矩阵运算与方程组求解
矩阵运算及方程组求解
附录Ⅰ大学数学实验指导书项目五矩阵运算与方程组求解实验1 行列式与矩阵实验目的把握矩阵的输入方式. 把握利用Mathematica 以上版本) 对矩阵进行转置、加、减、数乘、相乘、乘方等运算, 并能求矩阵的逆矩阵和计算方阵的行列式.大体命令在Mathematica中, 向量和矩阵是以表的形式给出的.1. 表在形式上是用花括号括起来的假设干表达式, 表达式之间用逗号隔开.如输入{2,4,8,16}{x,x+1,y,Sqrt[2]}那么输入了两个向量.2. 表的生成函数(1)最简单的数值表生成函数Range, 其命令格式如下:Range[正整数n]—生成表{1,2,3,4,…,n};Range[m, n]—生成表{m,…,n};Range[m, n, dx]—生成表{m,…,n}, 步长为d x.2. 通用表的生成函数Table. 例如,输入命令Table[n^3,{n,1,20,2}]那么输出{1,27,125,343,729,1331,2197,3375,4913,6859}输入Table[x*y,{x,3},{y,3}]那么输出{{1,2,3},{2,4,6},{3,6,9}}3. 表作为向量和矩阵一层表在线性代数中表示向量, 二层表表示矩阵. 例如,矩阵⎪⎪⎭⎫ ⎝⎛5432 能够用数表{{2,3},{4,5}}表示.输入A={{2,3},{4,5}}那么输出 {{2,3},{4,5}}命令MatrixForm[A]把矩阵A 显示成通常的矩阵形式. 例如,输入命令:MatrixForm[A]那么输出 ⎪⎪⎭⎫⎝⎛5432注:一样情形下,MatrixForm[A]所代表的矩阵A 不能参与运算. 下面是一个生成抽象矩阵的例子. 输入Table[a[i,j],{i,4},{j,3}] MatrixForm[%]那么输出⎪⎪⎪⎪⎪⎭⎫⎝⎛]3,4[]2,4[]1,4[]3,3[]2,3[]1,3[]3,2[]2,2[]1,2[]3,1[]2,1[]1,1[a a a a a a a a a a a a 注:那个矩阵也能够用命令Array 生成,如输入Array[a,{4,3}]4. 命令IdentityMatrix[n]生成n 阶单位矩阵. 例如,输入IdentityMatrix[5]那么输出一个5阶单位矩阵(输出略).5. 命令DiagonalMatrix[…]生成n 阶对角矩阵. 例如,输入DiagonalMatrix[{b[1],b[2],b[3]}]那么输出 {{b[1],0,0},{0,b[2],0},{0,0,b[3]}}它是一个以b[1], b[2], b[3]为主对角线元素的3阶对角矩阵.6. 矩阵的线性运算:A+B 表示矩阵A 与B 的加法;k*A 表示数k 与矩阵A 的乘法; 或 Dot[A,B]表示矩阵A 与矩阵B 的乘法.7. 求矩阵A 的转置的命令:Transpose[A]. 8. 求方阵A 的n 次幂的命令:MatrixPower[A,n]. 9. 求方阵A 的逆的命令:Inverse[A]. 10.求向量a 与b 的内积的命令:Dot[a,b].实验举例矩阵的运算例 设,421140123,321111111⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=B A 求A AB 23-及.B A T输入A={{-1,1,1},{1,-1,1},{1,2,3}} MatrixForm[A]B={{3,2,1},{0,4,1},{-1,2,-4}} MatrixForm[B]-2A AAB 23-BA T ⎪⎪⎪⎭⎫⎝⎛-----334421424141010⎪⎪⎪⎭⎫⎝⎛----10120821444,5123641033252312⎪⎪⎪⎪⎪⎭⎫⎝⎛=A .1-A ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1652116114581081218192829211161121162147.11111111111122222222ddd d c c c c b b b b a a a a D ++++=2222)1)()()()()()((dc b a abcd d c d b d a c b c a b a +--------,60975738723965110249746273⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=A .),(|,|3A A tr A 3),(|,|AA tr A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---12574547726668013841222451984174340410063122181713228151626315018483582949442062726,150421321,111111111⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=B A 求A AB 23-及.B A '2.设,001001⎪⎪⎪⎭⎫⎝⎛=λλλA 求.10A 一样地?=k A (k 是正整数).3.求⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++++a a a aa1111111111111111111111111的逆.4.设,321011324⎪⎪⎪⎭⎫ ⎝⎛-=A 且,2B A AB +=求.B5.利用逆矩阵解线性方程组⎪⎩⎪⎨⎧=++=++=++.353,2522,132321321321x x x x x x x x x实验2 矩阵的秩与向量组的最大无关组实验目的 学习利用Mathematica 以上版本)求矩阵的秩,作矩阵的初等行变换; 求向 量组的秩与最大无关组.大体命令1. 求矩阵M 的所有可能的k 阶子式组成的矩阵的命令:Minors[M,k].2. 把矩阵A 化作行最简形的命令:RowReduce[A].3. 把数表1,数表2, …,归并成一个数表的命令:Join[list1,list2,…]. 例如输入Join[{{1,0,-1},{3,2,1}},{{1,5},{4,6}}]那么输出 {{1,0,-1},{3,2,1},{1,5},{4,6}}实验举例求矩阵的秩例 设,815073*********⎪⎪⎪⎭⎫⎝⎛-------=M 求矩阵M 的秩.输入Clear[M];M={{3,2,-1,-3,-2},{2,-1,3,1,-3},{7,0,5,-1,-8}}; Minors[M,2]那么输出{{-7,11,9,-5,5,-1,-8,8,9,11},{-14,22,18,-10,10,-2, -16,16,18,22},{7,-11,-9,5,-5,1,8,-8,-9,-11}}可见矩阵M 有不为0的二阶子式. 再输入Minors[M,3]那么输出{{0,0,0,0,0,0,0,0,0,0}}可见矩阵M 的三阶子式都为0. 因此.2)(=M r例 求矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3224211631095114047116的行最简形及其秩.输入A={{6,1,1,7},{4,0,4,1},{1,2,-9,0},{-1,3,-16,-1},{2,-4,22,3}} MatrixForm[A]RowReduce[A]⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000000100005100101矩阵的初等行变换例 用初等变换法求矩阵.343122321⎪⎪⎪⎭⎫ ⎝⎛的逆矩阵.输入 A={{1,2,3},{2,2,1},{3,4,3}}MatrixForm[A]Transpose[Join[Transpose[A],IdentityMatrix[3]]]⎪⎪⎪⎭⎫ ⎝⎛---1112/532/3231)7,5,1,3(),5,4,3,1(),1,1,1,1(),3,2,1,1(4321==-==αααα⎪⎪⎪⎪⎪⎭⎫⎝⎛0000010010102001向量组的最大无关组 例 求向量组)0,5,1,2(),0,2,1,1(),14,7,0,3(),2,1,3,0(),4,2,1,1(54321=-===-=ααααα的最大无关组, 并将其它向量用最大无关组线性表示.输入Clear[A,B];A={{1,-1,2,4},{0,3,1,2},{3,0,7,14},{1,-1,2,0},{2,1,5,0}}; B=Transpose[A];RowReduce[B]⎪⎪⎪⎪⎪⎭⎫⎝⎛-000002/51000101102/10301非零行的首元素位于第一、二、四列,因此421,,ααα是向量组的一个最大无关组. 第三列的前两个元素别离是3,1,于是.3213ααα+=第五列的前三个元素别离是,25,1,21-于是.25214215αααα++-=实验习题1.求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛----=12412116030242201211A 的秩.2.求t , 使得矩阵⎪⎪⎪⎭⎫⎝⎛-=t A 23312231的秩等于2.3.求向量组)0,0,1(),1,1,1(),1,1,0(),1,0,0(4321====αααα的秩.4.当t 取何值时, 向量组),3,1(),3,2,1(),1,1,1(321t ===ααα的秩最小?5.向量组)1,1,1,1(),1,1,1,1(),1,1,1,1(),1,1,1,1(4321-=--=--==αααα是不是线性相关?6.求向量组)6,5,4,3(),5,4,3,2(),4,3,2,1(321===ααα的最大线性无关组. 并用最大无关 组线性表示其它向量.7.设向量),6,3,3,2(),6,3,0,3(),18,3,3,8(),0,6,3,1(2121=-=-=-=ββαα求证:向量组21,αα 与21,ββ等价.实验3 线性方程组实验目的 熟悉求解线性方程组的经常使用命令,能利用Mathematica 命令各类求线性方程组的解. 明白得运算机求解的有效意义.大体命令1.命令NullSpace []A ,给出齐次方程组0=AX 的解空间的一个基.2.命令LinearSolve []b A ,,给出非齐次线性方程组b AX =的一个特解.3.解一样方程或方程组的命令Solve 见Mathematica 入门.实验举例求齐次线性方程组的解空间设A 为n m ⨯矩阵,X 为n 维列向量,那么齐次线性方程组0=AX 必然有解. 假设矩阵A 的秩等于n ,那么只有零解;假设矩阵A 的秩小于n ,那么有非零解,且所有解组成一贯量空间. 命令NullSpace 给出齐次线性方程组0=AX 的解空间的一个基.例 求解线性方程组⎪⎪⎩⎪⎪⎨⎧=---=++=+--=--+.0532,0375,023,02432143243214321x x x x x x x x x x x x x x x输入Clear[A];A={{1,1,-2,-1},{3,-2,-1,2},{0,5,7,3},{2,-3,-5,-1}}; NullSpace[A]那么输出{{-2,1,-2,3}}说明该齐次线性方程组的解空间是一维向量空间,且向量(-2,1,-2,3)是解空间的基. 注:若是输出为空集{ },那么说明解空间的基是一个空集,该方程组只有零解.例 向量组)7,5,1,3(),5,4,3,1(),1,1,1,1(),3,2,1,1(4321==-==αααα是不是线性相关? 依照概念,若是向量组线性相关,那么齐次线性方程组044332211='+'+'+'ααααx x x x 有非零解.输入Clear[A,B];A={{1,1,2,3},{1,-1,1,1},{1,3,4,5},{3,1,5,7}}; B=Transpose[A]; NullSpace[B]输出为{{-2,-1,0,1}}说明向量组线性相关,且02421=+--ααα非齐次线性方程组的特解例 求线性方程组⎪⎪⎩⎪⎪⎨⎧=----=++=+--=--+45322375222342432143243214321x x x x x x x x x x x x x x x 的特解.