{r1,r2,⋯,rn},则得单调递增有上界的数列{xn};(2) 由单调有界定理得,ζ=xn,且对任意的自然数n有rn≤xn≤ζ;(3) ζ是数集S的上确界. 用反证法,若有数x0∈S使x0>ζ,取ε=(x0-ζ)/2,则存在一个有理数rN,使ζ≤rN<ζ+ε=(x0+ζ)/2<(x0+x0)/2=x0,从而rN<x0,这与rN是数集S的上界矛盾所以对一切x∈S,都有x≤ζ,即ζ是数集S的上界.任给ε>0,若∀x∈S,都有x≤ζ-ε,则存在有理数r′,使ζ-ε<r′<ζ,即x≤ζ-ε<r′<ζ,我们就找到r′∈S这与(若∀x∈S,都有x≤ζ-ε)矛盾,所以存在x′∈S,使x′>ζ-ε,即ζ是数集S的最小上界于是,我们证明了所需结论.7.单调有界定理证明区间套定理若{[ a n, b n]}是一个区间套,则在实数系中存在唯一的一点ξ,使得ξ∈[ a n, b n], n = 1,2,⋯,即a n ≤ξ≤b n, n = 1,2,⋯. (1)证:{ a n}为递增有界数列,依单调有界定理,{ a n}有极限ξ,且有a n ≤ξ, n = 1,2,⋯. (2)同理,递减有界数列{ b n}也有极限,并按区间套的条件有b n = a n = ξ, (3)且b n ≥ξ, n = 1,2,⋯. (4)联合(2)、(4)即得(1)式.最后证明满足(2)的ξ是唯一的.设数ξ′也满足a n ≤ξ′≤b n, n = 1,2,⋯,则由(1)式有| ξ- ξ′|≤ b n - a n, n = 1,2,⋯.由区间套的条件得| ξ- ξ′|≤(bn-an)=0故有ξ′= ξ.8.单调有界定理证明有限覆盖定理,即闭区间[a,b]的任一开覆盖H都有有限的子覆盖证: (1)设有理数r∈(a,b],使闭区间[a,r]能被H中有限个开区间覆盖把[a,b]上的这种有理数的全体排成一个数列{rn},因为存在一个开区间(α,β)∈H使rn∈(α,β),在(α,β)∩[a,b]内含有无穷多个有理数,所以{rn}是存在的;(2)将数列{rn}单调化,取xn=max{r1,r2,⋯,rn},则数列{xn}单调递增有上界;(3) 由单调有界定理得,ζ=xn且rn≤xn≤ζ,n=1,2,⋯;(4) 因xn∈[a,b],n=1,2,⋯,由(3)得ζ∈[a,b],故ζ必在H中的某个开区间(α1,β1)中再由(3),一定有rN∈{rn},使α1<rN≤ζ又由①[a,rn]能被H中有限个开区间覆盖故只需把(α1,β1)加进去[a,ζ]能被H中有限个开区间覆盖若ζ=b,则说明[a,b]能被H中有限个开区间覆盖用反证法若ζ<b,由于[a,b]内的有理数在[a,b]上处处稠密,故一定存在有理数r′,使得ζ<r′<min{β,b},这样一来,[a,r′]能被H中有限个开区间覆盖,故r′∈{rn},与(3)矛盾所以,ζ=b。

9.单调有界定理证明聚点定理证明:设S是一有界无限点集,则在S中选取一个由可数多个互不相同的点组成的数列{an},显然数列{an}是有界的下面我们从{an}中抽取一个单调子列,从而由单调有界定理该子列收敛,最后我们证明该子列的极限值,就是有界无限点集S的聚点分两种情况来讨论1)如果在{an}的任意一项之后,总存在最大的项(因S是有界的且{an}S,这是可能的),设a1后的最大项是an1;an1后的最大项是an2,且显然an2≤an1;一般地,ank后的最大项记为ank+1≤ank,(k=1,2,⋯)这样,就得到了{an}的一个单调递减的子数列{ank},因为{an}有界,根据单调有界定理知,{ank}收敛2)如果1)不成立即从某一项以后,任何一项都不是最大的(为证明书写简单起见,不妨设从第一项起,每一项都不是最大项)于是,取an1=a1,因an1不是最大项,所以必存在另一项an2>an1(n2>n1),又因为an2也不是最大项,所以又有an3>an2(n3>n2),⋯⋯这样一直作下去,就得到{an}的一个单调递增的子列{an},且有上界,根据单调有界定理知,{an}收敛,总之不论{an}属于情形1)还是情形2),都可作出{an}的一个单调收敛的子列设ank=a,今证a是S的聚点。

对ε>0,存在自然数K,使得k>K时,a-ε<ank<a+ε,若这时{ank}单调递减,ank+1<a+ε(k>K)且ank+1≠a,ank+1∈S,即a的ε邻域内含有S中异于a的点,故a是S的聚点。