输入Clear[A,b];A={{1,1,-2,-1},{3,-2,-1,2},{0,5,7,3},{2,-3,-5,-1}}; b={4,2,-2,4} LinearSolve[A,b]输出为{1,1,-1,0}注: 命令LinearSolve 只给出线性方程组的一个特解.例 求出通过平面上三点(0,7),(1,6)和(2,9)的二次多项式,2c bx ax ++并画出其图形.依照题设条件有 ,924611700⎪⎩⎪⎨⎧=+⋅+⋅=+⋅+⋅=+⋅+⋅c b a c b a c b a 输入Clear[x];A={{0,0,1},{1,1,1},{4,2,1}} y={7,6,9}p=LinearSolve[A,y]Clear[a,b,c,r,s,t];{a,b,c}.{r,s,t} f[x_]=p.{x^2,x,1};Plot[f[x],{x,0,2},GridLines ->Automatic,PlotRange ->All];那么输出c b a ,,的值为 {2,-3,7}并画出二次多项式7322+-x x 的图形(略).非齐次线性方程组的通解用命令Solve 求非齐次线性方程组的通解.例当a 为何值时,方程组⎪⎩⎪⎨⎧=++=++=++111321321321ax x x x ax x x x ax 无解、有唯一解、有无穷多解?当方程组有解时,求通解.先计算系数行列式,并求a ,使行列式等于0. 输入Clear[a];Det[{{a,1,1},{1,a,1},{1,1,a}}]; Solve[%==0,a]那么输出{{a →-2},{a →1},{a →1}} 当a 2-≠,a 1≠时,方程组有唯一解.输入Solve[{a*x +y +z ==1,x +a*y +z ==1,x +y +a*z ==1},{x,y,z}]则输出{{x →,21a + y →,21a+ z →a +21}}当a =-2时,输入Solve[{-2x+y+z==1,x -2y+z==1,x+y -2z==1},{x,y,z}]则输出{ }说明方程组无解. 当a =1时,输入Solve[{x+y+z==1,x+y+z==1,x+y+z==1},{x,y,z}]则输出{{x →1-y -z}}}说明有无穷多个解.非齐次线性方程组的特解为(1,0,0),对应的齐次线性方程组的基础解 系为为(-1,1,0)与(-1,0,1).例 求非齐次线性方程组 ⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534422312432143214321x x x x x x x x x x x x 的通解.解法1输入A={{2,1,-1,1},{3,-2,1,-3},{1,4,-3,5}};b={1,4,-2}; particular=LinearSolve[A,b] nullspacebasis=NullSpace[A]generalsolution=t*nullspacebasis[[1]]+k*nullspacebasis[[2]]+Flatten[particular]generalsolution 其通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛007/57/6107/97/1017/57/14321t k x x x x (k ,t 为任意常数)实验习题1.解方程组⎪⎩⎪⎨⎧=++=++=+-.024,02,032321321321x x x x x x x x x2.解方程组⎪⎩⎪⎨⎧=++-=++-=++-.0111784,02463,03542432143214321x x x x x x x x x x x x3. 解方程组⎪⎩⎪⎨⎧-=-+-=+-=-+-.22,3,44324314324321x x x x x x x x x x4.解方程组⎪⎩⎪⎨⎧=++-=+++=-++.254,32,22432143214321x x x x x x x x x x x x5.用三种方式求方程组⎪⎪⎩⎪⎪⎨⎧=-+=-+=-+=-+127875329934,8852321321321321x x x x x x x x x x x x 的唯一解.6.当b a ,为何值时,方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x b x x a x x x x x x x x 有唯一解、无解、有无穷多解?对后者求通解.实验4 投入产出模型(综合实验)实验目的 利用线性代数中向量和矩阵的运算, 线性方程组的求解等知识,成立在经济 分析中有重要应用的投入产出数学模型. 把握线性代数在经济分析方面的应用.应用举例假设某经济系统只分为五个物质生产部门:农业、轻工业、重工业、运输业和建筑业, 五个部门间某年生产分派关系的统计数据可列成下表1. 在该表的第一象限中,每一个部门都以生产者和消费者的双重身份显现. 从每一行看,该部门作为生产部门以自己的产品分派给各部门;从每一列看,该部门又作为消耗部门在生产进程中消耗各部门的产品. 行与列的交叉点是部门之间的流量,那个量也是以双重身份显现,它是行部门分派给列部门的产品量,也是列部门消耗行部门的产品量.表1投入产出平稳表(单位: 亿元)注: 最终产品舍去了净出口.(修改表:加双线区分为四个象限)在第二象限中,反映了各部门用于最终产品的部份. 从每一行来看,反映了该部门最终产 品的分派情形;从每一列看,反映了用于消费、积存等方面的最终产品别离由各部门提供的数 量情形.在第三象限中,反映了总产品中新制造的价值情形,从每一行来看,反映了各部门新制造 价值的组成情形;从每一列看,反映了该部门新制造的价值情形.采纳与第三章第七节完全相同的记号,可取得关于表1的产品平稳方程组y x A E =-)( (1)其中,A 为直接消耗系数矩阵,依照直接消耗系数的概念),,2,1,(n j i x x a jij ij ==,易求出表1所对应的直接消耗系数矩阵:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛==⨯0603.00425.00372.00227.00371.00411.00250.00416.00240.00143.03425.02083.05013.01451.00923.00685.00417.00252.01438.00231.00329.00250.00462.02557.01709.01825110120051540620131297135101171825751200305406225312975351045182562512002505406271031294543510324182512512005054061363129450351081182560120030540625031298003510600)(55ij a A 利用Mathematica 软件(以下计算进程均用此软件实现,再也不重述),可计算出⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--11036.10739105.00982964.00672149.00637761.00884203.005447.1100805.00594445.0035022.0859487.0529259.016653.2495145.032573.0122005.00752055.00006552.020166.10492156.0132248.00874144.015254.0402651.024175.1)(1A E 为方便分析,将上述列昂节夫逆矩阵列成表2.表2下面咱们来分析上表中各列诸元素的经济意义. 以第2列为例,假设轻工业部门提供的 最终产品为一个单位, 其余部门提供的最终产品均为零, 即最终产品的列向量为 ,)0,0,0,1,0(T y =于是,轻工业部门的单位最终产品对5个部门的直接消耗列向量为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛==0227.00240.01451.01438.02557.0000100603.00425.00372.00227.00371.00411.00250.00416.00240.00143.03425.02083.05013.01451.00923.00685.00417.00252.01438.00231.00329.00250.00462.02557.01709.0)0(Ay x通过中间产品向量)0(x 产生的间接消耗为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==0205373.00146768.0129979.00327974.00885192.0)0()1(Ax x , ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==0107259.000867109.00881789.00120554.00305619.0)0(2)2(x A x⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==00570305.000505222.0054254.000575796.00129491.0)0(3)3(x A x , ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==00318798.000294103.00322339.000309566.000650578.0)0(4)4(x A x于是,轻工业部门的单位最终产品对五个部门总产品的需求量为++++++=)4()3()2()1()0(x x x x x y x.0629.00553.04497.01975.13942.000318798.000294103.00322339.000309566.000650578.000570305.000505222.0054254.000575796.00129491.00107259.000867109.00881789.00120554.00305619.00205733.00146768.0129979.00327974.00885192.000010⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛≈+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=其中向量x 为列昂惕夫逆矩阵1)(--A E 的第2列, 该列5个元素别离是部门2生产一个单位 最终产品对部门一、二、3、4、5总产品的需求量, 即总产品定额. 同理, 能够说明列昂节夫 逆矩阵中第一、3、4、5列别离是部门一、3、4、5生产一个单位最终产品对部门一、二、3、 4、5的总产品定额.对应于附表1的完全消耗系数矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--=-11036.00739105.00982964.00672149.00637761.00884203.005447.0100805.00594445.0035022.0859487.0529259.016653.1495145.032573.0122005.00752055.00006552.020166.00492156.0132248.00874144.015254.0402651.024175.0)(1EA E B最终产品是外生变量, 即最终产品是由经济系统之外的因素决定的, 而内生变量是由经济系统内的因素决定的. 此刻假定政府部门依照社会进展和人民生活的需要对表1的最终产品作了修改, 最终产品的增加量别离为农业2%, 轻工业7%, 重工业5%, 运输业5%, 建筑业 4%, 写成最终产品增量的列向量为,)51,5.37,15.52,09.160,4.35(T y =∆那么产品的增加量x ∆可由式(8)近似计算到第5项, 得+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=+∆+∆+∆+∆+∆=∆515.3715.5209.1604.35515.3715.5209.1604.35515.3715.5209.1604.35515.3715.5209.1604.35515.375.5209.1604.35432)3()2()1()0(A A A A x x x x y x .)8033.744899.57169.238749.204083.121(T ≈其中,y A x ∆=∆)0(为各部门生产y ∆直接消耗各部门产品数量;而后面各项的和为各部门生 产y ∆的全数间接消耗的和.实验报告下表给出的是某城市某年度的各部门之间产品消耗量和外部需求量(均以产品价值计算, 单位: 万元), 表中每一行的数字是某一个部门提供给各部门和外部的产品价值.(1) 试列出投入—产出简表, 并求出直接消耗矩阵;(2) 依照预测, 从这一年度开始的五年内, 农业的外部需求每一年会下降1%, 轻工业和商业的外部需求每一年会递增6%, 而其它部门的外部需求每一年会递增3%, 试由此预测这五年内该城市和各部门的总产值的平均年增加率;(3) 编制第五年度的打算投入产出表.实验5 交通流模型(综合实验)实验目的利用线性代数中向量和矩阵的运算, 线性方程组的求解等知识,成立交通流模型. 把握线性代数在交通计划方面的应用.应用举例假设某城市部份单行街道的交通流量(每小时通过的车辆数)如图5-1所示.300 300 300+-432xxx=300+54xx=500-67xx=200+21xx=800+51xx=800+87xx=10009x=400-910xx=20010x=600++638xxx=1000⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪排版时只保留图,不要方程组图5-1试成立数学模型确信该交通网络未知部份的具体流量.假定上述问题知足以下两个大体假设(1)全数流入网络的流量等于全数流出网络的流量;(2)全数流入一个节点的流量等于流出此节点的流量.那么依照图5-1及上述大体两个假设,可成立该问题的线性方程组⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=++==+-==+=+=+=+-=+=+-1000600200400100080018002005003008631010998751217654432x x x x x x x x x x x x x x x x x x x x , 即 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---100060020040010008008002005003000010100110000000001100000000010000000000110000000000010001000000001100011000000000011000000000111010987654321x x x x x x x x x x 假设将上述矩阵方程记为b Ax =,那么问题就转化为求b Ax =的全数解. 下面咱们利用 Mathmatica 软件来求解一、输入矩阵A ,并利用RowReduce[A ]命令求得A 的秩为8. 输入RowReduce[A]⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000000000000000000100000000001000000000011000000001010000000000110000000000100000001001000000100010=Ax 输入In[3]:=NullSpace[A]⎪⎪⎭⎫ ⎝⎛----00000110110011100000⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=+=00000110110011100000212211C C c c ξξη21,C C 3、输入增广阵(A b ),求出其秩为8, 由,108)()(=<==n Ab r A r 知方程组有无穷多个解.输入RowReduce[Ab]⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000000000000000000006001000000000400010000000010000011000000800001010000050000000110002000000000100000000100108000000010001b Ax =输入 LinearSolve[A,b]Out[9]={{800},{0},{200},{500},{0},{800},{1000},{0},{400},{600}}那么取得所求非齐次线性方程组的一个特解:T )6004000100080005002000800(*=ξ综上所述,咱们就取得了非齐次线性方程组b Ax =的全数解为,*2211*ξξξξη++++=C C x (21,C C 为任意常数).在解的表示式中, x 的每一个分量即为交通网络中未知部份的具体流量, 该问题有无穷 多解(什么缘故? 并试探其实际意义).本模型具有实际应用价值, 求出该模型的解, 能够为交通计划设计部门提供解决交通堵 塞、车流运行不顺畅等问题的方式, 明白在何处应建设立交桥, 那条路应设计多宽等, 为城镇交通计划提供科学的指导意见. 可是,在本模型中,咱们只考虑了单行街道如此一种简单情形, 更复杂的情形留待读者在更高一级的课程中去研究. 另外,本模型还可推行到电路分析中的 网络节点流量等问题中.实验报告请读者应用本模型的思想方式, 为你所在或你熟悉的城镇成立一个区域的交通流量模 型. 并提供一个具体的解决方案, 即从无穷多个解中依照具体限制确信出一个具体的解决方 案.。
如何解决数学中的方程组与矩阵问题
如何解决数学中的方程组与矩阵问题在数学中,方程组与矩阵问题是常见且重要的内容,解决这些问题需要一定的方法和技巧。
本文将介绍几种解决数学中方程组与矩阵问题的方法,帮助读者更好地理解和应用。
一、高斯消元法高斯消元法是一种用于求解线性方程组的方法,它通过矩阵变换将方程组转化为一个更简单的形式,从而找到解。
下面以一个具体的例子来说明高斯消元法的步骤:假设有如下的方程组:(1) 2x + 3y - z = 7(2) x - y + z = 2(3) 3x - 4y + 2z = 4首先将方程组写成增广矩阵的形式:[ 2 3 -1 | 7 ][ 1 -1 1 | 2 ][ 3 -4 2 | 4 ]接下来,通过一系列的行变换,使矩阵变为上三角矩阵:[ 2 3 -1 | 7 ][ 0 -5 3 | -10 ][ 0 0 3 | -3 ]然后,从最后一行开始,依次求出未知数的值。
首先可以得到 z = -1,再依次代入前面的方程中,求解出 y = 2 和 x = 1。
因此,方程组的解为 x = 1,y = 2,z = -1。
高斯消元法可以帮助我们快速求解线性方程组,但在实际应用中,需要注意矩阵的可逆性和唯一解。
二、矩阵求逆在某些情况下,我们需要求解一个矩阵的逆矩阵,以便更便利地解决方程组或其他相关问题。
矩阵求逆的方法有多种,这里介绍其中一种常见的方法——伴随矩阵法。
对于一个 n 阶方阵 A,如果存在一个 n 阶方阵 B,使得 AB = BA = I,其中 I 是 n 阶单位矩阵,则称矩阵 B 为 A 的逆矩阵,记作 A^-1。
那么如何求解一个矩阵的逆矩阵呢?下面以一个 2 阶方阵为例来说明:首先,假设有一个 2 阶方阵 A:[ a b ][ c d ]如果 A 的行列式不等于 0,即 ad - bc ≠ 0,那么 A 的逆矩阵存在。
为了求解 A 的逆矩阵,我们可以按照以下步骤进行:1. 计算 A 的行列式的值 det(A) = ad - bc。
矩阵与线性方程组求解
矩阵与线性方程组求解在数学领域中,矩阵与线性方程组是非常重要的概念。
矩阵可以用来表示线性方程组,而线性方程组的求解则可以通过矩阵运算来实现。
本文将介绍矩阵与线性方程组的基本概念,并以实例演示如何使用矩阵来求解线性方程组。
一、矩阵的基本概念矩阵是由数个数按照一定的规则排列而成的矩形阵列。
一个矩阵通常用大写字母表示,例如A、B、C等。
矩阵中的每个数称为元素,用小写字母表示,例如a、b、c等。
矩阵的元素按照行和列的顺序排列,可以用下标表示。
例如,A的第i行第j列的元素可以表示为A[i,j]。
二、线性方程组的表示线性方程组是由一系列线性方程组成的方程集合。
每个线性方程可以表示为:a1x1 + a2x2 + ... + anxn = b其中,a1、a2、...、an是已知系数,x1、x2、...、xn是未知数,b是等号右侧的常数。
线性方程组可以用矩阵表示,形式为AX = B,其中A是系数矩阵,X是未知数矩阵,B是常数矩阵。
三、矩阵的运算1. 矩阵的加法:对应位置的元素相加。
2. 矩阵的减法:对应位置的元素相减。
3. 矩阵的数乘:矩阵中的每个元素乘以一个常数。
4. 矩阵的乘法:矩阵乘法是指两个矩阵相乘的运算,它的定义是:若A是m行n列的矩阵,B是n行p列的矩阵,则A与B的乘积C是一个m行p列的矩阵,其中C[i,j]等于A的第i行与B的第j列对应元素乘积的和。
四、矩阵的逆若一个n阶矩阵A存在一个n阶矩阵B,使得AB=BA=I,其中I是单位矩阵,则称矩阵A是可逆的,矩阵B称为A的逆矩阵。
逆矩阵的存在性是一个重要的性质,可以用来求解线性方程组。
五、使用矩阵求解线性方程组的步骤1. 将线性方程组转化为矩阵形式AX = B,其中A是系数矩阵,X是未知数矩阵,B是常数矩阵。
2. 判断矩阵A是否可逆,若不可逆则无解,若可逆则继续下一步。
3. 计算A的逆矩阵A^-1。
4. 将方程组转化为X = A^-1B的形式,即X = A^-1B。
高中数学公式大全线性方程组与矩阵运算
高中数学公式大全线性方程组与矩阵运算高中数学公式大全-线性方程组与矩阵运算一、线性方程组线性方程组是高中数学中重要的概念,它在各个领域都有广泛应用。
下面是一些与线性方程组相关的公式:1. 一元一次线性方程一元一次线性方程通常表示为ax + b = 0,其中a和b是已知的常数,x是未知数。
解一元一次线性方程的公式为:x = -b/a。
2. 二元一次线性方程组二元一次线性方程组通常表示为如下形式:a₁x + b₁y = c₁a₂x + b₂y = c₂其中a₁、a₂、b₁、b₂、c₁、c₂是已知的常数,x、y是未知数。
解二元一次线性方程组的公式为:x = (b₂c₁ - b₁c₂) / (a₁b₂ - a₂b₁)y = (a₁c₂ - a₂c₁) / (a₁b₂ - a₂b₁)3. 三元一次线性方程组三元一次线性方程组通常表示为如下形式:a₁x + b₁y + c₁z = d₁a₂x + b₂y + c₂z = d₂a₃x + b₃y + c₃z = d₃其中a₁、a₂、a₃、b₁、b₂、b₃、c₁、c₂、c₃、d₁、d₂、d₃是已知的常数,x、y、z是未知数。
解三元一次线性方程组的公式可以通过消元法或矩阵运算得到。
二、矩阵运算矩阵运算是解决线性方程组的重要方法之一,同时也被广泛应用于其他数学领域。
下面是一些与矩阵运算相关的公式:1. 矩阵加法设A和B是两个m×n矩阵,它们的和A + B为一个m×n矩阵,其中每个元素等于对应位置上两个矩阵元素的和。
2. 矩阵减法设A和B是两个m×n矩阵,它们的差A - B为一个m×n矩阵,其中每个元素等于对应位置上两个矩阵元素的差。
3. 矩阵数乘设A是一个m×n矩阵,k是一个实数或复数,则kA为一个m×n矩阵,其中每个元素等于元素A的对应元素乘以k。
4. 矩阵乘法设A是一个m×n矩阵,B是一个n×p矩阵,则它们的乘积AB为一个m×p矩阵,其中C的第i行第j列元素等于矩阵A的第i行与矩阵B的第j列对应元素的乘积之和。
线性方程组与矩阵的表示与运算
线性方程组与矩阵的表示与运算一、线性方程组1.概念:线性方程组是由多个线性方程构成的组合,通常表示为:a1x + b1y + c1 = 0a2x + b2y + c2 = 0amx + bmy + cm = 0其中,ai, bi, ci (i = 1, 2, …, m) 是常数,x, y 是未知数。