{ank}单调递增时,类似可证。

10.单调有界定理证明Cauchy收敛准则必要性:略充分性:先证明柯西数列{}是有界的。

取ε=1,因{}是柯西数列,所以存在某个正整数No,当n>No时有||,亦即当n>No时||≤||+1即{}有界。

不妨设,我们可用如下方法取得{}的一个单调子列{}(1)取{}∈{}使[a,]或[,b]中含有无穷多的{}的项(2)在[a,]或[,b]中取得∈{}且满足条件(1)并使,然后就有不断地进行(1),(2)得到一单调递增的子列因为∈{},而{}是一个单调有界数列,由单调有界定理知收敛,设| | (1)下证{}收敛于a因为=a 则对∀ε 0∃正整数K,当k>K时,| |另一方面由于{}是柯西列,所以ε存在正整数N,当,>时有| |<由(1)就可得当有| |所以当n>max()时||≤| |+| |<ε故{}收敛于a三.区间套定理11.区间套定理证明确界原理即非空有上界的数集S必有上确界,非空有下界的数集S必有下确界证:仅证明非空有上界的数集S必有上确界(1) 要找一数ζ,使其是数集S的上确界ζ是S的上确界就要满足上确界定义中的两个条件:大于ζ的数不在S中,ζ的任何邻域内有S中的点这两条即为性质p.如果ζ在闭区间[a,b]中,则闭区间[a,b]应有性质:任何小于a的数不在S中,[a,b]中至少含有S中的一个点,该性质即为取S的上界为b,且b∈/S,取a∈S,a<b,则闭区间[a,b]有性质;(2) 将闭区间[a,b]等分为两个闭区间,则至少有一个闭区间[a1,b1]也有性质p,如此继续得一闭区间列,满足[a,b]⊃[a1,b1]⊃…⊃[an,bn]⊃…;bn-an =(bn-an) (3)由区间套定理的得ζ属于所有的闭区间[an,bn],n=1,2,…,并且每个闭区间[an,bn]都有性质(4)因为an≤ζ≤bn ,n=1,2,…,且 (bn-an)故bnan 由于对∀x S,有x ≤bn ,从而x ≤b=ζ;又对∀ε 0,总存在N,使得ζ-ε aN 故存在 S ⋂[aN ,bN ],于是 ζ-ε. 因而ζ=sups12. 区间套定理证明单调有界定理 2设{xn}是单调有界数列,不妨设其为单调递增且有上界b1现在我们来构造一个闭区间套在{xn}中任取一项记作a1,这时a1<b1,于是,以a1和b1为端点的闭区间[a1,b1]内一定含有数列{xn}中的无限多项将区间[a1,b1]二等分,得闭区间[a1,a1+b1 ],[a1+b1,b1], 由于{xn}单调递增,故[a1,a1+b1 ]和[a1+b1,b1]中只有一个包含{xn}的无限多项,我们记该区间为[a2,b2]再将[a2,b2]二等分,在所得区间中只有一个包含{xn}的无限多项,记该区间为[a3,b3]如此继续,得一闭区间列:[a1,b1],[a2,b2],⋯,[an,bn],⋯,满足[an+1,bn+1]⊂[an,bn],(n =1,2,⋯);(bn-an) 故 [an,bn] 是一个闭区间套,由闭区间套定理,存在唯一实数ζ,使得 ζ∈[an,bn],(n =1,2,⋯)现在证明 xn =ζ 因(bn-an) ,故对ε>0,存在自然数N′,当n >N′时,|bn-an|<ε另外,由于[an,bn]包含递增数列{xn}的无限多项,所以必存在N″,当n >N″时,有an ≤ζ≤bn,取N =max{N′,N″},当n >N 时有|xn-ζ|<bn-an|<ε, 此即xn =ζ13. 区间套定理证明有限覆盖定理即闭区间[a,b]的任一开覆盖H 都有有限的子覆盖证1用反证法(1)要证明的整体性质p是:闭区间[a,b]能用H 中的有限个开区间覆盖.与p相反的性质 是:闭区间[a,b]不能用H中的有限个开区间覆盖;(2) 假设闭区间[a,b]有性质 将闭区间[a,b]等分为两个闭区间,则至少有一个闭区间[a1,b1]也有性质 否则,[a,b]有性质p如此继续得一闭区间列,使每个闭区间都有性质,且[a,b]⊃[a1,b1]⊃…⊃[an,bn]⊃…;(bn-an)=(bn-an) (2)由闭区间套定理得数ξ属于所有的闭区间[an,bn],n=1,2,⋯,并且每个闭区间[an,bn]有性质 ;④ 由ζ∈[a,b]和H 是[a,b]的开覆盖,有ζ属于H 中的某个开区间 ζ ⋂[an,bn] ⊂( ), 和∞(bn-an)可知,存在自然数m,使[am,bm]⊂(α1,β1)这与[am,bm]具有性质矛盾14. 区间套定理证明聚点定理证明(反证法):已知b a ,∃,使b x a n ≤≤。

相关文档
最新文档