2.线性方程组的解:线性方程组的解是指能够满足所有方程的未知数的值。
线性方程组可能有唯一解、无解或有无限多解。
3.高斯消元法:高斯消元法是一种求解线性方程组的算法,通过初等行变换将线性方程组化为阶梯形或行最简形矩阵,从而求出解。
4.克莱姆法则:克莱姆法则是一种根据线性方程组的系数矩阵的行列式求解线性方程组的方法。
二、矩阵的表示与运算1.概念:矩阵是一个由数列组成的数列,通常表示为:A = [a_{ij}]其中,a_{ij} 是矩阵A的第i行第j列的元素,矩阵A有m行n列,称为m×n 矩阵。
2.矩阵的元素:矩阵的元素可以是实数、复数、向量等。
3.矩阵的运算:(1)矩阵加法:两个矩阵相加,对应元素相加。
(2)矩阵乘法:两个矩阵相乘,第一个矩阵的列数必须等于第二个矩阵的行数。
(3)矩阵的标量乘法:矩阵与标量相乘,矩阵的每个元素都乘以标量。
(4)矩阵的转置:矩阵的转置是将矩阵的行变为列,列变为行。
(5)矩阵的逆:矩阵的逆是指满足AA^(-1) = A^(-1)A = I的矩阵A^(-1),其中I是单位矩阵。
4.特殊矩阵:(1)单位矩阵:单位矩阵是一个方阵,其对角线上的元素都是1,其余元素都是0。
(2)零矩阵:零矩阵是一个所有元素都是0的矩阵。
(3)对角矩阵:对角矩阵是一个只有对角线上有非零元素的矩阵。
(4)正交矩阵:正交矩阵是一个满足AA^(-1) = A^(-1)A = I的方阵。
三、线性方程组与矩阵的关系1.线性方程组的矩阵表示:线性方程组可以表示为一个系数矩阵A和增广矩阵(A|b),其中A是系数矩阵,b是常数矩阵。
线性方程组的解法与矩阵运算技巧
线性方程组的解法与矩阵运算技巧线性方程组是数学中常见的问题,它涉及到未知数和系数之间的关系。
解决线性方程组的问题,可以帮助我们理解和应用矩阵运算技巧,这在现代科学和工程领域中非常重要。
一、线性方程组的基本概念线性方程组是由一系列线性方程组成的方程组。
每个方程都是未知数的线性组合,形式可以表示为a1x1 + a2x2 + ... + anxn = b。
其中,a1, a2, ..., an是系数,x1, x2, ..., xn是未知数,b是常数。
二、高斯消元法高斯消元法是解决线性方程组的一种常用方法。
它通过消元和回代的方式,将方程组转化为上三角矩阵。
具体步骤如下:1. 将方程组写成增广矩阵的形式,即将系数和常数放在一起,形成一个矩阵。
2. 选取一个主元素,通常选择第一列的第一个非零元素作为主元素。
3. 将主元素所在的行与其他行进行消元,使得主元素下方的元素都变为零。
4. 重复上述步骤,直到将矩阵转化为上三角矩阵。
5. 进行回代,从最后一行开始,逐步求解未知数。
高斯消元法的优点是简单易懂,容易手工计算。
但是当方程组的规模较大时,计算量会非常大,效率较低。
三、矩阵运算技巧矩阵运算是解决线性方程组的另一种方法,它利用矩阵的性质和运算规则,可以更高效地求解线性方程组。
1. 矩阵的加法和减法矩阵的加法和减法是指对应位置元素的相加和相减。
例如,对于两个矩阵A和B,它们的加法可以表示为A + B = C,其中C的每个元素都是A和B对应位置元素的和。
减法同理。
2. 矩阵的乘法矩阵的乘法是指按照一定规则将两个矩阵相乘得到一个新的矩阵。
具体规则如下:- 两个矩阵A和B相乘,要求A的列数等于B的行数。
- 结果矩阵C的行数等于A的行数,列数等于B的列数。
- 结果矩阵C的每个元素是A的对应行和B的对应列的乘积之和。
3. 矩阵的转置矩阵的转置是指将矩阵的行和列互换得到的新矩阵。
例如,对于一个矩阵A,它的转置矩阵表示为A^T,即A的行变为A^T的列,A的列变为A^T的行。
矩阵的运算与线性方程组练习题及解析
矩阵的运算与线性方程组练习题及解析在线性代数中,矩阵的运算是十分重要的一部分,同时也与线性方程组密切相关。
本文将为大家带来一些关于矩阵的运算和线性方程组的练习题,并给出详细的解析。
1. 矩阵的加法和减法题目:已知矩阵A = [1 2 3; 4 5 6],B = [7 8 9; 10 11 12],计算A +B和A - B。
解析:矩阵的加法和减法的计算规则是对应元素相加或相减。
根据给定的矩阵A和B,我们可以得到如下结果:A +B = [1+7 2+8 3+9; 4+10 5+11 6+12] = [8 10 12; 14 16 18]A -B = [1-7 2-8 3-9; 4-10 5-11 6-12] = [-6 -6 -6; -6 -6 -6]2. 矩阵的乘法题目:已知矩阵A = [1 2; 3 4],B = [5 6; 7 8],计算A * B和B * A。
解析:矩阵的乘法的计算规则是将第一个矩阵A的每一行与第二个矩阵B的每一列对应元素相乘,然后将结果相加。
根据给定的矩阵A和B,我们可以得到如下结果:A *B = [1*5+2*7 1*6+2*8; 3*5+4*7 3*6+4*8] = [19 22; 43 50]B * A = [5*1+6*3 5*2+6*4; 7*1+8*3 7*2+8*4] = [23 34; 31 46]3. 矩阵的转置题目:已知矩阵A = [1 2 3; 4 5 6],求矩阵A的转置。
解析:矩阵的转置是将矩阵的行和列交换得到的新矩阵。
根据给定的矩阵A,我们可以得到如下结果:A的转置 = [1 4; 2 5; 3 6]4. 线性方程组的求解题目:已知线性方程组:2x + y = 8x - y = 2解析:我们可以使用矩阵的方法来求解线性方程组。
将方程组的系数构成系数矩阵A,将方程组的常数构成常数矩阵B。
则方程组可以表示为AX = B的形式。
根据给出的方程组,我们可以得到如下结果:A = [2 1; 1 -1]B = [8; 2]为了求解方程组,我们可以使用矩阵的逆来计算X。
矩阵运算与线性方程组的解法
矩阵运算与线性方程组的解法在数学中,矩阵运算是一种重要的工具,它与线性方程组的解法密切相关。
矩阵可以看作是一个由数字组成的矩形阵列,而矩阵运算则是对这些数字进行加减乘除等操作的过程。
线性方程组则是由一系列线性方程组成的方程组,其中每个方程都是关于未知数的线性函数。
通过矩阵运算,我们可以有效地解决线性方程组,并得到方程组的解。
首先,我们来介绍一些基本的矩阵运算。
矩阵的加法和减法是最简单的运算,它们的规则与普通的加法和减法类似,只需要对应位置上的数字相加或相减即可。
例如,对于两个相同大小的矩阵A和B,它们的加法可以表示为A + B = C,其中C的每个元素都是A和B对应位置上元素的和。
同样地,矩阵的减法也是类似的,只需将对应位置上的元素相减即可。
另一种常见的矩阵运算是矩阵的乘法。
矩阵乘法的定义相对复杂一些,需要注意一些规则。
对于两个矩阵A和B,它们的乘法可以表示为A * B = C,其中C的每个元素都是A的对应行与B的对应列的乘积之和。
具体来说,如果A是一个m行n列的矩阵,B是一个n行p列的矩阵,那么C就是一个m行p列的矩阵。
在进行矩阵乘法时,我们需要确保第一个矩阵的列数与第二个矩阵的行数相等,否则乘法将无法进行。
矩阵乘法的应用非常广泛,特别是在线性方程组的解法中。
线性方程组可以用矩阵的形式表示为Ax = b,其中A是一个m行n列的矩阵,x是一个n行1列的列向量,b是一个m行1列的列向量。
如果我们已知A和b,那么我们可以通过求解x来得到线性方程组的解。
这就涉及到了矩阵的逆和矩阵的转置。
矩阵的逆是一个非常重要的概念,它表示一个矩阵与其逆矩阵相乘等于单位矩阵。
单位矩阵是一个对角线上的元素都为1,其它元素都为0的矩阵。
如果一个矩阵存在逆矩阵,那么我们可以通过乘以该逆矩阵来解线性方程组。
具体来说,如果A的逆矩阵存在,那么方程组的解可以表示为x = A^(-1) * b。
然而,不是所有的矩阵都存在逆矩阵,只有满足一定条件的矩阵才能求逆。
方程组与矩阵的关系与应用
方程组与矩阵的关系与应用方程组与矩阵是数学中两个重要的概念,它们之间存在着紧密的关系,并且在各个领域有着广泛的应用。
本文将介绍方程组与矩阵的基本概念,讨论它们之间的关系,并探讨矩阵在方程组求解中的应用。
一、方程组与矩阵的基本概念方程组是由多个方程组成的集合,其中每个方程都包含一个或多个未知数。
方程组的解是使得方程组中的所有方程都成立的未知数的值。
方程组可以用文字表示,也可以用数学符号表示。
矩阵是由元素按照行和列排列成的矩形阵列,其中每个元素可以是数字、代数量或函数。
矩阵的大小由它的行数和列数决定。
矩阵中的元素可以用小写字母表示,例如A、B、C等。
二、方程组与矩阵的关系方程组与矩阵之间存在着紧密的关系。
具体来说,我们可以将一个方程组表示为矩阵的形式。
假设有一个包含n个未知数和m个方程的方程组,我们可以用一个n x m的矩阵表示该方程组。
矩阵的第i行第j列的元素就是方程组中第i个方程中第j个未知数的系数。
通过将方程组转化为矩阵的形式,我们可以利用矩阵的性质和运算来解方程组。
例如,可以使用初等行变换将矩阵转化为简化行阶梯形,从而得到方程组的解。
三、矩阵在方程组求解中的应用矩阵在方程组求解中有着广泛的应用,下面我们将介绍几种常见的应用。
1. 线性方程组的求解:线性方程组是由线性方程组成的方程组。
通过将线性方程组表示为矩阵的形式,我们可以使用矩阵的方法来求解。
具体来说,可以使用高斯消元法或者矩阵的逆来求解线性方程组。
2. 最小二乘拟合:在某些情况下,我们无法准确求解一个方程组,但是我们可以用最小二乘法来拟合方程组的解。
最小二乘法是通过使得方程组的残差平方和最小来求解方程组,这可以通过矩阵的运算来实现。
3. 差分方程的求解:差分方程是描述离散系统演化的方程。
通过将差分方程表示为矩阵的形式,我们可以利用矩阵的特征值和特征向量来求解差分方程。
4. 优化问题的求解:在某些情况下,我们需要找到一个使得某个函数达到最大或最小值的变量值。
矩阵与方程组的解法
矩阵与方程组的解法在线性代数中,矩阵与方程组是重要的研究对象。
矩阵可以被用来表示一组线性方程,而方程组则是由多个线性方程组成的系统。
解决方程组的一个基本方法是使用矩阵运算。
本文将介绍几种常见的矩阵与方程组的解法。
一、高斯消元法高斯消元法是一种基本的线性方程组求解方法。
它通过一系列的行变换将方程组转化为简化行阶梯形式。
具体步骤如下:1. 将方程组的系数矩阵与常数矩阵合并为增广矩阵。
2. 通过行变换,将矩阵转化为上三角形矩阵,即每一行从左至右的第一个非零元素为1,其它元素均为0。
3. 从最后一行开始,逐行用“倍加”法将每一行的首个非零元素化为1,同时将其它行的相应元素消为0。
通过高斯消元法,可以得到简化行阶梯形矩阵,从而求得方程组的解。
二、矩阵求逆法对于方程组AX=B,其中A为系数矩阵,X为未知数矩阵,B为常数矩阵,如果A可逆,则可以通过以下公式求解:X = A^-1 * B其中A^-1为A的逆矩阵。
为了求得逆矩阵,可以使用伴随矩阵法或初等变换法。
伴随矩阵法:1. 求得矩阵A的伴随矩阵Adj(A),即将A中每个元素的代数余子式按一定次序排成一个矩阵。
2. 计算A的行列式det(A)。
3. 若det(A)不等于0,则A可逆,将伴随矩阵Adj(A)除以det(A),即可得到逆矩阵A^-1。
初等变换法:1. 构造一个n阶单位矩阵I,将A和I相连接成增广矩阵(A|I)。
2. 通过初等行变换将矩阵A转化为上三角矩阵。
3. 继续进行初等行变换,将上三角矩阵转化为单位矩阵。
4. 此时,矩阵I右侧的矩阵即为矩阵A的逆矩阵A^-1。
三、克拉默法则对于n个未知数和n个线性方程的齐次线性方程组,克拉默法则提供了一种求解方法。
该方法通过计算每个未知数的系数矩阵的行列式来求解。
设方程组AX=B,其中A为系数矩阵,X为未知数矩阵,B为常数矩阵。
如果矩阵A的行列式det(A)不为0,则可以通过以下公式求解:X_i = det(A_i) / det(A)其中X_i为方程组的第i个未知数,A_i是将A矩阵中第i列替换为常数矩阵B后得到的矩阵。
矩阵运算与线性方程组的解法
矩阵运算与线性方程组的解法在数学中,矩阵运算与线性方程组是一个非常重要的话题。
矩阵运算可以通过矩阵相乘、矩阵加法和矩阵求逆等操作来解决线性方程组的问题。
本文将介绍一些常见的矩阵运算方法,并详细讨论它们在解决线性方程组中的应用。
1. 矩阵相乘矩阵相乘是指将一个矩阵与另一个矩阵相乘的操作。
要进行矩阵相乘,需要确保第一个矩阵的列数与第二个矩阵的行数相等。
具体计算规则如下:设有两个矩阵A和B,它们分别为m×n矩阵和n×p矩阵,则它们的乘积C为一个m×p矩阵,其中C的元素c_ij可以通过以下公式计算:c_ij = a_i1 * b_1j + a_i2 * b_2j + ... + a_in * b_nj矩阵相乘在求解线性方程组中有广泛的应用,特别是在使用高斯消元法和矩阵的LU分解法求解线性方程组时。
2. 矩阵加法矩阵加法是指将两个矩阵进行按元素相加的操作。
要进行矩阵加法,需要确保两个矩阵具有相同的尺寸。
具体计算规则如下:设有两个矩阵A和B,它们都是m×n的矩阵,则它们的和C为一个m×n的矩阵,其中C的元素c_ij可以通过以下公式计算:c_ij = a_ij + b_ij矩阵加法在解决线性方程组时通常用于消元过程中,通过行变换将线性方程组转化为最简形式。
3. 矩阵的逆对于一个方阵A,如果存在一个矩阵B,使得A与B的乘积等于单位矩阵I,则称B为A的逆矩阵,记为A^-1。
只有方阵才有逆矩阵。
逆矩阵可以通过伴随矩阵和行列式的乘积来计算。
具体计算规则如下:设有一个n阶方阵A,如果A可逆,则A的逆矩阵A^-1可以通过以下公式计算:A^-1 = (1/|A|) * Adjoint(A)其中|A|表示A的行列式,Adjoint(A)表示A的伴随矩阵。
逆矩阵在求解线性方程组中扮演着重要的角色,它可以直接求解线性方程组的解,也可以通过矩阵的LU分解法求解线性方程组。
4. 线性方程组的解法线性方程组是由多个线性方程组成的方程组。
矩阵与方程组的解的关系
矩阵与方程组的解的关系矩阵是一类数值的结构,根据其位置来确定数值的组织形式,矩阵的解也是数值的求解的基础。
解决矩阵问题的最终方法是解方程组,把矩阵转换成方程组来求解。
矩阵与方程组的解之间是密不可分的,他们之间有着深刻而重要的关系。
什么是矩阵?矩阵由行和列组成,每行都有若干数值,每列也有若干数值,它们组合起来构成一个矩阵。
矩阵是一类数值的结构,每一行和每一列都可以看作是一个向量,这些向量有不同的性质。
矩阵是数学中一种重要的概念,它可以帮助数学家们更好地理解和解决一些复杂的问题。
解决矩阵问题的最终方法是解方程组,把矩阵转换成方程组来求解。
在数学上,方程组是一个由可变量x关于一定约束条件下的一组方程所组成的系统。
求解方程组的关键在于把多个方程组合并为一个轴线,使用特殊的变量去表示,然后将方程的解表示为某种数值的组合。
矩阵与方程组的解之间是密不可分的,他们之间有着深刻而重要的关系。
矩阵可以把一些方程组转换成一个矩阵,而方程组的解也可以以某种形式表示矩阵,这就是矩阵与方程组的解的关系。
举例来说,假设给定的矩阵是A = { (1,2,3)(4,5,6)(7,8,9)}此矩阵可以表示如下的方程组:x1 + 2x2 + 3x3 = 14x1 + 5x2 + 6x3 = 47x1 + 8x2 + 9x3 = 7这里的x1、x2和x3都是变量,即方程组的自变量,方程组的解就是x1、x2和x3的值,而矩阵A的解也正是这三个值。
这样,根据矩阵可以求解方程组,而矩阵的解也可以从方程组中求出。
补充一下,矩阵也能帮助我们求解方程组,但是方程组的解也可以用来解决矩阵的问题。
例如,矩阵可以用来求解一个线性系统的最优解,而一个最优解也可以表示为一行矩阵,比如可以用一组数字表示一个矩阵,而且这行矩阵也是一个方程组的解。
综上所述,矩阵和方程组的解之间具有密不可分的关系,他们不仅可以帮助我们更好地理解和解决一些复杂的问题,而且还可以相互转化,从而帮助我们更深入地理解一些矩阵问题。
矩阵运算与线性方程组的解法
矩阵运算与线性方程组的解法矩阵运算和线性方程组是线性代数中非常重要的概念和工具。
它们在数学、物理、计算机科学等领域中扮演了重要的角色。
在本文中,我们将探讨矩阵运算和线性方程组的解法。
矩阵是由数个数按照一定的规律排列成的矩形阵列。
矩阵一般用大写字母表示,如A、B等。
矩阵由行和列组成,并且每个元素的位置用索引表示。
例如,A[i, j]表示矩阵A中第i行第j列的元素。
矩阵运算包括加法、减法和乘法等。
矩阵加法要求两个矩阵具有相同的行数和列数,相应位置元素相加得到新的矩阵。
矩阵减法也有类似的规定。
矩阵乘法的定义稍微复杂一些,它要求第一个矩阵的列数等于第二个矩阵的行数。
运算结果的矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
解决线性方程组的一个常见方法就是使用矩阵运算。
线性方程组是由多个线性方程组成的方程组。
每个线性方程都具有类似“a1x1 + a2x2 + ... + anxn = b”的形式,其中a1, a2, ..., an是已知系数,x1, x2, ..., xn是未知数,b是已知常数。
我们的目标是找到满足所有线性方程的未知数的解。
矩阵运算的方法之一是高斯消元法。
高斯消元法将线性方程组转化为一个特殊的矩阵形式,通过一系列的行变换将矩阵转化为上三角矩阵。
然后,通过回代法求解得到线性方程组的解。
这个方法的基本思想就是通过矩阵运算,将方程组转化为一个简单的等价形式,使得求解变得更加容易。
另一个常用的方法是矩阵的逆和逆矩阵。
矩阵的逆是指对于一个矩阵A,存在另一个矩阵B,使得AB=BA=I,其中I是单位矩阵。
如果矩阵A具有逆,则称其为可逆矩阵或非奇异矩阵。
我们可以使用矩阵的逆来解决线性方程组。
假设我们有一个线性方程组Ax=b,我们可以将它转化为x=A^(-1)b,其中A^(-1)表示矩阵A的逆。
然后,我们可以使用已知的矩阵求逆的方法来求解x。
除了这些方法外,还有其他一些常见的矩阵运算和线性方程组的解法。
线性方程组与矩阵运算
线性方程组与矩阵运算引言:线性方程组和矩阵运算是线性代数的两个重要概念。
线性方程组是由一系列线性方程组成的方程组,而矩阵运算则是通过矩阵的运算规则来操作矩阵。
本文将介绍线性方程组的解法和矩阵运算的基本原理。
一、线性方程组的解法线性方程组是由若干个线性方程构成的方程组,形如:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,aᵢₙ和bᵢ都是已知的系数,x₁、x₂、...、xₙ是未知数。
线性方程组的解就是找到一组满足所有方程的未知数值。
1.1 高斯消元法高斯消元法是解线性方程组的一种常用方法。
它通过行初等变换,将线性方程组化为一个简单的三角形方程组,然后通过回代求解未知数的值。
1.2 矩阵表示法线性方程组可以通过矩阵表示法来简化求解过程。
将线性方程组的系数和常数项构成一个矩阵,通过矩阵的运算来求解未知数。
矩阵表示法可以有效地利用计算机的计算能力,提高求解的效率。
二、矩阵运算的基本原理矩阵运算是对矩阵进行各种操作的过程,包括矩阵的相加、相减、数乘、乘法等。
2.1 矩阵的相加与相减两个相同维数的矩阵可以进行相加和相减运算。
相加运算的结果是将对应位置的元素相加,相减运算的结果是将对应位置的元素相减。
2.2 矩阵的数乘将一个矩阵的所有元素乘以一个数称为数乘运算。
数乘运算的结果是将矩阵的每个元素都乘以该数。
2.3 矩阵的乘法两个矩阵的乘法是将一个矩阵的行与另一个矩阵的列进行相乘,并将结果相加得到新的矩阵。
矩阵的乘法不满足交换律,即A×B不一定等于B×A,但满足结合律,即(A×B)×C等于A×(B×C)。
结论:线性方程组的解法和矩阵运算是线性代数中的重要内容。
通过高斯消元法或矩阵表示法可以求解线性方程组的解,而矩阵运算包括矩阵的相加、相减、数乘和乘法等基本运算。
线性代数的应用的矩阵运算与线性方程组求解
线性代数的应用的矩阵运算与线性方程组求解线性代数是数学中的一个重要分支,它研究了向量空间及其线性映射、线性方程组以及矩阵的性质和运算规则。
在实际应用中,线性代数可以用于解决各种问题,尤其是在矩阵运算和线性方程组求解方面发挥了重要的作用。
一、矩阵运算矩阵是线性代数中的一个基本概念,它由元素排列在矩形阵列中而得名。
矩阵可以表示数据及其之间的关系,通过矩阵的运算可以对数据进行变换和分析。
1. 矩阵的加法和减法矩阵的加法和减法可以分别理解为对应位置的元素相加和相减。
对于两个相同大小的矩阵A和B,它们的加法和减法定义如下:A +B = CA -B = D其中C和D分别是相应位置元素相加和相减所得到的矩阵。
2. 矩阵的乘法矩阵的乘法是线性代数中的一项重要运算,它可以用来描述向量之间的线性关系。
对于矩阵A和B,它们的乘法定义如下:A ×B = E其中E是由A和B的元素按照一定规则相乘再相加所得到的矩阵。
3. 矩阵的转置矩阵的转置是指将矩阵的行和列对调得到的新矩阵。
对于一个m×n的矩阵A,它的转置记为A^T,是一个n×m的矩阵。
转置操作可以改变矩阵的结构,常用于求解线性方程组和矩阵的特征值等问题。
二、线性方程组的求解线性方程组是由线性方程组成的方程组,每个方程都是形如a_1x_1 + a_2x_2 + ... + a_nx_n = b的线性方程。
线性方程组的求解是线性代数中的一个重要应用,它可以解决众多实际问题。
1. 线性方程组的矩阵表示线性方程组可以用矩阵的形式表示,例如:AX = B其中A是一个m×n的系数矩阵,X是一个n×1的未知数向量,B是一个m×1的常数向量。
通过矩阵运算可以将线性方程组转化为矩阵方程,从而方便求解。
2. 线性方程组的解法线性方程组的求解方法有很多种,常用的有高斯消元法、LU分解法和矩阵求逆法等。
这些方法都是基于矩阵运算和线性方程组的特性来进行求解的,能够得到方程组的解集或特解。
矩阵与行列式线性方程组的求解与矩阵的运算
矩阵与行列式线性方程组的求解与矩阵的运算矩阵和行列式是线性代数中非常重要的概念,它们在数学和工程领域中具有广泛的应用。
本文将讨论矩阵与行列式的基本知识,以及它们在线性方程组求解和矩阵运算中的应用。
一、矩阵和行列式的定义1. 矩阵的定义:矩阵是由数个数按照矩阵形式排列组成的一种数学对象。
矩阵由m行n列的元素组成,通常用大写字母表示矩阵,如A。
矩阵中的每个元素用小写字母表示,如a_ij表示矩阵A中第i行第j列的元素。
2. 行列式的定义:行列式是一个按特定规则计算出的标量值。
行列式可以理解为一个方阵的属性,它的值可以告诉我们这个方阵的一些重要信息,比如是否可逆、是否为奇偶数等。
二、矩阵运算矩阵的运算包括加法、减法、数乘和乘法四种基本运算。
1. 矩阵加法和减法:若两个矩阵A和B的行数和列数相等,那么可以对应元素进行加法和减法运算,得到的结果矩阵的元素等于对应位置的两个矩阵的元素之和或之差。
2. 数乘:数乘是指将矩阵的每一个元素都乘以一个数。
即若A是一个m行n列的矩阵,k是一个数,那么kA是一个m行n列的矩阵,它的每个元素等于k乘以对应位置上的元素。
3. 矩阵乘法:若矩阵A是一个m行n列的矩阵,矩阵B是一个n 行p列的矩阵,那么矩阵A乘以矩阵B得到的结果是一个m行p列的矩阵,其中新矩阵的第i行第j列的元素等于矩阵A的第i行和矩阵B 的第j列对应元素的乘积之和。
三、线性方程组的求解线性方程组可以用矩阵和行列式的方法进行求解。
对于一个m个方程、n个未知数的线性方程组Ax=b,其中A是一个m行n列的系数矩阵,x是一个n行1列的未知数向量,b是一个m行1列的常数向量。
通过矩阵和行列式的运算,我们可以将线性方程组的求解转化为求解矩阵方程Ax=b。
若矩阵A可逆,即矩阵A的行列式不为0,那么方程组的唯一解为x=A^(-1)b,其中A^(-1)是矩阵A的逆矩阵。
如果矩阵A不可逆,即矩阵A的行列式为0,那么方程组可能有无穷多个解或者无解。
数学中的多元方程组求解与矩阵运算
数学中的多元方程组求解与矩阵运算数学中的多元方程组求解与矩阵运算是线性代数的重要内容,它们在各个领域中都有广泛的应用。
本文将介绍多元方程组的求解方法以及与之相关的矩阵运算。
一、多元方程组的求解方法多元方程组是由多个未知数和相应的方程组成的方程系统。
求解多元方程组的目标是找到满足所有方程的未知数的取值。
常见的多元方程组求解方法包括高斯消元法、矩阵消元法和克拉默法则。
1. 高斯消元法高斯消元法是一种常用的求解多元方程组的方法。
它通过一系列的行变换将方程组转化为行简化阶梯形矩阵,从而得到方程组的解。
高斯消元法的基本思想是将方程组表示为增广矩阵,然后通过消元操作将矩阵化为行简化阶梯形矩阵,最后通过回代求解得到未知数的值。
2. 矩阵消元法矩阵消元法是一种基于矩阵运算的多元方程组求解方法。
它将方程组表示为增广矩阵,然后通过一系列的矩阵运算将矩阵化为行简化阶梯形矩阵,最后通过回代求解得到未知数的值。
矩阵消元法可以看作是高斯消元法在矩阵形式下的推广,它更加简洁和直观。
3. 克拉默法则克拉默法则是一种基于行列式的多元方程组求解方法。
它利用方程组的系数矩阵的行列式和各个未知数对应的代数余子式来求解方程组。
克拉默法则的优点是可以直接得到每个未知数的解,但是当方程组的规模较大时,计算代数余子式的复杂度较高。
二、矩阵运算矩阵运算是多元方程组求解的重要工具,它包括矩阵的加法、减法、乘法以及逆矩阵的求解等操作。
1. 矩阵的加法和减法矩阵的加法和减法是按照对应元素相加或相减的规则进行的。
两个矩阵的加法和减法要求其维数相同,即行数和列数相等。
2. 矩阵的乘法矩阵的乘法是按照矩阵乘法的规则进行的。
两个矩阵相乘的结果是一个新的矩阵,其行数等于左矩阵的行数,列数等于右矩阵的列数。
矩阵乘法满足结合律,但不满足交换律,即乘法的顺序会影响结果。
3. 逆矩阵的求解逆矩阵是指与原矩阵相乘得到单位矩阵的矩阵。
对于可逆矩阵,可以通过行列式和伴随矩阵的关系来求解逆矩阵。
线性方程组的解法与矩阵运算
线性方程组的解法与矩阵运算线性方程组是数学中的常见问题之一,它可以用来描述多个变量之间的线性关系。
解决线性方程组的常见方法是使用矩阵运算。
本文将介绍线性方程组的解法以及如何使用矩阵运算来求解。
一、线性方程组的基本概念线性方程组是由多个线性方程组成的方程组,每个方程都是形如a₁x₁ + a₂x₂ + ... + anxn = b的线性等式,其中a₁, a₂, ..., an为系数,x₁, x₂, ..., xn为变量,b为常数。
一个线性方程组可能有一个解、无穷多个解或者无解。
二、线性方程组的解法1. 高斯消元法高斯消元法是求解线性方程组的经典方法之一。
其步骤如下:(1) 将线性方程组写成增广矩阵的形式;(2) 通过矩阵的行变换,将增广矩阵化简为上三角矩阵;(3) 回代求解未知数。
2. 矩阵求逆法当线性方程组的系数矩阵可逆时,我们可以通过矩阵求逆的方法求解。
具体步骤如下:(1) 将线性方程组的系数矩阵A和常数矩阵B写成增广矩阵的形式[A,B];(2) 若A可逆,则通过矩阵的逆A⁻¹求得解矩阵X,其中X = [X₁, X₂, ..., Xn];(3) 解矩阵X即为线性方程组的解。
三、矩阵运算和线性方程组的关系矩阵运算在解决线性方程组时起着重要作用,它可以简化计算过程并提高求解效率。
以下是一些常用的矩阵运算与线性方程组的关系。
1. 矩阵加法和减法矩阵加法和减法可以用于表示线性方程组的系数矩阵和常数矩阵之间的运算关系。
通过矩阵加法和减法,我们可以合并或拆分线性方程组,方便进行计算。
2. 矩阵乘法矩阵乘法可应用于连立方程组和线性变换的计算过程。
通过定义两个矩阵的乘积,我们可以将线性方程组转化为矩阵运算的形式,从而简化求解过程。
3. 矩阵的转置和伴随矩阵转置矩阵和伴随矩阵在解决线性方程组时有重要作用。
转置矩阵可以用于求解方程组的转置方程组,而伴随矩阵则可以用于求解方程组的伴随方程组。
四、总结线性方程组的解法与矩阵运算密切相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录Ⅰ 大学数学实验指导书项目五矩阵运算与方程组求解实验1 行列式与矩阵实验目的掌握矩阵的输入方法. 掌握利用Mathematica (4.0以上版本) 对矩阵进行转置、加、减、 数乘、相乘、乘方等运算, 并能求矩阵的逆矩阵和计算方阵的行列式.基本命令在Mathematica 中, 向量和矩阵是以表的形式给出的.1. 表在形式上是用花括号括起来的若干表达式, 表达式之间用逗号隔开. 如输入{2,4,8,16}{x,x+1,y,Sqrt[2]}则输入了两个向量.2. 表的生成函数(1) 最简单的数值表生成函数Range, 其命令格式如下:Range[正整数n]—生成表{1,2,3,4,…,n };Range[m, n]—生成表{m ,…,n };Range[m, n, dx]—生成表{m ,…,n }, 步长为d x .2. 通用表的生成函数Table. 例如,输入命令Table[n^3,{n,1,20,2}]则输出 {1,27,125,343,729,1331,2197,3375,4913,6859}输入Table[x*y,{x,3},{y,3}]则输出 {{1,2,3},{2,4,6},{3,6,9}}3. 表作为向量和矩阵一层表在线性代数中表示向量, 二层表表示矩阵. 例如,矩阵⎪⎪⎭⎫ ⎝⎛5432 可以用数表{{2,3},{4,5}}表示.输入A={{2,3},{4,5}}则输出 {{2,3},{4,5}}命令MatrixForm[A]把矩阵A 显示成通常的矩阵形式. 例如,输入命令:MatrixForm[A]则输出 ⎪⎪⎭⎫ ⎝⎛5432 注:一般情况下,MatrixForm[A]所代表的矩阵A 不能参与运算.下面是一个生成抽象矩阵的例子.输入Table[a[i,j],{i,4},{j,3}]MatrixForm[%]则输出⎪⎪⎪⎪⎪⎭⎫ ⎝⎛]3,4[]2,4[]1,4[]3,3[]2,3[]1,3[]3,2[]2,2[]1,2[]3,1[]2,1[]1,1[a a a a a a a a a a a a 注:这个矩阵也可以用命令Array 生成,如输入Array[a,{4,3}]//MatrixForm则输出与上一命令相同.4. 命令IdentityMatrix[n]生成n 阶单位矩阵.例如,输入IdentityMatrix[5]则输出一个5阶单位矩阵(输出略).5. 命令DiagonalMatrix[…]生成n 阶对角矩阵.例如,输入DiagonalMatrix[{b[1],b[2],b[3]}]则输出 {{b[1],0,0},{0,b[2],0},{0,0,b[3]}}它是一个以b[1], b[2], b[3]为主对角线元素的3阶对角矩阵.6. 矩阵的线性运算:A+B 表示矩阵A 与B 的加法;k*A 表示数k 与矩阵A 的乘法; A.B 或 Dot[A,B]表示矩阵A 与矩阵B 的乘法.7. 求矩阵A 的转置的命令:Transpose[A].8. 求方阵A 的n 次幂的命令:MatrixPower[A,n].9. 求方阵A 的逆的命令:Inverse[A].10.求向量a 与b 的内积的命令:Dot[a,b].实验举例矩阵的运算例1.1 设,421140123,321111111⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=B A 求A AB 23-及.B A T输入A={{-1,1,1},{1,-1,1},{1,2,3}}MatrixForm[A]B={{3,2,1},{0,4,1},{-1,2,-4}}MatrixForm[B]3A.B -2A//MatrixFormTranspose[A].B//MatrixForm则输出A AB 23-及B A T 的运算结果分别为⎪⎪⎪⎭⎫ ⎝⎛-----334421424141010⎪⎪⎪⎭⎫ ⎝⎛----10120821444求方阵的逆例1.2 设,5123641033252312⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A 求.1-A 输入Clear[ma]ma={{2,1,3,2},{5,2,3,3},{0,1,4,6},{3,2,1,5}};Inverse[ma]//MatrixForm则输出⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------16521161145810812181********161121162147 求方阵的行列式例1.3 求.11111111111122222222d d d d c cc c b bb b a a a a D ++++= 输入Clear[A,a,b,c,d];A={{a^2+1/a^2,a,1/a,1},{b^2+1/b^2,b,1/b,1},{c^2+1/c^2,c,1/c,1},{d^2+1/d^2,d,1/d,1}};Det[A]//Simplify则输出 2222)1)()()()()()((d c b a abcd d c d b d a c b c a b a +--------例1.4 设矩阵 ,60975738723965110249746273⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=A 求.),(|,|3A A tr A 输入A={{3,7,2,6,-4},{7,9,4,2,0},{11,5,-6,9,3},{2,7,-8,3,7},{5,7,9,0,-6}}MatrixForm[A]Det[A]Tr[A]MatrixPower[A,3]//MatrixForm则输出3),(|,|A A tr A 分别为115923⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---12574547726668013841222451984174340410063122181713228151626315018483582949442062726实验习题11.设,150421321,111111111⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=B A 求A AB 23-及.B A '2.设,001001⎪⎪⎪⎭⎫ ⎝⎛=λλλA 求.10A 一般地?=k A (k 是正整数).3.求⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++++a a a aa 1111111111111111111111111的逆. 4.设,321011324⎪⎪⎪⎭⎫ ⎝⎛-=A 且,2B A AB +=求.B5.利用逆矩阵解线性方程组⎪⎩⎪⎨⎧=++=++=++.353,2522,132321321321x x x x x x x x x实验2 矩阵的秩与向量组的最大无关组实验目的 学习利用Mathematica(4.0以上版本)求矩阵的秩,作矩阵的初等行变换; 求向 量组的秩与最大无关组.基本命令1. 求矩阵M 的所有可能的k 阶子式组成的矩阵的命令:Minors[M,k].2. 把矩阵A 化作行最简形的命令:RowReduce[A].3. 把数表1,数表2, …,合并成一个数表的命令:Join[list1,list2,…]. 例如输入Join[{{1,0,-1},{3,2,1}},{{1,5},{4,6}}]则输出 {{1,0,-1},{3,2,1},{1,5},{4,6}}实验举例求矩阵的秩例2.1 设,815073*********⎪⎪⎪⎭⎫ ⎝⎛-------=M 求矩阵M 的秩.输入Clear[M];M={{3,2,-1,-3,-2},{2,-1,3,1,-3},{7,0,5,-1,-8}};Minors[M,2]则输出{{-7,11,9,-5,5,-1,-8,8,9,11},{-14,22,18,-10,10,-2,-16,16,18,22},{7,-11,-9,5,-5,1,8,-8,-9,-11}}可见矩阵M 有不为0的二阶子式. 再输入Minors[M,3]则输出{{0,0,0,0,0,0,0,0,0,0}}可见矩阵M 的三阶子式都为0. 所以.2)(=M r例2.2 求矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3224211631095114047116的行最简形及其秩. 输入A={{6,1,1,7},{4,0,4,1},{1,2,-9,0},{-1,3,-16,-1},{2,-4,22,3}}MatrixForm[A]RowReduce[A]//MatrixForm则输出矩阵A 的行最简形⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000000100005100101 根据矩阵的行最简形,便得矩阵的秩为3.矩阵的初等行变换例2.3 用初等变换法求矩阵.343122321⎪⎪⎪⎭⎫ ⎝⎛的逆矩阵.输入 A={{1,2,3},{2,2,1},{3,4,3}}MatrixForm[A]Transpose[Join[Transpose[A],IdentityMatrix[3]]]//MatrixFormRowReduce[%]//MatrixFormInverse[A]//MatrixForm则输出矩阵A 的逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛---1112/532/3231向量组的秩例2.4 向量组)7,5,1,3(),5,4,3,1(),1,1,1,1(),3,2,1,1(4321==-==αααα是否线性相关? 输入Clear[A];A={{1,1,2,3},{1,-1,1,1},{1,3,4,5},{3,1,5,7}};RowReduce[A]//MatrixForm则输出⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0000010010102001 向量组包含四个向量, 而它的秩等于3, 因此, 这个向量组线性相关.向量组的最大无关组例2.5 求向量组)0,5,1,2(),0,2,1,1(),14,7,0,3(),2,1,3,0(),4,2,1,1(54321=-===-=ααααα的最大无关组, 并将其它向量用最大无关组线性表示.输入Clear[A,B];A={{1,-1,2,4},{0,3,1,2},{3,0,7,14},{1,-1,2,0},{2,1,5,0}};B=Transpose[A];RowReduce[B]//MatrixForm则输出⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-000002/51000101102/10301 在行最简形中有三个非零行, 因此向量组的秩等于3. 非零行的首元素位于第一、二、 四列,因此421,,ααα是向量组的一个最大无关组. 第三列的前两个元素分别是3,1,于是 .3213ααα+=第五列的前三个元素分别是,25,1,21-于是.25214215αααα++-=实验习题1.求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=12412116030242201211A 的秩.2.求t , 使得矩阵⎪⎪⎪⎭⎫ ⎝⎛-=t A 23312231的秩等于2.3.求向量组)0,0,1(),1,1,1(),1,1,0(),1,0,0(4321====αααα的秩.4.当t 取何值时, 向量组),3,1(),3,2,1(),1,1,1(321t ===ααα的秩最小?5.向量组)1,1,1,1(),1,1,1,1(),1,1,1,1(),1,1,1,1(4321-=--=--==αααα是否线性相关?6.求向量组)6,5,4,3(),5,4,3,2(),4,3,2,1(321===ααα的最大线性无关组. 并用最大无关 组线性表示其它向量.7.设向量),6,3,3,2(),6,3,0,3(),18,3,3,8(),0,6,3,1(2121=-=-=-=ββαα求证:向量组21,αα 与21,ββ等价.实验3 线性方程组实验目的 熟悉求解线性方程组的常用命令,能利用Mathematica 命令各类求线性方程 组的解. 理解计算机求解的实用意义.基本命令1.命令NullSpace []A ,给出齐次方程组0=AX 的解空间的一个基.2.命令LinearSolve []b A ,,给出非齐次线性方程组b AX =的一个特解.3.解一般方程或方程组的命令Solve 见Mathematica 入门.实验举例求齐次线性方程组的解空间设A 为n m ⨯矩阵,X 为n 维列向量,则齐次线性方程组0=AX 必定有解. 若矩阵A 的 秩等于n ,则只有零解;若矩阵A 的秩小于n ,则有非零解,且所有解构成一向量空间. 命令 NullSpace 给出齐次线性方程组0=AX 的解空间的一个基.例3.1 求解线性方程组⎪⎪⎩⎪⎪⎨⎧=---=++=+--=--+.0532,0375,023,02432143243214321x x x x x x x x x x x x x x x 输入Clear[A];A={{1,1,-2,-1},{3,-2,-1,2},{0,5,7,3},{2,-3,-5,-1}};NullSpace[A]则输出{{-2,1,-2,3}}说明该齐次线性方程组的解空间是一维向量空间,且向量(-2,1,-2,3)是解空间的基. 注:如果输出为空集{ },则表明解空间的基是一个空集,该方程组只有零解.例3.2 向量组)7,5,1,3(),5,4,3,1(),1,1,1,1(),3,2,1,1(4321==-==αααα是否线性相关? 根据定义,如果向量组线性相关,则齐次线性方程组044332211='+'+'+'ααααx x x x 有非零解.输入Clear[A,B];A={{1,1,2,3},{1,-1,1,1},{1,3,4,5},{3,1,5,7}};B=Transpose[A];NullSpace[B]输出为{{-2,-1,0,1}}说明向量组线性相关,且02421=+--ααα非齐次线性方程组的特解例3.3 求线性方程组⎪⎪⎩⎪⎪⎨⎧=----=++=+--=--+45322375222342432143243214321x x x x x x x x x x x x x x x 的特解.输入Clear[A,b];A={{1,1,-2,-1},{3,-2,-1,2},{0,5,7,3},{2,-3,-5,-1}}; b={4,2,-2,4}LinearSolve[A,b]输出为{1,1,-1,0}注: 命令LinearSolve 只给出线性方程组的一个特解.例3.4 求出通过平面上三点(0,7),(1,6)和(2,9)的二次多项式,2c bx ax ++并画出其图形.根据题设条件有 ,924611700⎪⎩⎪⎨⎧=+⋅+⋅=+⋅+⋅=+⋅+⋅c b a c b a c b a 输入Clear[x];A={{0,0,1},{1,1,1},{4,2,1}}y={7,6,9}p=LinearSolve[A,y]Clear[a,b,c,r,s,t];{a,b,c}.{r,s,t}f[x_]=p.{x^2,x,1};Plot[f[x],{x,0,2},GridLines ->Automatic,PlotRange ->All];则输出c b a ,,的值为{2,-3,7}并画出二次多项式7322+-x x 的图形(略).非齐次线性方程组的通解用命令Solve 求非齐次线性方程组的通解.例3.5当a 为何值时,方程组⎪⎩⎪⎨⎧=++=++=++111321321321ax x x x ax x x x ax 无解、有唯一解、有无穷多解?当方程组有 解时,求通解.先计算系数行列式,并求a ,使行列式等于0.输入Clear[a];Det[{{a,1,1},{1,a,1},{1,1,a}}]; Solve[%==0,a]则输出{{a →-2},{a →1},{a →1}} 当a 2-≠,a 1≠时,方程组有唯一解.输入Solve[{a*x +y +z ==1,x +a*y +z ==1,x +y +a*z ==1},{x,y,z}]则输出{{x →,21a + y →,21a+ z →a +21}}当a =-2时,输入Solve[{-2x+y+z==1,x -2y+z==1,x+y -2z==1},{x,y,z}]则输出{ }说明方程组无解. 当a =1时,输入Solve[{x+y+z==1,x+y+z==1,x+y+z==1},{x,y,z}]则输出{{x →1-y -z}}}说明有无穷多个解.非齐次线性方程组的特解为(1,0,0),对应的齐次线性方程组的基础解 系为为(-1,1,0)与(-1,0,1).例3.6 求非齐次线性方程组 ⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534422312432143214321x x x x x x x x x x x x 的通解.解法1输入A={{2,1,-1,1},{3,-2,1,-3},{1,4,-3,5}};b={1,4,-2}; particular=LinearSolve[A,b] nullspacebasis=NullSpace[A]generalsolution=t*nullspacebasis[[1]]+k*nullspacebasis[[2]]+Flatten[particular] generalsolution//MatrixForm解法2输入B={{2,1,-1,1,1},{3,-2,1,-3,4},{1,4,-3,5,-2}} RowReduce[B]//MatrixForm根据增广矩阵的行最简形,易知方程组有无穷多解. 其通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛007/57/6107/97/1017/57/14321t k x x x x (k ,t 为任意常数)实验习题1.解方程组⎪⎩⎪⎨⎧=++=++=+-.024,02,032321321321x x x x x x x x x2.解方程组⎪⎩⎪⎨⎧=++-=++-=++-.0111784,02463,03542432143214321x x x x x x x x x x x x3. 解方程组⎪⎩⎪⎨⎧-=-+-=+-=-+-.22,3,44324314324321x x x x x x x x x x4.解方程组⎪⎩⎪⎨⎧=++-=+++=-++.254,32,22432143214321x x x x x x x x x x x x5.用三种方法求方程组⎪⎪⎩⎪⎪⎨⎧=-+=-+=-+=-+127875329934,8852321321321321x x x x x x x x x x x x 的唯一解.6.当b a ,为何值时,方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x b x x a x x x x x x x x 有唯一解、无解、有无穷多解?对后者求通解.实验4 投入产出模型(综合实验)实验目的 利用线性代数中向量和矩阵的运算, 线性方程组的求解等知识,建立在经济 分析中有重要应用的投入产出数学模型. 掌握线性代数在经济分析方面的应用.应用举例假设某经济系统只分为五个物质生产部门:农业、轻工业、重工业、运输业和建筑业, 五个部门间某年生产分配关系的统计数据可列成下表1. 在该表的第一象限中,每一个部门都以生产者和消费者的双重身份出现. 从每一行看,该部门作为生产部门以自己的产品分配给各部门;从每一列看,该部门又作为消耗部门在生产过程中消耗各部门的产品. 行与列的交叉点是部门之间的流量,这个量也是以双重身份出现,它是行部门分配给列部门的产品量,也是列部门消耗行部门的产品量.表1投入产出平衡表(单位: 亿元)注: 最终产品舍去了净出口.(修改表:加双线区分为四个象限)在第二象限中,反映了各部门用于最终产品的部分. 从每一行来看,反映了该部门最终产 品的分配情况;从每一列看,反映了用于消费、积累等方面的最终产品分别由各部门提供的数 量情况.在第三象限中,反映了总产品中新创造的价值情况,从每一行来看,反映了各部门新创造 价值的构成情况;从每一列看,反映了该部门新创造的价值情况.采用与第三章第七节完全相同的记号,可得到关于表1的产品平衡方程组y x A E =-)( (1)其中,A 为直接消耗系数矩阵,根据直接消耗系数的定义),,2,1,(n j i x x a jij ij ==,易求出表1所对应的直接消耗系数矩阵:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛==⨯0603.00425.00372.00227.00371.00411.00250.00416.00240.00143.03425.02083.05013.01451.00923.00685.00417.00252.01438.00231.00329.00250.00462.02557.01709.01825110120051540620131297135101171825751200305406225312975351045182562512002505406271031294543510324182512512005054061363129450351081182560120030540625031298003510600)(55ij a A 利用Mathematica 软件(以下计算过程均用此软件实现,不再重述),可计算出⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--11036.10739105.00982964.00672149.00637761.00884203.005447.1100805.00594445.0035022.0859487.0529259.016653.2495145.032573.0122005.00752055.00006552.020166.10492156.0132248.00874144.015254.0402651.024175.1)(1A E 为方便分析,将上述列昂节夫逆矩阵列成表2.表2下面我们来分析上表中各列诸元素的经济意义. 以第2列为例,假设轻工业部门提供的 最终产品为一个单位, 其余部门提供的最终产品均为零, 即最终产品的列向量为,)0,0,0,1,0(T y =于是,轻工业部门的单位最终产品对5个部门的直接消耗列向量为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛==0227.00240.01451.01438.02557.0000100603.00425.00372.00227.00371.00411.00250.00416.00240.00143.03425.02083.05013.01451.00923.00685.00417.00252.01438.00231.00329.00250.00462.02557.01709.0)0(Ay x通过中间产品向量)0(x 产生的间接消耗为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==0205373.00146768.0129979.00327974.00885192.0)0()1(Ax x , ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==0107259.000867109.00881789.00120554.00305619.0)0(2)2(x A x⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==00570305.000505222.0054254.000575796.00129491.0)0(3)3(x A x , ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==00318798.000294103.00322339.000309566.000650578.0)0(4)4(x A x于是,轻工业部门的单位最终产品对五个部门总产品的需求量为++++++=)4()3()2()1()0(x x x x x y x.0629.00553.04497.01975.13942.000318798.000294103.00322339.000309566.000650578.000570305.000505222.0054254.000575796.00129491.00107259.000867109.00881789.00120554.00305619.00205733.00146768.0129979.00327974.00885192.000010⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛≈+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=其中向量x 为列昂惕夫逆矩阵1)(--A E 的第2列, 该列5个元素分别是部门2生产一个单位 最终产品对部门1、2、3、4、5总产品的需求量, 即总产品定额. 同理, 可以解释列昂节夫 逆矩阵中第1、3、4、5列分别是部门1、3、4、5生产一个单位最终产品对部门1、2、3、 4、5的总产品定额.对应于附表1的完全消耗系数矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--=-11036.00739105.00982964.00672149.00637761.00884203.005447.0100805.00594445.0035022.0859487.0529259.016653.1495145.032573.0122005.00752055.00006552.020166.00492156.0132248.00874144.015254.0402651.024175.0)(1EA E B最终产品是外生变量, 即最终产品是由经济系统以外的因素决定的, 而内生变量是由经济系统内的因素决定的. 现在假定政府部门根据社会发展和人民生活的需要对表1的最终产品作了修改, 最终产品的增加量分别为农业2%, 轻工业7%, 重工业5%, 运输业5%, 建筑业 4%, 写成最终产品增量的列向量为,)51,5.37,15.52,09.160,4.35(T y =∆则产品的增加量x ∆可由式(8)近似计算到第5项, 得+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=+∆+∆+∆+∆+∆=∆515.3715.5209.1604.35515.3715.5209.1604.35515.3715.5209.1604.35515.3715.5209.1604.35515.375.5209.1604.35432)3()2()1()0(A A A A x x x x y x .)8033.744899.57169.238749.204083.121(T ≈其中,y A x ∆=∆)0(为各部门生产y ∆直接消耗各部门产品数量;而后面各项的和为各部门生 产y ∆的全部间接消耗的和.实验报告下表给出的是某城市某年度的各部门之间产品消耗量和外部需求量(均以产品价值计算, 单位: 万元), 表中每一行的数字是某一个部门提供给各部门和外部的产品价值.(1) 试列出投入—产出简表, 并求出直接消耗矩阵;(2) 根据预测, 从这一年度开始的五年内, 农业的外部需求每年会下降1%, 轻工业和商业的外部需求每年会递增6%, 而其它部门的外部需求每年会递增3%, 试由此预测这五年内该城市和各部门的总产值的平均年增长率;(3) 编制第五年度的计划投入产出表.实验5 交通流模型(综合实验)实验目的利用线性代数中向量和矩阵的运算, 线性方程组的求解等知识,建立交通流模型. 掌握线性代数在交通规划方面的应用.应用举例假设某城市部分单行街道的交通流量(每小时通过的车辆数)如图5-1所示.300 300 300+-432xxx=300+54xx=500-67xx=200+21xx=800+51xx=800+87xx=10009x=400-910xx=20010x=600++638xxx=1000⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪排版时只保留图,不要方程组图5-1试建立数学模型确定该交通网络未知部分的具体流量.假定上述问题满足下列两个基本假设(1)全部流入网络的流量等于全部流出网络的流量;(2)全部流入一个节点的流量等于流出此节点的流量.则根据图5-1及上述基本两个假设,可建立该问题的线性方程组⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=++==+-==+=+=+=+-=+=+-1000600200400100080018002005003008631010998751217654432x x x x x x x x x x x x x x x x x x x x , 即 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1000600200400100080080020050030000101011000000000110000000001000000000011000000000001000100000000110001100000000001100000000111010987654321x x x x x x x x x x 若将上述矩阵方程记为b Ax =,则问题就转化为求b Ax =的全部解. 下面我们利用 Mathmatica 软件来求解1、输入矩阵A ,并利用RowReduce[A ]命令求得A 的秩为8. 输入RowReduce[A]//MatrixForm Out[2]//MatrixForm=则输出⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000000000000000000100000000001000000000011000000001010000000000110000000000100000001001000000100012、应用命令NullSpace[A]求出齐次线性方程组0=Ax 的基础解系.输入In[3]:=NullSpace[A]//MatrixForm Out[3]//MatrixForm=则输出⎪⎪⎭⎫ ⎝⎛----00000110110011100000 由此即得到所求齐次线性方程组的基础解系:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=+=00000110110011100000212211C C c c ξξη, (21,C C 为任意常数). 3、输入增广阵(A b ),求出其秩为8, 由,108)()(=<==n Ab r A r 知方程组有无穷多个解. 输入RowReduce[Ab]//MatrixForm Out[5]//MatrixForm=则输出⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000000000000000000060010000000004000100000000100000110000008000010100000500000001100020000000001000000001001080000000100014、应用命令LinearSolve[A, b],求得非齐次线性方程组b Ax =的一个特解.输入LinearSolve[A,b]Out[9]={{800},{0},{200},{500},{0},{800},{1000},{0},{400},{600}}则得到所求非齐次线性方程组的一个特解:T )6004000100080005002000800(*=ξ综上所述,我们就得到了非齐次线性方程组b Ax =的全部解为,*2211*ξξξξη++++=C C x (21,C C 为任意常数).在解的表示式中, x 的每一个分量即为交通网络中未知部分的具体流量, 该问题有无穷 多解(为什么? 并思考其实际意义).本模型具有实际应用价值, 求出该模型的解, 可以为交通规划设计部门提供解决交通堵塞、车流运行不畅等问题的方法, 知道在何处应建设立交桥, 那条路应设计多宽等, 为城镇交通规划提供科学的指导意见. 但是,在本模型中,我们只考虑了单行街道这样一种简单情形, 更复杂的情形留待读者在更高一级的课程中去研究. 此外,本模型还可推广到电路分析中的网络节点流量等问题中.实验报告请读者应用本模型的思想方法, 为你所在或你熟悉的城镇建立一个区域的交通流量模型. 并提供一个具体的解决方案, 即从无穷多个解中根据具体限制确定出一个具体的解决方案.。